Annals of Mathematics

On Products in a Complex

Author(s): Hassler Whitney

Source: The Annals of Mathematics, Second Series, Vol. 39, No. 2 (Apr., 1938), pp- 397-432
Published by: Annals of Mathematics

Stable URL: http://www.jstor.org/stable/1968795

Accessed: 10/06/2009 06:24

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JISTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of
Mathematics.

http://www.jstor.org


http://www.jstor.org/stable/1968795?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=annals

ANNALS oF MATHEMATICS
Vol. 39, No. 2, April, 1938

ON PRODUCTS IN A COMPLEX'
By HassLER WHITNEY

(Received June 10, 1937; Revised November 9, 1937)

1. Introduction

In classical homology theory, founded by Poincaré, the fundamental opera-
tion is that of forming the boundary 8A” of a chain A®. This is found by
multiplying the coefficients of A” into a matrix of incidence. Algebraically,
an equally obvious operation, using the same matrix of incidence, forms the
“coboundary” 34*" from a given A*'. It has recently been discovered that
the algebraic part of the theory of intersections of chains in a manifold, when
interpreted with the other operation, could be generalized to arbitrary com-
plexes. It is the object of this paper to give a complete treatment of the
fundamentals of this theory. We use a general type of complex and general
coefficient groups, and prove the required invariance theorems. Parts of the
paper are new only in form. Various notions used here appear first in Tucker’s
thesis, [12].°

In Part I we define, after Tucker, the complexes to be used. The cohomology
groups are defined, and then elementary properties of “dual homomorphisms”
are given. The latter are used throughout the paper.

Suppose we ask for a product of p-chains A” and ¢-chains B?, giving (p + Q-
chains A” _ BY% which shall have topological significance. A p-cell times a
g-cell far away from the p-cell should certainly give nothing; hence (P,) of §5
is a natural assumption. Considering § as the fundamental operation, if we
wish the multiplication to give a result in the cohomology groups, we must have
cocycle — cocycle = cocycle. Hence (A — B) must be expressible in terms
such as 84 B and A < 8B. (P.) is the natural form.* Suppose we ask
that a vertex times itself equal itself. (Hence the v of §5is 1.) Then (using
Theorem 1), at least in an ordinary connected complex, the products exist, and
when carried out in the cohomology groups, are uniquely determined (Theorem
5). This may be considered the fundamental theorem of the present paper.

1 Presented to the American Mathematical Society, under a different title, March 27,
1937. An outline of the paper appeared in Proc. Nat. Ac. Sci., vol. 23 (1937), pp. 285-291.

2 The numbers in square brackets refer to the bibliography at the end of the paper.

3 Note that the dimension in each term is correct. It is easily seen that the signs must
alternate in one of the terms. We might call « and ~ “cup’’ and “cap’. Equivalent
formulas (see also (Qz) and (19.2)) occur in a fundamental manner in the classical theory;see
for instance Lefschetz, [10], pp. 111, 169 and 226. The same formula appears in the theory
of differential forms.
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398 HASSLER WHITNEY

Another product, A” ~ B? = C*?, is considered; it is algebraically equivalent
to the o product. We also consider briefly a particular definition of the
products which may be used in simplicial complexes. The rest of Part II is
devoted to proving other elementary properties and to showing how general
coefficient groups may be used.

In Part III we answer two questions. First, in a polyhedron, are homology
and cohomology groups and products independent of the particular simplicial
subdivision chosen? The proof §16 that they are (which may be considered
well-known) is relatively simple; the considerations show that the groups and
products may be associated with an abstract space. Secondly, to find the
groups and products, it is often very inconvenient to have to use simplicial
subdivisions; but we must then show that a general complex gives the same
theory as a simplicial subdivision. This combinatorial theorem (Theorem 14)
occupies the rest of Part III. It turns out that complexes which may be used
for determining the groups often may not be used for determining the products.*
However, most of the invariance proof may be carried out in the general type
of complex. Similar (but slightly weaker) theorems for homology groups have
been proved by Tucker, [12], and Alexandroff-Hopf, [4], Ch. VI.

The relation of the two products to intersection theory in a manifold is con-
sidered briefly in Part IV. In contrast with éech, [5], we use the classical
method of dual complexes. In Part V, the products are considered in product
complexes and in Euclidean space. As an application of preceding results,
some mapping theorems are proved, due in part to H. Hopf.

Some special topics are considered in the Appendix.

Hyustorical note. The coboundary of a chain, when a passage to the limit is
applied, becomes the derived of a covariant alternating tensor (compare Alex-
ander, [1]). In this form, of course, it has long been known. From the alge-
braic standpoint, cocycles appear in a different form in the “pseudocycles” of
S. Lefschetz, [10]. Cocycles may be interpreted as cycles in the ‘“‘dual complex,”
considered in papers by W. Mayer® and A. W. Tucker, [12]. An application of
cocycles in their direct form was given in our note on Sphere-spaces.’

The work of L. Pontrjagin on character groups led to the realization that
not only the homology but also the cohomology groups might be important.
At the International Topological Conference, Moscow, 1935, J. W. Alexander
and A. Kolmogoroff presented papers giving not only the theory of cohomology
groups (with different notations), but also defining a product (for simplicial

4 For instance, in a torus, for determining the groups, we may subdivide into one vertex,
two 1-cells, and one 2-cell; but for determining the products, we must have say four vertices,
eight 1-cells, and four 2-cells. (Or we may use Part V.)

5 Monatsh. f. Math. u. Phys., vol. 36 (1929), pp. 1-42 and 219-258.

¢ Proc. Nat. Ac. of Sci., vol. 21 (1935), pp. 464468, §6.
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complexes) in the groups.” It appears that D. van Danzig® and E. Cech also
had a portion of these results. However, the Kolmogoroff-Alexander product
was not wholly satisfactory, it being too large by a numerical factor. In
studying their product at the end of 1935, the author discovered the — product
of §6. In an effort to generalize a theorem of H. Hopf (see footnote 17), the
remaining results of §6 and §7 were found.’ At the same time, Cech dis-
covered the same products; see [5]. Alexsnder studied the revised _ product;
see [3]. Finally, the present Part II may be considered an outgrowth of Cech’s
paper [5]. Our assumptions (P;) and (Pe) are closely allied to those of Cech, §2.
Our proof of Theorem 5 was obtained after a study of a corresponding proof
in Cech’s paper. In the mean time, H. Freudenthal, [6], also found the results
of §7, and studied the relation of these products to other known products.

Recently S. Lefschetz'® has shown that the products of §6, when properly
translated into the residual space of a sphere containing the complex, become
the classical intersections. As in Tucker, [12], he gives postulates which a
“chain-product” should satisfy. Neither author proves a uniqueness theorem
(such as our Theorem 5).

I. PRELIMINARIES
2. The complexes used

Complexes, in topology, are certain algebraic structures which may be given
a geometric significance. For a given algebraic structure to be geometrically
realizable, certain conditions must be satisfied. For instance, we may demand
that there be a simplicial subdivision (algebraically defined); any simplicial
complex determines a geometric complex in Euclidean space. Complexes of
this nature we shall say ‘“admit a simplicial subdivision” (see Part III). To
define a product theory in the complex, stronger conditions are necessary; a
complex satisfying these conditions “admits a product theory.” Most of the
paper will be concerned with these complexes.

A complex K admitting a product theory is a system as follows. It has cells"

7 See [2], [8] and [9]. The Kolmogoroff-Alexander product is not that given in [2].

8 See Recueil Math., Moscow, vol. 1 (43), (1936), pp. 672-674. Cohomology groups with
general coefficient groups are studied by Steenrod, Am. Journal of Math., vol. 58 (1936),
pp. 661-701.

9 These results were applied in classifying the maps of a 3-sphere into a 2-sphere; see
Bull. Am. Math. Soc., vol. 42 (1936), p. 338. They were communicated in letters to
L. Zippin early in 1936.

10 Bull. Am. Math. Soc., vol. 43 (1937), pp. 345-359, §5, (d). It should be noted that
without a postulate such as our (P;), the product may give pratically any product in the
cohomology groups.

11 We assume the cells are finite in number; however, most of the results extend to the
infinite céise, at least with the proper definitions.
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o? of dimension p. There are two types of relations. A cell may be a face of a
cell of higher dimension, and is a face of itself. Two cells 67" and o7 of neigh-
boring dimension have an incidence number ?8; , which is an integer. In terms
of these numbers we define boundaries dA” etc. as usual (see §3). The closure
&7 of a cell o7 is the set of all its faces. The star St (¢) of ¢ is the set of cells
with ¢ as a face. The closure and star of any subcomplex are defined simi-
larly. We say a cycle A” = Y a;o? is boundary-like if p > 0 or if p = 0 and
> a; =0 (or I-A' = 0;see (2.1) and (3.2)). The definition as here given is
useful only in the case that 8I contains no 1-cells which have two vertices as
faces; see Lemma 5.

We make the following assumptions.

(K)) If o, is a face of o2 and o3 is a face of o3, then o, is a face of o3 .

(Ks) If P8} > 0, then o' is a face of o7.

(K;) 33A® = 0 always (or equivalently, 864”7 = 0).”

(K,) Each boundary-like cycle (with integer coefficients) in any 7 bounds
a chain in &7 .

Note that, using (4.7) below, (Ks) is equivalent to the vanishing (for all A?,
B™?) of any of 399A”-B”*, dA”.6B”, A?.86B"", or 8B”".

Certain elementary properties of these complexes are the following:

LemMa 1. If p > 0, then da7 5 0.

For if 967 = 0, then ¢7 is a cycle in 67 . By (K.), it must bound a (p + 1)-
chain in 7. But &} contains ho (p + 1)-cells.

Lemma 2. Every cell of dimension > 0 has a lower dimensional face, and
hence a vertex as a face.

This follows from the last lemma and (Kz) and (K)).

LemMa 3. Each 1-cell has just one or two vertices as faces.

By the last lemma, we need merely prove that any o' has not three vertices
a, b, c as faces. Ifit had, then by (K),b — a = kds' and ¢ — b = ls". Hence
I(b — a) = k(c — b), which is impossible (as k = 0).

The definitions of open and closed subcomplexes are as usual, in terms of
“being a face of”’; for o; and oz in the subcomplex K’ of K, we say o3 is a face
of ¢; in K’ if it is in K.

Lemma 4. If K admits a product theory, so does every closed subcomplex.

The proof is simple.

