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Introduction 

In these notes, we collect the properties of spinors in various dimensions and, 
over JR, for spaces of various signatures. Such information is needed to discuss the 
possihle supersymmetries in various dimensions (super Poincare groups), and the 
possible Lorentz invariant kinetic and mass terms for fermions in lagrangians. 

The exposition owes a lot to Bourbaki's treatment in Alg. Ch. 9, and through 
Bourbaki to C. Chevalley's "The algebraic theory of spinors". The super Brauer 
group of §3 was first considered by C. T. C. Wall (1963), under the name "graded 
Brauer group" and with a different, but equivalent , definition. I have learned of the 
analogy between spinorial and oscillator representations (2.3, 2.5) from a lecture R. 
Howe gave in 1978. The uniform treatment in 6.1 of the Minkowski signature cases 
was inspired by a conversation with Witten. 
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§5. Passage to Quadratic Subspaces 
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CHAPTER 1 
Overview 

1.1. A quadratic vector space is a vector space given with a nondegenerate quadratic 
form Q. Let V be a complex quadratic vector space. If dim(V) ~ 3, the complex 
spin group Spin (V) is the universal covering of the special orthogonal group SO(V) . 
For V of any dimension ~ 1, it is a double covering of SO(V). For dim(V) = 1 or 
2, it is described in the table below. 

For n ~ 3, the Dynkin diagram of the group Spin(n) is: 

.-.-. .< ..-..... ... 9-

n = 2r n = 2r + 1 

where r is the rank. The spin or semi-spin representations are the fundamental 
representations corresponding to the vertex, or vertices, at the right of the dia
gram. They are either self-dual, or permuted by duality. If one restricts the spin 
representation of Spin(2r + 1) to Spin(2r), one obtains the sum of the two semi-spin 
representations of Spin(2r). Each of the two semi-spin representations of Spin(2r) 
restricts as the spin representation of Spin(2r - 1). For a proof, see 5.1. 

The Dynkin diagram makes clear the low rank exceptional isomorphisms. We 
list in the next table n = 1,2,3,4,5 or 6, the Dynkin diagram, a group G to 
which Spin(n) is isomorphic, the description of spin or semi-spin representations as 
representations of G, and the description of the defining representation of SO(n) = 
Spin(n)/(Z/(2)) as a representation of G. 

n diagram G (semi-)spin defining orthogonal 

1 none Z/2 nontrivial character trivial character 

2 none Gm characters z, z-l Z2 e z-2 

3 SL(2) defining V adjoint = Sym2(V) 

4 SL(2) x SL(2) defining V" V2 V, ® V2 

5 q:. =c? Sp(4) defining V t\2V /fixed line 

6 < . .......... SL(4) defining V, and V' t\2V 

Table 1.1.1 
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The symmetric bilinear form on the defining orthogonal representation is given 
by 

n = 3: Killing form Tr(ad x ad y), or 
(v2, w2) = 1f;(v, w)2, for 1f; the symplectic (= volume) form of V. 

n = 4: (v, 0V2, W,0W2) = 1f;(v"w,).,p2(v2,w2). 

n = 5: (V,AV2, W,AW2) = .,p(v"wd1f;(V2,W2) - .,p(V"W2)1f;(V2,wd. 

For n = 8, the Dynkin diagram makes clear that the vector and the two semi
spinor representations play symmetric roles (triality). The octonionic model for 
them, given in 6.5, makes this symmetry explicit. 

1.2. Let V be a real quadratic vector space, with complexification Ve. The real 
form V of Ve defines real forms SO(V) and Spin (V) of the complex algebraic 
groups SO(Ve) and Spin(Ve). For dim V ~ 3, the group of real points of Spin(V) is 
connected, and is the unique nontrivial double covering of the connected component 
of the group of real points of SO(V). 

The spinorial representations of Spin(V) are the real representations which, 
after extensions of scalars to C, become sums of spin or semi-spin representations. 
The dual of a spinoriai representation is again spinorial. 

