Annals of Mathematics

On Products in a Complex
Author(s): Hassler Whitney
Source: The Annals of Mathematics, Second Series, Vol. 39, No. 2 (Apr., 1938), pp. 397-432
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1968795
Accessed: 10/06/2009 06:24

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics.

ON PRODUCTS IN A COMPLEX ${ }^{1}$

By Hassler Whitney
(Received June 10, 1937; Revised November 9, 1937)

1. Introduction

In classical homology theory, founded by Poincaré, the fundamental operation is that of forming the boundary ∂A^{p} of a chain A^{p}. This is found by multiplying the coefficients of A^{p} into a matrix of incidence. Algebraically, an equally obvious operation, using the same matrix of incidence, forms the "coboundary" δA^{p-1} from a given A^{p-1}. It has recently been discovered that the algebraic part of the theory of intersections of chains in a manifold, when interpreted with the other operation, could be generalized to arbitrary complexes. It is the object of this paper to give a complete treatment of the fundamentals of this theory. We use a general type of complex and general coefficient groups, and prove the required invariance theorems. Parts of the paper are new only in form. Various notions used here appear first in Tucker's thesis, [12]. ${ }^{2}$

In Part I we define, after Tucker, the complexes to be used. The cohomology groups are defined, and then elementary properties of "dual homomorphisms" are given. The latter are used throughout the paper.

Suppose we ask for a product of p-chains A^{p} and q-chains B^{q}, giving $(p+q)$ chains $A^{p} \smile B^{q}$, which shall have topological significance. A p-cell times a q-cell far away from the p-cell should certainly give nothing; hence (P_{1}) of §5 is a natural assumption. Considering δ as the fundamental operation, if we wish the multiplication to give a result in the cohomology groups, we must have cocycle \smile cocycle $=$ cocycle. Hence $\delta(A \cup B)$ must be expressible in terms such as $\delta A \smile B$ and $A \smile \delta B . \quad\left(P_{2}\right)$ is the natural form. ${ }^{3}$ Suppose we ask that a vertex times itself equal itself. (Hence the γ of §5 is 1.) Then (using Theorem 1), at least in an ordinary connected complex, the products exist, and when carried out in the cohomology groups, are uniquely determined (Theorem 5). This may be considered the fundamental theorem of the present paper.

[^0]Another product, $A^{p} \frown B^{q}=C^{q-p}$, is considered; it is algebraically equivalent to the \smile product. We also consider briefly a particular definition of the products which may be used in simplicial complexes. The rest of Part II is devoted to proving other elementary properties and to showing how general coefficient groups may be used.

In Part III we answer two questions. First, in a polyhedron, are homology and cohomology groups and products independent of the particular simplicial subdivision chosen? The proof $\S 16$ that they are (which may be considered well-known) is relatively simple; the considerations show that the groups and products may be associated with an abstract space. Secondly, to find the groups and products, it is often very inconvenient to have to use simplicial subdivisions; but we must then show that a general complex gives the same theory as a simplicial subdivision. This combinatorial theorem (Theorem 14) occupies the rest of Part III. It turns out that complexes which may be used for determining the groups often may not be used for determining the products. ${ }^{4}$ However, most of the invariance proof may be carried out in the general type of complex. Similar (but slightly weaker) theorems for homology groups have been proved by Tucker, [12], and Alexandroff-Hopf, [4], Ch. VI.

The relation of the two products to intersection theory in a manifold is considered briefly in Part IV. In contrast with Čech, [5], we use the classical method of dual complexes. In Part V, the products are considered in product complexes and in Euclidean space. As an application of preceding results, some mapping theorems are proved, due in part to H . Hopf.

Some special topics are considered in the Appendix.
Historical note. The coboundary of a chain, when a passage to the limit is applied, becomes the derived of a covariant alternating tensor (compare Alexander, [1]). In this form, of course, it has long been known. From the algebraic standpoint, cocycles appear in a different form in the "pseudocycles" of S. Lefschetz, [10]. Cocycles may be interpreted as cycles in the "dual complex," considered in papers by W. Mayer ${ }^{5}$ and A. W. Tucker, [12]. An application of cocycles in their direct form was given in our note on Sphere-spaces. ${ }^{6}$

The work of L. Pontrjagin on character groups led to the realization that not only the homology but also the cohomology groups might be important. At the International Topological Conference, Moscow, 1935, J. W. Alexander and A. Kolmogoroff presented papers giving not only the theory of cohomology groups (with different notations), but also defining a product (for simplicial

[^1]complexes) in the groups. ${ }^{7}$ It appears that D. van Danzig ${ }^{8}$ and E. Čech also had a portion of these results. However, the Kolmogoroff-Alexander product was not wholly satisfactory, it being too large by a numerical factor. In studying their product at the end of 1935 , the author discovered the \smile product of §6. In an effort to generalize a theorem of H. Hopf (see footnote 17), the remaining results of $\S 6$ and $\S 7$ were found. ${ }^{9}$ At the same time, Čech discovered the same products; see [5]. Alexander studied the revised \smile product; see [3]. Finally, the present Part II may be considered an outgrowth of Čech's paper [5]. Our assumptions $\left(P_{1}\right)$ and $\left(P_{2}\right)$ are closely allied to those of Čech, $\S 2$. Our proof of Theorem 5 was obtained after a study of a corresponding proof in Čech's paper. In the mean time, H. Freudenthal, [6], also found the results of $\S 7$, and studied the relation of these products to other known products.

Recently S. Lefschetz ${ }^{10}$ has shown that the products of §6, when properly translated into the residual space of a sphere containing the complex, become the classical intersections. As in Tucker, [12], he gives postulates which a "chain-product" should satisfy. Neither author proves a uniqueness theorem (such as our Theorem 5).

I. Preliminaries

2. The complexes used

Complexes, in topology, are certain algebraic structures which may be given a geometric significance. For a given algebraic structure to be geometrically realizable, certain conditions must be satisfied. For instance, we may demand that there be a simplicial subdivision (algebraically defined); any simplicial complex determines a geometric complex in Euclidean space. Complexes of this nature we shall say "admit a simplicial subdivision" (see Part III). To define a product theory in the complex, stronger conditions are necessary; a complex satisfying these conditions "admits a product theory." Most of the paper will be concerned with these complexes.

A complex K admitting a product theory is a system as follows. It has cells ${ }^{11}$

[^2]σ_{i}^{p} of dimension p. There are two types of relations. A cell may be a face of a cell of higher dimension, and is a face of itself. Two cells σ_{i}^{p-1} and σ_{i}^{p} of neighboring dimension have an incidence number ${ }^{p} \partial_{j}^{i}$, which is an integer. In terms of these numbers we define boundaries ∂A^{p} etc. as usual (see §3). The closure $\bar{\sigma}_{i}^{p}$ of a cell σ_{i}^{p} is the set of all its faces. The $\operatorname{star} \operatorname{St}(\sigma)$ of σ is the set of cells with σ as a face. The closure and star of any subcomplex are defined similarly. We say a cycle $A^{p}=\sum \alpha_{i} \sigma_{i}^{p}$ is boundary-like if $p>0$ or if $p=0$ and $\sum \alpha_{i}=0$ (or $I \cdot A^{1}=0$; see (2.1) and (3.2)). The definition as here given is useful only in the case that δI contains no 1-cells which have two vertices as faces; see Lemma 5 .

We make the following assumptions.
(K_{1}) If σ_{1} is a face of σ_{2} and σ_{2} is a face of σ_{3}, then σ_{1} is a face of σ_{3}.
$\left(\mathrm{K}_{2}\right)$ If ${ }^{p} \partial_{j}^{i} \neq 0$, then σ_{i}^{p-1} is a face of σ_{j}^{p}.
$\left(\mathrm{K}_{3}\right) \partial \partial A^{p}=0$ always (or equivalently, $\delta \delta A^{p}=0$). ${ }^{12}$
$\left(\mathrm{K}_{4}\right)$ Each boundary-like cycle (with integer coefficients) in any $\bar{\sigma}_{i}^{p}$ bounds a chain in $\bar{\sigma}_{i}^{p}$.

Note that, using (4.7) below, $\left(\mathrm{K}_{3}\right)$ is equivalent to the vanishing (for all A^{p}, B^{p-2}) of any of $\partial \partial A^{p} \cdot B^{p-2}, \partial A^{p} \cdot \delta B^{p-2}, A^{p} \cdot \delta \delta B^{p-2}$, or $\delta \delta B^{p-2}$.

Certain elementary properties of these complexes are the following:
Lemma 1. If $p>0$, then $\partial \sigma_{i}^{p} \neq 0$.
For if $\partial \sigma_{i}^{p}=0$, then σ_{i}^{p} is a cycle in $\bar{\sigma}_{i}^{p} . \quad$ By $\left(K_{4}\right)$, it must bound a $(p+1)$ chain in $\bar{\sigma}_{i}^{p}$. But $\bar{\sigma}_{i}^{p}$ contains no $(p+1)$-cells.

Lemma 2. Every cell of dimension >0 has a lower dimensional face, and hence a vertex as a face.

This follows from the last lemma and (K_{2}) and (K_{1}).
Lemma 3. Each 1-cell has just one or two vertices as faces.
By the last lemma, we need merely prove that any σ^{1} has not three vertices a, b, c as faces. If it had, then by $\left(\mathrm{K}_{4}\right), b-a=k \partial \sigma^{1}$ and $c-b=l \partial \sigma^{1}$. Hence $l(b-a)=k(c-b)$, which is impossible (as $k \neq 0$).

The definitions of open and closed subcomplexes are as usual, in terms of "being a face of"; for σ_{1} and σ_{2} in the subcomplex K^{\prime} of K, we say σ_{2} is a face of σ_{1} in K^{\prime} if it is in K.

Lemma 4. If K admits a product theory, so does every closed subcomplex.
The proof is simple.
Note that, if

$$
\begin{equation*}
I=\sum \sigma_{i}^{0}=\text { sum of all the vertices of } K \tag{2.1}
\end{equation*}
$$

we may have $\delta I \neq 0$. But see Theorem 2. If K is connected, and $\delta I=0$, the only 0 -cocycles are the multiples of I.

[^3]Lemma 5. If each 1-cell is on two vertices, then $\delta I=0$ and K admits a simplicial subdivision (see §13).

For take any 1-cell σ; say $\partial \sigma=\alpha a+\beta b$. As $a-b$ is boundary-like, there is a k such that $a-b=k \partial \sigma$; hence $\beta=-\alpha$. Therefore $\delta I \cdot \sigma=I \cdot \partial \sigma=$ $\alpha+(-\alpha)=0$, and $\delta I=0$. The last statement has been proved by Tucker (see footnote 12).

3. Homology and cohomology groups ${ }^{13}$

The boundary and coboundary of chains are defined by

$$
\begin{equation*}
\partial\left(\sum_{i} \alpha_{i} \sigma_{i}^{p}\right)=\sum_{i, j} \alpha_{i}^{p} \partial_{i}^{j} \sigma_{j}^{p-1}, \quad \delta\left(\sum_{i} \alpha_{i} \sigma_{i}^{p}\right)=\sum_{i, j} \alpha_{i}{ }^{p+1} \partial_{j}^{i} \sigma_{j}^{p+1} \tag{3.1}
\end{equation*}
$$

The α_{i} are integers or elements of an abelian group $G .^{14}$ The chain A^{p} is a cycle [cocycle] if $\partial A^{p}=0\left[\delta A^{p}=0\right]$. We say
A is homologous to $B, A \sim B$, if $A-B$ is a boundary, A is cohomologous to $B, A \sim B$, if $A-B$ is a coboundary.

As $\partial \partial A^{p}=0, \delta \delta A^{p}=0$ (see $\left(\mathrm{K}_{3}\right)$), we may define as usual the homology and cohomology groups. Using the coefficient group G, we denote these by ${ }^{p} \mathbf{H}^{\boldsymbol{G}}$, ${ }^{p} \mathbf{H}_{\sigma}$. The group of p-chains of a complex with integer coefficients will be denoted by L^{p}.

We define the scalar product of two chains of the same dimension by

$$
\begin{equation*}
\left(\sum \alpha_{i} \sigma_{i}^{p}\right) \cdot\left(\sum \beta_{i} \sigma_{i}^{p}\right)=\sum \alpha_{i} \beta_{i} \tag{3.2}
\end{equation*}
$$

Note that $A^{p} \cdot \sigma^{p}$ is the coefficient of σ^{p} in the chain A^{p}.

4. Dual homomorphisms ${ }^{15}$

Let G and G^{\prime} be free groups with fixed sets of generators a_{1}, \ldots, a_{p} and $a_{1}^{\prime}, \cdots, a_{q}^{\prime}$. Then to any matrix of integers $\left\|\phi_{i j}\right\|(i=1, \cdots, p, j=1, \cdots, q)$ correspond homomorphisms of G into G^{\prime} and of G^{\prime} into G, defined by

$$
\begin{equation*}
\phi a_{i}=\sum_{i} \phi_{i j} a_{j}^{\prime}, \quad \phi^{\prime} a_{i}^{\prime}=\sum_{i} \phi_{j i} a_{j} \tag{4.1}
\end{equation*}
$$

If ϕ is any homomorphism of G into G^{\prime}, then $\phi a_{i}=\sum \phi_{i j} a_{j}^{\prime}$ for some integers $\phi_{i j}$; thus the matrix $\left\|\phi_{i j}\right\|$ is defined, and hence the homomorphism ϕ^{\prime}. Each of ϕ, ϕ^{\prime} determines the other uniquely; the matrix of one is the transposed matrix of the other. We call these homomorphisms dual, and write

$$
\begin{equation*}
\phi^{\prime}=D(\phi), \quad \phi=D\left(\phi^{\prime}\right)=D(D(\phi)) \tag{4.2}
\end{equation*}
$$

[^4]If ϕ maps G into G^{\prime} and ψ maps G^{\prime} into $G^{\prime \prime}$, then $\theta=\psi \phi$ maps G into $G^{\prime \prime}$. Its matrix is clearly

$$
\|\theta\|=\|\psi\|\|\phi\|: \quad \theta_{i j}=\sum_{k} \psi_{i k} \phi_{k j} .
$$

On transposing, we find

$$
\begin{equation*}
\theta^{\prime}=D(\theta)=D(\psi \phi)=D(\phi) D(\psi)=\phi^{\prime} \psi^{\prime} . \tag{4.3}
\end{equation*}
$$

Linear combinations of homomorphisms are defined as usual. We find

$$
\begin{equation*}
D(c \phi+d \psi)=c D(\phi)+d D(\psi) \tag{4.4}
\end{equation*}
$$

We shall apply these homomorphisms to the groups L^{p}, the individual cells forming the generators. Clearly ∂ and δ are dual. If ϕ maps $L^{p}(K)$ into $L^{p+k}\left(K^{\prime}\right)$ for each p (k fixed), and $\phi^{\prime}=D(\phi)$, then

$$
\begin{equation*}
\left.\delta \phi^{\prime} A^{\prime}=\phi^{\prime} \delta A^{\prime}\left(\text { all } A^{\prime}\right) \text { if and only if } \partial \phi A=\phi \partial A \text { (all } A\right) \tag{4.5}
\end{equation*}
$$

For one relation follows from the other on taking duals. These relations hold in particular for simplicial maps. Using (3.2), we have

$$
\begin{equation*}
A \cdot \phi^{\prime} B^{\prime}=\phi A \cdot B^{\prime} \text { if and only if } \phi^{\prime}=D(\phi) \tag{4.6}
\end{equation*}
$$

For

$$
\phi \sigma_{i} \cdot \sigma_{j}^{\prime}=\left(\sum_{k} \phi_{i k} \sigma_{k}^{\prime}\right) \cdot \sigma_{j}^{\prime}=\phi_{i j}, \quad \sigma_{i} \cdot \phi^{\prime} \sigma_{j}^{\prime}=\phi_{j i}^{\prime}
$$

Hence

$$
\begin{equation*}
A^{p} \cdot \delta B^{p-1}=\partial A^{p} \cdot B^{p-1} \tag{4.7}
\end{equation*}
$$

Remark. The above definitions and results hold equally well if G and G^{\prime} are vector spaces with fixed bases.

Finally, note that

$$
\begin{equation*}
A \cdot B=0 \text { if } \delta A=0 \text { and } B \sim 0 \text { or if } A \sim 0 \text { and } \partial B=0 . \tag{4.8}
\end{equation*}
$$

For if $\delta A=0$ and $B=\partial C$, then $A \cdot B=A \cdot \partial C=\delta A \cdot C=0$, etc. Hence, if $\delta A=0$ and $B \sim B^{\prime}$, then $A \cdot B=A \cdot B^{\prime}$, etc.

II. The Products

5. Definition and properties of products

We shall use only integer coefficients until §11. Corresponding to each p-cell σ_{i}^{p}, q-cell σ_{i}^{q}, and $(p+q)$-cell σ_{k}^{p+q}, we wish to find an integer ${ }^{p q} \Gamma_{k}^{i j}$, such that the following properties hold.
$\left(\Gamma_{1}\right)$. If σ_{i}^{p} and σ_{i}^{q} are not both faces of σ_{k}^{p+q}, then ${ }^{p q} \Gamma_{k}^{i j}=0$.
$\left(\Gamma_{2}\right)$. For all p, q, i, j, k,

$$
\sum_{l}{ }^{p+q+1} \partial_{k}^{l}{ }^{p q} \Gamma_{l}^{i j}=\sum_{l}{ }^{p+1} \partial_{l}^{i}{ }^{p+1, q} \Gamma_{k}^{l j}+(-1)^{p} \sum_{l}{ }^{q+1} \partial_{l}^{j}{ }^{p, q+1} \Gamma_{k}^{i l} .
$$

(Γ_{3}). For some integer γ, and all q and j,

$$
\sum_{i}{ }^{0 q} \Gamma_{j}^{i j}=\gamma .
$$

The important case is the case $\gamma=1$; after Part II, we always take $\gamma=1$.
In terms of the quantities ${ }^{p q} \Gamma_{k}^{i j}$, we define two bilinear operations on chains, as follows.

$$
\begin{align*}
& \sigma_{i}^{p} \smile \sigma_{i}^{q}=\sum_{k}{ }^{p q} \Gamma_{k}^{i j} \sigma_{k}^{p+q}, \tag{5.1}\\
& \sigma_{i}^{q} \frown \sigma_{k}^{p+q}=\sum_{l}{ }^{p q} \Gamma_{k}^{l j} \sigma_{l}^{p} . \tag{5.2}
\end{align*}
$$

Clearly

$$
\begin{equation*}
\left(\sigma_{i}^{p} \smile \sigma_{i}^{q}\right) \cdot \sigma_{k}^{p+q}={ }^{p q} \Gamma_{k}^{i j}=\sigma_{i}^{p} \cdot\left(\sigma_{i}^{q} \frown \sigma_{k}^{p+q}\right) . \tag{5.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(A^{p} \smile B^{q}\right) \cdot C^{p+q}=A^{p} \cdot\left(B^{q} \frown C^{p+q}\right) \tag{5.4}
\end{equation*}
$$

Two products \smile and \frown correspond if and only if (5.4) holds. Given one of \smile, $へ$, we can find the corresponding Γ by (5.3), and hence the other.