Note that, if

2.1) I = 3 ¢! = sum of all the vertices of K,

we may have 8] = 0. But see Theorem 2. If K is connected, and 6 = 0,
the only 0O-cocycles are the multiples of I.

12 Complexes satisfying (K,), (K») and (K,) are exactly those considered by Tucker,
[12]. If (K,)issatisfied also, and 8I = 0 (that is, K is ‘‘augmentable’’), then Tucker shows
that K admits a simplicial subdivision and hence is geometrically realizable.
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LemMA 5.  If each 1-cell is on two vertices, then 81 = 0 and K admits a simplicial
subdivision (see §13).

For take any 1-cell ¢; say 90 = aa 4 pb. As a — b is boundary-like, there
is a k such that a — b = kdo; hence 8 = —a. Therefore éI-0 = I-90 =
a+ (—a) = 0, and 61 = 0. The last statement has been proved by Tucker
(see footnote 12).

3. Homology and cohomology groups™
The boundary and coboundary of chains are defined by

B W(Eiao?) = Xijalolel”,  8(iao?) = s oje] T

The a; are integers or elements of an abelian group G."* The chain A” is a
cycle [cocycle] if 8A” = 0 [6A7 = 0]. We say

A is homologous to B A ~ B, if A — B is a boundary,
A is cohomologous to B, A «—~ B, if A — B is a coboundary.

As 9947 = 0, 86A" = 0 (see (Kj3)), we may define as usual the homology and
cohomology groups. Using the coefficient group G, we denote these by *H,
’Hq. The group of p-chains of a complex with integer coefficients will be
denoted by L*.

We define the scalar product of two chains of the same dimension by

(3.2) (2 aio?) - (- Bio?) = 3 aifi.
Note that A”.¢” is the coefficient of ¢” in the chain A”.

4. Dual homomorphisms"
Let G and G’ be free groups with fized sets of generators a;, ---,a, and

ai,---,a,. Thentoany matrixof integers ||¢:;|| G=1,---,p,i=1,---,9)
correspond homomorphisms of G into G’ and of G’ into G, defined by
4.1) da; = > ;biia;, ¢ai = > idua;.

If ¢ is any homomorphism of G into G’, then ¢a; = Y ¢:;a; for some integers
¢:; ; thus the matrix || ¢:; || is defined, and hence the homomorphism ¢’. Each
of ¢, ¢/ determines the other uniquely; the matrix of one is the transposed
matrix of the other. We call these homomorphisms dual, and write

(4.2) ¢’ = D), ¢ = D) = D(D($)).

13 For further details, see for instance Whitney, [13].

14 Except where otherwise stated, we use integers: G = I, .

18 Compare the Appendix, §27. Dual homomorphisms correspond to adjoint linear
transformations in algebra. They have been used in topology by Tucker, [12], §25.
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If ¢ maps G into G’ and ¥ maps @ into G, then § = yY¢ maps G into G"'.
Its matrix is clearly

oll =1lvllllell: 65 = 2k vads;.
On transposing, we find

(4.3) ¢ = D(6) = D(¥¢) = D(¢)D(¥) = ¢'¥'.
Linear combinations of homomorphisms are defined as usual. We find
(4.4) D(c¢ + d¢) = cD(¢) + dD(¥).

We shall apply these homomorphisms to the groups L, the individual cells
forming the generators. Clearly 8 and & are dual. If ¢ maps L”(K) into
LP* (K") for each p (k fixed), and ¢’ = D(¢), then

(4.5) op’A’ = ¢'6A’ (all A’) if and only if a¢A = ¢34 (all A).

For one relation follows from the other on taking duals. These relations hold
in particular for simplicial maps. Using (3.2), we have

(4.6) A.¢'B’ = ¢A-B' if and only if ¢' = D(¢).
For

gos0; = (Liduor)-0j = ¢i,  oi-¢'c; = ¢js.
Hence
4.7) A?.8B*' = 9A®.B".

Remark. The above definitions and results hold equally well if G and ¢
are vector spaces with fixed bases.
Finally, note that

(4.8) A-B=0ifé6A =0and B~0orif A ~0and aB = 0.

For if 64 = 0 and B = 3C, then A-B = A.9C = $4.C = 0, etc. Hence, if
6A = 0and B ~ B’,then A-B = A.B, etc.

II. Tae Probucts

5. Definition and properties of products
We shall use only integer coefficients until §11. Corresponding to each p-cell
o? , g-cell ¢f, and (p + g)-cell of*%, we wish to find an integer *°T}’, such that
the following properties hold. )
(Ty). If ¢? and ¢? are not both faces of ¢2*% then ™I}’ = 0.
(Ty). For all p, q, 1, j, k,

141 ij +1ai ptl,qnid +147 pig+lnil
Zlﬁﬁ-akwrrr_zlp 9i? qu1+(_1)pzlq 3 Poripyt,
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(T3). For some integer v, and all ¢ and j,
25Ty = .
The tmportant case is the case v = 1; after Part II, we always take v =

In terms of the quantities Ty, we define two bilinear operations on chains,
as follows.

(5.1) of wof = D T af™,

(5.2) of ~oft = DTt

Clearly

(5.3) (0 <~ od)-oft =Ty = o7 (¢F ~ of*9).
and hence

(5.4) (47 « BY).C™ = A?.(B* ~ C™").

Two products — and ~ correspond if and only if (5.4) holds. Given one
of —, ~, we can find the corresponding T by (5.3), and hence the other.
The above properties translate into the following, for the < product.

Py) of < ofisa (p 4+ g)-chain in St (¢7)- St( )“
(Py) 8(A” < BY) = 84" B + (—1)’A” ©
(Ps) For some integer v, I  of = voi (all c?).

Also, for the ~ product,
(Qu) ¢ ~ of?is a p-chain in St (¢7).- 07"
(Q) 3(A? ~ B™%) = (—1)%A° ~ B 4+ A® ~aB™".
(Qs) For some integer v, I-(of ~ of) = v (all of).

We shall prove the equivalence of the three sets of properties. (P,) is clearly
equivalent to (Ty). If we write (P;) with ¢f and ¢}, use (5.1), and consider
the coefficient of o **" on each side, we obtain (T); conversely, (I';) implies
Py). (I‘s) and (Ps) are clearly equlvalent Suppose (T'1) holds; we shall prove
(Q). If o% is not a face of of ™% then T}’ = 0 for every 7, hence of ~ of*? =0,
and (Q:) holds. If of is a face of of*% then St (¢%)-0f7 = o™ by (Iv),

¢ ~ of*%is a chain in 6£*? = St (o) -of "% Suppose (Q1) holds. If o7 is not
a face of of*% then St (¢9)-0f%" = 0, ¢f ~of*® = 0, and *Ti’ = 0 (all 4).
If o7 is not a face of of ?** then (Q,) shows that it does not occur in ¢? ~ of*%;
hence *T}’ = 0. (Q) is seen to be equivalent to (T'), if we replace p by p + 1.

Finally, (Qs) is equivalent to (T).

16 §. T is the subcomplex of K containing those cellsin both Sand T. Thus St(s1) 02 = o2
if oy is a face of o3, and = O otherwise. Cech, [5], assumes merely that the chain is in

8t (7).
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TraeoreM 1. If K is connected and 81 = 0, then (Ts) is a consequence of
(I‘l) and (I‘z).
By Lemmas 1 and 2, it is sufficient to show (using the (P;)) that if

30? = ad® (a # 0), I oo™t =y, I C o =44
theny = v'. (That I  ¢* = 6¢* for some 6 follows from (P;).) By (Ps),
(oed™H =TIt '=TcCas®+ --- =aye®+ ---;
also
o o aq_l) =00 = yao® + -+,
asa # 0,y =¢'.

TreEorREM 2. For all ¢}, I ¢! = 0.
For, by (P;) and (P3),

8l ol =08(I « of) — I © 80f = dyal — vydo} = 0.
THEOREM 3. If 61 = 0, then

(5.5) I o =6c"Cl=1Ad =y (all 7).

First, o I = ¢ w¢®* = I " = y¢’. Suppose ¢* ' I = yo”" and

36" = ac® + --- (@ # 0). Clearly ¢ I = 60” for some 6. Then as
I = 0, (P;) and (P;) give

do” ) =8""CI=abe® + .-,
5(0”,—1 ~ I) = B(‘Ya’?—l) = 'yaa” + ceey,

and § = v. That ¢ _ I = vyo® now follows, by Lemma 1. The last relation
is proved similarly, considering 8(I ~ ¢”).

TueoreEM 4. The o and ~ products define products among the cohomology
and homology groups, thus:

cohomology class _ cohomology class = cohomology class,

cohomology class ~ homology class = homology class.

Explicit formulas are given in (11.6) and (11.7). That cocycle < cocycle =
cocycle, cocycle ~ cycle = cycle, follows from (P;) and (Q:). Also

(5.6) AiwB A B if A4y and B =0,
5.7) A UBiA _B, if BB, and 54 =0,
(5.8) Ai ~B ~As ~B if A4, and 0B =0,
(5.9) A ~Bi~A ~B, if Bi~B, and 4 = 0.

For instance, if A, — A; = 8C and B = 0, then by (Q),

Hence the definitions in the theorem are unique.
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TaeoreM 5. For each integer v, the products of Theorem 4 exist in any com-
plex and are uniquely determined.

This will be proved in §8 and §9. The relation between products with
different v's is given in Theorems 9 and 10.

In §10 we shall prove the two associative laws and the commutative law:

If K admits a simplicial subdivision (see §13), then

(5.10) A_B oC)—~(AcB)C if A =6B=23C=0,

(5.11) A~BA~AC)~ (A _B)~C if 84 =B = 08C =0,

it being understood in (5.11) that ~ and _ have the same y. If 38l = 0, then
(5.12) A? OB~ (=1)"B? _ A" if $A” =46B* = 0.

TuaeoreM 6. Let K and K’ be simplicial, let f be a simplicial map of K into
K', and let f' be the dual of f. Then

(5.13) fl(A" OB —~f'A’ _f'B' if 8A’' =8B’ ' =0,
(5.14) f(f'A' ~B)~ A" ~fB if 8A’ =0B = 0.
These generalize a theorem of Hopf to arbitrary complexes.”” For the proof,
see §10. For the use of different coefficient groups, see §11.
6. The products in simplicial complexes

If K is simplicial, a very simple definition of T', _, ~ is possible. Order the
vertices of K in a fixed manner. Each simplex ¢” may now be written in the

normal form o® =z -+ s, , 50 < -+ < ,. Wedefine,if z;) -+ zi, -+ Ziy,
is a simplex,
(6.1) S M ALIES | (G < -+ <idp < v <ipyg),

and T = O for any other triple of simplexes. (The meaning of the I' should
be clear.) In tergs of — and ~, this gives for instance (if 21222524 is a simplex)

T1T2 w T2T3%4 = 1722374, T2X3Ly ~ T1X2X3%T4 = T122 .