We will be interested in the following kind of morphisms of representations. 

(1.2.1) symmetric morphisms 505 -> V, for 5 spinorial. Such morphisms enter 
into the construction of super Minkowski spaces and super Poincare groups. 

(1.2.2) V 0 5, -> 52, for 5, and 52 spinorial. Such morphisms enter into the 
construction of Dirac operators Ff between spin bundles. 

(1.2.3) 5050 V -> trivial. Such morphisms enter into kinetic terms .,pFf.,p in 
Lagrangians. 

(1.2.4) 50 5 -> trivial. Such morphisms enter into mass terms .,pM.,p in La
grangians. 

1.3. The nature of the spinorial representations and of the morphisms (1.2.1), 
(1.2.2), (1.2.3), (1.2.4) is controlled by the signature and the dimension modulo 8. 
We explain those two modulo 8 periodicities in 1.4 and 1.5 and, with more details, 
in §3 and §4. 

1.4. The signature modulo 8 determines how many nonisomorphic irreducible 
spinorial representations there are, and whether they are real, complex or quater
nionic. As (V, Q) and (V, -Q) define the same spin group, only the signature taken 
up to sign matters. 

Let p and q be the number of + and - signs of Q, in an orthogonal basis. The 
signature p - q and the dimension p + q have the same parity. If they are odd, there 
is over the complex numbers a unique irreducible spinorial representation. If they 
are even, there are two. It follows that over the reals there is in the odd case a 
unique irreducible spinorial representation. It is either real or quaternionic. In the 
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even case, either there are two, real or quaternionic, or there is only one, and it is 
complex. Here is a table showing for which signatures each case occurs: 

signature p - q mod 8 

o 
1 or 7 
2 or 6 
3 or 5 

4 

real, complex or quaternionic 

Table 1.4.1 

IR,JR 
R 
C 
IHI 

IHI,IHI 

1.5. Over the complex numbers, the dimension modulo 8 controls the existence 
and symmetry properties of the morphisms (1.2.1), (1.2.2)' (1.2.3) and (1.2.4). 

For n odd, the spin representation S of Spin(n) is orthogonal or symplectic . 
. There is a morphism of representations from S ® S to the defining representation 
V ; it is unique, hence it is symmetric or antisymmetric. Here and below, "unique" 
is understood projectively: uniqueness up to a scalar factor of a nonzero morphism. 

For n even, the semi-spin representations S+ and S- are orthogonal, symplec
tic, or duals of each other. There are unique morphisms of representations V ®S+ -+ 

S- and V ® S- -+ S+ , and no morphism V ® S+ -+ S+ or V ® S- -+ S-. If S+ 
and S- are duals of each other, the morphism V ® S+ -+ S- (resp. V ® S- -+ S+) 
corresponds to a morphism S+ ® S+ -+ V (resp. S- ® S- -+ V), which is either 
symmetric or antisymmetric. If S+ and S- are self-dual, they correspond to a 
morphism S+ ® S- -+ V. 

Here is a table showing in which dimension each case occurs: 

n mod 8 forms on spinors 

o S+ and S- orthogonal 
1 orthogonal 
2 S+ dual to S-
3 symplectic 
4 S+ and S- sympletic 
5 symplectic 
6 S+ dual to S-
7 orthogonal 

symmetry of spinors, spinors ---+ V 

S+ ®S- -+ V 
symmetric 
symmetric (on S+, and on S-) 
symmetric 
S+ ®S- -+ V 
antisymmetric 
antisymmetric (on S+ , and on S-) 
antisymmetric 

Table 1.5.1 

1.6. To go from 1.5 to information over JR, one proceeds as follows. 

(Al When the irreducible complex spinorial representations are real , i.e. admit a 
real form , the real story is the same as the complex story. 