The above properties translate into the following, for the \smile product.
$\left(\mathrm{P}_{1}\right) \sigma_{i}^{p} \smile \sigma_{i}^{q}$ is a $(p+q)$-chain in St $\left(\sigma_{i}^{p}\right) \cdot \operatorname{St}\left(\sigma_{i}^{q}\right) \cdot{ }^{16}$
$\left(\mathrm{P}_{2}\right) \delta\left(A^{p} \smile B^{q}\right)=\delta A^{q} \smile B^{q}+(-1)^{p} A^{p} \smile \delta B^{q}$.
$\left(\mathrm{P}_{3}\right)$ For some integer $\gamma, I \smile \sigma_{i}^{q}=\gamma \sigma_{j}^{q}$ (all σ_{i}^{q}).
Also, for the \simeq product,
$\left(\mathrm{Q}_{1}\right) \sigma_{j}^{q} \frown \sigma_{k}^{p+q}$ is a p-chain in $\overline{\operatorname{St}\left(\sigma_{j}^{q}\right) \cdot \sigma_{k}^{p+q}}$.
$\left(Q_{2}\right) \partial\left(A^{q} \frown B^{p+q}\right)=(-1)^{p} \delta A^{q} \frown B^{p+q}+A^{q} \frown \partial B^{p+q}$.
$\left(Q_{3}\right)$ For some integer $\gamma, I \cdot\left(\sigma_{i}^{q} \frown \sigma_{i}^{q}\right)=\gamma$ (all σ_{i}^{q}).
We shall prove the equivalence of the three sets of properties. $\left(\mathrm{P}_{1}\right)$ is clearly equivalent to (Γ_{1}). If we write (P_{2}) with σ_{i}^{p} and σ_{i}^{q}, use (5.1), and consider the coefficient of σ_{k}^{p+q+1} on each side, we obtain (Γ_{2}); conversely, (Γ_{2}) implies $\left(P_{2}\right)$. (Γ_{3}) and (P_{3}) are clearly equivalent. Suppose $\left(\Gamma_{1}\right)$ holds; we shall prove $\left(\mathrm{Q}_{1}\right)$. If σ_{j}^{q} is not a face of σ_{k}^{p+q}, then ${ }^{p q} \Gamma_{k}^{i j}=0$ for every i, hence $\sigma_{i}^{q}-\sigma_{k}^{p+q}=0$, and (Q_{1}) holds. If σ_{j}^{q} is a face of σ_{k}^{p+q}, then $\mathrm{St}\left(\sigma_{i}^{q}\right) \cdot \sigma_{k}^{p+q}=\sigma_{k}^{p+q}$; by (Γ_{1}), $\sigma_{i}^{q} \frown \sigma_{k}^{p+q}$ is a chain in $\bar{\sigma}_{k}^{p+q}=\overline{\operatorname{St}\left(\sigma_{i}^{q}\right) \cdot \sigma_{k}^{p+q}}$. Suppose (Q_{1}) holds. If σ_{j}^{q} is not a face of σ_{k}^{p+q}, then St $\left(\sigma_{i}^{q}\right) \cdot \sigma_{k}^{p+q}=0, \sigma_{j}^{q} \frown \sigma_{k}^{p+q}=0$, and ${ }^{p q} \Gamma_{k}^{i j}=0$ (all i). If σ_{i}^{p} is not a face of σ_{k}^{p+q}, then $\left(\mathrm{Q}_{1}\right)$ shows that it does not occur in $\sigma_{i}^{q} \frown \sigma_{k}^{p+q}$; hence ${ }^{p q} \Gamma_{k}^{i j}=0$. (Q_{2}) is seen to be equivalent to (Γ_{2}), if we replace p by $p+1$. Finally, $\left(Q_{3}\right)$ is equivalent to $\left(\Gamma_{3}\right)$.

[^5]Theorem 1. If K is connected and $\delta I=0$, then $\left(\Gamma_{3}\right)$ is a consequence of $\left(\Gamma_{1}\right)$ and $\left(\Gamma_{2}\right)$.

By Lemmas 1 and 2, it is sufficient to show (using the $\left(P_{i}\right)$) that if

$$
\partial \sigma^{q}=\alpha \sigma^{q-1}(\alpha \neq 0), \quad I \smile \sigma^{q-1}=\gamma \sigma^{q-1}, \quad I \smile \sigma^{q}=\gamma^{\prime} \sigma^{q},
$$

then $\gamma=\gamma^{\prime}$. (That $I \smile \sigma^{h}=\theta \sigma^{h}$ for some θ follows from (P_{1}).) By $\left(\mathrm{P}_{2}\right)$,

$$
\delta\left(I \smile \sigma^{\alpha-1}\right)=I \smile \delta \sigma^{q-1}=I \smile \alpha \sigma^{q}+\cdots=\alpha \gamma^{\prime} \sigma^{q}+\cdots ;
$$

also

$$
\delta\left(I \smile \sigma^{\alpha-1}\right)=\delta \gamma \sigma^{q-1}=\gamma \alpha \sigma^{q}+\cdots,
$$

as $\alpha \neq 0, \gamma=\gamma^{\prime}$.
Theorem 2. For all $\sigma_{i}^{q}, \delta I \smile \sigma_{i}^{q}=0$.
For, by $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$,

$$
\delta I \smile \sigma_{i}^{q}=\delta\left(I \smile \sigma_{i}^{q}\right)-I \smile \delta \sigma_{j}^{q}=\delta \gamma \sigma_{i}^{q}-\gamma \delta \sigma_{j}^{q}=0
$$

Theorem 3. If $\delta I=0$, then

$$
\begin{equation*}
\left.I \smile \sigma^{p}=\sigma^{p} \smile I=I \frown \sigma^{p}=\gamma \sigma^{p} \quad \text { (all } \sigma^{p}\right) \text {. } \tag{5.5}
\end{equation*}
$$

First, $\sigma^{0} \smile I=\sigma^{0} \smile \sigma^{0}=I \smile \sigma^{0}=\gamma \sigma^{0}$. Suppose $\sigma^{p-1} \smile I=\gamma \sigma^{p-1}$ and $\delta \sigma^{p-1}=\alpha \sigma^{p}+\cdots(\alpha \neq 0)$. Clearly $\sigma^{p} \smile I=\theta \sigma^{p}$ for some θ. Then as $\delta I=0,\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$ give

$$
\begin{aligned}
\delta\left(\sigma^{p-1} \smile I\right) & =\delta \sigma^{p-1} \smile I=\alpha \theta \sigma^{p}+\cdots, \\
\delta\left(\sigma^{p-1} \smile I\right) & =\delta\left(\gamma \sigma^{p-1}\right)=\gamma \alpha \sigma^{p}+\cdots,
\end{aligned}
$$

and $\theta=\gamma$. That $\sigma^{p} \smile I=\gamma \sigma^{p}$ now follows, by Lemma 1. The last relation is proved similarly, considering $\partial\left(I \frown \sigma^{p}\right)$.

Theorem 4. The \smile and \frown products define products among the cohomology and homology groups, thus:
cohomology class \smile cohomology class $=$ cohomology class,
cohomology class - homology class $=$ homology class.
Explicit formulas are given in (11.6) and (11.7). That cocycle \smile cocycle $=$ cocycle, cocycle \simeq cycle $=$ cycle, follows from $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{Q}_{2}\right)$. Also

$$
\begin{array}{lllll}
A_{1} \smile B \sim A_{2} \smile B & \text { if } & A_{1} \sim A_{2} & \text { and } & \delta B=0, \\
A \smile B_{1} \sim A \smile B_{2} & \text { if } & B_{1} \sim B_{2} & \text { and } & \delta A=0, \\
A_{1} \frown B \sim A_{2} \frown B & \text { if } & A_{1} \sim A_{2} & \text { and } & \partial B=0, \\
A \backsim B_{1} \sim A \backsim B_{2} & \text { if } & B_{1} \sim B_{2} & \text { and } & \delta A=0 . \tag{5.9}
\end{array}
$$

For instance, if $A_{2}-A_{1}=\delta C$ and $\partial B=0$, then by (Q_{2}),

$$
A_{2} \frown B-A_{1} \frown B=\delta C \frown B= \pm \partial(C \frown B) .
$$

Hence the definitions in the theorem are unique.

Theorem 5. For each integer γ, the products of Theorem 4 exist in any complex and are uniquely determined.

This will be proved in $\S 8$ and $\S 9$. The relation between products with different γ 's is given in Theorems 9 and 10.

In §10 we shall prove the two associative laws and the commutative law:
If K admits a simplicial subdivision (see §13), then

$$
\begin{align*}
& A \smile(B \smile C) \sim(A \smile B) \smile C \quad \text { if } \delta A=\delta B=\delta C=0 \tag{5.10}\\
& A \frown(B \frown C) \sim(A \smile B) \frown C \quad \text { if } \delta A=\delta B=\partial C=0 \tag{5.11}
\end{align*}
$$

it being understood in (5.11) that \frown and \smile have the same γ. If $\delta I=0$, then

$$
\begin{equation*}
A^{p} \smile B^{q} \sim(-1)^{p q} B^{q} \smile A^{p} \text { if } \delta A^{p}=\delta B^{q}=0 \tag{5.12}
\end{equation*}
$$

Theorem 6. Let K and K^{\prime} be simplicial, let f be a simplicial map of K into K^{\prime}, and let f^{\prime} be the dual of f. Then

$$
\begin{array}{ll}
f^{\prime}\left(A^{\prime} \smile B^{\prime}\right) \backsim f^{\prime} A^{\prime} \smile f^{\prime} B^{\prime} & \text { if } \delta A^{\prime}=\delta B^{\prime}=0, \\
f\left(f^{\prime} A^{\prime} \frown B\right) \sim A^{\prime} \frown f B & \text { if } \delta A^{\prime}=\partial B=0 . \tag{5.14}
\end{array}
$$

These generalize a theorem of Hopf to arbitrary complexes. ${ }^{17}$ For the proof, see $\S 10$. For the use of different coefficient groups, see $\S 11$.

6. The products in simplicial complexes

If K is simplicial, a very simple definition of Γ, \smile, \frown is possible. Order the vertices of K in a fixed manner. Each simplex σ^{p} may now be written in the normal form $\sigma^{p}=x_{i_{0}} \cdots x_{i_{p}}, i_{0}<\cdots<i_{p}$. We define, if $x_{i_{0}} \cdots x_{i_{p}} \cdots x_{i_{p+q}}$ is a simplex,

$$
\begin{equation*}
{ }^{p q} \Gamma_{i_{0} \cdots i_{p}, i_{p+q}}^{i_{0} \cdots i_{p, i} i_{p} i_{p+q}}=1 \tag{6.1}
\end{equation*}
$$

$$
\left(i_{0}<\cdots<i_{p}<\cdots<i_{p+q}\right)
$$

and $\Gamma=0$ for any other triple of simplexes. (The meaning of the Γ should be clear.) In terms of \smile and \frown, this gives for instance (if $x_{1} x_{2} x_{3} x_{4}$ is a simplex)

$$
x_{1} x_{2} \smile x_{2} x_{3} x_{4}=x_{1} x_{2} x_{3} x_{4}, \quad x_{2} x_{3} x_{4} \frown x_{1} x_{2} x_{3} x_{4}=x_{1} x_{2}
$$

(Γ_{1}) and (Γ_{3}) obviously hold. A simple calculation gives (Γ_{2}); see Alexander, [4].

For these products we clearly have

$$
\begin{gather*}
A \smile(B \smile C)=(A \smile B) \smile C, \quad A \frown(B \frown C)=(A \smile B) \frown C . \tag{6.2}\\
\text { 7. Products and simplicial maps }
\end{gather*}
$$

Having ordered the vertices of K^{\prime}, order those of K so that

$$
\begin{equation*}
\text { if } f\left(x_{i}\right)=x_{\theta(i)}^{\prime}, \text { then } \theta(i)<\theta(j) \text { implies } i<j \tag{7.1}
\end{equation*}
$$

[^6]Using the products of $\S 6$, we shall prove (5.13) and (5.14) in the form:
Theorem 7. In simplicial complexes, using the products of §6,

$$
\begin{equation*}
f^{\prime}\left(A^{\prime} \smile B^{\prime}\right)=f^{\prime} A^{\prime} \smile f^{\prime} B^{\prime}, \quad f\left(f^{\prime} A^{\prime} \frown B\right)=A^{\prime} \frown f B . \tag{7.2}
\end{equation*}
$$

To prove the first equation, take any $\sigma_{i}^{\prime p}$ and $\sigma_{i}^{\prime q}$; say

$$
\sigma_{i}^{\prime p}=x_{0}^{\prime} \cdots x_{p}^{\prime}, \quad \sigma_{i}^{\prime q}=x_{p}^{\prime} \cdots x_{p+q}^{\prime} ;
$$

if the vertices of the simplexes are not related as shown, then clearly both sides of the equation (with these simplexes) vanish. By definition of f^{\prime},

$$
\begin{aligned}
& f^{\prime} \sigma_{i}^{\prime p}=\sum x_{\alpha_{0}} \cdots x_{\alpha_{p}}, \\
& \theta\left(\alpha_{h}\right)=h, \\
& f^{\prime} \sigma_{j}^{\prime q}=\sum x_{\beta_{p}} \cdots x_{\beta_{p+q}}, \\
& \theta\left(\beta_{h}\right)=h .
\end{aligned}
$$

Hence

$$
f^{\prime} \sigma_{i}^{\prime p} \smile f^{\prime} \sigma_{i}^{\prime q}=\sum x_{\alpha_{0}} \cdots x_{\alpha_{p}} \cdots x_{\alpha_{p+q}}, \quad \theta\left(\alpha_{h}\right)=h .
$$

This is clearly also $\left.f^{\prime}\left(\sigma_{i}^{\prime p} \smile \sigma_{i}^{\prime q}\right)\right)^{18}$ To prove the second equation, we use the first, (4.6) and (5.4): For any cell σ^{\prime} (of the proper dimension),

$$
\begin{aligned}
\sigma^{\prime} \cdot f\left(f^{\prime} A^{\prime} \frown B\right)=f^{\prime} \sigma^{\prime} \cdot\left(f^{\prime} A^{\prime} \frown B\right)=\left(f^{\prime} \sigma^{\prime} \smile\right. & \left.f^{\prime} A^{\prime}\right) \cdot B=f^{\prime}\left(\sigma^{\prime} \smile A^{\prime}\right) \cdot B \\
& =\left(\sigma^{\prime} \smile A^{\prime}\right) \cdot f B=\sigma^{\prime} \cdot\left(A^{\prime} \frown f B\right) .
\end{aligned}
$$

8. Construction of the products

In a general complex, it is most convenient to construct the $_$product. Take any integer γ. We shall construct all $\sigma_{i}^{q} \simeq \sigma_{i}^{p+q}$ in succession for $p=$ $0,1,2, \ldots$. First consider $p=0$. Set $\sigma_{i}^{q} \frown \sigma_{i}^{q}=0$ for $j \neq i$. Let $\sigma_{i}^{q} \frown \sigma_{i}^{q}$ be any 0 -chain in $\bar{\sigma}_{j}^{q}$ the sum of whose coefficients is γ; this is possible, by Lemma 2. The required properties hold so far. Suppose all $\sigma_{i}^{q} \frown \sigma_{i}^{r+q}$ are properly constructed for all q and all $r<p$; we must construct each $\sigma_{i}^{q} \frown \sigma_{i}^{p+q}$. If σ_{i}^{q} is not a face of σ_{i}^{p+q}, set $\sigma_{i}^{q}-\sigma_{i}^{p+q}=0$. As $\operatorname{St}\left(\sigma_{i}^{q}\right) \cdot \tilde{\sigma}_{i}^{p+q}$ has no cells, both sides of $\left(\mathrm{Q}_{2}\right)$ with σ_{i}^{q} and σ_{i}^{p+q} vanish. Now suppose σ_{i}^{q} is afface of σ_{i}^{p+q}. Set

$$
\begin{equation*}
C^{p-1}=(-1)^{p} \delta \sigma_{i}^{q} \frown \sigma_{i}^{p+q}+\sigma_{i}^{q} \frown \partial \sigma_{i}^{p+q} ; \tag{8.1}
\end{equation*}
$$

this is a chain in $\tilde{\sigma}_{i}^{p+q}$.
Suppose first that $p=1$. Then for some $\alpha, \delta \sigma_{i}^{q}=\alpha \sigma_{i}^{p+q}+\cdots$, and

$$
\begin{align*}
I \cdot C^{p-1} & =-I \cdot\left(\alpha \sigma_{i}^{p+q} \frown \sigma_{i}^{p+q}\right)+I \cdot\left(\sigma_{i}^{q} \frown \alpha \sigma_{i}^{q}\right) \\
& =-\alpha \gamma+\alpha \gamma=0 . \tag{8.2}
\end{align*}
$$

Hence, by $\left(\mathrm{K}_{4}\right)$, we may choose the 1 -chain $\sigma_{i}^{q} \frown \sigma_{i}^{p+q}$ in $\bar{\sigma}_{i}^{p+q}$ so that its boundary is C^{p-1}. Then (Q_{1}) through (Q_{3}) hold.

[^7]Suppose next that $p>1$. Then (Q_{2}) gives

$$
\begin{array}{rl}
\partial C^{p-1}=(-1)^{p} & l(-1)^{p-1} \delta \delta \sigma_{i}^{q} \tag{8.3}\\
& \left.\frown \sigma_{i}^{p+q}+\delta \sigma_{i}^{q} \frown \partial \sigma_{i}^{p+q}\right] \\
& +(-1)^{p-1} \delta \sigma_{i}^{q} \frown \partial \sigma_{i}^{p+q}+\sigma_{i}^{q} \frown \partial \partial \sigma_{i}^{p+q}=0 .
\end{array}
$$

Hence, by (K_{4}), we may choose $\sigma_{i}^{q} \simeq \sigma_{i}^{p+q}$ in $\bar{\sigma}_{i}^{p+q}$ with the boundary C^{p-1}. The properties again hold.

We remark that any $_$product may be constructed in this manner.

9. Uniqueness of the products

We first prove
Theorem 8. Let \frown be any product with $\gamma=0$. Then there is a bilinear operation \wedge such that
$\left(\mathrm{R}_{1}\right) \sigma_{i}^{q} \wedge \sigma_{i}^{p+q}$ is a $(p+1)$-chain in $\overline{\operatorname{St}\left(\sigma_{i}^{q}\right) \cdot \sigma_{i}^{p+q}}$.
$\left(\mathrm{R}_{2}\right) \sigma_{i}^{q} \frown \sigma_{i}^{q}=\partial\left(\sigma_{i}^{q} \wedge \sigma_{i}^{q}\right)$.
$\left(\mathrm{R}_{3}\right) \sigma_{i}^{q} \frown \sigma_{i}^{p+q}=\partial\left(\sigma_{i}^{q} \wedge \sigma_{i}^{p+q}\right)+(-1)^{p} \delta \sigma_{i}^{q} \wedge \sigma_{i}^{p+q}+\sigma_{i}^{q} \wedge \partial \sigma_{i}^{p+q}$ for $p>0$.
We shall construct \wedge for $p=0,1, \ldots$. As $\gamma=0$, we can construct $\sigma_{i}^{q} \wedge \sigma_{i}^{q}$ so (R_{2}) holds. Suppose all $\sigma_{i}^{q} \wedge \sigma_{i}^{r+q}$ are constructed for all q and $r<p$; we shall construct $\sigma_{i}^{q} \wedge \sigma_{i}^{p+q}$. We make it 0 if σ_{i}^{q} is not a face of σ_{i}^{p+q}. Suppose it is. Set

$$
C^{p}=\sigma_{i}^{q} \frown \sigma_{i}^{p+q}-(-1)^{p} \delta \sigma_{i}^{q} \wedge \sigma_{i}^{p+q}-\sigma_{i}^{q} \wedge \partial \sigma_{i}^{p+q} .
$$

By (Q_{2}), and $\left(\mathrm{R}_{3}\right)$ solved for $\partial\left(\sigma_{i}^{q} \wedge \sigma_{i}^{p+q}\right)$,

$$
\begin{aligned}
\partial C^{p}=(-1)^{p} \delta \sigma_{i}^{q} \frown \sigma_{i}^{p+q}+\sigma_{i}^{q} \frown & \partial \sigma_{i}^{p+q}-(-1)^{p}\left[\delta \sigma_{i}^{q} \frown \sigma_{i}^{p+q}-\delta \sigma_{i}^{q} \wedge \partial \sigma_{i}^{p+q}\right] \\
& -\left[\sigma_{i}^{q} \frown \partial \sigma_{i}^{p+q}-(-1)^{p-1} \delta \sigma_{i}^{q} \wedge \partial \sigma_{i}^{p+q}\right]=0 .
\end{aligned}
$$

Hence C^{p} is a cycle in $\bar{\sigma}_{i}^{p+q}$, and (as $p>0$) we may choose $\sigma_{i}^{q} \wedge \sigma_{i}^{p+q}$ with C^{p} as boundary.