(T1) and (Ts) obviously hold. A simple calculation gives (I:); see Alex-
ander, [4].
For these products we clearly have

62 A_ B oC=AcCB)C, A~B~C)=(4B) ~C.
7. Products and simplicial maps
Having ordered the vertices of K', order those of K so that
(7.1) if f(z:) = o5 , then 6(3) < 6(j) implies ¢ < j.

17 H. Hopf, [7], Satz I.
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Using the products of §6, we shall prove (5.13) and (5.14) in the form:
TueoreEMm 7. In stimplicial complexes, using the products of §6,
(72) f(A' < B)=fA" _fB, Jf'A" ~B) = A" ~fB.
To prove the first equation, take any o,” and ¢;%; say
'p ’ ’ rq ’ '
ag; =x0“‘xp) o; =xp"’xp+q;

if the vertices of the simplexes are not related as shown, then clearly both
sides of the equation (with these simplexes) vanish. By definition of f’,

F'07 = 30 Tay -+ Ty 6(cr) = B,
f’o.:.q = Z xﬂp et xﬂp+q ) o(ﬁh) = h’

Hence
floi® fley® = Zxao et Tyt Taprg 0(an) = h.

This is clearly also f’(0;” < 0;%).® To prove the second equation, we use the
first, (4.6) and (5.4): For any cell ¢’ (of the proper dimension),

o -f(fA’ ~B) = f'-(f'A’ ~B) = (f'c’ _f'A")-B =f'(c’ = A)-B
= (¢ < A)-fB = d'-(4' ~fB),

8. Construction of the products

In a general complex, it is most convenient to construct the ~ product.
Take any integer . We shall construct all ¢? ~ ¢?*? in succession for p =
0,1,2,.... First consider p = 0. Set 6] ~of = 0forj = 7. Let o] ~ o}
be any 0-chain in & the sum of whose coefficients is v; this is possible, by
Lemma 2. The required properties hold so far. Suppose all ¢¢ ~ o™ are
properly constructed for all ¢ and all # < p; we must construct each ¢f ~ o?*%.
If o2 is not a face of o2, set 67 ~o?™? = 0. As St(¢?) 57" has no cells, both
sides of (Q:) with ¢? and ¢?*? vanish. Now suppose ¢! is afface of ¢?% Set
(8.1) C*' = (=1)%80? ~ o?" + o ~ 3077

b
this is a chain in &
Suppose first that p = 1. Then for some «, 67 = ac?*® + ..., and

I.C°7' = —I-(ao?* ~ ¢?™) + I-(¢? ~ acd)

= —ay +ay =0.

p+e
7 .

(8.2)

Hence, by (Ki), we may choose the 1-chain ¢? ~ ¢?*? in 7% so that its bound-
ary is C*~'. Then (Q:) through (Qs) hold.

18 By using joins, and the 0-chains X4 = f 'z, , one could give a direct formal proof.
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Suppose next that p > 1. Then (Q:) gives
aC™™! = (=1)*|(-1)""680 ~ ¥t 4 80 ~ 3071
+ (=1)" 86! ~ 967 + ¢ ~ 80071 = 0.

Hence, by (Ki), we may choose ¢! ~o?*?in 47%? with the boundary C*'.
The properties again hold.
We remark that any ~ product may be constructed in this manner.

(8.3)

9. Uniqueness of the products

We first prove
THEOREM 8. Let ~ be any product with v = 0. Then there is a bilinear
operation A such that

(Ry) o? A 67 %is a (p + 1)-chain in St(¢¥).o7 "
R2) 0! ~df = 3(cf A o).
(Rs) 0 ~ a2 = 3(c? A o2 + (=1)%807 A o?*" 4 6% A 302 for p > 0.

We shall construct A for p = 0, 1,.... As vy = 0, we can construct

o? A ¢? so (Ry) holds. Suppose all 67 A ¢ are constructed for all ¢ and
p+e

r < p; we shall construct ¢? A ¢?*% We make it 0 if o7 is not a face of of
Suppose it is. Set
C? = ¢? ~ o' — (—=1)P86% A 07" — 6% A 3077
By (Q.), and (R;) solved for a(¢? A o?*9),
3C? = (—1)%80? ~ o277 + ¢? ~ 30?7 — (—=1)*[30? ~ 71 — 50? A 30719
— 0% ~ 807t — (—=1)" 667 A 86719 = 0.

Hence C” is a cycle in 67%% and (as p > 0) we may choose o7 A ¢?*? with C*

as boundary.
We may form linear combinations of ~ products (and also of  products)
by defining

9.1) Al ~1 + az~2)B = ay(4 ~1B) + (4 ~2B).
By applying this to any ¢} ~ o7, we find
9.2) v(er~1 + az~2) = ary(~1) + arv(~2).
TaeOREM 9. For any two products ~ and ~’,
(9.3) Y(~)A® A BY) ~y(~)A® ~B% if 8A® = oB* = 0.
As a consequence, if v* and u® denote cohomology and homology classes, then

(9:4) ()" A uh) = ()" ~ud).
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To prove this, set " = y(~)~" — ¥(~")~. Then y(~”) = 0. By
Theorem 8, (R;) or (Rs), A” ~"" B* ~ 0, from which (9.3) follows.
THEOREM 10. Theorem 9 holds for the  product. Thus

9.5)  Y(U)(AP o' BY y()(A7 « BY) if 8AP = 6B° = 0.

As above, it is sufficient to show that if y(_) = 0, then A” _ B? « 0 for
all cocycles A®, B. Let ~ correspond to —;theny(~) = 0, and we may con-
struct A. Construct a corresponding V (using relations of the form (5.1),
(5.2)); then, as in (5.4),

(9.6) (D™ v EY.F** = D' (E® A FPY9).
Now for p > 0 and any cell ¢ = 677 as 4.9C = 54 -C,
(A<CB)sg=A.-(B~0dg)=A-[0(B A o)+ (=1)’8B A ¢ + B A d7]

= (@A V B)-ed + (—1)"(A V 6B)-d + (A V B).o,
and hence
9.7 A? O B = (A" V B%) + 8A" vV B* + (—1)’A” v éB%;

if p =0, then A _ B* = 64A° v B° Hence if A and B are cocycles, then
A ~ B A 0.

10. Proof of properties in §5
To prove (5.12), we define a new product, ./, by
A? U B = (—1)"B? _ A",
Clearly (P;) holds for _’. To prove (Pg), (P2) for  gives
8(A? U B = (—=1)"[6B* A 4+ (—1)'B? _ 6A47]
= (—1)PetatVrgr s 5pe 4 (_pypetentigae s pe

which reduces to the desired formula. (P;) is a consequence of Theorem 3.
(5.12) now follows from (9.5).

To prove (5.10) and (5.11), take a simplicial subdivision K’ of K, and define
new products in K, using those of §6 in K’, by (15.3) and (15.6). The proper-
ties now follow at once from (6.2). (Compare the proof of Theorem 14.)

To lprove Theorem 6, we apply (9.5) and (7.2): Using «, for the product
of §6,"

(A" « B") ~v()f (A" <o B') = v(O)f'A" <of'B") ~f'A" _f'B'.

The other relation is proved similarly.

1 If C'~ D', then D’ — C’ = $E’, and
le/ — flCl = f’5E' = 6flEl’ f’C' \Af'D'.
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11. The products, general coefficient groups

Let G be an abelian group. Let Chy(X) be the group of homomorphisms
(characters) of the group X into the group Y. Then H = Ch¢(G) is a ring
with the definitions (writing k-g for h(g))

(11.1) (h+h)-g=nhg+hy, (hE')-g = Rh-(K'-g).

If we use the coefficient group G in chains with which we form cycles, then
the most useful coefficients for chains from which cocycles are formed are those
of H™®

Exampres. Let Iy, I., R, R, R, , R: denote the groups of integers, integers
mod m, real numbers, rational numbers, reals mod 1, and rationals mod 1.
All but the last two are rings. Then, using = for isomorphic, examples of G
and corresponding H are

(@) G=1I1,,H = I,.

(B) G = ImyH =Im (m = 1).

W G@=RorR, H=Ror®R.

(5) G = R101’§R1,H = Io.

(a) is a special case of (8). H is commutative in these cases. If G is a
direct sum of such groups, we may find the corresponding H with the following
rules:

Chy (X1 + X,) = Chy (X1) + Chy (X3).
Chy1+y’ (X) = Chyl (X) + Chy’ (X).

Our object here is three-fold. (a) we point out how the products with G
and H are defined in terms of the former products. (b) The products are dis-
cussed, assuming merely that they satisfy the (P;) and the (@;). (c) In a
simplicial complex, for certain groups G and H, when one of —, ~ is known
in the cohomology and homology groups, the other may be determined at once.

(a) If the products with integral coefficients are given, we may set

(11.2) (2 hia?)- (3 gio?) = 20 hi-gs,
(11.3) ho? < RWa? = X i P hh'aE™,
(11.4) ho? ~ goftt = 3, P Tl h.go?.

The relations (Pz) and (Q:), and hence (5.6) through (5.9), continue to hold,
so the products are defined among the cohomology and homology groups. If
u” and v” denote homology and cohomology classes, the explicit definitions are

20 Ash-(g+¢g') = h-g+ h-g’, if we consider H as an additive group, then H and G form a
‘‘group pair’’ with respect to G. We could replace H by any subring. Thus, in (y) below,
we could take H = I, .
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(11.5) v"A? . w*B* = A”.B?,

(11.6) v*A? _ v'B? = v"*(4” _ BY),
(11.7) v'BY ~ uPTICPT = 4P(BT ~ CPMY).
(5.4) holds, because of (11.1), and hence

(11.8) @? < o)) uf™ = 0?0} ~ uf*Y).

(P3) and (Qs) with vy = 1 are replaced by the relations

(11.9) hI < Rk} = hh'a}, I.(he} ~ goi) = h-g.