(E) Suppose now that they are quaternionic. After extension of scalars to C, the 
quaternions become a 2 x 2 matrix algebra: IHIc = End(W), the real form !HI of 
End(W) being induced by an antilinear automorphism (7 of W, with (72 = -1 , 
and the conjugation * of iii being the transposition relative to any symplectic form 
1/Iw on W. The form 1/Iw can and will be chosen to be real , in the sense that 
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,pw(O'x,O'Y) = ,pw(x,y). The ,pw(x,O'x) are then real, and,pw can and will be 
normalized so that ,pw(x, O'x) > 0 for x # O. 

If S is an irreducible real representation, with field of endomorphisms H, the 
complexification Sc of S is acted upon by End(W) and hence can be written as 

Sc=So®W, 

for So = HomEnd(w)(W, Sc). The complex conjugation O'S of Sc can be written 
0' S = 0'0 ® 0', with 0': So ..... So C-antilinear and O'~ = -1. 

The complex representation So is irreducible, and 1.5 applies to it. If So is 
orthogonal, ,p(X, Y) ,..... 4>a(x, Y) := 4>(O'x, O'Y) is a C-antilinear involution on the 
one-dimensional space of symmetric bilinear forms on So. If 4> is real, i.e. if 4> = 4>a, 
4> ®,pw on Sc is the complexification of a symplectic form on S, relative to which 
the conjugation. of IHI is transposition. 

Similarly, if So is orthogonal, S is symplectic. If two irreducible spinorial rep
resentations S+ and S- are quaternionic, if Sri and So are in duality, so are S+ 
and S-. The same applies to pairings with values in V. 

(C) If the irreducible spinorial representation S is complex, i.e. if its commutant is 
e, by complexification it becomes the sum of the two semi-spinorial representations. 
If they are duals of each other (resp. orthogonal, resp. symplectic), S admits an 
invariant Hermitian (resp. complex orthogonal, complex symplectic) form. 

1. 7. In Minkowski signature, (+, -, -, ... ), and with a positive light cone chosen 
on V, if S is an irreducible spinorial representation, there is up to a real factor 
a unique symmetric bilinear maps B: S ® S ..... V. It can be normalized so that 
Q(s) := ~ B(8, s) takes values in the closed positive cone. Such a Q is now unique 
up to a positive real factor. 

If S is complex, B is the real part of a Hermitian bilinear form with values 
in Vc: if J is the complex structure, Q is invariant under the circle group of the 
exp(OJ) (0 E JR). After extension of scalars to C, S becomes the sum of the two 
semi-spinorial representations, and B corresponds to a pairing S+ ® S- ..... V. 

If S is quaternionic, the quaternions with absolute value one preserve Q. After 
extension of scalars to e, S becomes the sum So ® W of two copies of an irreducible 
spinorial representation So, and B becomes the tensor product of an antisymmetric 
pairing So ® So ..... Vc with a scalar alternating form W ® W ..... e. The quaternions 
become End(W). 

The next table gives the nature of irreducible spinorial representations, as a 
function of n mod 8, for Spin(l, n-l). If Spin(l, n-l) has two irreducible spinorial 
representations, they have isomorphic restrictions to Spin(l, n-2). The last column 
of the table describes the restriction of an irreducible representation of Spin(l, n - l) 
to Spin(l, n - 2). It is either an irreducible spinorial representation, or twice it, or 
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the sum of two distinct spinorial representations. Notation: 8,28,8+ + 8-. 

nmod8 nature restriction to SO(l , n - 2) 

1 lit 8 
2 IR.,IR. 

(8+ and 8-, in duality) 
8 

3 R S+ +8-

4 C 28 
5 IHI 28 
6 lHI,lIlI 8 

(8+ and 8-, in duality) 

7 !!II 8+ +8-

8 C 8 

The cases n = 3, 4, 6 and 10 are particularly interesting. The spin groups acting 
on an irreducible spinorial representation 8 are respectively SL(2, IR), SL(2, C), 
SL(2,H) and deserving to be called SL(2,O). In those dimensions, the spin group 
acts transitively on non-zero spinors and by the symmetric pairing 8 ® 8 ---> V, 
s ® s is mapped to an isotropic vector. 