We may form linear combinations of $_$products (and also of \smile products) by defining

$$
\begin{equation*}
A\left(\alpha_{1} \frown_{1}+\alpha_{2} \frown_{2}\right) B=\alpha_{1}\left(A \frown_{1} B\right)+\alpha_{2}\left(A \frown_{2} B\right) . \tag{9.1}
\end{equation*}
$$

By applying this to any $\sigma_{i}^{q} \frown \sigma_{i}^{q}$, we find

$$
\begin{equation*}
\gamma\left(\alpha_{1} \frown_{1}+\alpha_{2} \frown_{2}\right)=\alpha_{1} \gamma\left(\frown_{1}\right)+\alpha_{2} \gamma\left(\frown_{2}\right) . \tag{9.2}
\end{equation*}
$$

Theorem 9. For any two products \frown and \frown^{\prime},

$$
\begin{equation*}
\gamma(\frown)\left(A^{p} \frown^{\prime} B^{q}\right) \sim \gamma\left(\frown^{\prime}\right)\left(A^{p} \frown B^{q}\right) \text { if } \delta A^{p}=\partial B^{q}=0 . \tag{9.3}
\end{equation*}
$$

As a consequence, if v^{p} and u^{q} denote cohomology and homology classes, then

$$
\begin{equation*}
\gamma(\frown)\left(v^{p} \frown^{\prime} u^{q}\right)=\gamma\left(\frown^{\prime}\right)\left(v^{p} \frown u^{q}\right) \tag{9.4}
\end{equation*}
$$

To prove this, set $\frown^{\prime \prime}=\gamma(\frown) \frown^{\prime}-\gamma\left(\frown^{\prime}\right) \frown$. Then $\gamma\left(\frown^{\prime \prime}\right)=0$. By Theorem 8, (R_{2}) or (R_{3}), $A^{p} \frown^{\prime \prime} B^{q} \sim 0$, from which (9.3) follows.

Theorem 10. Theorem 9 holds for the \smile product. Thus

$$
\begin{equation*}
\gamma(\smile)\left(A^{p} \smile^{\prime} B^{q}\right) \sim \gamma\left(\smile^{\prime}\right)\left(A^{p} \smile B^{q}\right) \text { if } \delta A^{p}=\delta B^{q}=0 . \tag{9.5}
\end{equation*}
$$

As above, it is sufficient to show that if $\gamma(\smile)=0$, then $A^{p} \smile B^{q} \backsim 0$ for all cocycles A^{p}, B^{q}. Let \frown correspond to \smile; then $\gamma(\frown)=0$, and we may construct \wedge. Construct a corresponding \vee (using relations of the form (5.1), (5.2)); then, as in (5.4),

$$
\begin{equation*}
\left(D^{p+1} \vee E^{q}\right) \cdot F^{p+q}=D^{p+1} \cdot\left(E^{q} \wedge F^{p+q}\right) \tag{9.6}
\end{equation*}
$$

Now for $p>0$ and any cell $\sigma=\sigma_{k}^{p+q}$, as $A \cdot \partial C=\delta A \cdot C$,

$$
\begin{aligned}
(A \smile B) \cdot \sigma=A \cdot(B \frown \sigma) & =A \cdot\left[\partial(B \wedge \sigma)+(-1)^{p} \delta B \wedge \sigma+B \wedge \partial \sigma\right] \\
& =(\delta A \vee B) \cdot \sigma+(-1)^{p}(A \vee \delta B) \cdot \sigma+\delta(A \vee B) \cdot \sigma,
\end{aligned}
$$

and hence

$$
\begin{equation*}
A^{p} \vee B^{q}=\delta\left(A^{p} \vee B^{q}\right)+\delta A^{p} \vee B^{q}+(-1)^{p} A^{p} \vee \delta B^{q} ; \tag{9.7}
\end{equation*}
$$

if $p=0$, then $A^{0} \smile B^{q}=\delta A^{0} \vee B^{q}$. Hence if A and B are cocycles, then $A \smile B \backsim 0$.

10. Proof of properties in §5

To prove (5.12), we define a new product, \smile^{\prime}, by

$$
A^{p} \smile^{\prime} B^{q}=(-1)^{p q} B^{q} \smile A^{p} .
$$

Clearly $\left(\mathrm{P}_{1}\right)$ holds for \checkmark^{\prime}. To prove $\left(\mathrm{P}_{2}\right),\left(\mathrm{P}_{2}\right)$ for \smile gives

$$
\begin{aligned}
\delta\left(A^{p} \smile^{\prime} B^{q}\right)=(-1)^{p q}\left[\delta B^{q}\right. & \left.\smile A^{p}+(-1)^{q} B^{q} \smile \delta A^{p}\right] \\
& =(-1)^{p q+(q+1) p} A^{p} \smile^{\prime} \delta B^{q}+(-1)^{p q+q+q(p+1)} \delta A^{p} \smile^{\prime} B^{q},
\end{aligned}
$$

which reduces to the desired formula. (P_{3}) is a consequence of Theorem 3. (5.12) now follows from (9.5).

To prove (5.10) and (5.11), take a simplicial subdivision K^{\prime} of K, and define new products in K, using those of $\S 6$ in K^{\prime}, by (15.3) and (15.6). The properties now follow at once from (6.2). (Compare the proof of Theorem 14.)
To prove Theorem 6, we apply (9.5) and (7.2): Using \cup_{0} for the product of $\S 6{ }^{19}$

$$
f^{\prime}\left(A^{\prime} \smile B^{\prime}\right) \backsim \gamma(\smile) f^{\prime}\left(A^{\prime} \smile_{0} B^{\prime}\right)=\gamma(\smile)\left(f^{\prime} A^{\prime} \smile_{0} f^{\prime} B^{\prime}\right) \backsim f^{\prime} A^{\prime} \smile f^{\prime} B^{\prime}
$$

The other relation is proved similarly.

$$
\begin{aligned}
& 19 \text { If } C^{\prime} \backsim D^{\prime} \text {, then } D^{\prime}-C^{\prime}=\delta E^{\prime} \text {, and } \\
& \qquad f^{\prime} D^{\prime}-f^{\prime} C^{\prime}=f^{\prime} \delta E^{\prime}=\delta f^{\prime} E^{\prime}, \quad f^{\prime} C^{\prime} \backsim f^{\prime} D^{\prime} .
\end{aligned}
$$

11. The products, general coefficient groups

Let G be an abelian group. Let $\mathrm{Ch}_{Y}(X)$ be the group of homomorphisms (characters) of the group X into the group Y. Then $H=\mathrm{Ch}_{G}(G)$ is a ring with the definitions (writing $h \cdot g$ for $h(g)$)

$$
\begin{equation*}
\left(h+h^{\prime}\right) \cdot g=h \cdot g+h^{\prime} \cdot g, \quad\left(h h^{\prime}\right) \cdot g=h \cdot\left(h^{\prime} \cdot g\right) \tag{11.1}
\end{equation*}
$$

If we use the coefficient group G in chains with which we form cycles, then the most useful coefficients for chains from which cocycles are formed are those of H^{20}

Examples. Let $I_{0}, I_{m}, R, \Re, R_{1}, \Re_{1}$ denote the groups of integers, integers $\bmod m$, real numbers, rational numbers, reals $\bmod 1$, and rationals mod 1. All but the last two are rings. Then, using \approx for isomorphic, examples of G and corresponding H are
$(\alpha) G \approx I_{0}, H \approx I_{0}$.
(β) $G \approx I_{m}, H \approx I_{m}(m \geqq 1)$.
$(\gamma) G \approx R$ or $\Re, H \approx R$ or \Re.
(δ) $G \approx R_{1}$ or $\Re_{1}, H \approx I_{0}$.
(α) is a special case of $(\beta) . H$ is commutative in these cases. If G is a direct sum of such groups, we may find the corresponding H with the following rules:

$$
\begin{aligned}
\mathrm{Ch}_{Y}\left(X_{1}+X_{2}\right) & \approx \mathrm{Ch}_{Y}\left(X_{1}\right)+\mathrm{Ch}_{Y}\left(X_{2}\right) . \\
\operatorname{Ch}_{Y_{1}+Y_{2}}(X) & \approx \mathrm{Ch}_{Y_{1}}(X)+\mathrm{Ch}_{Y_{2}}(X) .
\end{aligned}
$$

Our object here is three-fold. (a) we point out how the products with G and H are defined in terms of the former products. (b) The products are discussed, assuming merely that they satisfy the $\left(P_{i}\right)$ and the $\left(Q_{i}\right)$. (c) In a simplicial complex, for certain groups G and H, when one of \smile, \frown is known in the cohomology and homology groups, the other may be determined at once.
(a) If the products with integral coefficients are given, we may set

$$
\begin{gather*}
\left(\sum h_{i} \sigma_{i}^{p}\right) \cdot\left(\sum g_{i} \sigma_{i}^{p}\right)=\sum h_{i} \cdot g_{i} \tag{11.2}\\
h \sigma_{i}^{p} \smile h^{\prime} \sigma_{j}^{q}=\sum_{k}{ }^{p q} \Gamma_{k}^{i j} h h^{\prime} \sigma_{k}^{p+q} \tag{11.3}\\
h \sigma_{j}^{q} \frown g \sigma_{k}^{p+q}=\sum_{l}{ }^{p q} \Gamma_{k}^{l j} h \cdot g \sigma_{l}^{p} . \tag{11.4}
\end{gather*}
$$

The relations (P_{2}) and (Q_{2}), and hence (5.6) through (5.9), continue to hold, so the products are defined among the cohomology and homology groups. If u^{p} and v^{p} denote homology and cohomology classes, the explicit definitions are

[^8]\[

$$
\begin{align*}
v^{p} A^{p} \cdot u^{p} B^{p} & =A^{p} \cdot B^{p} \tag{11.5}\\
v^{p} A^{p} \smile v^{q} B^{q} & =v^{p+q}\left(A^{p} \smile B^{q}\right) \tag{11.6}\\
v^{q} B^{q} \frown u^{p+q} C^{p+q} & =u^{p}\left(B^{q} \frown C^{p+q}\right) \tag{11.7}
\end{align*}
$$
\]

(5.4) holds, because of (11.1), and hence

$$
\begin{equation*}
\left(v_{i}^{p} \smile v_{j}^{q}\right) \cdot u_{k}^{p+q}=v_{i}^{p} \cdot\left(v_{j}^{q} \frown u_{k}^{p+q}\right) \tag{11.8}
\end{equation*}
$$

$\left(\mathrm{P}_{3}\right)$ and $\left(\mathrm{Q}_{3}\right)$ with $\gamma=1$ are replaced by the relations

$$
\begin{equation*}
h I \smile h^{\prime} \sigma_{j}^{q}=h h^{\prime} \sigma_{j}^{q}, \quad I \cdot\left(h \sigma_{j}^{q} \frown g \sigma_{j}^{q}\right)=h \cdot g . \tag{11.9}
\end{equation*}
$$

(We could leave out the h in the first.) Thus the integer $\gamma(\smile)=\gamma(\frown)$ is replaced by the operations $\gamma\left(\smile ; h, h^{\prime}\right)=h h^{\prime}, \gamma(\frown ; h, g)=h \cdot g$; if G is the group of integers, then $\gamma=\gamma(\smile ; 1,1)=\gamma(\frown ; 1,1)$. To a general γ correspond general bilinear maps $\gamma\left(\smile ; h, h^{\prime}\right)$ into H and $\gamma(\frown ; h, g)$ into G, and (11.9) becomes

$$
\begin{equation*}
h I \smile h^{\prime} \sigma_{j}^{q}=\gamma\left(\smile ; h, h^{\prime}\right) \sigma_{j}^{q}, \quad I \cdot\left(h \sigma_{j}^{q} \frown g \sigma_{j}^{q}\right)=\gamma(\frown ; h, g) \tag{11.10}
\end{equation*}
$$

The relations (5.10) through (5.14) and (5.4) hold, if in (5.12) we assume that H is commutative. For the proofs, we need merely multiply by elements of H and G and sum, using (11,1). The same remark holds for Theorem 2. Suppose ${ }^{p} \partial_{i}^{j}= \pm 1$ or 0 in the complex. With the above interpretation for γ, the proofs of Theorems 1 and 3 hold. (Note that only the revised (P_{i}) and (Q_{i}) are used here.)
(b) Suppose - and \frown products are defined, satisfying the analogues of $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{Q}_{1}\right),\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{Q}_{2}\right)$, and (11.10), which we call $\left(\mathrm{P}_{3}^{\prime}\right)$ and $\left(\mathrm{Q}_{3}^{\prime}\right)$. That \smile and \frown are bilinear means that there are bilinear maps ${ }^{p q} \Phi_{k}^{i j}$ of (H, G) into G and ${ }^{p q} \Psi_{k}^{i j}$ of (H, H) into H such that

$$
\begin{gather*}
h \sigma_{i}^{p} \smile h^{\prime} \sigma_{j}^{q}=\sum_{k}^{p q} \Psi_{k}^{i j}\left(h, h^{\prime}\right) \sigma_{k}^{p+q} \tag{11.11}\\
h \sigma_{j}^{q} \frown g \sigma_{k}^{p+q}=\sum_{l}^{p q} \Phi_{k}^{l j}(h, g) \sigma_{l}^{p} \tag{11.12}
\end{gather*}
$$

$\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{Q}_{2}\right)$ translate into $\left(\Gamma_{2}\right)$ with ${ }^{p q} \Gamma_{k}^{i j}$ replaced by ${ }^{p q} \Psi_{k}^{i j}\left(h, h^{\prime}\right)$ and ${ }^{p q} \Phi_{k}^{i j}(h, g)$ respectively. We suppose scalar products are defined by (11.2). We say \smile and \frown correspond if (5.4) holds. By (11.11) and (11.12), this is so if and only if

$$
\begin{equation*}
{ }^{p q} \Psi_{k}^{i j}\left(h, h^{\prime}\right) \cdot g=h \cdot{ }^{p q} \Phi_{k}^{i j}\left(h^{\prime}, g\right) \tag{11.13}
\end{equation*}
$$

(In the simplest case, $\Psi=\gamma h h^{\prime}$ and $\Phi=\gamma h^{\prime} \cdot g$ for some integer γ, and (11.13) follows from (11.1).) The products may not be derivable from the products in (a). For instance, if G is the group of real numbers, the ${ }^{p q} \Gamma_{k}^{i j}$ may not be integers.

If \frown is given, and $H=\mathrm{Ch}_{a}(G)$, then (11.13) determines \smile. For, given h and h^{\prime}, the right hand side is a homomorphism of G into itself, and thus deter-
mines an element of H; we call this element ${ }^{p q} \Psi_{k}^{i j}\left(h, h^{\prime}\right)$. Clearly Ψ is bilinear, and (11.13) holds. If we take (Γ_{2}) with $\Phi\left(h^{\prime}, g\right)$ and apply h, using (11.13) gives a relation with terms acting on g. It being true for all g, we can drop it, and find $\left(\Gamma_{2}\right)$ with $\Psi\left(h, h^{\prime}\right)$, i.e. $\left(\mathrm{P}_{2}\right) . \quad\left(\mathrm{Q}_{1}\right)$ gives $\left(\mathrm{P}_{1}\right)$. By ($\left.\mathrm{Q}_{3}^{\prime}\right)$, i.e. the second relation in (11.10), and (5.4) (which follows from (11.13)),

$$
\left(h I \smile h^{\prime} \sigma_{j}^{q}\right) \cdot g \sigma_{j}^{q}=h I \cdot\left(h^{\prime} \sigma_{j}^{q} \frown g \sigma_{j}^{q}\right)=h \cdot \gamma\left(\frown ; h^{\prime}, g\right) .
$$

For fixed h and h^{\prime}, the last term is a map of G into itself, defining an element of H, which we call $\gamma\left(\smile ; h, h^{\prime}\right)$; thus

$$
\begin{equation*}
\gamma\left(\smile ; h, h^{\prime}\right) \cdot g=h \cdot \gamma\left(\frown ; h^{\prime}, g\right) \tag{11.14}
\end{equation*}
$$

Clearly $\gamma\left(\smile ; h, h^{\prime}\right)$ is bilinear. If h^{*} is the coefficient of $h I \smile h^{\prime} \sigma_{j}^{q}$ in σ_{j}^{q}, then the above relations give

$$
h^{*} \cdot g=h^{*} \sigma_{j}^{q} \cdot g \sigma_{j}^{q}=\gamma\left(\smile ; h, h^{\prime}\right) \cdot g, \quad h^{*}=\gamma\left(\smile ; h, h^{\prime}\right)
$$

Hence, by $\left(\mathrm{Q}_{1}\right)$, the first relation in (11.10), i.e. (P_{3}^{\prime}), holds.
Let 1 be the identity in $H: 1 \cdot g=g$ (all g). Consider the following hypothesis (H) on H, or on any subring containing 1: The only homomorphism ϕ of H into G (i.e. $\left.\phi\left(h_{1}+h_{2}\right)=\phi\left(h_{1}\right)+\phi\left(h_{2}\right)\right)$ such that $\phi(1)=0$ is $\phi(h)=0$ (all h).
This holds for instance if H is any of the rings given above. If $G=I_{0}+I_{0}=I_{0}^{2}$, we may use, in place of $H \approx I_{0}^{4}$, a subring $H^{\prime} \approx I_{0}$.

If \smile is given, and H satisfies (H), then \frown is determined. For fixed h^{\prime} and g, the left hand side of (11.13) is a homomorphism ϕ of H into G. Set $g^{*}=\phi(1)$. Then for all h in $H, \phi(h)=h \cdot g^{*}$; for if $\phi^{\prime}(h)=\phi(h)-h \cdot g^{*}$, then $\phi^{\prime}(1)=0$. Set ${ }^{p q} \Phi_{k}^{i j}\left(h^{\prime}, g\right)=g^{*} ; \Phi$ is bilinear, and (11.13) holds. Applying (Γ_{2}) with $\Psi\left(h, h^{\prime}\right)$ to g and using (11.13) gives a relation for all h. Setting $h=1$ gives $\left(Q_{2}\right)$. (P_{1}) gives (Q_{1}). By (5.4) and the first relation in (11.10),

$$
h I \cdot\left(h^{\prime} \sigma_{j}^{q} \frown g \sigma_{j}^{q}\right)=\gamma\left(\smile ; h, h^{\prime}\right) \sigma_{j}^{q} \cdot g \sigma_{j}^{q}=\gamma\left(\smile ; h, h^{\prime}\right) \cdot g .
$$

If we set $\gamma\left(\frown ; h^{\prime}, g\right)=\gamma\left(\smile ; 1, h^{\prime}\right) \cdot g$, then $\gamma\left(\frown ; h^{\prime}, g\right)$ is bilinear and $\left(\mathrm{Q}_{3}^{\prime}\right)$ holds (as $1 I \cdot g=I \cdot g$).

Theorem 11. Let K be a simplicial complex. Then with coefficient groups G and $H=\mathrm{Ch}_{G}(G)$, any two \frown products satisfying the new $\left(Q_{i}\right)$, with the same $\gamma(\frown ; h, g)$, give the same product in the cohomology and homology groups. The same is true for \smile if $H=\mathrm{Ch}_{G}(G)$ satisfies the hypothesis (H).

Recall that (P_{3}^{\prime}) and (Q_{3}^{\prime}) are (11.10). First take a fixed vertex x_{i}^{p} in each simplex σ_{i}^{p}, and define the "join" $x_{i}^{p} \sigma_{j}^{q}$ for any σ_{j}^{q} in $\dot{\sigma}_{i}^{p}$ (which vanishes if σ_{j}^{q} contains x_{i}^{p}). Set $x_{i}^{p} \sum g_{j} \sigma_{j}^{q}=\sum g_{j} x_{i}^{p} \sigma_{j}^{q}$. Then if C^{q} is a q - G-cycle in $\bar{\sigma}_{i}^{p}$, $\partial\left(x_{i}^{p} C^{q}\right)=C^{q}$. (See for instance Lefschetz, [10], p. 111, (9^{\prime}).)