(We could leave out the k in the first.) Thus the integer y(.) = v(~) is
replaced by the operations y(<; h, k') = hh/, y(~; h, g) = h-.g; if G is the
group of integers, then ¥y = y(<; 1, 1) = 9(~; 1, 1). To a general v corre-
spond general bilinear maps v(; h, #’) into H and y(~; h, g) into G, and
(11.9) becomes

(11.10) Rl h'ﬂ'? = ‘Y(v; h, h')a'}, I-(hd’g ~ ga'g) = 'Y(/'\; h, g).

The relations (5.10) through (5.14) and (5.4) hold, if in (5.12) we assume
that H is commutative. For the proofs, we need merely multiply by elements
of H and G and sum, using (11,1). The same remark holds for Theorem 2.
Suppose ?8} = =1 or 0 in the complex. With the above interpretation for v,
the proofs of Theorems 1 and 3 hold. (Note that only the revised (P;) and
(Q:) are used here.)

(b) Suppose  and ~ products are defined, satisfying the analogues of
(P1) and (Qu), (P;) and (Q.), and (11.10), which we call (P;) and (Q;). That
< and ~ are bilinear means that there are bilinear maps *®;’ of (H, ) into
G and "%}’ of (H, H) into H such that

(11.11) he?  h'a} = Zk P2y (h, h')a;f+q,
(11.12) ho? ~ goft? = Zl »%(h, g)at.

(Ps) and (Q.) translate into (T,) with P'T}’ replaced by "*¥i’(h, k') and
*%9i’(h, g) respectively. We suppose scalar products are defined by (11.2).
We say _ and ~ correspond if (5.4) holds. By (11.11) and (11.12), this is so
if and only if
(11.13) g (h, b')-g = h-P® (R, g).
(In the simplest case, ¥ = vhh' and & = vh'.g for some integer v, and (11.13)
follows from (11.1).) The products may not be derivable from the products
in (a). For instance, if G is the group of real numbers, the **I';’ may not be
integers.

If ~ s given, and H = Che(Q), then (11.13) determines . For, given h
and h’, the right hand side is a homomorphism of @ into itself, and thus deter-
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mines an element of H; we call this element **¥;’(k, k’). Clearly ¥ is bilinear,
and (11.13) holds. If we take (I':) with ®(h’, g) and apply h, using (11.13)
gives a relation with terms acting on g. It being true for all g, we can drop it,
and find (Te) with ¥(h, &’), i.e. (P2). (Qu) gives (P1). By (Qs), i.e. the second
relation in (11.10), and (5.4) (which follows from (11.13)),

(I < K'o?)-got = hI-(a? ~go¥) = h-y(~; 1/, g).

For fixed h and &’, the last term is a map of G into itself, defining an element
of H, which we call y(; h, k'); thus

(11.14) v(<i by b)-g = h-y(~; K, 9).

Clearly v(; k, k') is bilinear. If A* is the coefficient of kI _ h'¢] in o}, then
the above relations give

k*.g = h*e}-gof = v(<; h, R')-g, ¥ =v(<; h b).

Hence, by (Qu), the first relation in (11.10), i.e. (P3), holds.

Let 1 be the identity in H: 1.g = g (all g). Consider the following hypothesis
(H) on H, or on any subring containing 1: The only homomorphism ¢ of H
into @ (i.e. ¢(hs + he) = #(h1) + ¢(h2)) such that ¢(1) = 0 is ¢(k) = 0 (all &).
This holds for instance if H is any of the rings given above. If G = I, + I, = I, :,
we may use, in place of H = I, a subring H' = I, .

If < is given, and H satisfies (H), then ~ is determined. For fixed b’ and g,
the left hand side of (11.13) is a homomorphism ¢ of H into G. Set g* = ¢(1).
Then for all h in H, $(h) = h-g*; for if ¢’(h) = ¢(h) — h-g*, then ¢'(1) = 0.
Set *®}'(h’, g) = g*; & is bilinear, and (11.13) holds. Applying (T2) with
¥(h, k') to g and using (11.13) gives a relation for all h. Setting h = 1 gives
(Q). (Py) gives (Q1). By (5.4) and the first relation in (11.10),

RI-(h'o? ~go?) = v(<; h, h)a}-go} = v(<;h, b')-g.

If we set v(~; b/, 9) = v(—; 1, }’)-g, then v(~; I’, g) is bilinear and (Qs)
holds (as 1 I.g = I-g).

TaeoreM 11. Let K be a simplicial complex. Then with coefficient groups
G and H = Che(G), any two ~ products satisfying the new (Q:), with the same
v(~; h, g), give the same product in the cohomology and homology groups. The
same 1s true for < if H = Chg(G) satisfies the hypothesis (H).

Recall that (P;) and (Q;) are (11.10). First take a fixed vertex zf in each
simplex ¢? , and define the “join” z7¢7 for any of in &7 (which vanishes if of
contains z?). Set z? D g;jo? = 2 g;z7s?. Then if C? is a ¢-G-cycle in 47,
3(z?C% = C% (See for instance Lefschetz, [10], p. 111, (9').)

Now given ~; and ~; with the same v, set ~ = ~2 — ~1. Then
v(~; h, g) = 0 (all &, g). We shall construct a bilinear product ho?! A go?t?
as in Theorem 8. The proof there given holds, if we are careful to define the
product for all k and g at each step. At a typical step, we have a p-G-cycle
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C® = ho?! ~go?™ 4 ... in 7% To make d(ho! A gofth = C®, we set
he? A go?t® = 2?72C% Because of the new (R) and (R;), the ~ product van-
ishes in the cohomology and homology groups; it follows that ~; and ~2
give the same products there.

To prove the last statement, we shall show that if v(—; h, ") = 0, then
A « B — 0 for cocycles A and B. Construct ~ corresponding to —; then
by (11.14), v(~; k', g) = 0. Hence, as we saw above, a bilinear A operation
may be defined satisfying the revised (R;). Next we shall construct V so that
(9.6) will hold. In terms of the coefficients defining A and V, this takes the
form of the relation (11.13). The right hand side being given, we construct
the coefficients on the left so the relation is satisfied, exactly as we constructed
o in terms of ~. We can now show that (A — B).go = 8(4 V B).go for
cocycles A and B, as in the proof of Theorem 10. As this is true for all g,
A B and 5(4 V B) have the same coefficient in ¢. As this is true for all o,
A_B=3AV B)-0.

(c) For certain sets of groups G, H and Z, the homology and cohomology
groups "H® and "Hj satisfy

(1115) pHG = Chz(pHH), pHH = Chz(pHG).

As shown in Whitney, [13], this is so whenever the following conditions are
satisfied.

(1) G and H form a group pair with respect to Z.

(2) G = Chz(H), H = Chz(G).

(3) G and H resolve each other completely.

(4) Z is infinitely (better term: completely) divisible.

(11.15) holds for any of the examples (8), (v), (8) above, with Z = G. We
can show this for (8) by first using Z = R;, and noting that in the maps, only
a subgroup =@ of R, is used.

TaEoREM 12. Let the products (11.5) be defined, and suppose (11.15) is satis-
fied. Then, for any v, as soon as one of —, ~ is known, the other is determined
by (11.8).

Recall that for any v, — and ~ are uniquely defined. We shall show that,
given _ or ~, there is a unique corresponding ~ or o satisfying (11.8); as
the correct products satisfy this relation, the theorem will be proved.

Suppose - is defined. For fixed v§ and uf *2 the left hand side of (11.8)
is a homomorphism of H, into Z, and hence, by (11.15), corresponds to a
unique element of H®; we call this element v§ ~ ¢ *4 Then ~ is bilinear,
and (11.8) is satisfied. We find < in terms of ~ in the same manner.

12. Construction of the products in low dimensional complexes

We shall construct all products ¢? ~ ¢”*? for p < 2 in a particular fashion;
then o®  ¢?is determined for p < 2. We can then determine the _ products
in the cohomology and homology groups of complexes of dimensions = 5,
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with the help of Theorem 12 and (5.12); the remaining ~ products are then
given with the aid of Theorem 12.

We begin by ordering the vertices of K in a fixed fashion, z;, z;, --. . For
each o7, let V7 be its first vertex. For each vertex z; of of, let Wiz, be a
1-chain in &7 whose boundary is z, — V?. Set (usingy = 1)

(12.1) of ~of =V},
(12.2) P~ o? = PiwryrT! (7' in 7).
Finally, take any o2~ of &7; say
3c? = > apal”, 86?2 =3 Brof ' in &?.

As 3367 = 0, >_ afr = 0. Now (see §8)

C' =302 ~o? + 0l ~d0? =2 B WIVE + 2 W'V
is a cycle in #7, and we may choose a 2-chain ¢?™* ~ ¢? bounded by it.

In the simplest case, we will have
ol =P e+ .-, P =l =gl .
and
C =WV — WIVIT 4+ WV L WV,
and we can find a possible ¢?* ~ o7 at once. For most ¢? on ¢? (for instance,
for all in which V27 = V?7' = V?™), C* will vanish; but there will in general
be at least one for which it does not.
III. INVARIANCE THEOREMS
13. Subdivision and consolidation

Let K’ be a complex, satisfying (Ki), (K:) and (K;) of §2. Let {E?} be a
set of distinct closed subcomplexes of K’ which cover K’, E? being of dimen-
sion p. Let F? = F(E?T) be the union of all Ef (¢ < p) contained in E?. Set
0? = E? — F?. Assume

(K1) The common part E?-E? of any two of the subcomplexes is either void
or the union of a subset of the subcomplexes.

(Kz) If E? is in E?, E?  E?, then ¢ < p.

(Ks;) With integer coefficients, Of is monocyclic or acyclic™ in the dimen-
sion p and is acyclic in all lower dimensions.

2 OF is acyclic in the dimension ¢ if every g-cycle (which need not be boundary-like) is a
boundary; OF is monocyclic in the dimension p if there is a p-cycle X? ¢ 0 such that any
p-cycle is a multiple of X?. (All this is with integer coefficients.) Compare Tucker:
“cell-like,”’ “‘null-like.”” 1In [4], Ch. VI, a similar assumption, using any coefficient group
@, is made. Note that O is a subcomplex of K; a chain A in Of is a cycle if, consid-
ered as a chain in K, d4° has no part in O%.
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Define a complex K as follows. With each Of which is monocyclic we asso-
ciate a p-cell o7. Say o7 is a face of o7 if and only if Ef is in Ef. We shall
define the 73} in K and prove (K;), (Kz) and (K;) for K below. We call K a
consolidation™ of K’, and K', a subdivision of K. If K may be formed from a
simplicial K’ in this manner, we say K admaits a simplicial subdivision.