CHAPTER 2 
Clifford Modules 

2.1. Let k, V and Q be a commutative ring, a k-module and a quadratic form on 
V. The Clifford algebra C(V, Q) is the associative k-algebra with unit generated by 
the k-module V with the relations 

(2.1.1) x 2 = Q(x) . 1 

for x E V. This is Bourbaki's definition (Alg. Ch. 9 §9, nO 1). Some authors prefer 
to use as defining relations x2 = -Q(x) . 1. We will often write C(V) , or C(Q), 
instead of C(V, Q) . 

It results immediately from this definition that 

(A) C(Q) is mod 2 graded, the image of V being odd. In other words: C(Q) is 
a super algebra. Indeed, the defining relations are in the even part of the tensor 
algebra on V. We will write p(x) for the parity of a homogeneous element x of 
C(Q). 
(B) The algebra C(Q) admits a unique anti-involution {3 which is the identity on 
the image of V . Indeed, the opposite algebra C( Q)O is a solution of the same 
universal problem as C(Q) is. "Opposite" is taken in the ungraded sense, not in 
the super sense. Bourbaki's terminology: {3 is the principal antiautomorphism of 
C(Q). By definition, {3(xy) = {3(y){3(x). 

If we apply (2.1.1) to x + y, x and y and take the difference, we obtain the 
polarized form of (2.1.1): 

(2.1.2) xy + yx = iP(x,y)·1 

for iP the bilinear form Q(x + y) - Q(x) - Q(y) associated to Q. 
When 2 is invertible in k, (2.1.1) is equivalent to (2.1.2): take x = y in (2.1.2). 

In general, if X c V generates V, (2.1.1) is implied by (2.1.1) for x EX, and 
(2.1.2) for x of y in X . This makes it clear that 

(e) The formation of C(Q) is compatible with extensions of scalars. 

(D) If (V,Q) is the orthogonal direct sum of (V',Q') and (V" , Q"), the Clifford 
algebra C(Q) is the tensor product, in the sense of super algebras (Supersymmetry 
1.1 (1.1.5)) , of C(Q') and C(Q"). If {3' and {3" are the principal antiautomorphisms 
of C(Q') and C(Q") , the principal antiautomorphism {3 of C(Q) is given by 

{3(x0y) = (-1jP(,)p(Y){3(x) o {3(y) . 

107 
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Indeed, C(Q) is generated by the k-modules V' and V", with the relations 
(2.1.1) for x E V' or x E V" and the relations (2.1.2) for x E V' and y E V". 
For x E V' and y E V", (2.1.2) means that x and y supercommute, and the first 
assertion of (D) follows. For the second, one observes that for x in C(V') and y in 
C(V"), one has 

(3(x ® y) = (3«x ® 1)(1 ® y)) = (3(1 ® y)(3(x ® 1) 

= (1 ® (3(y))((3(x) ® 1) = (-1)"(x)p(,) (3(x) ® (3(y) . 

(E) The identity of V extends to an isomorphism from the opposite of the super 
algebra C(Q) to the super algebra C( -Q). 

Indeed, each defining relation X· x = Q(x)· 1 is replaced by its opposite x· x = 
-Q(x) . 1. 

We now take k = C. From now on, we assume V non reduced to O. 

Proposition 2.2 (Bourbaki Alg. Ch. 9 §9, no.4). Let Vbe a complex quadratic 
vector space. 

(i) If V is of dimension 2n > 0 the super algebra C(V) is isomorphic to End (S), 
with S of dimension 2n - 112n - l . 

(ii) Let D be the super algebra C[£] with £ odd and £2 = 1. If V is of dimension 
2n + 1, C(V) is isomorphic to End D(DN) ~ D ® MN(C) for N = 2n. 