Now given \frown_{1} and \frown_{2} with the same γ, set $\frown=\frown_{2}-\frown_{1}$. Then $\gamma(\frown ; h, g)=0$ (all h, g). We shall construct a bilinear product $h \sigma_{i}^{q} \wedge g \sigma_{j}^{p+q}$ as in Theorem 8. The proof there given holds, if we are careful to define the product for all h and g at each step. At a typical step, we have a p - G-cycle
$C^{p}=h \sigma_{i}^{q} \frown g \sigma_{j}^{p+q}+\cdots$ in $\bar{\sigma}_{j}^{p+q}$. To make $\partial\left(h \sigma_{i}^{q} \wedge g \sigma_{k}^{p+q}\right)=C^{p}$, we set $h \sigma_{i}^{q} \wedge g \sigma_{j}^{p+q}=x_{i}^{p+q} C^{q}$. Because of the new $\left(\mathrm{R}_{2}\right)$ and $\left(\mathrm{R}_{3}\right)$, the \frown product vanishes in the cohomology and homology groups; it follows that \frown_{1} and \frown_{2} give the same products there.

To prove the last statement, we shall show that if $\gamma\left(\smile ; h, h^{\prime}\right)=0$, then $A \smile B \backsim 0$ for cocycles A and B. Construct \frown corresponding to \smile; then by (11.14), $\gamma\left(\frown ; h^{\prime}, g\right)=0$. Hence, as we saw above, a bilinear \wedge operation may be defined satisfying the revised $\left(R_{i}\right)$. Next we shall construct \vee so that (9.6) will hold. In terms of the coefficients defining \wedge and \vee, this takes the form of the relation (11.13). The right hand side being given, we construct the coefficients on the left so the relation is satisfied, exactly as we constructed \smile in terms of \frown. We can now show that $(A \smile B) \cdot g \sigma=\delta(A \vee B) \cdot g \sigma$ for cocycles A and B, as in the proof of Theorem 10 . As this is true for all g, $A \smile B$ and $\delta(A \vee B)$ have the same coefficient in σ. As this is true for all σ, $A \smile B=\delta(A \vee B) \sim 0$.
(c) For certain sets of groups G, H and Z, the homology and cohomology groups ${ }^{p} \mathbf{H}^{G}$ and ${ }^{p} \mathbf{H}_{H}$ satisfy

$$
\begin{equation*}
{ }^{p} \mathbf{H}^{q} \approx \mathrm{Ch}_{Z}\left({ }^{p} \mathbf{H}_{H}\right), \quad{ }^{p} \mathbf{H}_{H}=\mathrm{Ch}_{z}\left({ }^{p} \mathbf{H}^{q}\right) \tag{11.15}
\end{equation*}
$$

As shown in Whitney, [13], this is so whenever the following conditions are satisfied.
(1) G and H form a group pair with respect to Z.
(2) $G \approx \mathrm{Ch}_{z}(H), H \approx \mathrm{Ch}_{z}(G)$.
(3) G and H resolve each other completely.
(4) Z is infinitely (better term: completely) divisible.
(11.15) holds for any of the examples $(\beta),(\gamma),(\delta)$ above, with $Z=G$. We can show this for (β) by first using $Z=R_{1}$, and noting that in the maps, only a subgroup $\approx G$ of R_{1} is used.

Theorem 12. Let the products (11.5) be defined, and suppose (11.15) is satisfied. Then, for any γ, as soon as one of \smile, \frown is known, the other is determined by (11.8).

Recall that for any γ, \smile and \frown are uniquely defined. We shall show that, given \smile or \frown, there is a unique corresponding \frown or \smile satisfying (11.8); as the correct products satisfy this relation, the theorem will be proved.

Suppose \smile is defined. For fixed v_{j}^{q} and u_{k}^{p+q}, the left hand side of (11.8) is a homomorphism of ${ }^{p} \mathrm{H}_{H}$ into Z, and hence, by (11.15), corresponds to a unique element of ${ }^{p} \mathbf{H}^{G}$; we call this element $v_{j}^{q} \frown \boldsymbol{v}_{k}^{p+q}$. Then \frown is bilinear, and (11.8) is satisfied. We find \smile in terms of \frown in the same manner.

12. Construction of the products in low dimensional complexes

We shall construct all products $\sigma^{q} \frown \sigma^{p+q}$ for $p \leqq 2$ in a particular fashion; then $\sigma^{p} \smile \sigma^{q}$ is determined for $p \leqq 2$. We can then determine the \smile products in the cohomology and homology groups of complexes of dimensions $\leqq 5$,
with the help of Theorem 12 and (5.12); the remaining $_$products are then given with the aid of Theorem 12.

We begin by ordering the vertices of K in a fixed fashion, x_{1}, x_{2}, \ldots. For each σ_{i}^{p}, let V_{i}^{p} be its first vertex. For each vertex x_{h} of σ_{i}^{p}, let $W_{i}^{p} x_{h}$ be a 1-chain in $\tilde{\sigma}_{i}^{p}$ whose boundary is $x_{h}-V_{i}^{p}$. Set (using $\gamma=1$)

$$
\begin{align*}
& \sigma_{i}^{p} \frown \sigma_{i}^{p}=V_{i}^{p}, \tag{12.1}\\
& \sigma_{i}^{p-1} \frown \sigma_{i}^{p}={ }^{p} \partial_{i}^{i} W_{i}^{p} V_{i}^{p-1}\left(\sigma_{i}^{p-1} \text { in } \bar{\sigma}_{i}^{p}\right) . \tag{12.2}
\end{align*}
$$

Finally, take any σ_{i}^{p-2} of $\bar{\sigma}_{i}^{p}$; say

$$
\partial \sigma_{i}^{p}=\sum \alpha_{k} \sigma_{k}^{p-1}, \quad \delta \sigma_{j}^{p-2}=\sum \beta_{k} \sigma_{k}^{p-1} \text { in } \bar{\sigma}_{i}^{p} .
$$

As $\partial \partial \sigma_{i}^{p}=0, \sum \alpha_{k} \beta_{k}=0$. Now (see $\S 8$)

$$
C^{1}=\delta \sigma_{i}^{p-2} \frown \sigma_{i}^{p}+\sigma_{j}^{p-2} \frown \partial \sigma_{i}^{p}=\sum \beta_{k} W_{i}^{p} V_{k}^{p-1}+\sum \alpha_{k} W_{k}^{p-1} V_{i}^{p-2}
$$

is a cycle in $\tilde{\sigma}_{i}^{p}$, and we may choose a 2 -chain $\sigma_{i}^{p-2} \frown \sigma_{i}^{p}$ bounded by it.
In the simplest case, we will have

$$
\partial \sigma_{i}^{p}=\sigma_{t}^{p-1}+\sigma_{t}^{p-1}+\cdots, \quad \delta \sigma_{j}^{p-2}=\sigma_{t}^{p-1}-\sigma_{t}^{p-1}+\cdots,
$$

and

$$
C^{1}=W_{i}^{p} V_{i}^{p-1}-W_{i}^{p} V_{t}^{p-1}+W_{i}^{p-1} V_{j}^{p-2}+W_{t}^{p-1} V_{i}^{p-2}
$$

and we can find a possible $\sigma_{i}^{p-2} \frown \sigma_{i}^{p}$ at once. For most σ_{i}^{p-2} on σ_{i}^{p} (for instance, for all in which $V_{j}^{p-2}=V_{s}^{p-1}=V_{t}^{p-1}$), C^{1} will vanish; but there will in general be at least one for which it does not.

III. Invariance Theorems

13. Subdivision and consolidation

Let K^{\prime} be a complex, satisfying $\left(\mathrm{K}_{1}\right),\left(\mathrm{K}_{2}\right)$ and $\left(\mathrm{K}_{3}\right)$ of $\S 2$. Let $\left\{E_{i}^{p}\right\}$ be a set of distinct closed subcomplexes of K^{\prime} which cover K^{\prime}, E_{i}^{p} being of dimension p. Let $F_{i}^{p}=F\left(E_{i}^{p}\right)$ be the union of all $E_{i}^{q}(q<p)$ contained in E_{i}^{p}. Set $O_{i}^{p}=E_{i}^{p}-F_{i}^{p}$. Assume
(K_{1}^{\prime}) The common part $E_{i}^{p} \cdot E_{j}^{q}$ of any two of the subcomplexes is either void or the union of a subset of the subcomplexes.
(K_{2}^{\prime}) If E_{j}^{q} is in $E_{i}^{p}, E_{j}^{q} \neq E_{i}^{p}$, then $q<p$.
$\left(\mathrm{K}_{3}^{\prime}\right)$ With integer coefficients, O_{i}^{p} is monocyclic or acyclic ${ }^{21}$ in the dimension p and is acyclic in all lower dimensions.

[^9]Define a complex K as follows. With each O_{i}^{p} which is monocyclic we associate a p-cell σ_{i}^{p}. Say σ_{j}^{q} is a face of σ_{i}^{p} if and only if E_{j}^{q} is in E_{i}^{p}. We shall define the ${ }^{p} \partial_{j}^{i}$ in K and prove $\left(K_{1}\right),\left(\mathrm{K}_{2}\right)$ and $\left(\mathrm{K}_{3}\right)$ for K below. We call K a consolidation ${ }^{22}$ of K^{\prime}, and K^{\prime}, a subdivision of K. If K may be formed from a simplicial K^{\prime} in this manner, we say K admits a simplicial subdivision.

14. Structure of K and K^{\prime}

Denote the cells of K^{\prime} by τ_{i}^{p}. Let J^{p} be the union of all E_{i}^{q} for $q \leqq p$. We prove:
$\left(\alpha_{1}\right) O_{i}^{p}$ contains all the p-cells of E_{i}^{p}; for F_{i}^{p} is of dimension $<p$.
$\left(\alpha_{2}\right) E_{i}^{p} \cdot E_{j}^{p}$ is in J^{p-1} if $j \neq i$; for the common part is a union of E_{k}^{q}, and as each such E_{k}^{q} is in $E_{i}^{p}, q<p$, by $\left(\mathrm{K}_{2}^{\prime}\right)$.
(α_{3}) Each τ_{i}^{p} is in a unique O_{j}^{q}; then E_{j}^{q} is the smallest subcomplex containing τ_{i}^{p}. To prove this, choose E_{j}^{q} as stated. E_{j}^{q} is uniquely determined. For if τ_{i}^{p} is also in E_{k}^{r}, then it is in their common part and hence in an E_{l}^{s} contained in both, by $\left(\mathrm{K}_{1}^{\prime}\right)$; hence $E_{l}^{s}=E_{j}^{q}$, and E_{j}^{q} is in E_{k}^{r}. As τ_{i}^{p} is in no E_{k}^{q-1}, it is in O_{j}^{q}. Suppose τ_{i}^{p} were also in $O_{k}^{r} \neq O_{j}^{q}$. Then E_{k}^{r} contains E_{j}^{q}, and by $\left(\mathrm{K}_{2}^{\prime}\right), r>q$. Hence E_{j}^{q} is in F_{k}^{r}, and τ_{i}^{p} is not in O_{k}^{r}, a contradiction.

In $\left(\alpha_{3}\right)$, we define $E_{j}^{q}=E\left(\tau_{i}^{p}\right), O_{j}^{q}=O\left(\tau_{i}^{p}\right)$. If O_{j}^{q} is monocyclic (in the dimension q), we set $\sigma_{j}^{q}=\sigma\left(\tau_{i}^{p}\right)$.
$\left(\alpha_{4}\right)$ If τ is in O_{i}^{p} and in E_{j}^{q}, then E_{j}^{q} contains E_{i}^{p}, by $\left(\alpha_{3}\right)$.
For each O_{i}^{p} which is monocyclic, let

$$
\begin{equation*}
X_{i}^{p}=\sum_{j}{ }^{p} a_{i}^{j} \tau_{j}^{p} \tag{14.1}
\end{equation*}
$$

be the corresponding p-cycle; for other O_{i}^{p}, set $X_{i}^{p}=0$. Map $L^{p}(K)$ into $L^{p}\left(K^{\prime}\right)$ by

$$
\begin{equation*}
S d \sigma_{i}^{p}=X_{i}^{p} \tag{14.2}
\end{equation*}
$$

Define $S d \sum \alpha_{i} \sigma_{i}^{p}$ by linearity. Then
(α_{5}) $S d A^{p}=0$ implies $A^{p}=0$. For if $A^{p}=\sum \alpha_{i} \sigma_{i}^{p}$, then $\sum \alpha_{i} X_{i}^{p}=0$, and (α_{2}) shows that each $\alpha_{i} X_{i}^{p}=0$; as $X_{i}^{p} \neq 0$ in this case, $\alpha_{i}=0$.

Lemma 4. Any cycle $A^{\prime p}$ in J^{p} (with integer coefficients) is $S d A^{p}$ for a uniquely defined A^{p} in K.

First, write $A^{\prime p}=\sum A_{i}^{\prime p}, A_{i}^{\prime p}$ in $E_{i}^{p} . \quad$ As $A^{\prime p}-A_{i}^{\prime p}$ is in $\sum_{j \neq i} E_{j}^{p}$, by $\left(\alpha_{2}\right)$, so is $-\partial\left(A^{\prime p}-A_{i}^{\prime p}\right)=\partial A_{i}^{\prime p}$. By (α_{4}), $\partial A_{i}^{\prime p}$ has no part in O_{i}^{p}, that is (using $\left.\left(\alpha_{1}\right)\right), A_{i}^{\prime p}$ is a p-cycle in O_{i}^{p}. Hence, if $A_{i}^{\prime p} \neq 0$, then O_{i}^{p} is monocyclic, and for some α_{i},

$$
A_{i}^{\prime p}=\alpha_{i} X_{i}^{p} ; \quad \text { then } A^{\prime p}=S d \sum \alpha_{i} \sigma_{i}^{p}
$$

The uniqueness follows from (α_{5}). We remark that "in $J^{p \text { ", may be replaced }}$ by "in $J^{p}-J^{p-1}$."

[^10]We now define the boundary relations in K. Given $\sigma_{i}^{p}, \partial S d \sigma_{i}^{p}$ is a cycle in F_{i}^{p}, which is in J^{p-1}; hence it may be written uniquely as $S d B^{p-1}$. We define $\partial \sigma_{i}^{p}=B^{p-1}$. Then

$$
\begin{equation*}
\partial S d A^{p}=S d \partial A^{p} . \tag{14.3}
\end{equation*}
$$

Clearly (K_{1}) holds for K. Also $\partial S d \sigma_{i}^{p}$ is in E_{i}^{p}, hence $\partial \sigma_{i}^{p}$ is in $\bar{\sigma}_{i}^{p}$, and $\left(\mathrm{K}_{2}\right)$ holds. For any $\sigma_{i}^{p}, S d \partial \partial \sigma_{i}^{p}=\partial \partial S d \sigma_{i}^{p}=0$; hence, by $\left(\alpha_{5}\right), \partial \partial \sigma_{i}^{p}=0$, and (K_{3}) holds.
Theorem 13. If K^{\prime} is a subdivision of K, then there are homomorphisms ϕ of $L^{p}\left(K^{\prime}\right)$ into $L^{p}(K)$ and ψ of $L^{p}\left(K^{\prime}\right)$ into $L^{p+1}\left(K^{\prime}\right)$ such that
(a) $\phi \tau^{p}$ is in $\bar{\sigma}\left(\tau^{p}\right) ; \psi \tau^{p}$ is in $E\left(\tau^{p}\right)$.
(b) $\partial \phi A^{\prime p}=\phi \partial A^{\prime p}$.
(c) $\phi S d A^{p}=A^{p}$.
(d) $S d \phi A^{\prime p}=A^{\prime p}-\psi \partial A^{\prime p}-\partial \psi A^{\prime p}$.

If we take duals of these relations and (14.3), using:
$\phi^{\prime}=D(\phi)$, mapping $L^{p}(K)$ into $L^{p}\left(K^{\prime}\right)$,
$S d^{\prime}=D(S d)$, mapping $L^{p}\left(K^{\prime}\right)$ into $L^{p}(K)$,
$\psi^{\prime}=D(\psi)$, mapping $L^{p+1}\left(K^{\prime}\right)$ into $L^{p}\left(K^{\prime}\right)$,
we obtain
(b') $\delta \phi^{\prime} A^{p}=\phi^{\prime} \delta A^{p}$,
(c') $S d^{\prime} \phi^{\prime} A^{p}=A^{p}$,
(d') $\phi^{\prime} S d^{\prime} A^{\prime p}=A^{\prime p}-\psi^{\prime} \delta A^{\prime p}-\delta \psi^{\prime} A^{\prime p}$,

$$
\begin{equation*}
\delta S d^{\prime} A^{\prime p}=S d^{\prime} \delta A^{\prime p} . \tag{14.3'}
\end{equation*}
$$

We begin by constructing homomorphisms θ_{p} and ψ_{p} as follows. θ_{p} and ψ_{p} are defined in J^{p}, and map $L^{r}\left(K^{\prime}\right)$ into $L^{r}\left(K^{\prime}\right)$ and into $L^{r+1}\left(K^{\prime}\right)$ respectively. For τ^{q} in J^{p-1}, set $\theta_{p} \tau^{q}=\tau^{q}, \psi_{p} \tau^{q}=0$. If τ^{q} is in O_{i}^{p}, then we shall have:

$$
\psi_{p} \tau^{q} \text { is in } O_{i}^{p}, \quad \theta_{p} \tau^{q} \text { is in }\left\{\begin{array}{l}
F_{i}^{p} \text { if } q<p \\
E_{i}^{p} \text { if } q=p
\end{array}\right.
$$

Also

$$
\begin{equation*}
\partial \psi_{p} \tau^{q}=\tau^{q}-\psi_{p} \partial \tau^{q}-\theta_{p} \tau^{q} . \tag{14.4}
\end{equation*}
$$

For τ^{0} in J^{0}, set $\theta_{0} \tau^{0}=\tau^{0}, \psi_{0} \tau^{0}=0$. Suppose all θ_{r} and ψ_{r} are constructed in J^{p-1}; we shall construct them in J^{p}. We need merely consider θ_{p} and ψ_{p}; for (14.4) holds for θ_{r} and $\psi_{r}, r>p$, by their definitions. For τ^{0} in O_{i}^{p}, we may choose $\psi_{p} \tau^{0}$ in O_{i}^{p} and $\theta_{p} \tau^{0}$ in F_{i}^{p} so that

$$
\partial \psi_{p} \tau^{0}=\tau^{0}-\theta_{p} \tau^{0},
$$

by (K_{3}^{\prime}); then (14.4) holds.

Now suppose ψ_{p} and θ_{p} are defined for all cells of dimension $<q$ in O_{i}^{p}; we shall define them for τ^{q}. If $\partial_{1} \tau^{q}$ is the part of $\partial \tau^{q}$ in $O_{i}^{p}, \psi_{p} \partial_{1} \tau^{q}$ is in O_{i}^{p}; if $\partial_{2} \tau^{q}$ is the part in $F_{i}^{p}, \psi_{p} \partial_{2} \tau^{q}=0$. Hence $\psi_{p} \partial \tau^{q}$ is in O_{i}^{p}. Also, using (14.4) applied to $\partial \tau^{q}$,

$$
\begin{equation*}
\partial\left(\tau^{q}-\psi_{p} \partial \tau^{q}\right)=\partial \tau^{q}-\left(\partial \tau^{q}-\theta_{p} \partial \tau^{q}\right)=\theta_{p} \partial \tau^{q} \tag{14.5}
\end{equation*}
$$

which is in F_{i}^{p}. Hence $\tau^{q}-\psi_{p} \partial \tau^{q}$, as a chain in the complex O_{i}^{p}, is a cycle.
Suppose first that $q<p$. Then, by $\left(K_{3}^{\prime}\right)$, we may find a chain $\psi_{p} \tau^{q}$ in O_{i}^{p} and a chain $\theta_{p} \tau^{q}$ in F_{i}^{p} so that (14.4) holds. Suppose next that $q=p$. Then if $\tau^{q}=\tau_{i}^{p}$,

$$
\begin{equation*}
\tau_{j}^{p}-\psi_{p} \partial \tau_{j}^{p}=\alpha_{j} X_{i}^{p} \tag{14.6}
\end{equation*}
$$

by $\left(\mathrm{K}_{3}^{\prime}\right)$. If $X_{i}^{p}=0$, we take $\alpha_{j}=0$. Set $\psi_{p} \tau_{i}^{p}=0, \theta_{p} \tau_{i}^{p}=\alpha_{j} X_{i}^{p}$; again (14.4) follows.