14. Structure of K and K’

Denote the cells of K’ by 7. Let J” be the union of all E for ¢ < p. We
prove:

(a;1) O? contains all the p-cells of EY; for F? is of dimension <p.

(az) E?-E? isin J* ' if j 5 4; for the common part is a union of Ef, and as
each such E is in E?, ¢ < p, by (K3).

(as) Each 7? is in a unique O} ; then E? is the smallest subcomplex containing
72. To prove this, choose E? as stated. E7 is uniquely determined. For if 7¥
is also in E}, then it is in their common part and hence in an Ej contained in
both, by (K1); hence E} = E%, and Elisin E;. Asr?isinno Ef™,itisin Of.
Suppose 77 were also in Oy O} . Then Ej contains Ej , and by (Ka), r > q.
Hence E? is in F;, and 77 is not in O;, a contradiction.

In (as), we define E? = E(+7), 0 = O(+7). If O} is monocyclic (in the
dimension ¢), we set o = o(z7).

(au) If 7is in O? and in E?, then E} contains Ef, by (as).

For each Of which is monocyeclic, let

(14.1) X? =Y ;%air?

be the corresponding p-cycle; for other O?, set X? = 0. Map L*(K) into
L*(K’) by

(14.2) Sde? = X7

Define Sd Y a;o? by linearity. Then

(as) SdA® = 0 implies A” = 0. For if A* = 3 a;0?, then ) a;X? = 0,
and (oz) shows that each ;X7 = 0; as X? 0 in this case, a; = 0.

LemMa 4. Any cycle A'® in J” (with integer coefficients) is SAA” for a uniquely
defined A” in K.

First, write A”” = Y A", A" in E?. As A”® — A® is in J_; E?, by (on),
sois —9(4’”” — A") = 9A”. By (as), 9A:” has no part in O?, that is (using
(@), A is a p-cycle in OF. Hence, if A;” = 0, then O is monocyclic, and
for some «;,

AP®? = ;X?; then A” = Sd 3 ao?.

The uniqueness follows from (as). We remark that “in J*” may be replaced
by “in J* — J*\”

22 “Zellenzerspaltung’’ in [4], Ch. VI. But see the last foot-note.
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We now define the boundary relations in K. Given o7, 8Sdo? is a cycle
in F?, which is in J”7'; hence it may be written uniquely as SdB”. We
define 367 = B®'. Then

(14.3) 3SdA” = SdaA®.

Clearly (K,) holds for K. Also aSde? is in E?, hence do¢? is in &7, and
(K:z) holds. For any of, Sdade? = 90Sde? = 0; hence, by (as), 3967 = 0,
and (K;) holds.

TueoreM 13. If K’ is a subdivision of K, then there are homomorphisms ¢
of LP(K') into L*(K) and ¢ of L*(K') into L**(K’) such that

(a) ¢7” is in a(7"); ¥7° is in E(+).

(b) 3pA'" = ¢paA"",

(c) $SdA” = A”.

(d) SdpA’® = A'" — YaA'® — ayA'".

If we take duals of these relations and (14.3), using:

! = D(¢), mapping L?(K) into L”(K’),

Sd’ = D(Sd), mapping L”(K’) into L*(K),

¥ = D(¥), mapping L**(K’) into L*(K’),
we obtain

(b)) 84 = g'o4”,

(¢") Sd'¢p’A” = A?,

(d) ¢'Sd’A’" = A'" — Y'8A’" — YA'P,

(14.3") 0Sd’A'® = Sd'sA’".
We begin by constructing homomorphisms 6, and ¢, as follows. 6, and ¢,

are defined in J*, and map L'(K’) into L'(K’) and into L™ (K’) respectively.
For 7% in J”7, set 6,7° = 7% ¢,7° = 0. If 7%is in O? , then we shall have:

.. |Flifg<p,
Ypriisin 07,  6,7%isin )
EYif ¢ = p.
Also
(144) Wt = 7% — Yo7 — 6,7

For 7° in J° set 6, = 7°, Yor° = 0. Suppose all 6, and ¢, are constructed
in J*7'; we shall construct them in J?. We need merely consider 0, and ¥,;
for (14.4) holds for 6, and ¢, r > p, by their definitions. For 7° in O? , we
may choose y,7° in O and 6,7° in F? so that

0 0 0
Wt =1 — Op7,

by (K3); then (14.4) holds.
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Now suppose ¥, and 8, are defined for all cells of dimension < ¢ in Of ; we
shall define them for 7% If 9,7? is the part of 7% in 07, ¥,8:7" is in O7 ; if
9277 is the part in F? , ¢,8:7° = 0. Hence ,97" is in O? . Also, using (14.4)
applied to 477
(14.5) (" — Y079 = 97" — (37" — 6,977 = 0,07,

which isin F? . Hence 7 — y,87% as a chain in the complex 07 , is a cycle.
Suppose first that ¢ < p. Then, by (K;), we may find a chain y,7% in O?
and a chain 6,77 in F? so that (14.4) holds. Suppose next that ¢ = p. Then
if % = 77,
(14.6) 17 — Ypor = a; X7,
by (Ks). If X? = 0, we take a; = 0. Set y,77 = 0, 0,7 = ;X7 ; again
(14.4) follows.
We prove some properties of ¢, and 6,. Taking the boundary of (14.4)
gives

0 = 97" — (87" — ¥,097" — 0,377 — 80,77,
90,7 = 0,97%
Next, by (14.1) and (14.6), summing over all p-cells in 07,
2iei"alX? = 3 %al(r} — y,0r7) = X7 — y,0X7.
But 8X? is in F?, and henee ¢,0X? = 0. Therefore

(14.7)

(14.8) Siaifal =1 if X? 0.
It follows that, even if X7 = 0,
(14.9) 0, X7 = 3 %al0,7 = 3 ;"ala; X7 = X7
Now define a homomorphism 6 of L*(K’) into L*(J?) by
(14.10) 077 = 040441 -+ - On77,

supposing K’ is of dimension n. By the definition of 6,7 for p = ¢, we may
define ¢ in LY K’) so that

(14.11) 077 = Sd¢r°.
By (14.3), (14.9) and (14.7),
(14.12) 807 = Sdo¢pr? = 0,.18do¢pr" = 010077 = 0,40, - - - 0,07° = 0977
hence
Sdogr? = 38der? = 86+7 = Sdpar?,

and (b) follows from (as).
Finally, define y by

(14.13) Y1t = D ig Vil - - - 0,7,
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uSing Onyy - -+ 0,7° = 7% Ask 4 1 > ¢ in each term of the sum, 6z4y - - - 6,77
is in J*, so that Yi0.; --- 6,7° is defined. Note that Ygaby -+ 0,077 = 0,
as 0, - -- 0,87° is of dimension ¢ — 1. Hence, by (14.4) and (14.7),
Wl = ey Wbigr - O,1°
= Zl?—q 0k+l e 0n7'q - El:.—q ‘l/kaok+l e 0n7q
- Zi‘_q 0k - -+ 0,77 = 77 — Yo7 — 079

this. with (14.11), gives (d).
To prove (c), (14.9) gives

Sd¢Sdo? = SdpX? = 0X? = 0,X? = X? = Sdo?;
(c) now follows from (as).

15. Combinatorial invariance

We can now prove (compare Theorem 13)

THEOREM 14. Let K’ be a subdivision of K, and let G be an abelian group.
Then both ¢ and Sd induce isomorphisms between "H°(K) and "H°(K'), and both
¢’ and Sd’ induce isomorphisms between "Ho(K) and *He(K'). If K and K’
each admits a product theory, then these isomorphisms preserve products.”

The meaning of the last phrase is seen from (15.4), (15.5), (15.7) and (15.8)
below.

Set Sd Y gio? = > giSde? etc. Using u and » for homology and coho-
mology classes as in §11, set

(15.1) QUA” = upA'?, Sdud® = w'SdA?,
(15.2) d'vA” = v'¢'A”, Sd'v'A'" = vSd'A"”,

the chains being cycles in (15.1) and cocycles in (15.2). The proof that these
are isomorphisms follows at once from Theorem 13. Consider for instance ¢'.
To show that ¢v is uniquely determined, suppose vA” = vyB?. Then A” — B? =
8C™!, and

v'qS'A’ _ vl¢lBP — vl¢1601=—1 = vr&#lop—l = 0.
Suppose ¢'vA” = ¢'vB*. Then ¢'A” — ¢'B® = 5C'*, and
A? — B” = Sd'¢'(A® — B?) = Sd'sC'"™" = 88d'C'",

so that vA” = vB®. Given a v’A’*, to find a vA” mapping into it, set A” =
Sd’'A’®. Then 64" = Sd'6A’* = 0, and

¢lvAP = vl¢ISdIAIP = vI(AIP — ‘PlaAIP — 8¢IAIP> = lelp.

23 If topological coefficient groups are used, the isomorphisms are continuous. The
part of this theorem relating to the homology groups has been proved by Tucker, [12], for
integral coefficients, and by Alexandroff-Hopf, [4], Ch. VI, using the stronger condition
noted in footnote 21.
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To prove that the _ products agree in the cohomology groups of K and K’
(if they are defined), consider first integer coefficients. Take a definite
product in K’, and define a new one in K by

(15.3) A B = 8d'(¢'A < ¢'B).
We must prove (P;) through (P;). To prove (P)), say
e =asf+ -, a0 (r=p+9.
Then
¢'af O Plot =B+ .-, Sd't" = yor, B#=0,vy#0.
As then Sdo}, = y7 + ..., 7 isin O;, and o(7") = o . Say
¢l =" + .-, ol =¢r"+ ..., o ="+ ..
(¢, &, m = 0).
Asthen ¢7° = e? + --., 0 isin 6(s7). As 7" isin 7, E(+*) is in E(s), and

o? isin 5(7") = &; . Similarly ¢7isin 7 .
To prove (P;), (b’) and (14.3’) with (P;) for  in K’ give

To prove (P3), note that ¢'I = I’; hence, using (P;) in K’,
IC ol =8dI < ¢'¢}) = Sd'¢'s] = .

Therefore we may use the product of (15.3) in K. To prove that ¢’ and Sd’
preserve products in the cohomology groups, note that (for cocycles), using
(d’) and (5.6), (5.7),

(15.4) ¢'(A < B) = ¢'Sd'(¢'A — ¢'B) —~¢'A ~¢'B,

(15.5) Sd’'A’ < Sd'B’ = Sd'(¢'Sd'A’ — ¢'Sd’'B") —~ Sd'(A’ - B').
We may similarly define ~ in K in terms of ~ in K’ by

(15.6) A ~ B = ¢(¢'A ~ SdB).