Proof of (i). The quadratic space V is isomorphic to LfI) £Y with dim L = n and 
Q(e+a) = (e,a). Take S= I\'Lv. One defines 

(2.2.1) 

by mapping a in LV to the odd endomorphism aA, and e in L to Lt, the odd 
derivation of the exterior algebra 1\' L (viewed as a commutative super algebra) for 
which Lt(a) = (e, a). A decomposition of L as a direct sum of lines L. induces a dual 
decomposition of LV as the sum of the dual lines LV" and a decomposition of V as 
the orthogonal direct sum of the hyperbolic planes V, := L,fI)L v , . The super algebra 
C(V) is the tensor product of the super algebra C(V;), the graded vector space 
S = 1\' LV is the tensor product of the graded vector spaces S, := 1\' LV" and (2.2.1) 
is the tensor product of the similarly defined morphisms C( V;) ~ End (S;). To 
prove that (2.2.1) is an isomorphism, it hence suffices to check it when dim(L) = 1, 
a case left to the reader. 

Proof of (ii). For dim(V) = 1, C(V) is isomorphic to D. For dim (V) <: 3, we 
write V as the orthogonal direct sum of a line VI and of V2n , of dimension 2n. For 
S of dimension 2n

-
112n- 1 , C(V) is isomorphic to End (S) ® D - End D(S ® D) -

End D(DN), the D-module lID being isomorphic to the D-module D. 

2.3. The construction used in the proof of 2.2. (i) is an odd analogue of that of the 
Schr6dinger representation of Heisenberg groups, or Lie algebras. The analogy goes 
as follows. Let V be symplectic, rather than orthogonal, over a field k. Provide 
k fI) V with the Lie algebra structure for which k is central and for which the bracket 
of elements of V is given by [v" v~] = ,p(VI, vol. It is the Heisenberg Lie algebra 
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X associated to V. Write Vasa direct sum L Ell LV, with 1/1((' + o:',l" + 0:") = 
o:"(e') - a'(l"). The Lie algebra X acts on the vector space Sym'(LV), the algebra 
of polynomial functions on L, with 1 E k acting as the identity, a in LV acting by 
multiplication by a, and e in L acting by 8t . This turns Sym'(LV) into a module 
Over the universal envelopping algebra U(X) of X. Let 1 be the unit element 
of U(X) , and 1:1( be the central element 1 E k of X. Both act as the identity 
on Sym'(LV), which is hence a module over the quotient U,(X) of U(X) by the 
relation 1 = 1:1(. If we repeat this in the super case, for a purely odd super vector 
space V, the symplectic structure is, in concrete terms, a symmetric bilinear form 
on the underlying vector space. The sum kEll V is a super Lie algebra X, and Ul (X) 
is the Clifford algebra C(V). 

In the even case, U, (X) maps isomorphically to the algebra of all polynomial 
differential operators acting on Sym'(L V). In the odd case, the analogue is all 
endomorphisms of N LV Physicists use the same terminology in both cases: 1 in 
Sym'(LV) (resp. N LV) is the vacuum, LV acts by creation operators, and L by 
annihilation operators. 

The Poincare-Birkhoff-Witt theorem implies, in the even case, that 
Sym'(V)...::c, GrU,(X), where U,(X) is filtered by the images of the Ell V®i. In 

i :5 n 
the odd case, it implies that NV...::c, GrC(V). 

2.4. We return to the case of a complex quadratic vector space V. By 2.2 (i), if 
the dimension of V is even, the Clifford algebra C( V) is isomorphic to a matrix 
algebra, hence has up to isomorphism a unique simple module S. The group of 
automorphisms of S is the multiplicative group C'. The module S admits a mod 2 
grading S = S+ Ell S- compatible with the grading of C(V), unique up to parity 
change. From the super point of view, C(V) is a super matrix algebra, hence 
has exactly two isomorphism classes of simple super modules, exchanged by parity 
change. The even part C+(V) of C(V) is End(S+) x End(S-). As S+, S- '" {O}, 
the center Z of C+(V) is C x C, and the two isomorphism classes of simple super 
modules are distinguished by the character through which Z acts on S+. 