We prove some properties of ψ_{p} and θ_{p}. Taking the boundary of (14.4) gives

$$
\begin{gather*}
0=\partial \tau^{q}-\left(\partial \tau^{q}-\psi_{p} \partial \partial \tau^{q}-\theta_{p} \partial \tau^{q}\right)-\partial \theta_{p} \tau^{q} \\
\partial \theta_{p} \tau^{q}=\theta_{p} \partial \tau^{q} . \tag{14.7}
\end{gather*}
$$

Next, by (14.1) and (14.6), summing over all p-cells in O_{i}^{p},

$$
\sum_{j} \alpha_{j}^{p} a_{i}^{j} X_{i}^{p}=\sum_{j}^{p} a_{i}^{j}\left(\tau_{j}^{p}-\psi_{p} \partial \tau_{j}^{p}\right)=X_{i}^{p}-\psi_{p} \partial X_{i}^{p} .
$$

But ∂X_{i}^{p} is in F_{i}^{p}, and hence $\psi_{p} \partial X_{i}^{p}=0$. Therefore

$$
\begin{equation*}
\sum_{j} \alpha_{j}^{p} a_{i}^{j}=1 \quad \text { if } X_{i}^{p} \neq 0 \tag{14.8}
\end{equation*}
$$

It follows that, even if $X_{i}^{p}=0$,

$$
\begin{equation*}
\theta_{p} X_{i}^{p}=\sum_{j}{ }^{p} a_{i}^{j} \theta_{p} \tau_{j}^{p}=\sum_{j}{ }^{p} a_{i}^{j} \alpha_{j} X_{i}^{p}=X_{i}^{p} \tag{14.9}
\end{equation*}
$$

Now define a homomorphism θ of $L^{q}\left(K^{\prime}\right)$ into $L^{q}\left(J^{q}\right)$ by

$$
\begin{equation*}
\theta \tau^{q}=\theta_{q} \theta_{q+1} \cdots \theta_{n} \tau^{q} \tag{14.10}
\end{equation*}
$$

supposing K^{\prime} is of dimension n. By the definition of $\theta_{p} \tau^{q}$ for $p=q$, we may define ϕ in $L^{q}\left(K^{\prime}\right)$ so that

$$
\begin{equation*}
\theta \tau^{q}=S d \phi \tau^{q} \tag{14.11}
\end{equation*}
$$

By (14.3), (14.9) and (14.7),

$$
\begin{equation*}
\partial \theta \tau^{q}=S d \partial \phi \tau^{q}=\theta_{q-1} S d \partial \phi \tau^{q}=\theta_{q-1} \partial \theta \tau^{q}=\theta_{q-1} \theta_{q} \cdots \theta_{n} \partial \tau^{q}=\theta \partial \tau^{q} ; \tag{14.12}
\end{equation*}
$$

hence

$$
S d \partial \phi \tau^{q}=\partial S d \phi \tau^{q}=\partial \theta \tau^{q}=S d \phi \partial \tau^{q}
$$

and (b) follows from (α_{5}).
Finally, define ψ by

$$
\begin{equation*}
\psi \tau^{q}=\sum_{k=q}^{n} \psi_{k} \theta_{k+1} \cdots \theta_{n} \tau^{q} \tag{14.13}
\end{equation*}
$$

using $\theta_{n+1} \cdots \theta_{n} \tau^{q}=\tau^{q}$. As $k+1>q$ in each term of the sum, $\theta_{k+1} \cdots \theta_{n} \tau^{q}$ is in J^{k}, so that $\psi_{k} \theta_{k+1} \ldots \theta_{n} \tau^{q}$ is defined. Note that $\psi_{q-1} \theta_{q} \ldots \theta_{n} \partial \tau^{q}=0$, as $\theta_{q} \cdots \theta_{n} \partial \tau^{q}$ is of dimension $q-1$. Hence, by (14.4) and (14.7),

$$
\begin{aligned}
\partial \psi \tau^{q} & =\sum_{k=q}^{n} \partial \psi_{k} \theta_{k+1} \cdots \theta_{n} \tau^{q} \\
& =\sum_{k=q}^{n} \theta_{k+1} \cdots \theta_{n} \tau^{q}-\sum_{k=q}^{n} \psi_{k} \partial \theta_{k+1} \cdots \theta_{n} \tau^{q} \\
& -\sum_{k=q}^{n} \theta_{k} \theta_{k+1} \cdots \theta_{n} \tau^{q}=\tau^{q}-\psi \partial \tau^{q}-\theta \tau^{q} ;
\end{aligned}
$$

this. with (14.11), gives (d).
To prove (c), (14.9) gives

$$
S d \phi S d \sigma_{i}^{p}=S d \phi X_{i}^{p}=\theta X_{i}^{p}=\theta_{p} X_{i}^{p}=X_{i}^{p}=S d \sigma_{i}^{p}
$$

(c) now follows from $\left(\alpha_{5}\right)$.

15. Combinatorial invariance

We can now prove (compare Theorem 13)
Theorem 14. Let K^{\prime} be a subdivision of K, and let G be an abelian group. Then both ϕ and $S d$ induce isomorphisms between ${ }^{p} \mathrm{H}^{G}(K)$ and ${ }^{p} \mathrm{H}^{G}\left(K^{\prime}\right)$, and both ϕ^{\prime} and $S d^{\prime}$ induce isomorphisms between ${ }^{p} \mathbf{H}_{G}(K)$ and ${ }^{p} \mathbf{H}_{G}\left(K^{\prime}\right)$. If K and K^{\prime} each admits a product theory, then these isomorphisms preserve products. ${ }^{23}$

The meaning of the last phrase is seen from (15.4), (15.5), (15.7) and (15.8) below.

Set $S d \sum g_{i} \sigma_{i}^{p}=\sum g_{i} S d \sigma_{i}^{p}$ etc. Using u and v for homology and cohomology classes as in §11, set

$$
\begin{align*}
\phi u^{\prime} A^{\prime p} & =u \phi A^{\prime p}, & S d u A^{p} & =u^{\prime} S d A^{p} \\
\phi^{\prime} v A^{p} & =v^{\prime} \phi^{\prime} A^{p}, & S d^{\prime} v^{\prime} A^{\prime p} & =v S d^{\prime} A^{\prime p} \tag{15.1}
\end{align*}
$$

the chains being cycles in (15.1) and cocycles in (15.2). The proof that these are isomorphisms follows at once from Theorem 13. Consider for instance ϕ^{\prime}. To show that $\phi^{\prime} v$ is uniquely determined, suppose $v A^{p}=v B^{p}$. Then $A^{p}-B^{p}=$ δC^{p-1}, and

$$
v^{\prime} \phi^{\prime} A^{p}-v^{\prime} \phi^{\prime} B^{p}=v^{\prime} \phi^{\prime} \delta C^{p-1}=v^{\prime} \delta \phi^{\prime} C^{p-1}=0
$$

Suppose $\phi^{\prime} v A^{p}=\phi^{\prime} v B^{p}$. Then $\phi^{\prime} A^{p}-\phi^{\prime} B^{p}=\delta C^{p-1}$, and

$$
A^{p}-B^{p}=S d^{\prime} \phi^{\prime}\left(A^{p}-B^{p}\right)=S d^{\prime} \delta C^{p-1}=\delta S d^{\prime} C^{\prime p-1}
$$

so that $v A^{p}=v B^{p}$. Given a $v^{\prime} A^{\prime p}$, to find a $v A^{p}$ mapping into it, set $A^{p}=$ $S d^{\prime} A^{\prime p}$. Then $\delta A^{p}=S d^{\prime} \delta A^{\prime p}=0$, and

$$
\phi^{\prime} v A^{p}=v^{\prime} \phi^{\prime} S d^{\prime} A^{\prime p}=v^{\prime}\left(A^{\prime p}-\psi^{\prime} \delta A^{\prime p}-\delta \psi^{\prime} A^{\prime p}\right)=v^{\prime} A^{\prime p}
$$

[^11]To prove that the \smile products agree in the cohomology groups of K and K^{\prime} (if they are defined), consider first integer coefficients. Take a definite \smile product in K^{\prime}, and define a new one in K by

$$
\begin{equation*}
A \smile B=S d^{\prime}\left(\phi^{\prime} A \smile \phi^{\prime} B\right) \tag{15.3}
\end{equation*}
$$

We must prove $\left(\mathrm{P}_{1}\right)$ through $\left(\mathrm{P}_{3}\right)$. To prove $\left(\mathrm{P}_{1}\right)$, say

$$
\sigma_{i}^{p} \smile \sigma_{j}^{q}=\alpha \sigma_{k}^{r}+\cdots, \quad \alpha \neq 0 \quad(r=p+q)
$$

Then

$$
\phi^{\prime} \sigma_{i}^{p} \smile \phi^{\prime} \sigma_{j}^{q}=\beta \tau^{r}+\cdots, \quad S d^{\prime} \tau^{r}=\gamma \sigma_{k}^{r}, \quad \beta \neq 0, \gamma \neq 0
$$

As then $S d \sigma_{k}^{r}=\gamma \tau^{r}+\cdots, \tau^{r}$ is in O_{k}^{r}, and $\sigma\left(\tau^{r}\right)=\sigma_{k}^{r}$. Say

$$
\begin{aligned}
& \phi^{\prime} \sigma_{i}^{p}=\epsilon \tau^{p}+\cdots, \quad \phi^{\prime} \sigma_{j}^{q}=\zeta \tau^{q}+\cdots, \quad \tau^{p} \smile \tau^{q}=\eta \tau^{r}+\cdots \\
& (\epsilon, \zeta, \eta \neq 0) .
\end{aligned}
$$

As then $\phi \tau^{p}=\epsilon \sigma_{i}^{p}+\cdots, \sigma_{i}^{p}$ is in $\bar{\sigma}\left(\tau^{p}\right) . \quad$ As τ^{p} is in $\bar{\tau}^{r}, E\left(\tau^{p}\right)$ is in $E\left(\tau^{r}\right)$, and σ_{i}^{p} is in $\bar{\sigma}\left(\tau^{r}\right)=\bar{\sigma}_{k}^{r}$. Similarly σ_{j}^{q} is in $\bar{\sigma}_{k}^{r}$.

To prove $\left(\mathrm{P}_{2}\right),\left(\mathrm{b}^{\prime}\right)$ and $\left(14.3^{\prime}\right)$ with $\left(\mathrm{P}_{2}\right)$ for \smile in K^{\prime} give

$$
\delta(A \smile B)=S d^{\prime}\left(\phi^{\prime} \delta A \smile \phi^{\prime} B \pm \phi^{\prime} A \smile \phi^{\prime} \delta B\right)=\delta A \smile B \pm A \smile \delta B
$$

To prove $\left(\mathrm{P}_{3}\right)$, note that $\phi^{\prime} I=I^{\prime}$; hence, using $\left(\mathrm{P}_{3}\right)$ in K^{\prime},

$$
I \smile \sigma_{j}^{q}=S d^{\prime}\left(\phi^{\prime} I \smile \phi^{\prime} \sigma_{j}^{q}\right)=S d^{\prime} \phi^{\prime} \sigma_{j}^{q}=\sigma_{j}^{q}
$$

Therefore we may use the product of (15.3) in K. To prove that ϕ^{\prime} and $S d^{\prime}$ preserve products in the cohomology groups, note that (for cocycles), using (d^{\prime}) and (5.6), (5.7),

$$
\begin{align*}
\phi^{\prime}(A \smile B) & =\phi^{\prime} S d^{\prime}\left(\phi^{\prime} A \smile \phi^{\prime} B\right) \backsim \phi^{\prime} A \smile \phi^{\prime} B \tag{15.4}\\
S d^{\prime} A^{\prime} \smile S d^{\prime} B^{\prime} & =S d^{\prime}\left(\phi^{\prime} S d^{\prime} A^{\prime} \smile \phi^{\prime} S d^{\prime} B^{\prime}\right) \backsim S d^{\prime}\left(A^{\prime} \smile B^{\prime}\right) \tag{15.5}
\end{align*}
$$

We may similarly define \frown in K in terms of \simeq in K^{\prime} by

$$
\begin{equation*}
A \frown B=\phi\left(\phi^{\prime} A \frown S d B\right) \tag{15.6}
\end{equation*}
$$

This corresponds to the \smile product in K, and hence is a \frown product. To show this, (4.6) gives

$$
\begin{aligned}
& (A \smile B) \cdot C=S d^{\prime}\left(\phi^{\prime} A \smile \phi^{\prime} B\right) \cdot C=\left(\phi^{\prime} A \smile \phi^{\prime} B\right) \cdot S d C \\
& A \cdot(B \frown C)=A \cdot \phi\left(\phi^{\prime} B \frown S d C\right)=\phi^{\prime} A \cdot\left(\phi^{\prime} B \frown S d C\right)
\end{aligned}
$$

Applying (5.4) in K^{\prime} shows that these are equal; hence \smile and \frown correspond in K, by (5.4).

We map cycles [cocycles] from K into K^{\prime} and from K^{\prime} into K with $S d$ and ϕ [with ϕ^{\prime} and $S d^{\prime}$]. The invariance of the \simeq product is given by

$$
\begin{equation*}
S d(A \frown B)=S d \phi\left(\phi^{\prime} A \frown S d B\right) \sim \phi^{\prime} A \frown S d B \tag{15.7}
\end{equation*}
$$

$$
\begin{equation*}
S d^{\prime} A^{\prime} \frown \phi B^{\prime}=\phi\left(\phi^{\prime} S d^{\prime} A^{\prime} \frown S d \phi B^{\prime}\right) \sim \phi\left(A^{\prime} \frown B^{\prime}\right) \tag{15.8}
\end{equation*}
$$

where A, A^{\prime} are cocycles, B, B^{\prime} are cycles.
Now consider the coefficient group G as in $\S 11$, (a). The \smile products in the cohomology groups in both K and K^{\prime} are formed by (11.3). As (15.3) holds with A and B replaced by ${ }^{p} h \sigma_{i}^{p}$ and ${ }^{q} h \sigma_{i}^{q}$, (15.3) etc. hold with any coefficient group. (15.4) and (15.5) prove the invariance. Similarly for the $_$product.

16. Topological invariance

We shall show how to associate homology and cohomology groups and a product theory with a polyhedron P by means of any simplicial subdivision. By Theorem 14 we may find these groups and products, using any complex K which admits, as a subdivision, a simplicial triangulation of P, and admits a product theory.

The theorem and proof extend at once to prove the existence of groups and products in a bicompact space; compare Steenrod (see footnote 8), §9.

The proof is based on Theorem 13. However, if we restrict ourselves to simplicial complexes, Theorem 13 becomes much more simple. Hence we give it again for this case, as a lemma. We may then prove, as before, the first part of Theorem 14.

Lemma 6. Let K^{\prime} be a simplicial subdivision of the simplicial complex K, and let ϕ be a pseudo-identical map ${ }^{24}$ of K^{\prime} into K. Then there is a map ψ as in Theorem 13 such that the conclusions of Theorem 13 hold.

The statements about ϕ and $S d$ are well-known; we shall construct ψ. For each vertex x^{\prime} of K^{\prime}, let ψx^{\prime} be any 1 -chain in the subdivision of the smallest cell $\sigma\left(x^{\prime}\right)$ of K containing x^{\prime}, which is bounded by $x^{\prime}-\phi x^{\prime}$. Suppose ψ is constructed in $L^{0}\left(K^{\prime}\right), \cdots, L^{p-1}\left(K^{\prime}\right)$. Then applying (d) of Theorem 13 to the ($p-1$)-chain $\partial \tau^{p}$, we find

$$
\partial\left(S d \phi \tau^{p}-\tau^{p}+\psi \partial \tau^{p}\right)=\partial S d \phi \tau^{p}-\partial \tau^{p}+\partial \tau^{p}-S d \phi \partial \tau^{p}=0 .
$$

Hence $S d \phi \tau^{p}-\tau^{p}+\psi \partial \tau^{p}$ is a p-cycle in the subdivision of $\sigma\left(\tau^{p}\right)(p>0)$, and therefore, as is well-known, we can find a chain $-\psi \tau^{p}$ there bounded by it. The ψ as thus constructed clearly has the required properties.
Theorem 15. Let K and K^{\prime} be simplicial triangulations of homeomorphic polyhedra P and P^{\prime}. Then there are isomorphisms between ${ }^{p} \mathrm{H}^{G}(K)$ and ${ }^{p} \mathrm{H}^{G}\left(K^{\prime}\right)$ and between ${ }^{p} \mathrm{H}_{\theta}(K)$ and ${ }^{p} \mathrm{H}_{\theta}\left(K^{\prime}\right)$ which preserve the \smile and \frown products.

[^12]By identifying corresponding points of P and P^{\prime}, we may suppose K and K^{\prime} are triangulations of P. We may subdivide K^{\prime} into K_{1}^{\prime}, then K into K_{1}, and then K_{1}^{\prime} into K_{2}^{\prime}, so that the following conditions hold. ${ }^{25}$ There are simplicial maps $\psi_{2}, \phi_{1}, \psi_{1}$, of K_{2}^{\prime} into K_{1}, K_{1} into K_{1}^{\prime}, and K_{1}^{\prime} into K, such that $\Psi=\phi_{1} \psi_{2}$ and $\Phi=\psi_{1} \phi_{1}$ are pseudo-identical. The duals $\psi_{1}^{\prime}, \phi_{1}^{\prime}, \psi_{2}^{\prime}$ of ψ_{1}, ϕ_{1}, ψ_{2} induce homomorphisms of the cohomology groups of K, K_{1}^{\prime}, K_{1} into those of $K_{1}^{\prime}, K_{1}, K_{2}^{\prime}$. Combining pairs of these homomorphisms gives homomorphisms of ${ }^{p} \mathrm{H}_{G}(K)$ into ${ }^{p} \mathrm{H}_{\theta}\left(K_{1}\right)$ and of ${ }^{p} \mathrm{H}_{G}\left(K_{1}^{\prime}\right)$ into ${ }^{p} \mathrm{H}_{G}\left(K_{2}^{\prime}\right)$. These are induced by the duals Φ^{\prime} and Ψ^{\prime} of Φ and Ψ, and are isomorphisms, by Theorem 14. ${ }^{26} \quad$ Set $\psi^{*}=\left(\Phi^{\prime}\right)^{-1} \phi_{1}^{\prime}$; then ψ_{1}^{\prime} and $\psi^{*} \operatorname{map}{ }^{p} \mathbf{H}_{G}(K)$ into ${ }^{p} \mathbf{H}_{G}\left(K_{1}^{\prime}\right)$ and vice versa. Further, using E for the identity, we have, in the cohomology groups,

$$
\begin{aligned}
\psi^{*} \psi_{1}^{\prime} & =\left(\phi_{1}^{\prime} \psi_{1}^{\prime}\right)^{-1} \phi_{1}^{\prime} \psi_{1}^{\prime}=E \\
\psi_{1}^{\prime} \psi^{*} & =\left(\Psi^{\prime-1} \Psi^{\prime}\right) \psi_{1}^{\prime}\left(\phi_{1}^{\prime} \psi_{1}^{\prime}\right)^{-1} \phi_{1}^{\prime} \\
& =\left(\psi_{2}^{\prime} \phi_{1}^{\prime}\right)^{-1} \psi_{2}^{\prime}\left(\phi_{1}^{\prime} \psi_{1}^{\prime}\right)\left(\phi_{1}^{\prime} \psi_{1}^{\prime}\right)^{-1} \phi_{1}^{\prime}=E .
\end{aligned}
$$

It follows that ψ_{1}^{\prime} and ψ^{*} are isomorphisms (see for instance [4], p. 558). Combining this isomorphism with an isomorphism χ between ${ }^{p} \mathbf{H}_{g}\left(K_{1}^{\prime}\right)$ and ${ }^{p} \mathbf{H}_{G}\left(K^{\prime}\right)$ (Theorem 14) gives an isomorphism θ between ${ }^{p} \mathbf{H}_{g}(K)$ and ${ }^{p} \mathbf{H}_{g}\left(K^{\prime}\right)$. By the same process it is seen that ψ_{1} induces an isomorphism between ${ }^{p} \mathrm{H}^{G}\left(K_{1}^{\prime}\right)$ and ${ }^{p} \mathbf{H}^{G}(K)$. As ψ_{1} is simplicial, the isomorphisms induced by ψ_{1}^{\prime} and ψ_{1} preserve products (see §7). The same is true of χ and its dual, and hence of θ and its dual. This completes the proof.