This corresponds to the — product in K, and hence is a ~ product. To show
this, (4.6) gives

(A “B)-C=8d@@A —¢'B)-C = (@A ¢'B)-8dC,
A- (B ~C)=A-¢(¢'B ~8dC) = ¢'A-(¢'B ~ SdC).

Applying (5.4) in K’ shows that these are equal; hence _ and ~ correspond
in K, by (5.4).



ON PRODUCTS IN A COMPLEX 419

We map cycles [cocycles] from K into K’ and from K’ into K with Sd and ¢
[with ¢’ and Sd’]. The invariance of the ~ product is given by

15.7) Sd(A ~B) = Sdé(@'A ~ SdB) ~ ¢'A ~ SdB,
(15.8) Sd'A’ ~¢B' = (@' Sd'A’ ~ Sd$B’) ~ $(4’ ~ B'),

where A, A’ are cocycles, B, B’ are cycles.

Now consider the coefficient group G as in §11, (a). The o products in the
cohomology groups in both K and K’ are formed by (11.3). As (15.3) holds
with A and B replaced by "he? and %ho}, (15.3) etc. hold with any coefficient
group. (15.4) and (15.5) prove the invariance. Similarly for the ~ product.

16. Topological invariance

We shall show how to associate homology and cohomology groups and a
product theory with a polyhedron P by means of any simplicial subdivision.
By Theorem 14 we may find these groups and products, using any complex K
which admits, as a subdivision, a simplicial triangulation of P, and admits a
product theory.

The theorem and proof extend at once to prove the existence of groups and
products in a bicompact space; compare Steenrod (see footnote 8), §9.

The proof is based on Theorem 13. However, if we restrict ourselves to
simplicial complexes, Theorem 13 becomes much more simple. Hence we give
it again for this case, as a lemma. We may then prove, as before, the first
part of Theorem 14.

LemMA 6. Let K’ be a simplicial subdivision of the simplicial complex K, and
let ¢ be a pseudo-identical map™ of K’ into K. Then there is a map ¥ as in
Theorem 13 such that the conclusions of Theorem 13 hold.

The statements about ¢ and Sd are well-known; we shall construct ¢. For
each vertex z’ of K’, let ¢z’ be any 1-chain in the subdivision of the smallest
cell o(z") of K containing z’, which is bounded by z' — ¢z’. Suppose ¢ is
constructed in L°(K’), ---, L*(K’). Then applying (d) of Theorem 13 to
the (p — 1)-chain 87", we find

3(Sdgr” — 17 + Ya17) = 98dpr” — 97" + 977 — Sdpar” = 0.

Hence Sd¢r” — ° + y¢ar” is a p-cycle in the subdivision of o(7*) (p > 0),
and therefore, as is well-known, we can find a chain —y 7" there bounded by it.
The ¢ as thus constructed clearly has the required properties.

THEOREM 15. Let K and K' be simplicial triangulations of homeomorphic
polyhedra P and P'. Then there are isomorphisms between "H°(K) and "H°(K")
and between "He(K) and "He(K') which preserve the  and ~ products.

24 That is, a simplicial map such that each vertex z’ of K’ goes into a vertex of a cell of K
containing it.
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By identifying corresponding points of P and P’, we may suppose K and K’
are tnangulatlons of P. We may subdivide K’ into K1, then K into K; ,
and then K into K3, so that the following conditions hold.”® There are simpli-
cial maps ¥z, ¢1, ¥1, of K; into K, , K, into K;, and K; 1nto K such that
¥ = ¢f2 and = yi¢; are pseudo-identical. The duals ¢, , é1 3 Yo of Y1,
¢1, Yo induce homomorphlsms of the cohomology groups of K, K;, K; into
those of K1, K, , K . Combining pairs of these homomorphlsms gives homo-
morphisms of "He(K) into "He(Ky) and of “He(K) into "Hg(K3). These are
induced by the duals &’ and v’ of ® and ¥, and are isomorphisms, by Theorem
147 Set y* = (&), ; then i and y* map "Hg(K) into "He(K) and vice
versa. Further, using E for the identity, we have, in the cohomology groups,

—1,7,7

VYL = (b1¥1) 'o1Yr = E,
Yiv* = (I )Yi(b1v1) 1
= (¢2¢1)_1¢2(¢1¢1)(¢1¢1) 61 =

It follows that ¢; and y* are isomorphisms (see for instance [4], p. 558). Com-
bining this isomorphism with an isomorphism x between H4(K;) and "Hg(K’)
(Theorem 14) gives an isomorphism 6 between “Hg(K) and "He(K'). By the
same process it is seen that y; induces an isomorphism between "H®(K;) and
PH®(K). As y, is simplicial, the isomorphisms induced by ¥; and ¥, preserve
products (see §7). The same is true of x and its dual, and hence of 6 and its
dual. This completes the proof.

IV. ManN1FoLDS
17. Dual complexes in a manifold

Let K be a subdivision of a closed oriented combinatorial manifold,” and
let K’ be the first derived (simplicial) subdivision of K. Order the vertices of
K’ by choosing first the vertices of K, next the centers of 1-cells of K, etc.
Say K is of dimension n. For each cell ¢f of K, let Ef " be the subcomplex
of K’ containing all (n — p)-cells of K’ which have the center of o” as their
first vertex, and all faces of these cells. The hypotheses on K show that the
complex K* thus formed, the “dual” of K, admits K’ as a simplicial subdivi-
sion (see §13), and admits a product theory. The maps Sd and Sd* of L?(K)
and L”(K*) into L”(K’) are defined in the natural manner; for the latter, see
(19.4). Define ¢ and ¢* as in Part III.

% See J. W. Alexander, Combinatorial Analysis Situs, Trans. Am. Math. Soc., vol. 28
(1926), pp. 308-310.
* Hence ®' = ¢;y{ has an inverse; but this alone does not imply that ¢} and ¢/ have

inverses.
27 Compare Seifert-Threlfall, Topologie, Ch. X, or Lefschetz, [10], Ch. III.
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18. The Poincaré duality theorem
Using K and K*, we may find at once the form of the duality theorem given
by Kolmogoroff, [8], and Cech, [5]. Let r7™® = D(a?) be the cell of K* dual
to of ; set o = D*(+777). Recall that
(18.1) D(0™™) = 6—1)"Ds” + -.- if and only if 867 = " 4 .-+ ;
it follows that
(18.2) 9D(A") = (—1)""D@EA?), $D(A”) = (—1)"D(34").

Similar relations hold for 9*. From (18.2) we may conclude at once that 9
establishes an isomorphism between *Hq(K) and ""H°(K*). But ¢Sd* es-
tablishes an isomorphism between "?H°(K*) and ""H°(K) = ""H® (see
Theorem 13); hence

(18.3) *H, =~ "’HC.
Suppose that, as in §11, (c), "He(K) = Chz(*H¥(K)); then
(18.4) "?H° = Ch,("H").

19. Products and intersections®

Supposing K is simplicial, we shall (a) define intersections in terms of the ~
product, (b) give a relation defining 9, or rather Sd*9D, (c) find the relation
between _ and ~ in the cohomology and homology groups, and (d) relate
« and intersections.

(a) The intersection of a chain A” of K and a chain B*? of K* is the following
chain® of K’:

(19.1) APoB** = ¢¥ DA® ~ Sd*B** (~ product from §6).
We may deduce the ordinary boundary relation:
3(A%B*?) = (—1)" " ¥ DA” ~ Sd*B*! 4 ¢*' DA ~ 0Sd*B*
(19.2) = (=1)""%* DIA® ~ Sd*B** 4 ¢*' DA” ~ Sd*oB**
= (=1)""%A%B*? + A%.0B*".
Note that, by (7.2) and Theorem 13, (c),
(19.3) ¢*(A%B*?) = DA® ~ B*".

28 Compare Cech, [5]; Freudenthal, [6].

29 We wish A oB* to be a cycle if A and B* are cycles. To apply the « or ~ product, we
must turn at least one of them into a cocycle; we use DA. Tt is best to use a fixed ~
product, which we may do in K’. We map a cocycle of K* into a cocycle of K’ with ¢*',
and a cycle of K* into a cycle of K’ with Sd*. In this manner the form of (19.1) is de-
termined.
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(b) Order the vertices of K’ in the opposite manner from that used above.
Define ¢ by mapping each vertex of K’ into the last vertex of the simplex of K
containing it. If -Z" is the fundamental n-cycle of K, then Z’* = SdZ" is the
fundamental n-cycle of K’. The map Sd*9 is given by

(19.4) Sd*DA? = ¢’A” ~2Z'" (~ from §6).
Further, as ¢Z'" = ¢SdZ" = Z", (7.2) gives
(19.5) ¢Sd*DA” = A® ~¢Z'" = A” ~ Z";

it is this map that Cech uses in place of 9.
(c) Set 947 = A” ~Z". Then, by (6.2),

(19.6) 6(A < B) = A ~ 6B.

As Sd* and ¢ induce isomorphisms in the homology groups, (19.5) shows that 6
induces the same isomorphism of "Hg into """H¢ that 9 does. Hence 6
exists in these groups, and (19.6) gives

19.7) o v = 0 (0 ~ 6w), v ~u = 0 < 0 ).
(d) By (19.1), (19.4) and (6.2),
D*A*DB = ¢p*A* ~ Sd*DB = (¢*A* _ ¢'B) ~ Z'™
By (c), applying this to the cohomology groups gives

(19.8) Ov106v; = (1 < vg),
and hence
(19.9) uous = 000 w1 < 6 un).

A final remark. For a positively oriented ¢", ¢* ~ Z" is the first vertex of
o". Hence

(19.10) I1.(A~Z") =A".2".

20. On intersections of chains and complexes

Let M™ be a manifold, and let K and K’ be singular complexes (i.e. continuous
maps of complexes into M") in “general position” in M™; that is, so that no ¢°
intersects any ¢’ . (A slight deformation of K’ will bring this about.)
Then all Kronecker indices (¢700;" ") have meaning, and (4%9B'" ") =
(—1)"(dA=B""™"*!). (See for instance Lefschetz, [10], p. 169, (20).) Set

(20.1) go? = > i (c70a;" "o, 9’0" = 3. (¢F0ai" ")o?,

and hence define gA”, g’A’?. These are dual. We may call the chain gA”
of K’ the intersection of the chain A” of K with K'.
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For A? in K and B’"” in K’, we have the Kronecker index
(20.2) (A%B'™?) = gA”-B"™ = A”.¢'B""".
As
8gA”-o' = gA”.30" = (A%0d0") = (—1)?(8A%00") = (—1)’goA”-o,
we have 3¢ = (—1)%gd. Taking duals also, we have®
(20.3) 8gA” = (—1)"goA?, 8g’A’”" = (—1)"g'0A"".