It follows that any automorphism 9 of C(V) can be extended to an automor
phism of (C(V), module S). The extension is unique up to an automorphism 
oX E C' of S. If 9 respects the grading of C(V), the extension respects or permutes 
the homogeneous components S± of S, depending on the action of 9 on the center 
of C+(V). 

In particular, O(V) acts projectively on S. The parity respecting subgroup is 
SO(V). 

The projective action of the group SO (V) on S induces a projective action 
of its Lie algebra so(V). In algebraic language, this can be expressed as fol
lows. The construction of the projective action can be repeated after extension 
of scalars from C to the ring of dual numbers B := C[£]/(£2), and interpreting 
so (V) as Ker(SO(V)(B) -> SO(V)(C)), one obtains a projective action p: so (V) -> 

End(S)/C of so(V) on S. Equivalent description: as C(V) is a matrix algebra, any 
derivation of C(V) is inner. In particular, the derivation defined by x in so(V) can 
be written as a ...... !f(x) ,a]. As this derivation is even, f(x) is in C+(V). It is well 
defined up an additive constant, and p(x) is multiplication by f(x). As C(Q) is, as 
an ordinary Lie algebra, the Lie algebra product of C and of IC(V), C(V)], f can 
be normalized to be a Lie algebra morphism from so (V) to IC(v) , C(V)] (usual 
bracket). Here is a direct construction of f, so normalized. 
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Identifying 50(V) with /\2(V) by 

(2.4.1) X A Y >---< endomorphism (v ...... q,(y, v)x - q,(x, v)y) of V , 

one defines I to be 

(2.4.2) 
1 

f: XAy>---< 2(xy - yx) . 

We have to check that for v in V, [J(XAY),V] is given by (2.4.1). As xy+yx is 
a scalar, one has indeed, for { , } the super bracket in C(V) 

I/(XAY),V] = Ixy,v] = {xy ,v} = x{y,v} - (x ,v }y 

= q,(y, v)x - q,(x, v)y . 

If the dimension of V is odd, C+(V) is a matrix algebra and the same argument 
shows that gO (V) acts projectively on a simple C+(V)-module S+ (unique up to 
isomorphism). This action lifts uniquely to a Lie algebra morphism from so(V) to 

IC+(V),C+(v)] = C+(V) n IC(v),C(v)]. This lifting is again given by (2.4.1), 
(2.4.2). 

Variant: if the dimension of V is odd, the super algebra Cry) has up to isomor
phism a unique simple super module S. The group of (even) automorphisms is 
CO. The group O(V) acts projectively on S (respecting the mod 2 grading) , and 
so does the Lie algebra so(V). The action is by multiplication by I(D), with I as 
in (2.4.2). 

2.5 . In the spirit of 2.3, the construction used in 2.4 is analogous to the one by 
which, using the uniqueness of an irreducible representation of the Heisenberg com
mptation relations, one gets on the representation space a projective action of a real 
symplectic group - or an actual representation of its double covering, the meta
plectic group. This is, however, an analytic story, involving infinite dimensional 
Hilbert spaces, as evidenced by the fact that the metaplectic double covering of tbe 
real symplectic group is not algebraic. Tbe Lie algebra story, bowever, bas a purely 
algebraic analogue. With the notations of 2.3, tbe symmetrized product gives a 
vector space isomorphism 

(2.5.1) 

The image of Sym 2(V) by tbis map is a Lie algebra normalizing V , and it is iden
tified by its action on V with the Lie algebra of the symplectic group. 

Assume V is tbe dual of E, so that Sym'(V) is tbe polynomial functions on E. 
If we replace 7f; by t7f;, and transport the product on the corresponding Ul (kffi V) to 
Sym'(V) by (2.5.1), we obtain on Sym'(V) a product " depending on t. It comes 
from a klt]-algebra structure on Sym'(V) ® kltl. 