IV. Manifolds

17. Dual complexes in a manifold

Let K be a subdivision of a closed oriented combinatorial manifold, ${ }^{27}$ and let K^{\prime} be the first derived (simplicial) subdivision of K. Order the vertices of K^{\prime} by choosing first the vertices of K, next the centers of 1 -cells of K, etc. Say K is of dimension n. For each cell σ_{i}^{p} of K, let E_{i}^{n-p} be the subcomplex of K^{\prime} containing all $(n-p)$-cells of K^{\prime} which have the center of σ_{i}^{p} as their first vertex, and all faces of these cells. The hypotheses on K show that the complex K^{*} thus formed, the "dual" of K, admits K^{\prime} as a simplicial subdivision (see §13), and admits a product theory. The maps $S d$ and $S d^{*}$ of $L^{p}(K)$ and $L^{p}\left(K^{*}\right)$ into $L^{p}\left(K^{\prime}\right)$ are defined in the natural manner; for the latter, see (19.4). Define ϕ and ϕ^{*} as in Part III.

[^13]
18. The Poincare duality theorem

Using K and K^{*}, we may find at once the form of the duality theorem given by Kolmogoroff, [8], and Cech, [5]. Let $\tau_{i}^{n-p}=\mathscr{D}\left(\sigma_{i}^{p}\right)$ be the cell of K^{*} dual to σ_{i}^{p}; set $\sigma_{i}^{p}=\mathscr{D}^{*}\left(\tau_{i}^{n-p}\right)$. Recall that

$$
\begin{equation*}
\partial \mathscr{D}\left(\sigma^{p-1}\right)=(6-1)^{p} \mathscr{D}^{p}+\cdots \text { if and only if } \partial \sigma_{i}^{p}=\sigma^{p-1}+\cdots ; \tag{18.1}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\partial \mathscr{D}\left(A^{p}\right)=(-1)^{p+1} \mathscr{D}\left(\delta A^{p}\right), \quad \delta \mathscr{D}\left(A^{p}\right)=(-1)^{p} \mathscr{D}\left(\partial A^{p}\right) \tag{18.2}
\end{equation*}
$$

Similar relations hold for \mathscr{D}^{*}. From (18.2) we may conclude at once that \mathscr{D} establishes an isomorphism between ${ }^{p} \mathbf{H}_{\theta}(K)$ and ${ }^{n-p} \mathbf{H}^{G}\left(K^{*}\right)$. But $\phi S d^{*}$ establishes an isomorphism between ${ }^{n-p} \mathbf{H}^{G}\left(K^{*}\right)$ and ${ }^{n-p} \mathbf{H}^{G}(K)={ }^{n-p} \mathbf{H}^{G}$ (see Theorem 13); hence

$$
\begin{equation*}
{ }^{p} \mathbf{H}_{\sigma}={ }^{n-p} \mathbf{H}^{\sigma} \tag{18.3}
\end{equation*}
$$

Suppose that, as in $\S 11$, (c), ${ }^{p} \mathbf{H}_{\sigma}(K) \approx \mathrm{Ch}_{z}\left({ }^{p} \mathbf{H}^{H}(K)\right)$; then

$$
\begin{equation*}
{ }^{n-p} \mathbf{H}^{G} \approx \mathrm{Ch}_{\boldsymbol{Z}}\left({ }^{p} \mathbf{H}^{H}\right) \tag{18.4}
\end{equation*}
$$

19. Products and intersections ${ }^{28}$

Supposing K is simplicial, we shall (a) define intersections in terms of the \frown product, (b) give a relation defining \mathscr{D}, or rather $S d^{*} \mathscr{D}$, (c) find the relation between \smile and \sim in the cohomology and homology groups, and (d) relate \checkmark and intersections.
(a) The intersection of a chain A^{p} of K and a chain $B^{* q}$ of K^{*} is the following chain ${ }^{29}$ of K^{\prime} :

$$
\begin{equation*}
A^{p} \circ B^{* q}=\phi^{* \prime} \mathscr{D} A^{p} \frown S d^{*} B^{* q} \quad(\frown \text { product from } \S 6) . \tag{19.1}
\end{equation*}
$$

We may deduce the ordinary boundary relation:

$$
\begin{align*}
\partial\left(A^{p} \circ B^{* q}\right) & =(-1)^{q-(n-p)} \delta \phi^{* \prime} \mathscr{D} A^{p} \frown S d^{*} B^{* q}+\phi^{* \prime} \mathscr{D} A^{p} \frown \partial S d^{*} B^{* q} \\
& =(-1)^{n-q} \phi^{* \prime} \mathscr{D} \partial A^{p} \frown S d^{*} B^{* q}+\phi^{* \prime} \mathscr{D} A^{p} \frown S d^{*} \partial B^{* q} \tag{19.2}\\
& =(-1)^{n-q} \partial A^{p} \circ B^{* q}+A^{p} \circ \partial B^{* q} .
\end{align*}
$$

Note that, by (7.2) and Theorem 13, (c),

$$
\begin{equation*}
\phi^{*}\left(A^{p} \circ B^{* q}\right)=\mathscr{D} A^{p} \frown B^{* q} \tag{19.3}
\end{equation*}
$$

[^14](b) Order the vertices of K^{\prime} in the opposite manner from that used above. Define ϕ by mapping each vertex of K^{\prime} into the last vertex of the simplex of K containing it. If Z^{n} is the fundamental n-cycle of K, then $Z^{\prime n}=S d Z^{n}$ is the fundamental n-cycle of K^{\prime}. The map $S d^{*} \mathscr{D}$ is given by
\[

$$
\begin{equation*}
S d^{*} \mathscr{D} A^{p}=\phi^{\prime} A^{p} \frown Z^{\prime n} \tag{19.4}
\end{equation*}
$$

\]

(\frown from §6).
Further, as $\phi Z^{\prime n}=\phi S d Z^{n}=Z^{n}$, (7.2) gives

$$
\begin{equation*}
\phi S d^{*} \mathscr{D} A^{p}=A^{p} \frown \phi Z^{\prime n}=A^{p} \frown Z^{n} \tag{19.5}
\end{equation*}
$$

it is this map that Čech uses in place of \mathscr{D}.
(c) Set $\theta A^{p}=A^{p} \frown Z^{n}$. Then, by (6.2),

$$
\begin{equation*}
\theta(A \smile B)=A \frown \theta B \tag{19.6}
\end{equation*}
$$

As $S d^{*}$ and ϕ induce isomorphisms in the homology groups, (19.5) shows that θ induces the same isomorphism of ${ }^{p} \mathbf{H}_{\boldsymbol{G}}$ into ${ }^{n-p} \mathbf{H}^{G}$ that \mathscr{D} does. Hence $\boldsymbol{\theta}^{-1}$ exists in these groups, and (19.6) gives

$$
\begin{equation*}
v_{1} \smile v_{2}=\theta^{-1} \cdot\left(v_{1} \frown \theta v_{2}\right), \quad \quad v_{1} \frown u_{1}=\theta\left(v_{1} \smile \theta^{-1} u_{1}\right) \tag{19.7}
\end{equation*}
$$

(d) By (19.1), (19.4) and (6.2),

$$
\mathscr{D}^{*} A^{*} \mathscr{D D}=\phi^{* \prime} A^{*} \frown S d^{*} \mathscr{D} B=\left(\phi^{* \prime} A^{*} \smile \phi^{\prime} B\right) \frown Z^{\prime n}
$$

By (c), applying this to the cohomology groups gives

$$
\begin{equation*}
\theta v_{1} \circ \theta v_{2}=\theta\left(v_{1} \smile v_{2}\right) \tag{19.8}
\end{equation*}
$$

and hence

$$
\begin{equation*}
u_{1} \circ u_{2}=\theta\left(\theta^{-1} u_{1} \smile \theta^{-1} u_{2}\right) \tag{19.9}
\end{equation*}
$$

A final remark. For a positively oriented $\sigma^{n}, \sigma^{n} \frown Z^{n}$ is the first vertex of σ^{n}. Hence

$$
\begin{equation*}
I \cdot\left(A^{n} \frown Z^{n}\right)=A^{n} \cdot Z^{n} \tag{19.10}
\end{equation*}
$$

20. On intersections of chains and complexes

Let M^{n} be a manifold, and let K and K^{\prime} be singular complexes (i.e. continuous maps of complexes into M^{n}) in "general position" in M^{n}; that is, so that no σ^{p} intersects any ${\sigma^{\prime n-p-1}}^{n-}$ (A slight deformation of K^{\prime} will bring this about.) Then all Kronecker indices ($\sigma_{i}^{p} \circ \sigma_{j}^{\prime n-p}$) have meaning, and ($A^{p} \circ \partial B^{\prime n-p+1}$) = $(-1)^{p}\left(\partial A^{p} \circ B^{\prime n-p+1}\right)$. (See for instance Lefschetz, [10], p. 169, (20).) Set

$$
\begin{equation*}
g \sigma_{i}^{p}=\sum_{j}\left(\sigma_{i}^{p} \circ \sigma_{j}^{\prime n-p}\right) \sigma_{j}^{\prime n-p}, \quad g^{\prime} \sigma_{i}^{\prime n-p}=\sum_{j}\left(\sigma_{j}^{p} \circ \sigma_{i}^{\prime n-p}\right) \sigma_{j}^{p} \tag{20.1}
\end{equation*}
$$

and hence define $g A^{p}, g^{\prime} A^{\prime p}$. These are dual. We may call the chain $g A^{p}$ of K^{\prime} the intersection of the chain A^{p} of K with K^{\prime}.

For A^{p} in K and $B^{\prime n-p}$ in K^{\prime}, we have the Kronecker index

$$
\begin{equation*}
\left(A^{p} \circ B^{\prime n-p}\right)=g A^{p} \cdot B^{\prime n-p}=A^{p} \cdot g^{\prime} B^{\prime n-p} . \tag{20.2}
\end{equation*}
$$

As

$$
\delta g A^{p} \cdot \sigma^{\prime}=g A^{p} \cdot \partial \sigma^{\prime}=\left(A^{p} \circ \partial \sigma^{\prime}\right)=(-1)^{p}\left(\partial A^{p} \circ \sigma^{\prime}\right)=(-1)^{p} g \partial A^{p} \cdot \sigma^{\prime},
$$

we have $\delta g=(-1)^{p} g \partial$. Taking duals also, we have ${ }^{30}$

$$
\begin{equation*}
\delta g A^{p}=(-1)^{p} g \partial A^{p}, \quad \delta g^{\prime} A^{\prime p}=(-1)^{p} g^{\prime} \partial A^{\prime p} \tag{20.3}
\end{equation*}
$$

In particular, cycles of K or K^{\prime} map into cocycles of K^{\prime} or K.
We may let K be a subdivision of M^{n} and let K^{\prime} be a deformed position of K; then chains of K are mapped into chains of K^{\prime}, which may be considered as chains of K again. Then g takes the place of the \mathscr{D} in $\S 18$.

21. Dual bases

In this section, we shall use the group R of real or of rational numbers as coefficient group. Say a set of p-cycles $X_{1}^{p}, \cdots, X_{b}^{p}$ forms a base if they are linearly independent with homology, i.e.

$$
\alpha_{1} X_{1}^{p}+\cdots+\alpha_{s} X_{s}^{p} \sim 0 \quad \text { implies } \quad \alpha_{1}=\cdots=\alpha_{s}=0
$$

and if any p-cycle is homologous to a linear combination of them with real or rational coefficients. In other words, their homology classes form a base for $\mathbf{H}^{p}={ }^{p} \mathbf{H}^{R}$. Define a base for p-cocycles similarly. Bases exist in any complex. To show this, note first that \mathbf{H}^{p} is a vector group; for it has a finite number of generators, (using elements of R as coefficients), and no elements of finite order. (If $k X^{p} \sim 0, k \neq 0$, then $k X^{p}=\partial Y^{p+1}, X^{p}=\partial\left(Y^{p+1} / k\right) \sim 0$.) Hence we may choose independent generators u_{1}, \cdots, u_{s}. Let X_{i}^{p} be a cycle in the class u_{i}; then $X_{1}^{p}, \cdots, X_{b}^{p}$ form a base. Say a base $X_{1}^{p}, \cdots, X_{b}^{p}$ for p cycles and a base $C_{1}^{p}, \ldots, C_{t}^{p}$ for p-cocycles (then $t=s$) are dual if

$$
\begin{equation*}
C_{i}^{p} \cdot X_{j}^{p}=\delta_{i j} \quad(=1 \text { if } i=\dot{j}, \text { and }=0 \text { if } i \neq j) . \tag{21.1}
\end{equation*}
$$

Dual bases exist in any complex. First, let $X_{1}^{p}, \ldots, X_{s}^{p}$ be a base for p-cycles. As $\mathrm{H}_{p}={ }^{p} \mathrm{H}_{R} \approx \mathrm{Ch}_{R} \mathrm{H}^{p}$, the group of characters of H^{p} into R, (see for instance Whitney, [13], Theorems 7 and 8), we may choose cocycles $C_{1}^{p}, \cdots, C_{s}^{p}$ such that (21.1) holds. Let v_{i} be the cohomology class of C_{i}^{p}. Clearly any character of \mathbf{H}^{p} may be expressed uniquely as a linear combination of v_{1}, \cdots, v_{s}; hence $C_{1}^{p}, \ldots, C_{8}^{p}$ form a base for p-cocycles.

Now consider a closed orientable manifold M^{n}. Dual bases for n-cycles and n-cocycles are formed by the fundamental n-cycle Z^{n} and a single n-cell σ^{n}, oriented so that $\sigma^{n} \cdot Z=1$; similarly a vertex x and the cocycle I form dual

[^15]bases. Say bases $C_{1}^{p}, \ldots, C_{s}^{p}$ and $D_{1}^{n-p}, \cdots, D_{t}^{n-p}$ form dual bases for p cocycles and ($n-p$)-cocycles (then $t=s$) if
\[

$$
\begin{equation*}
C_{i}^{p} \smile D_{j}^{n-p} \sim \delta_{i j} \sigma^{n}, \quad \text { i.e. } \quad\left(C_{i}^{p} \smile D_{j}^{n-p}\right) \cdot Z^{n}=\delta_{i j} \tag{21.2}
\end{equation*}
$$

\]

We may have $n-p=p$. Then if

$$
\begin{equation*}
X_{i}^{n-p}=C_{i}^{p} \frown Z^{n}, \quad Y_{i}^{p}=D_{i}^{n-p} \frown Z^{n} \tag{21.3}
\end{equation*}
$$

we find, using (5.4) and (5.12),

$$
C_{i}^{p} \cdot Y_{i}^{p}=\delta_{i j}, \quad D_{i}^{n-p} \cdot X_{j}^{n-p}=(-1)^{p(n-p)} \delta_{i j}
$$

Hence the C_{i}^{p} and Y_{i}^{p}, also the $(-1)^{p(n-p)} D_{i}^{n-p}$ and X_{i}^{n-p}, form dual bases.
Finally, the X_{i}^{n-p} and Y_{i}^{p} form dual bases in the ordinary sense. For, using simple properties of intersections and (19.8) and (19.10),

$$
\begin{aligned}
\left(X_{i}^{n-p} \circ Y_{j}^{p}\right)=I^{\prime} \cdot\left(\theta C_{i}^{p} \circ \theta D_{i}^{n-p}\right) & =I \cdot \theta\left(C_{i}^{p} \smile D_{i}^{n-p}\right) \\
= & I \cdot\left[\left(C_{i}^{p} \smile D_{j}^{n-p}\right) \frown Z^{n}\right]=\left(C_{i}^{p} \smile D_{i}^{n-p}\right) \cdot Z^{n}=\delta_{i j}
\end{aligned}
$$

V. Products in Product Complexes

22. Definition of the products

Let K_{1} and K_{2} be two complexes (simplicial or not), with cells σ_{i}^{p} and τ_{k}. Then we have (properly oriented) $(p+r)$-cells $\sigma_{i}^{p} \times \tau_{k}$ and $(p+r)$-chains $A^{p} \times B^{r}$ in the product complex $K^{*}=K_{1} \times K_{2}$. We recall that

$$
\begin{equation*}
\partial\left(\sigma^{p} \times \tau^{r}\right)=\left(\partial \sigma^{p} \times \tau^{r}\right)+(-1)^{p}\left(\sigma^{p} \times \partial \tau^{r}\right) \tag{22.1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\delta\left(\sigma^{p} \times \tau^{r}\right)=\left(\delta \sigma^{p} \times \tau^{r}\right)+(-1)^{p}\left(\sigma^{p} \times \delta \tau^{r}\right) \tag{22.2}
\end{equation*}
$$

Choose products in K_{1} and K_{2}. We define products in $K_{1} \times K_{2}$ in terms of these by

$$
\begin{align*}
& \left(\sigma^{p} \times \tau^{r}\right) \smile\left(\sigma^{q} \times \tau^{s}\right)=(-1)^{q r}\left(\sigma^{p} \smile \sigma^{q}\right) \times\left(\tau^{r} \smile \tau^{s}\right) \tag{22.3}\\
& \left(\sigma^{p} \times \tau^{r}\right) \frown\left(\sigma^{q} \times \tau^{s}\right)=(-1)^{p(s-r)}\left(\sigma^{p} \frown \sigma^{q}\right) \times\left(\tau^{r} \frown \tau^{s}\right) \tag{22.4}
\end{align*}
$$

We shall show that ${ }^{31}$ the \smile product has the required properties in $K_{1} \times K_{2}$. (P_{1}) of §5 clearly holds. Also,

$$
I^{*} \smile I^{*}=\left(I_{1} \times I_{2}\right) \smile\left(I_{1} \times I_{2}\right)=\left(I_{1} \smile I_{1}\right) \times\left(I_{2} \smile I_{2}\right)=I_{1} \times I_{2}=I^{*}
$$

[^16]so that $\gamma=1$. Now let us calculate the terms in $\left(\mathrm{P}_{2}\right)$. We find
\[

$$
\begin{aligned}
& \delta\left[\left(\sigma^{p} \times \tau^{r}\right) \smile\left(\sigma^{q} \times \tau^{p}\right)\right] \\
& =(-1)^{q \tau}\left[\left(\delta \sigma^{p} \smile \sigma^{q}\right) \times\left(\tau^{r} \smile \tau^{s}\right)+(-1)^{p}\left(\sigma^{p} \smile \delta \sigma^{q}\right) \times\left(\tau^{r} \smile \tau^{s}\right)\right] \\
& +(-1)^{p+q(r+1)}\left[\left(\sigma^{p} \smile \sigma^{q}\right) \times\left(\delta \tau^{r} \smile \tau^{q}\right)+(-1)^{r}\left(\sigma^{p} \smile \sigma^{q}\right) \times\left(\tau^{r} \smile \delta \tau^{\sigma}\right)\right], \\
& \delta\left(\sigma^{p} \times \tau^{r}\right) \smile\left(\sigma^{q} \times \tau^{q}\right)=(-1)^{q r}\left(\delta \sigma^{p} \smile \sigma^{q}\right) \times\left(\tau^{r} \smile \tau^{p}\right) \\
& +(-1)^{p+q(\tau+1)}\left(\sigma^{p} \smile \sigma^{q}\right) \times\left(\delta \tau^{r} \smile \tau^{\boldsymbol{q}}\right), \\
& \left(\sigma^{p} \times \tau^{r}\right) \smile \delta\left(\sigma^{q} \times \tau^{p}\right)=(-1)^{(q+1) r}\left(\sigma^{p} \smile \delta \sigma^{q}\right) \times\left(\tau^{r} \smile \tau^{p}\right) \\
& +(-1)^{q(r+1)}\left(\sigma^{p} \smile \sigma^{q}\right) \times\left(\tau^{r} \smile \delta \tau^{\sigma}\right) .
\end{aligned}
$$
\]

From these equations $\left(\mathrm{P}_{2}\right)$ follows at once. We may prove similarly that the - product has the required properties, or that it corresponds to the \smile product.