In particular, cycles of K or K’ map into cocycles of K’ or K.

We may let K be a subdivision of M" and let K’ be a deformed position
of K; then chains of K are mapped into chains of K’, which may be considered
as chains of K again. Then g takes the place of the D in §18.

21. Dual bases

In this section, we shall use the group R of real or of rational numbers as coeffi-
cient group. Say a set of p-cycles X{ , - - ., X7 forms a base if they are linearly
independent with homology, i.e.

0!1Xf+-'-+a.Xf~0 lmplies al=~~~=a.=0’

and if any p-cycle is homologous to a linear combination of them with real or
rational coefficients. In other words, their homology classes form a base for
H” = PH*. Define a base for p-cocycles similarly. Bases exist in any complez.
To show this, note first that H? is a vector group; for it has a finite number of
generators, (using elements of R as coefficients), and no elements of finite
order. (If kX” ~ 0, k = 0, then kX? = aY”*', X* = a(Y""/k) ~0.) Hence
we may choose independent generators u;, --- ,u,. Let X7 be a cycle in the
class w;; then X}, ..., X? form a base. Say a base X{, ..., X7 for p-
cycles and a base C?, ..., C? for p-cocycles (then ¢t = s) are dual if

(21.1) C?.X? =5; (=1ifi="7,and = 0if = j).

Dual bases exist in any complex. First, let X7, -- -, X7 be a base for p-cycles.
As H, = "H; = ChgH?, the group of characters of H” into R, (see for instance
Whitney, [13], Theorems 7 and 8), we may choose cocycles CY, ---, C? such
that (21.1) holds. Let v; be the cohomology class of Cf . Clearly any char-
acter of H” may be expressed uniquely as a linear combination of v;, --- , v, ;
hence C?, ..., C? form a base for p-cocycles.

Now consider a closed orientable manifold M". Dual bases for n-cycles
and n-cocycles are formed by the fundamental n-cycle Z" and a single n-cell
", oriented so that ¢”-Z = 1; similarly a vertex z and the cocycle I form dual

30 The converse relations dg = g5 etc. are false in general.
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bases. Say bases Cf,--.,C} and D{™", ..., D™ form dual bases for p-
cocycles and (n — p)-cocycles (then ¢ = s) if

(21.2) 7 < Dj™? 850", ie. (C? < D;™).2" = s,.
We may have n — p = p. Then if
(21.3) X7 =Ct~2Z", Y? =D{""~Z",

we find, using (5.4) and (5.12),
C?-Y? = &, D} ?. X777 = (—1)*"P5,.

Hence the C? and Y7, also the (—1)*" ™D} and X?™?, form dual bases.
Finally, the X?™” and Y7 form dual bases in the ordinary sense. For, using
simple properties of intersections and (19.8) and (19.10),

(X7™PeY?) = I'-(6C?e6D} ") = I-6(C? « D}™P)
= I'[(C? VD?_p) ~ Z”] = (C? ~ D?_p)~Zn = 6.‘,’.

V. Propucts IN Propuct COMPLEXES

22. Definition of the products

Let K; and K, be two complexes (simplicial or not), with cells ¢? and 7 .
Then we have (properly oriented) (p + r)-cells ¢? X 7 and (p + r)-chains
A®? X B in the product complex K* = K; X K,. We recall that

(22.1) 3(e® X ) = (86” X 7) 4+ (=1)"(¢” X 87).
It follows that
(22.2) 8(e? X ) = (86" X ) + (—=1)"(c® X 87).

Choose products in K; and K;. We define products in K; X K, in terms of
these by

(22.3) (@ X7T) (@ X7)=(=1)706" o) X (),
(22.4) (@® X 1) A" X 7)) = (=1 ~d%) X (' ~7).

We shall show that™ the _ product has the required properties in K; X K, .
(P1) of §5 clearly holds. Also,

For=UXL o XLy=ULieh)X I, L)=1 X1, = I¥

31 Of course K; X K; as above defined admits a simplicial subdivision, with the proper
geometric interpretation. Hence, by Theorem 14, we obtain the correct products from
K1 X K3 .
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so that y = 1. Now let us calculate the terms in (P;). We find
8l(e” X 1) < (¢ X )]
= (=DT[@e" « ) X (" « ) + (=1)"(c* w86 X (7 < 7)]
+ (=D)"® o) X (7w 1) + (=1)(0® <% X (7 8],
d(® X 1) ("X 7)) =(=1)%0c" ) X (F <7
+ (=) (P ) % (577 7Y,
(0" X 1) < 8(e" X ) = (=1)"(¢" L 567 X (7 < 7)
+ (=D**P(* w %) X (7 < br).

From these equations (P;) follows at once. We may prove similarly that the
~ product has the required properties, or that it corresponds to the _ product.
In the product K of three complexes, the — and ~ products come out the
same whether we write K in the form (K; X Kj) X K; or K; X (K: X Ks).
The signs are as in (23.8) and (23.9) below.
23. The products in Euclidean space

We may subdivide Euclidean n-space E" = (uy, --- , u,) by means of the
planes u; = an integer ( = 1, ... ,n). (We could subdivide similarly any
small portion of a differentiable manifold.) We shall work out explicitly a
product in E” by using the product of §6 and writing E* = E* X ... X E".

First consider E'. We may denote its cells by

(23.1) (e, B), a an integer, 8 = O or 1;

it is either the vertex v = a or the l-cell « £ u < « + B; its dimension is B.
Set (a, B) = 0 for any other 8. If we order the vertices by letting (a, 0) pre-
cede (a/, 0) if @ < o/, then the < product of §6 may be written

(23.2) (&, 8) w (@ + B,7) = (o, B+ 7),

the product vanishing in all other cases.
We turn now to the n-dimensional case. The cells of E” are

(23.3) (1, Br; -+ ;an, Bn), «; integral, 8; = O or 1;

the dimension of such a cell is Z B:. Any such symbol with some 8; = 0 or 1
is set = 0. Set

(23.4) 8:(B) = SiBr, -+, Ba) = (=1)r+Hhimy,

in particular, S;(8) = 1. The boundary relations are

(23.5) 3(ar, Br; -+ s0n, Ba) = D i Si(B)(au, Brj -5 @ + 1,8; — 1;...)
— 2 8uB)(en, B e e, Bi— 1;--),
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(236) 5(a1,ﬂ1;'~’ ;an,Bn) = —ZiSi(ﬁ)(al;ﬁl;"' ;aiyﬁi+ l; "‘)
+ 22 8B (e, Brs e jaw — 1, B+ 1504 ).
Set also
(23'7) P(ﬁ;')‘) =P(Bly”’,ﬁn;71y"',7n) = (—l)gy € = ;Bi'y:’v
2]
Suppose each B; and v; is 0 or 1, and B; 4+ v; < 1. Then, dropping out all
zeros, P(B; v) is the sign of the permutation which carries the 8’s and v’s from

their positions shown to their positions in (81 + ¥1, -+ ,8: + 7¥»). From
(22.3) and (23.2) we now find

(a1, Brj -+ ;an, Bn) wla+Bi,v1; - ;an+ Bn,¥n)
=P(B;7)(alyﬂl+7l;”‘ ;an;3n+‘y'n)y

the product vanishes in all other cases. As an example,

(23.8)

(a,1;0,0) (11 + 1,002, 1) = (a1, 15 2, 1),
(1,0;,1) (,1l;004+1,0) = —(az, 1; as, 1).
By taking the dual of (23.8) as in (5.4), we find at once
(er 471 =B, Brs - 50 + Yn— B, Bn) ~ (01,715 ; An,¥n)
=Py — B, Aar,v1 — Bi; -+ ;n,¥Yn — Bn).

It is not hard to prove the formulas for 6(4 — B) and (A ~ B) from the
above formulas, and thus show directly that they are the required products.

(23.9)

24. On the maps of products of manifolds into a complex

We shall use only chains with real or rational coefficients; then dual bases
may be defined as in §20. We begin by proving, after Hopf,

TuroreM 16.” Let M™ be a closed orientable manifold with fundamental n-
cycle Z", and let f be a simplicial map of M™ into a complex K’'. LetCY,...,C?
and DY, --. , D; be dual bases for p-cocycles and g-cocycles in M" (p + q = n;
p may = q), and let C;?, --. , and D1% - .. be bases in K'. Say

(24.1) f’C:p - Z,' X.'ij, f’D;q - Zi y.',‘D?.
If fZ" ~ 0, then

(24.2) Ni= kZl N = 0 (all 4, ).

32 This theorem was communicated to me by H. Hopf in a letter of September 9, 1937,
together with part of Theorem 17. The results (with the complex replaced by a manifold)
are corollaries of his paper [7]; we base them on the corresponding relations (7.2).
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First we shall find another interpretation of the A;; and u;;. Let {X7?},
{Y?}, {Xi?}, {Yi%} be bases for cycles dual to {C?}, {D?}, {C:}, and {D.%}
respectively. Say

(24.3) IX? ~ 28X, fYE~ i Y
then

(24.4) CP -fX? = g = f'CP-XP = Ny,
(24.5) D*.fY? = nji = DY = py,

so that N,’j = E Ekiﬂki-
To prove the theorem, we need merely note that
0= (C:* < DY).fZ" = f'(C:* < D})-Z" = (f'C* < f'D})-2"
= ; Nacwji(CE < DY) -Z" = ; Nk pitbr = Nij.

THEOREM 17. Let M be a closed orientable p-manifold, and let S be a g-sphere,
q 2 p. Let X” and Y? be corresponding fundamental cycles. Let M”*? be a
simplicial subdivision of K*** = M? X 8° with fundamental cycle Z**°. If z,
y are vertices of M*, S° then

(24.6) X? = 8d(X* X y) and Y°= Sd(z X Y9

are cycles of M**%. Let f be a simplicial map of M*** into a complez K', and
suppose fZ°1% ~ 0.

(@) If ¢ > p or ¢ = p is even, then either fX* ~ 0 or fY? ~ 0.

(b) If ¢ = p is odd, then one of fX?, fY? s homologous to a multiple of the
other.