One has 
I', 9 = Ig + ~ (/ ,g}t + 0(t2

), 

for { , } tbe Poisson bracket on the symplectic manifold E. A weakened version 
of the fact that Sym'(V) C Ul(kffi V) acts on V as Lie Spry) is the fact tbat tbe 
Hamiltonian vector fields on E given by quadratic functions are the infinitesimal 
symplectic transformations. 
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2.6. We return to the case of a complex quadratic vector space V. The Lie algebra 
morphism (2.4.1) , (2.4.2) from so(V) to C+(V) induces an algebra morphism 

(2.6.1 ) Uso(V) -+ C+(V) . 

For x , y in V, ~(xy - yx) is in the image of so(V); it differs from xy by the 
constant ~(xy + yx) = ~¢(x, y), and it follows that (2.6.1) is onto. The spinorial 
representations S of so(V) are those for which Uso(V) -+ End(S) factors through 
C+(V). By (2.6.1), they are identified with C+(V)-modules. By 2.2, if S is a 
simple super C(V)-module, the simple spinorial representations are isomorphic to 

for n even: S+ or S- i 

for n odd: S+ (isomorphic to S-). 

For real quadratic vector spaces, spinorial representations are those which be
come spinorial after extension of scalars to C. They are identified by (2.6.1) to 
C+ (V)·modules. 

The spinorial representations of the spin group Spin(V) are those representa
tions obtained by integrating the spinorial representations of the Lie algebra so(V). 

Remark. If S is a super module over C(V) , the induced C+(V)-module structure 
turns S+ and S- into spinorial representations of so(V). The maps V ® S± -+ S" 
induced by the module structure are morphisms of representations. Indeed, for 
a E so (V) C C+(V), a(vs) = [a, vJs + v(as). 

If V is odd-dimensional, let Z be the commutant of C'(V) in C(V) and let Z
be its odd part. It is one-dimensional. The multiplication by a generator z of Z
is an isomorphism of representations S± -+ S". 

2.7. In the same way that, in 2.4, the Lie algebra so(V) is identified with a sub
Lie algebra of C+(V), the spin group Spin(V) can be realized as a subgroup of the 
multiplicative group of C+(V). Let G be the group of invertible elements in C+(V) 
or C-(V) which normalize V. We let it act on V by 

This action respects the quadratic form Q( v) = v2 on V . If 9 fixes V, 9 is in the 
center (in the super sense) of C(V), hence is a scalar (3.4 and 3.3.1): we have an 
exact sequence 

(2.7.1 ) 1 ----> C ----> G ----> 0 (V). 

Elements w of V with Q(w) '" 0 are in G- := G n C-(Q)' and p(w) is the 
reflection relative to the hyperplane orthogonal to w. As each element of O(V) is 
a product of reflections, the sequence (2.7.1) is exact on the right. As a product of 
k rellections has determinant (_I)k, it follows from (2.7.1) that G+:= GnC+(Q) 
maps onto SO(V)' while G- maps onto O(V) - SO(V). We have 

(2.7.2) 1 ----> C' ----> G + ----> SO (V) ----> l. 

If 9 E G, applying the principal antiautomorphism (J to the defining relation 

gv = (-I)p(g)vg , 
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we see that ,6(g) E G with p(,6(g)) = p(g) -I It follows that g,6(g) is in C, and 9 ...... 
g,6(g) is a homomorphism from G to C': gh,6(gh) = g(h,6(h)),6(g) = g,6(g)h,6(h). 
The Spin group is the kernel of 

(2.7.3) g,6(g): G+ ~ C . 

On C' C G+, g,6(g) is the squaring map. It follows that the group Spin(V) is a 
double covering of SO(V): we have a commutative diagram 

1 ~ jJ.2 ~ Spin ~ SO ~ 1 

1 1 II 
(2.7.4) 

G+ ~ SO ~ 1 

For real quadratic vector spaces, or over any field k, the groups of k-points of 
the algebraic group G+ and Spin (V) maintain the same description, but in (2.7.4) 
Spin(k) ~ SO(k) is in general not surjective, as .\ ...... .\2: k' ~ k' isn't . 