In the product K of three complexes, the \smile and \simeq products come out the same whether we write K in the form $\left(K_{1} \times K_{2}\right) \times K_{3}$ or $K_{1} \times\left(K_{2} \times K_{3}\right)$. The signs are as in (23.8) and (23.9) below.

23. The products in Euclidean space

We may subdivide Euclidean n-space $E^{n}=\left(u_{1}, \cdots, u_{n}\right)$ by means of the planes $u_{i}=$ an integer ($i=1, \cdots, n$). (We could subdivide similarly any small portion of a differentiable manifold.) We shall work out explicitly a product in E^{n} by using the product of $\S 6$ and writing $E^{n}=E^{1} \times \cdots \times E^{1}$.

First consider E^{1}. We may denote its cells by

$$
\begin{equation*}
(\alpha, \beta), \quad \alpha \text { an integer, } \beta=0 \text { or } 1 ; \tag{23.1}
\end{equation*}
$$

it is either the vertex $u=\alpha$ or the 1 -cell $\alpha \leqq u \leqq \alpha+\beta$; its dimension is β. Set $(\alpha, \beta)=0$ for any other β. If we order the vertices by letting ($\alpha, 0$) precede ($\alpha^{\prime}, 0$) if $\alpha<\alpha^{\prime}$, then the \smile product of $\S 6$ may be written

$$
\begin{equation*}
(\alpha, \beta) \smile(\alpha+\beta, \gamma)=(\alpha, \beta+\gamma), \tag{23.2}
\end{equation*}
$$

the product vanishing in all other cases.
We turn now to the n-dimensional case. The cells of E^{n} are

$$
\begin{equation*}
\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{n}, \beta_{n}\right), \quad \alpha_{i} \text { integral, } \beta_{i}=0 \text { or } 1 ; \tag{23.3}
\end{equation*}
$$

the dimension of such a cell is $\sum \beta_{i}$. Any such symbol with some $\beta_{i} \neq 0$ or 1 is set $=0$. Set

$$
\begin{equation*}
S_{i}(\beta)=S_{i}\left(\beta_{1}, \cdots, \beta_{n}\right)=(-1)^{\beta_{1}+\cdots+\beta_{i-1}} \tag{23.4}
\end{equation*}
$$

in particular, $S_{1}(\beta)=1$. The boundary relations are
(23.5) $\partial\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{n}, \beta_{n}\right)=\sum_{i} S_{i}(\beta)\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{i}+1, \beta_{i}-1 ; \cdots\right)$

$$
-\sum_{i} S_{i}(\beta)\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{i}, \beta_{i}-1 ; \cdots\right)
$$

$$
\begin{align*}
\delta\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{n}, \beta_{n}\right)= & -\sum_{i} S_{i}(\beta)\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{i}, \beta_{i}+1 ; \cdots\right) \tag{23.6}\\
& +\sum_{i} S_{i}(\beta)\left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{i}-1, \beta_{i}+1 ; \cdots\right)
\end{align*}
$$

Set also

$$
\begin{equation*}
P(\beta ; \gamma)=P\left(\beta_{1}, \cdots, \beta_{n}, \gamma_{1}, \cdots, \gamma_{n}\right)=(-1)^{\epsilon}, \quad \epsilon=\sum_{i>i} \beta_{i} \gamma_{j} \tag{23.7}
\end{equation*}
$$

Suppose each β_{i} and γ_{i} is 0 or 1 , and $\beta_{i}+\gamma_{i} \leqq 1$. Then, dropping out all zeros, $P(\beta ; \gamma)$ is the sign of the permutation which carries the β 's and γ 's from their positions shown to their positions in $\left(\beta_{1}+\gamma_{1}, \ldots, \beta_{n}+\gamma_{n}\right)$. From (22.3) and (23.2) we now find

$$
\begin{align*}
& \left(\alpha_{1}, \beta_{1} ; \cdots ; \alpha_{n}, \beta_{n}\right) \smile\left(\alpha_{1}+\beta_{1}, \gamma_{1} ; \cdots ; \alpha_{n}+\beta_{n}, \gamma_{n}\right) \tag{23.8}\\
& \quad=P(\beta ; \gamma)\left(\alpha_{1}, \beta_{1}+\gamma_{1} ; \cdots ; \alpha_{n}, \beta_{n}+\gamma_{n}\right)
\end{align*}
$$

the product vanishes in all other cases. As an example,

$$
\begin{aligned}
& \left(\alpha_{1}, 1 ; \alpha_{2}, 0\right) \smile\left(\alpha_{1}+1,0 ; \alpha_{2}, 1\right)=\left(\alpha_{1}, 1 ; \alpha_{2}, 1\right) \\
& \left(\alpha_{1}, 0 ; \alpha_{2}, 1\right) \smile\left(\alpha_{1}, 1 ; \alpha_{2}+1,0\right)=-\left(\alpha_{1}, 1 ; \alpha_{2}, 1\right)
\end{aligned}
$$

By taking the dual of (23.8) as in (5.4), we find at once

$$
\begin{array}{r}
\left(\alpha_{1}+\gamma_{1}-\beta_{1}, \beta_{1} ; \cdots ; \alpha_{n}+\gamma_{n}-\beta_{n}, \beta_{n}\right) \frown\left(\alpha_{1}, \gamma_{1} ; \cdots ; \alpha_{n}, \gamma_{n}\right) \tag{23.9}\\
=P(\gamma-\beta, \beta)\left(\alpha_{1}, \gamma_{1}-\beta_{1} ; \cdots ; \alpha_{n}, \gamma_{n}-\beta_{n}\right)
\end{array}
$$

It is not hard to prove the formulas for $\delta(A \smile B)$ and $\partial(A \frown B)$ from the above formulas, and thus show directly that they are the required products.

24. On the maps of products of manifolds into a complex

We shall use only chains with real or rational coefficients; then dual bases may be defined as in $\S 20$. We begin by proving, after Hopf,

Theorem 16. ${ }^{32}$ Let M^{n} be a closed orientable manifold with fundamental n cycle Z^{n}, and let f be a simplicial map of M^{n} into a complex K^{\prime}. Let $C_{1}^{p}, \ldots, C_{s}^{p}$ and $D_{1}^{q}, \ldots, D_{s}^{q}$ be dual bases for p-cocycles and q-cocycles in $M^{n}(p+q=n$; p may $=q$), and let $C_{1}^{\prime p}, \cdots$, and $D_{1}^{\prime q}, \cdots$ be bases in K^{\prime}. Say

$$
\begin{equation*}
f^{\prime} C_{i}^{\prime p} \sim \sum_{j} \lambda_{i j} C_{j}^{p}, \quad f^{\prime} D_{j}^{\prime q} \backsim \sum_{j} \mu_{i j} D_{j}^{q} \tag{24.1}
\end{equation*}
$$

If $f Z^{n} \sim 0$, then

$$
\begin{equation*}
N_{i j}=\sum_{k=1}^{s} \lambda_{i k} \mu_{j k}=0 \tag{24.2}
\end{equation*}
$$

[^17]First we shall find another interpretation of the $\lambda_{i j}$ and $\mu_{i j}$. Let $\left\{X_{i}^{p}\right\}$, $\left\{Y_{i}^{q}\right\},\left\{X_{i}^{\prime p}\right\},\left\{Y_{i}^{\prime q}\right\}$ be bases for cycles dual to $\left\{C_{i}^{p}\right\},\left\{D_{i}^{q}\right\},\left\{C_{i}^{\prime p}\right\}$, and $\left\{D_{i}^{\prime \prime}\right\}$ respectively. Say

$$
\begin{equation*}
f X_{i}^{p} \sim \sum_{j} \xi_{i j} X_{j}^{\prime p}, \quad f Y_{i}^{q} \sim \sum_{i} \eta_{i j} Y_{j}^{\prime q} ; \tag{24.3}
\end{equation*}
$$

then

$$
\begin{align*}
& C_{i}^{\prime p} \cdot f X_{i}^{p}=\xi_{i i}=f^{\prime} C_{i}^{\prime p} \cdot X_{i}^{p}=\lambda_{i j}, \tag{24.4}\\
& D_{i}^{\prime q} \cdot f Y_{j}^{q}=\eta_{i i}=f^{\prime} D_{i}^{\prime q} \cdot Y_{i}^{q}=\mu_{i j}, \tag{24.5}
\end{align*}
$$

so that $N_{i j}=\sum \xi_{k i} \eta_{k j}$.
To prove the theorem, we need merely note that

$$
\begin{aligned}
0 & =\left(C_{i}^{\prime p} \smile D_{i}^{\prime q}\right) \cdot f Z^{n}=f^{\prime}\left(C_{i}^{\prime p} \smile D_{i}^{\prime q}\right) \cdot Z^{n}=\left(f^{\prime} C_{i}^{\prime p} \smile f^{\prime} D_{i}^{\prime q}\right) \cdot Z^{n} \\
& =\sum_{k, l} \lambda_{i k} \mu_{j l}\left(C_{k}^{p} \smile D_{l}^{q}\right) \cdot Z^{n}=\sum_{k, l} \lambda_{i k} \mu_{i j} \delta_{k l}=N_{i j} .
\end{aligned}
$$

Theorem 17. Let M^{p} be a closed orientable p-manifold, and let S^{q} be a q-sphere, $q \geqq p$. Let \bar{X}^{p} and \bar{Y}^{q} be corresponding fundamental cycles. Let M^{p+q} be a simplicial subdivision of $K^{p+q}=M^{p} \times S^{q}$, with fundamental cycle Z^{p+q}. If x, y are vertices of M^{p}, S^{q}, then

$$
\begin{equation*}
X^{p}=S d\left(\bar{X}^{p} \times y\right) \quad \text { and } \quad Y^{q}=S d\left(x \times \bar{Y}^{q}\right) \tag{24.6}
\end{equation*}
$$

are cycles of M^{p+q}. Let f be a simplicial map of M^{p+q} into a complex K^{\prime}, and suppose $f Z^{p+q} \sim 0$.
(a) If $q>p$ or $q=p$ is even, then either $f X^{p} \sim 0$ or $f Y^{q} \sim 0$.
(b) If $q=p$ is odd, then one of $f X^{p}, f Y^{q}$ is homologous to a multiple of the other.

If $q>p$, then as $\mathbf{H}^{r}\left(S^{q}\right)=0(r=1, \cdots, q-1)$, it follows that X^{p} and Y^{q} generate $\mathbf{H}^{p}\left(M^{p+q}\right)$ and $\mathbf{H}^{q}\left(M^{p+q}\right)$ respectively. Let I and J be the sums of vertices, and let σ^{p} and τ^{q} be cells, in M^{p} and S^{q}. Let ϕ and $S d$ be the maps of Theorem 13, and set

$$
\begin{equation*}
C^{p}=\phi^{\prime}\left(\sigma^{p} \times J\right), \quad D^{q}=\phi^{\prime}\left(I \times \tau^{q}\right), \quad \sigma^{p+q}=\sigma^{p} \times \tau^{q} . \tag{24.7}
\end{equation*}
$$

These are cocycles. Then, using Theorem 13, (c).

$$
\begin{equation*}
C^{p} \cdot X^{p}=\left(\sigma^{p} \times J\right) \cdot \phi S d\left(\bar{X}^{p} \times y\right)=1, \quad D^{q} \cdot Y^{q}=1, \tag{24.8}
\end{equation*}
$$

so that X^{p} and C^{p}, also Y^{q} and D^{q}, form dual bases. Further, as $\bar{Z}^{p+q}=\phi Z^{p+q}$ is the fundamental cycle of K^{p+q}, (15.4) gives

$$
\begin{align*}
\left(C^{p} \smile D^{q}\right) \cdot Z^{p+q}=\phi^{\prime}\left[\left(\sigma^{p} \times J\right)\right. & \left.\smile\left(I \times \tau^{q}\right)\right] \cdot Z^{p+q} \tag{24.9}\\
& =\left(\sigma^{p} \times \tau^{q}\right) \cdot \phi Z^{p+q}=\sigma^{p+q} \cdot \bar{Z}^{p+q}=1,
\end{align*}
$$

so that C^{p} and D^{q} form dual bases. Hence, defining the $X_{i}^{\prime p}$ and $Y_{i}^{\prime q}$ as before, and defining ξ_{i}, η_{i} by

$$
\begin{equation*}
f X^{p} \sim \sum \xi_{i} X_{i}^{\prime p}, \quad f Y^{q} \sim \sum \eta_{i} Y_{i}^{\prime q} \tag{24.10}
\end{equation*}
$$

Theorem 16 gives, with (24.4) and (24.5),

$$
\begin{equation*}
\xi_{i} \eta_{j}=0 \tag{24.11}
\end{equation*}
$$

(all i, j).
It follows that all the $\xi_{i}=0$ or all the $\eta_{i}=0$, so that $f X^{p} \sim 0$ or $f Y^{q} \sim 0$.
Now suppose $p=q$. Then X^{p} and Y^{p} together generate $\mathbf{H}^{p}\left(M^{2 p}\right)$ and C^{p} and D^{p} together generate $\mathrm{H}_{p}\left(M^{2 p}\right)$. The relations (24.6) through (24.9) still hold. Also;

$$
\begin{gather*}
D^{p} \smile C^{p} \sim(-1)^{p^{2}} C^{p} \smile D^{p}, \quad\left(D^{p} \smile C^{p}\right) \cdot Z^{2 p}=(-1)^{p} \\
\left(C^{p} \smile C^{p}\right) \cdot Z^{2 p}=\left(D^{p} \smile D^{p}\right) \cdot Z^{2 p}=0, \tag{24.12}
\end{gather*}
$$

so that $\left\{C^{p}, D^{p}\right\}$ and $\left\{D^{p},(-1)^{p} C^{p}\right\}$ form dual bases for p-cocycles. Further,

$$
\begin{equation*}
C^{p} \cdot Y^{p}=\left(\sigma^{p} \times J\right) \cdot\left(x \times \bar{Y}^{p}\right)=0, \quad D^{p} \cdot X^{p}=0 \tag{24.13}
\end{equation*}
$$

so that $\left\{X^{p}, Y^{p}\right\}$ and $\left\{C^{p}, D^{p}\right\}$, and also $\left\{Y^{p},(-1)^{p} X^{p}\right\}$ and $\left\{D^{p},(-1)^{p} C^{p}\right\}$, form dual bases. Comparing (24.10) with (24.3), in which $Y_{i}^{\prime p}=X_{i}^{\prime p}$, we see that $\left(\xi_{i}, \eta_{i}\right)$ takes the place of ${ }^{33}\left(\xi_{1 i}, \xi_{2 i}, \cdots\right)$, while $\left(\eta_{j},(-1)^{p} \xi_{j}\right)$ takes the place of $\left(\eta_{1 j}, \eta_{2 j}, \cdots\right)$. Hence, by Theorem 16,

$$
\begin{equation*}
\left.\xi_{i} \eta_{j}+(-1)^{p} \xi_{j} \eta_{i}=0 \quad \text { (all } i, j\right) \tag{24.14}
\end{equation*}
$$

Suppose that $p=q$ is even. If not all the ξ_{i} are $=0$, say $\xi_{\nu} \neq 0$; then setting $i=j=\nu$ in (24.14) shows that $2 \xi_{\nu} \eta_{\nu}=0, \eta_{\nu}=0$, and then setting $i=\nu$, any j, shows that all other $\eta_{j}=0$. Thus the theorem is proved for this case.

Finally, if $p=q$ is odd, (24.14) shows that all determinants of the matrix

$$
\left\|\begin{array}{lll}
\xi_{1} & \xi_{2} & \cdots \\
\eta_{1} & \eta_{2} & \cdots
\end{array}\right\|
$$

vanish, so the two sets of numbers are proportional. Thus (b) of the theorem holds.

Corollary. ${ }^{34}$ If n is even and f is a map of $S^{n} \times S^{n}$ into a complex K^{\prime} of dimension $<2 n$, then one of $S^{n} \times y, x \times S^{n}$ is mapped into a cycle ~ 0.

We shall consider briefly what becomes of Theorem 17 when we consider the product $M^{p+q+r}=M^{p} \times S^{q} \times S^{r}, p \leqq q \leqq r$. Using the fundamental cycles of the three manifolds, define the three corresponding cycles, X^{p}, Y^{q}, Z^{r} as before. If $p<q<r$, we find by the above methods that $f\left(Z^{p+q+r}\right) \sim 0$ implies that one of $f\left(X^{p}\right), f\left(Y^{q}\right), f\left(Z^{r}\right)$ is ~ 0. Consider the case $p=q=r$. Say

[^18]\[

$$
\begin{equation*}
f X^{p} \sim \sum \xi_{i} X_{i}^{\prime p}, \quad f Y^{p} \sim \sum \eta_{i} X_{i}^{\prime p}, \quad f Z^{p} \sim \sum \zeta_{i} X_{i}^{\prime p} \tag{24.15}
\end{equation*}
$$

\]

Let $C_{1}^{\prime r}, \cdots, C_{s}^{\prime p}$ form a base for p-cocycles in K^{\prime}. Then if $f Z^{3 p} \sim 0$, we have

$$
\begin{equation*}
M_{i j k}=\left(\left(C_{i}^{\prime p} \smile C_{i}^{\prime p}\right) \smile C_{k}^{\prime p}\right) \cdot f Z^{3 p}=0 \quad(\text { all } i, j, k) \tag{24.16}
\end{equation*}
$$

Define C^{p}, D^{p}, E^{p} as before. Then

$$
C^{p} \smile C^{p} \backsim D^{p} \smile D^{p} \backsim E^{p} \smile E^{p} \backsim 0,
$$

$$
\begin{equation*}
\left(\left(C^{p} \smile D^{p}\right) \smile E^{p}\right) \cdot Z^{3 p}=1 . \tag{24.17}
\end{equation*}
$$

As $f^{\prime} C_{i}^{\prime p} \sim \xi_{i} C^{p}+\eta_{i} D^{p}+\zeta_{i} E^{p}$ etc., the above relations give

$$
\begin{align*}
M_{i j k} & =\xi_{i} \eta_{i} \zeta_{k}\left(C^{p} \smile D^{p} \smile E^{p}\right) \cdot Z+\xi_{i} \zeta_{i} \eta_{k}\left(C^{p} \smile E^{p} \smile D^{p}\right) \cdot Z+\cdots \tag{24.18}\\
& =\xi_{i}\left(\eta_{j} \zeta_{k}+\epsilon \eta_{k} \zeta_{j}\right)+\xi_{i}\left(\eta_{k} \zeta_{i}+\epsilon \eta_{i} \zeta_{k}\right)+\xi_{k}\left(\eta_{i} \zeta_{i}+\epsilon \eta_{j} \zeta_{i}\right),
\end{align*}
$$

where $\epsilon=(-1)^{p}$. Suppose p is even. Then by considering such quantities as $M_{i i i}, M_{i i j}$, we see that all the ξ_{i} or all the η_{i} or all the ζ_{i} vanish, so that one of $f X^{p}, f Y^{p}, f Z^{p}$ is ~ 0. If p is odd, then all determinants of the matrix of ξ_{i}, η_{i} and ζ_{i} vanish, so that $f X^{p}, f Y^{p}$ and $f Z^{p}$ are linearly dependent under homology.

Appendix

MISCELLANEOUS QUESTIONS

25. The products in terms of other operations

We shall show how the products of $\S 6$ may be defined in terms of two other operations; one acts on single chains, and the other, on two chains of the same dimension.