If ¢ > p,thenas H'(S) = 0(r =1, ..., ¢ — 1), it follows that X” and Y*
generate H?(M**%) and HY(M?*?) respectively. Let I and J be the sums of
vertices, and let ¢ and 7° be cells, in M” and S Let ¢ and Sd be the maps
of Theorem 13, and set

(24.7) C* =¢'(¢" X J), D' =¢'(I X 9, = ¢® X %
These are cocycles. Then, using Theorem 13, (c).
(24.8) C*.X? = (6" X J)-¢S8d(X* X y) =1, D?*.Y? =1,

so that X” and C?, also Y? and D? form dual bases. Further, as Z**? = ¢Z*™?
is the fundamental cycle of K**, (15.4) gives

(Cp VDG).ZP‘HI = ¢'[(o’p X J) o (I X Tq)]'Zp+q
— (o,p X Tq).¢Zp+q = a,p+q_2p+q — 1,

so that C* and D? form dual bases. Hence, defining the X;” and Y as before,
and defining £;, 5; by

(24.10) fX? ~> 8XP,  fY'~Y Y

(24.9)
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Theorem 16 gives, with (24.4) and (24.5),
(24.11) Em; = (all 7, 7).

It follows that all the £ = 0 or all the #; = 0, so that fX* ~ 0 or fY? ~ 0.

Now suppose p = ¢q. Then X” and Y? together generate H?(M*?) and C”
and D” together generate H,(M*?). The relations (24.6) through (24.9) still
hold. Also;
D? L CP  (=1)PC? o D?, (D® ~C?).Z% = (-1)°,

(C* « C").2” = (D" . D")-2” = 0,

so that {C®, D"} and {D”, (—1)"C”} form dual bases for p-cocycles. Further,
(24.13) C*.Y? = (" X J)-(x X Y?) = 0, D*.X? = 0,

so that {X”, Y} and {C”, D}, and also {Y?, (—1)’X"} and {D”, (—1)"C"},
form dual bases. Comparing (24.10) with (24.3), in which Y{* = X.?, we see
that (£, n:) takes the place of®® (&, &, --- ), while (n;, (—1)¢;) takes the
place of (mj, m2i, --- ). Hence, by Theorem 16,

(24.14) Eini+ (=1)%tini =0 (all 7, j).

Suppose that p = ¢ is even. If not all the & are = 0, say & = 0; then
setting © = j = » in (24.14) shows that 2¢,9, = 0, n, = 0, and then setting
1 = », any j, shows that all other n; = 0. Thus the theorem is proved for
this case. ‘

Finally, if p = ¢ is odd, (24.14) shows that all determinants of the matrix

&L & -

) ng «--

(24.12)

vanish, so the two sets of numbers are proportional. Thus (b) of the theorem
holds.

CoROLLARY.® If n is even and f is a map of S* X 8" into a complex K’ of
dimension < 2n, then one of 8™ X y, x X 8" s mapped into a cycle ~ 0.

We shall consider briefly what becomes of Theorem 17 when we consider
the product M?*™" = M? X 8% X &, p < ¢ <r. Using the fundamental
cycles of the three manifolds, define the three corresponding cycles, X, Y, Z*
as before. If p < ¢ < r, we find by the above methods that f(Z****") ~ 0
implies that one of f(X?), f(Y?), f(Z") is ~ 0. Consider the case p = ¢ = r.
Say

33 For a direct treatment, compare (24.18) below.

M For K’ = S*, the theorem was proved by H. Hopf, Fund. Math., vol. 25 (1935), pp.
427-440, part of Satz V. In the present form (with K’ a manifold), it was communicated to
me by Hopf in the letter referred to.
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(24.15)  fX"~ 3 6XP,  fYP~XaXP, 2~ GXE
Let C7, - - -, C;” form a base for p-cocycles in K’. Then if fZ* ~ 0, we have
(24.16) My = (CP < CP) < CP)-fZ2" =0 (all 4, 7, k).
Define C?, D?, E” as before. Then
C° o C° D’ _D" B _E° 0,
((C° = D" E").Z% = 1.
As f'C?  £C? 4 7:D® + {:E” etc., the above relations give
(24.18) M = £;5(C” < D* C E°)-Z + £8im(C” w E* D)-Z + ---
= &(ni8e + emd) + E(meSs + enle) + EB(nii + enily),

where ¢ = (—1)®. Suppose p is even. Then by considering such quantities
as M, M;;, we see that all the &; or all the »; or all the {; vanish, so that
one of fX7?, fY”, fZ% is ~ 0. If p is odd, then all determinants of the matrix of
£, ns and {; vanish, so that fX”, f¥Y” and fZ” are linearly dependent under
homology.

(24.17)

APPENDIX
MISCELLANEOUS QUESTIONS
25. The products in terms of other operations

We shall show how the products of §6 may be defined in terms of two other
operations; one acts on single chains, and the other, on two chains of the same
dimension.

Writing simplexes in their normal form §6, we define two homomorphisms of
L? into L% ¢ < p, by means of
(25.1) £ (xiy - - - x‘-p) = Tiy -+ iy, (i, - x‘p) Tipg v+ T,
Let £7 and {7 (¢ < p) be the dual maps of L? into L”. Define also
(25.2) (XS @io?)o(X Bio?) = > auio?.
Then (6.1) gives
(25.3) A © B = £2Y9APPYIBY A% A BPYY = g2, (12T A%BYY),

Let I” be the sum of all (oriented) p-cells: I” = > x;, - -- z;,. Then clearly
I' = I. Some relations following at once from the definitions are

(25.4) I’.(AoB) = A-B,  (AeB).C = A.(BoC),
(25.5) £PA.B? = A*82B?, (A<B).C=A.(B~C).
(25.6)  PoA’ = A% =A%, HI"=(0I°=I'g 2 p),

(25.7) oI =0, oI™" = P
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For any subcomplex K’ of K, let us interpret K’ also as a chain of mixed
dimension, namely, the sum of all its cells. Then K = Y I?, K'cK’ = K', and
(25.8) APoK' = K'oA” = the “part of A” in K'”.

A? is in K’ if and only if A7eK’' = A®. Set K” = K — K’'. Then all the
following twelve conditions are equivalent:
K’ is closed, K’ is open, K’ = K’, St(K"") = K",

aloK' = of implies docfoK' = dof,
ofoK" = of implies dofo K" = bdo7,
3(AoK")oK" = 0, 3(AoK")oK' = 0,
3(AoK")oK" = 9A-K", 3(AoK")oK' = 8AoK’,
3(AoK") oK' = 8(AoK'), 8(AcK")oK" = 3(A-K").

We may obtain certain chains related to vertices:
3z, o E8x; = 2 all (p + g)-cells with 2 as (p + 1)th vertex,
Sk 8z o toxi = 3 all pcells with z; as a vertex.

26. Resolution of chains into boundaries and cocycles

By considering the ranks of the incidence matrices, we may prove

TueoreM 18. Using real or rational numbers as coefficients, any p-chain may
be written uniquely as a p-boundary plus a p-cocycle, or as a p-coboundary plus
a p-cycle.

We shall prove the first statement. To prove uniqueness, suppose

aAl + Bl = aAz + Bz (5B1 = 5.82 = O).
Then setting A = A, — Ay, B = B, — B = 2 B!, (4.7) gives
B.B = B.9A = 8B-A =0, Zﬁf =0, each 8; = 0.

Hence B, = B;, and 34, = 84, as required. To prove the existence of the
decomposition, consider the rank p” and the numbers of rows and columns
o' and o of || %8} ||; «” is the number of p-cells in K. Clearly

(26.1) p"*' = number of independent p-boundaries,
(26.2) o’ — p**' = number of independent p-cocycles.

With real coefficients, L” is a linear vector space of dimension «’. By the
above relations, the p-boundaries and p-cocycles form linear subspaces of
dimensions p”*" and o® — p*"'. We saw that the subspaces were orthogonal;
hence they generate L”.

With integral coefficients, the p-boundaries and p-cocycles generate a sub-

group M” of L” of rank «”. Hence the difference group L” — M? is finite,
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and for some integer m = 0, m6 = O for all in L” — M”. This means that
any chain mA® is (uniquely) a boundary plus a cocycle. From this the theorem
with rational coefficients follows at once.

ExampLE. Let K consist of a, b, ¢, ab, be, ca. Then using integer coeffi-
cients, a 0-chain A° is a boundary plus a cocycle if and only if I-A° = 0 (mod 3),
and a 1-chain A' is a coboundary plus a cycle if and only if I'-A' = 0 (mod 3).

27. Dual maps and changes of base

We shall prove

TreEOREM 19. Let G and H be free groups, and let dual homomorphisms be
defined in terms of the bases 2, -+ ,Zm in G and yy, -+ ,yn tn H. Then the
bases x1, - - - , T in G and Y1, -+, Yn in H give the same definition of duality
if and only if the new bases are formed from the original ones by permutations and
changes of sign.

Clearly any such changes of base are allowable. To prove the other half
of the theorem, suppose

T= D anti,  Ti= Y ai i, |aij| = *1,
yi = > i Biivi, yi = 2 iBil¥i, |Bii| = £1.

Suppose both pairs of bases give the same definition of dual homomorphisms.
Then if ¢ and ¢ are dual, we may write

oz = D idiYi, Wi = 2.idii%i,
ori = Xidisyi, V¥ = Didid -
These equations with the former ones give

’ —1 ’ —1
bii = ; ax dubij, ¢ii = ;Bmﬁuazi-

As these hold for all ¢x; , we may set ¢ = 1, and all other ¢,, = 0. This gives

(27.1) aafi; = ok B (all 4, 4, k,1).
Multiplying by ap8;, and summing over j and k gives

d1g Dk apraix = Opi Zi BiBiq (all 4, I, p, @)-
Giving p and ¢ different values shows that
(27.2) Dok aprag = oy, Dk BrpBii = by,

for some number ¢. The left hand member is an element of the matrix product
of || ai; || by its transposed; hence its determinant is | a;;|* = 1. Therefore
¢ = 1,and ¢ = =+1; clearly ¢ = 1. It follows that || a; || (and also || 8:; ||)
has a =+1 in each column, the rest of the column being zeros. This proves
the theorem.
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Suppose we replace free group by linear vector space. Again we find (27.2);

this time we know merely that ¢ > 0. Hence the bases may be altered by applying
to each base an orthogonal transformation, and then multiplying each vector of
each set by the same constant = 0; these are the only allowable allerations.

(=< W

10.
11.

12.

13.
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