Writing simplexes in their normal form §6, we define two homomorphisms of L^{p} into $L^{q}, q \leqq p$, by means of

$$
\begin{equation*}
\xi_{p}^{q}\left(x_{i_{0}} \cdots x_{i_{p}}\right)=x_{i_{0}} \cdots x_{i_{q}}, \quad \zeta_{p}^{q}\left(x_{i_{0}} \cdots x_{i_{p}}\right) x_{i_{p-q}} \cdots x_{i_{p}} . \tag{25.1}
\end{equation*}
$$

Let ξ_{q}^{p} and $\zeta_{q}^{p}(q \leqq p)$ be the dual maps of L^{q} into L^{p}. Define also

$$
\begin{equation*}
\left(\sum \alpha_{i} \sigma_{i}^{p}\right) \circ\left(\sum \beta_{i} \sigma_{i}^{p}\right)=\sum \alpha_{i} \beta_{i} \sigma_{i}^{p} . \tag{25.2}
\end{equation*}
$$

Then (6.1) gives

$$
\begin{equation*}
A^{p} \smile B^{q}=\xi_{p}^{p+q} A^{p} \circ \zeta_{q}^{p+q} B^{q}, \quad A^{q} \frown B^{p+q}=\xi_{p+q}^{p}\left(\zeta_{q}^{p+q} A^{q} \circ B^{p+q}\right) . \tag{25.3}
\end{equation*}
$$

Let I^{p} be the sum of all (oriented) p-cells: $I^{p}=\sum x_{i_{0}} \cdots x_{i_{p}}$. Then clearly $I^{0}=I$. Some relations following at once from the definitions are

$$
\begin{align*}
I^{p} \cdot(A \circ B)=A \cdot B, & (A \circ B) \cdot C=A \cdot(B \circ C), \tag{25.4}\\
\xi_{q}^{p} A^{q} \cdot B^{p}=A^{q} \cdot \xi_{p}^{q} B^{p}, & (A \cup B) \cdot C=A \cdot(B \frown C) \tag{25.5}\\
I^{p} \circ A^{p}=A^{p} \circ I^{p}=A^{p}, & \xi_{p}^{q} I^{p}=\zeta_{p}^{q} I^{p}=I^{q}(q \geqq p), \tag{25.6}\\
\delta I^{2 p}=0, & \delta I^{2 p+1}=I^{2 p+2} . \tag{25.7}
\end{align*}
$$

For any subcomplex K^{\prime} of K, let us interpret K^{\prime} also as a chain of mixed dimension, namely, the sum of all its cells. Then $K=\sum I^{p}, K^{\prime} \circ K^{\prime}=K^{\prime}$, and

$$
\begin{equation*}
A^{p} \circ K^{\prime}=K^{\prime} \circ A^{p}=\text { the "part of } A^{p} \text { in } K^{\prime \prime} \text { ". } \tag{25.8}
\end{equation*}
$$

A^{p} is in K^{\prime} if and only if $A^{p} \circ K^{\prime}=A^{p}$. Set $K^{\prime \prime}=K-K^{\prime}$. Then all the following twelve conditions are equivalent:
K^{\prime} is closed, $K^{\prime \prime}$ is open, $\bar{K}^{\prime}=K^{\prime}, \operatorname{St}\left(K^{\prime \prime}\right)=K^{\prime \prime}$,

$$
\begin{aligned}
& \sigma_{i}^{p} \circ K^{\prime}=\sigma_{i}^{p} \quad \text { implies } \quad \partial \sigma_{i}^{p} \circ K^{\prime}=\partial \sigma_{i}^{p}, \\
& \sigma_{i}^{p} \circ K^{\prime \prime}=\sigma_{i}^{p} \quad \text { implies } \quad \delta \sigma_{i}^{p} \circ K^{\prime \prime}=\delta \sigma_{i}^{p}, \\
& \partial\left(A \circ K^{\prime}\right) \circ K^{\prime \prime}=0, \quad \delta\left(A \circ K^{\prime \prime}\right) \circ K^{\prime}=0, \\
& \partial\left(A \circ K^{\prime \prime}\right) \circ K^{\prime \prime}=\partial A \circ K^{\prime \prime}, \quad \delta\left(A \circ K^{\prime}\right) \circ K^{\prime}=\delta A \circ K^{\prime}, \\
& \partial\left(A \circ K^{\prime}\right) \circ K^{\prime}=\partial\left(A \circ K^{\prime}\right), \quad \delta\left(A \circ K^{\prime \prime}\right) \circ K^{\prime \prime}=\delta\left(A \circ K^{\prime \prime}\right) .
\end{aligned}
$$

We may obtain certain chains related to vertices:
$\zeta_{0}^{p} x_{i} \smile \xi_{0}^{q} x_{i}=\sum$ all $(p+q)$-cells with x_{i} as $(p+1)$ th vertex, $\sum_{k} \zeta_{0}^{p-k} x_{i} \smile \xi_{0}^{k} x_{i}=\sum$ all p-cells with x_{i} as a vertex.
26. Resolution of chains into boundaries and cocycles

By considering the ranks of the incidence matrices, we may prove
Theorem 18. Using real or rational numbers as coefficients, any p-chain may be written uniquely as a p-boundary plus a p-cocycle, or as a p-coboundary plus a p-cycle.

We shall prove the first statement. To prove uniqueness, suppose

$$
\partial A_{1}+B_{1}=\partial A_{2}+B_{2} \quad\left(\delta B_{1}=\delta B_{2}=0\right)
$$

Then setting $A=A_{2}-A_{1}, B=B_{1}-B_{2}=\sum \beta_{i} \sigma_{i}^{p}$, (4.7) gives

$$
B \cdot B=B \cdot \partial A=\delta B \cdot A=0, \quad \sum \beta_{i}^{2}=0, \quad \text { each } \beta_{i}=0
$$

Hence $B_{1}=B_{2}$, and $\partial A_{1}=\partial A_{2}$, as required. To prove the existence of the decomposition, consider the rank ρ^{p} and the numbers of rows and columns α^{p-1} and α^{p} of $\left\|^{p} \partial_{j}^{i}\right\| ; \alpha^{p}$ is the number of p-cells in K. Clearly

$$
\begin{align*}
\rho^{p+1} & =\text { number of independent } p \text {-boundaries }, \tag{26.1}\\
\alpha^{p}-\rho^{p+1} & =\text { number of independent } p \text {-cocycles. } \tag{26.2}
\end{align*}
$$

With real coefficients, L^{p} is a linear vector space of dimension α^{p}. By the above relations, the p-boundaries and p-cocycles form linear subspaces of dimensions ρ^{p+1} and $\alpha^{p}-\rho^{p+1}$. We saw that the subspaces were orthogonal; hence they generate L^{p}.

With integral coefficients, the p-boundaries and p-cocycles generate a subgroup M^{p} of L^{p} of rank α^{p}. Hence the difference group $L^{p}-M^{p}$ is finite,
and for some integer $m \neq 0, m \theta=0$ for all θ in $L^{p}-M^{p}$. This means that any chain $m A^{p}$ is (uniquely) a boundary plus a cocycle. From this the theorem with rational coefficients follows at once.
Example. Let K consist of $a, b, c, a b, b c, c a$. Then using integer coefficients, a 0 -chain A^{0} is a boundary plus a cocycle if and only if $I \cdot A^{0} \equiv 0(\bmod 3)$, and a 1 -chain A^{1} is a coboundary plus a cycle if and only if $I^{1} \cdot A^{1} \equiv 0(\bmod 3)$.

27. Dual maps and changes of base

We shall prove
Theorem 19. Let G and H be free groups, and let dual homomorphisms be defined in terms of the bases x_{1}, \cdots, x_{m} in G and y_{1}, \cdots, y_{n} in H. Then the bases $x_{1}^{\prime}, \cdots, x_{m}^{\prime}$ in G and $y_{1}^{\prime}, \cdots, y_{n}^{\prime}$ in H give the same definition of duality if and only if the new bases are formed from the original ones by permutations and changes of sign.

Clearly any such changes of base are allowable. To prove the other half of the theorem, suppose

$$
\begin{array}{lll}
x_{i}^{\prime}=\sum_{i} \alpha_{i j} x_{i}, & x_{i}=\sum_{j} \alpha_{i j}^{-1} x_{j}^{\prime}, & \left|\alpha_{i j}\right|= \pm 1 \\
y_{i}^{\prime}=\sum_{i} \beta_{i j} y_{i}, & y_{i}=\sum_{i} \beta_{i j}^{-1} y_{j}^{\prime}, & \left|\beta_{i j}\right|= \pm 1
\end{array}
$$

Suppose both pairs of bases give the same definition of dual homomorphisms. Then if ϕ and ψ are dual, we may write

$$
\begin{aligned}
\phi x_{i} & =\sum_{i} \phi_{i j} y_{i}, & \psi y_{i}=\sum_{i} \phi_{j i} x_{j}, \\
\phi x_{i}^{\prime} & =\sum_{i} \phi_{i j}^{\prime} y_{j}^{\prime}, & \psi y_{i}^{\prime}=\sum_{i} \phi_{i i}^{\prime} x_{j}^{\prime} .
\end{aligned}
$$

These equations with the former ones give

$$
\phi_{i j}^{\prime}=\sum_{k, l} \alpha_{i k} \phi_{k l} \beta_{l j}^{-1}, \quad \phi_{j i}^{\prime}=\sum_{k, l} \beta_{i k} \phi_{l k} \alpha_{l j}^{-1} .
$$

As these hold for all $\phi_{k l}$, we may set $\phi_{k l}=1$, and all other $\phi_{p q}=0$. This gives

$$
\begin{equation*}
\left.\alpha_{i k} \beta_{l i}^{-1}=\alpha_{k i}^{-1} \beta_{j l} \quad \text { (all } i, j, k, l\right) \tag{27.1}
\end{equation*}
$$

Multiplying by $\alpha_{p k} \beta_{i q}$ and summing over j and k gives

$$
\left.\delta_{l q} \sum_{k} \alpha_{p k} \alpha_{i k}=\delta_{p i} \sum_{i} \beta_{j l} \beta_{j q} \quad \text { (all } i, l, p, q\right)
$$

Giving p and q different values shows that

$$
\begin{equation*}
\sum_{k} \alpha_{p k} \alpha_{i k}=c \delta_{p i} \tag{27.2}
\end{equation*}
$$

$$
\sum_{k} \beta_{k p} \beta_{k i}=c \delta_{p i}
$$

for some number c. The left hand member is an element of the matrix product of $\left\|\alpha_{i j}\right\|$ by its transposed; hence its determinant is $\left|\alpha_{i j}\right|^{2}=1$. Therefore $c^{m}=1$, and $c= \pm 1$; clearly $c=1$. It follows that $\left\|\alpha_{i j}\right\|$ (and also $\left\|\beta_{i j}\right\|$) has a ± 1 in each column, the rest of the column being zeros. This proves the theorem.

Suppose we replace free group by linear vector space. Again we find (27.2); this time we know merely that $c>0$. Hence the bases may be altered by applying to each base an orthogonal transformation, and then multiplying each vector of each set by the same constant $\neq 0$; these are the only allowable alterations.

BIBLIOGRAPHY

1. J. W. Alexander, On the chains of a complex and their duals, Proc. Nat. Ac. Sci., vol. 21 (1935), pp. 509-511.
2. J. W. Alexander, On the ring of a compact metric space, Proc. Nat. Ac. Sci., vol. 21 (1935), pp. 511-512.
3. J. W. Alexander, On the connectivity ring of an abstract space, Annals of Math., vol. 37 (1936), pp. 698-708.
4. P. Alexandroff-H. Hopf, Topologie I, Berlin, 1936.
5. E. Čech, Multiplications on a complex, Annals of Math., vol. 37 (1936), pp. 681-697.
6. H. Freudenthal, Über Mannigfaltigkeiten und ihre Abbildungen, Kon. Ak. v. Wet., Amsterdam, vol. 40 (1937), pp. 54-60. Also Annals of Math., vol. 38(1937), pp. 647-655 and 847-853. See also Comp. Math. vol. 5 (1937), pp. 315-318 (added in proof).
7. H. Hopf, Zur Algebra der Abbildungen von Mannigfaltigkeiten, Jour. f. Math., vol. 163 (1930), pp. 71-88.
8. A. Kolmogoroff, Über die Dualität im Aufbau der kombinatorischen Topologie, Recueil Math. Moscow, vol. 1 (43) (1936), pp. 97-102.
9. A. Kolmogoroff, Homologierung des Komplexes und des local-bikompakten Raumes, Recueil Math. Moscow, vol. 1 (43) (1936), pp. 701-705.
10. S. Lefschetz, Topology, Colloquium lectures, New York, 1930.
11. S. Lefschetz, The role of algebra in topology, Bull. Am. Math. Soc., vol. 43 (1937), pp. 345-359.
12. A. W. Tucker, $A n$ abstract approach to manifolds, Annals of Math., vol. 34 (1933), pp. 191-243.
13. H. Whitney, On matrices of integers and combinatorial topology, Duke Math. Jour., vol. 3 (1937), pp. 35-45.

Harvard University.

[^0]: ${ }^{1}$ Presented to the American Mathematical Society, under a different title, March 27, 1937. An outline of the paper appeared in Proc. Nat. Ac. Sci., vol. 23 (1937), pp. 285-291.

 2 The numbers in square brackets refer to the bibliography at the end of the paper.
 ${ }^{3}$ Note that the dimension in each term is correct. It is easily seen that the signs must alternate in one of the terms. We might call \smile and \frown "cup" and "cap". Equivalent formulas (see also $\left(Q_{2}\right)$ and (19.2)) occur in a fundamental manner in the classical theory; see for instance Lefschetz, [10], pp. 111, 169 and 226. The same formula appears in the theory of differential forms.

[^1]: ${ }^{4}$ For instance, in a torus, for determining the groups, we may subdivide into one vertex, two 1-cells, and one 2-cell; but for determining the products, we must have say four vertices, eight 1 -cells, and four 2-cells. (Or we may use Part V.)
 ${ }^{5}$ Monatsh. f. Math. u. Phys., vol. 36 (1929), pp. 1-42 and 219-258.
 ${ }^{6}$ Proc. Nat. Ac. of Sci., vol. 21 (1935), pp. 464-468, §6.

[^2]: ${ }^{7}$ See [2], [8] and [9]. The Kolmogoroff-Alexander product is not that given in [2].
 ${ }^{8}$ See Recueil Math., Moscow, vol. 1 (43), (1936), pp. 672-674. Cohomology groups with general coefficient groups are studied by Steenrod, Am. Journal of Math., vol. 58 (1936), pp. 661-701.
 ${ }^{9}$ These results were applied in classifying the maps of a 3 -sphere into a 2 -sphere; see Bull. Am. Math. Soc., vol. 42 (1936), p. 338. They were communicated in letters to L. Zippin early in 1936.
 ${ }^{10}$ Bull. Am. Math. Soc., vol. 43 (1937), pp. 345-359, §5, (d). It should be noted that without a postulate such as our $\left(P_{1}\right)$, the product may give pratically any product in the cohomology groups.
 ${ }^{11}$ We assume the cells are finite in number; however, most of the results extend to the infinite cáse, at least with the proper definitions.

[^3]: ${ }^{12}$ Complexes satisfying $\left(K_{1}\right),\left(K_{2}\right)$ and (K_{8}) are exactly those considered by Tucker, [12]. If (K_{4}) is satisfied also, and $\delta I=0$ (that is, K is "augmentable"), then Tucker shows that K admits a simplicial subdivision and hence is geometrically realizable.

[^4]: ${ }^{13}$ For further details, see for instance Whitney, [13].
 ${ }^{14}$ Except where otherwise stated, we use integers: $G=I_{0}$.
 ${ }^{15}$ Compare the Appendix, §27. Dual homomorphisms correspond to adjoint linear transformations in algebra. They have been used in topology by Tucker, [12], §25.

[^5]: ${ }^{16} S \cdot T$ is the subcomplex of K containing those cells in both S and T. Thus $\operatorname{St}\left(\sigma_{1}\right) \cdot \sigma_{2}=\sigma_{2}$ if σ_{1} is a face of σ_{2}, and $=0$ otherwise. Čech, [5], assumes merely that the chain is in $\operatorname{St}\left(\sigma_{i}^{p}\right)$.

[^6]: ${ }^{17}$ H. Hopf, [7], Satz I.

[^7]: ${ }^{18}$ By using joins, and the 0 -chains $X_{h}=f^{\prime} x_{h}^{\prime}$, one could give a direct formal proof.

[^8]: ${ }^{20}$ As $h \cdot\left(g+g^{\prime}\right)=h \cdot g+h \cdot g^{\prime}$, if we consider H as an additive group, then H and G form a "group pair" with respect to G. We could replace H by any subring. Thus, in (γ) below, we could take $H=I_{0}$.

[^9]: ${ }^{21} O_{i}^{p}$ is acyclic in the dimension q if every q-cycle (which need not be boundary-like) is a boundary; O_{i}^{p} is monocyclic in the dimension p if there is a p-cycle $X^{p} \neq 0$ such that any p-cycle is a multiple of X^{p}. (All this is with integer coefficients.) Compare Tucker: "cell-like," "null-like." In [4], Ch. VI, a similar assumption, using any coefficient group G, is made. Note that O_{i}^{p} is a subcomplex of K; a chain A in O_{i}^{p} is a cycle if, considered as a chain in $K, \partial A^{p}$ has no part in O_{i}^{p}.

[^10]: 22 "Zellenzerspaltung" in [4], Ch. VI. But see the last foot-note.

[^11]: ${ }^{23}$ If topological coefficient groups are used, the isomorphisms are continuous. The part of this theorem relating to the homology groups has been proved by Tucker, [12], for integral coefficients, and by Alexandroff-Hopf, [4], Ch. VI, using the stronger condition noted in footnote 21.

[^12]: ${ }^{24}$ That is, a simplicial map such that each vertex x^{\prime} of K^{\prime} goes into a vertex of a cell of K containing it.

[^13]: ${ }^{25}$ See J. W. Alexander, Combinatorial Analysis Situs, Trans. Am. Math. Soc., vol. 28 (1926), pp. 308-310.
 ${ }^{26}$ Hence $\Phi^{\prime}=\phi_{1}^{\prime} \psi_{1}^{\prime}$ has an inverse; but this alone does not imply that ϕ_{1}^{\prime} and ψ_{1}^{\prime} have inverses.
 ${ }^{27}$ Compare Seifert-Threlfall, Topologie, Ch. X, or Lefschetz, [10], Ch. III.

[^14]: ${ }^{28}$ Compare Čech, [5]; Freudenthal, [6].
 ${ }^{29}$ We wish $A \circ B^{*}$ to be a cycle if A and B^{*} are cycles. To apply the \smile or \frown product, we must turn at least one of them into a cocycle; we use $\mathscr{D} A$. It is best to use a fixed \frown product, which we may do in K^{\prime}. We map a cocycle of K^{*} into a cocycle of K^{\prime} with $\phi^{* \prime}$, and a cycle of K^{*} into a cycle of K^{\prime} with $S d^{*}$. In this manner the form of (19.1) is determined.

[^15]: ${ }^{30}$ The converse relations $\partial g= \pm g \delta$ etc. are false in general.

[^16]: ${ }^{31}$ Of course $K_{1} \times K_{2}$ as above defined admits a simplicial subdivision, with the proper geometric interpretation. Hence, by Theorem 14, we obtain the correct products from $K_{1} \times K_{2}$.

[^17]: ${ }^{32}$ This theorem was communicated to me by H. Hopf in a letter of September 9, 1937, together with part of Theorem 17. The results (with the complex replaced by a manifold) are corollaries of his paper [7]; we base them on the corresponding relations (7.2).

[^18]: ${ }^{33}$ For a direct treatment, compare (24.18) below.
 ${ }^{34}$ For $K^{\prime}=S^{n}$, the theorem was proved by H. Hopf, Fund. Math., vol. 25 (1935), pp. 427-440, part of Satz V. In the present form (with K^{\prime} a manifold), it was communicated to me by Hopf in the letter referred to.