CHAPTER 3 
Reality of Spinorial Representations and 

Signature Modulo 8 

3.1. Let V be a real quadratic vector space. By 2.6, the reality properties of the 
irreducible spinorial representations of .0(V) depend only on the structure of the 
R-algebra C+(V) . As what we care about is the category of C+(V)-modules, and 
more precisely the number of isomorphism classes of simple modules, and their 
fields of endomorphisms, C+ (V) matters only up to Morita equivalence. It will be 
convenient to consider the full super algebra C(V), and to encode its properties in 
terms of the super Brauer group (C.T.C. Wall (1963)) whose properties we review 
in 3.2 to 3.5. 

3.2. Fix a ground field k of characteristic ¥ 2. A super k-algebra A is a (super) 
division algebra if A ¥ 0 and if every nonzero homogeneous element a of A is 
invertible. Every super module M over a super division algebra is free: if A is 
purely even, it is the sum of A-vector spaces in even and odd degree; if A is not 
purely even, a basis of M+ over the even part A + of A (which is an ordinary division 
algebra) is a basis of Mover A. 

From now on, we will consider only finite dimensional super algebras over k. 

Example. If k is algebraically closed , the only finite dimensional super division 
algebras A over k are, up to isomorphism, k itself and D := k[£] with £ odd and 
£2 = 1. The super algebra D is not super commutative. Its super center is reduced 
to k. It is isomorphic to the opposite super algebra DO, which is k[,O] with ,0 

odd and (,0)2 = -1. Left and right multiplications turn the super vector space 
D into a D ® DO-module, where ® is the super tensor product of super algebras 
(Supersymmetry (1.1.5)), and 

(3.2.1) 

a 111 matrix algebra. Indeed, in the basis 1, ' of D, the matrix of multiplication 

by , ® 1 (resp. 1 ® £0) is (~ ~) (resp. (~-"')) . Those matrices generate M'l' and 

both sides of (3 .2.1) have the same dimension. Over an algebraically closed field , 
D hence appears as a square root of the matrix algebra M li l . 

3.3. A (finite dimensional) super algebra A over k is central simple if A ¥ 0 and , 
after extension of scalars to an algebraic closure k of k, it becomes isomorphic to 

113 
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a matrix algebra Mrl" or to Mrl' 0 D. The latter is isomorphic to Mr+' 0 D, 
the super D-module krl ' 0 D being isomorphic to Dr+s. The following statements 
about an algebra are true as soon as they are true after an extension of scalars. 
To check them for central simple algebras, it hence suffices to check them after 
extension of scalars to an algebraic closure k of k. 

(3.3.1) The super center is reduced to k. 

(3.3.2) As in (3.2.1), A0A°....::,End k(A). 

(3.3.3) For any A-module L '" 0, with commutant B := EndA(L) , B is central 
simple and one has 

The super center of a tensor product is the tensor product of the super centers, 
and this reduces (3.3.1) to the cases of Mr l• and D. The map (3.3.2) for a tensor 
product is the tensor product of the maps (3.3.2) for the factors, and this reduces 
(3.3.2) to (3.2.1) and to (3.3.2) for Mrls> i.e. for Endk(V) for V = krl'. This case 
is checked by identifying the End (V) 0 End(V)O-module End (V) to the End (V) 0 
End(VV)O-module V 0 VV If A = End (V), any A-module is of the form V 0 W, 
and (3.3.3) results from the commutant being End (W). If A = D0Endk(V), for V 
a purely even k-vector space, any A-module is of the form D 0 V 0W for W a purely 
even k-vector space, and (3.3.3) results from the commutant being DO 0 Endk(W), 

It also results from (3.2.1) that the tensor product (in the super sense) of central 
simple algebras is central simple. 

3.4. Let A be a central simple algebra. If S is a simple super module, and f a 
homogeneous endomorphism, the kernel and images of fare submodules. If f '" 0, 
f is hence invertible: the commutant B = End A (S) is a super division algebra 
(super Schur's lemma). By (3.3.3), A is isomorphic to Mrls ® BO for some rand 
s. If S ' is another simple module, Hom A (S, S') is compatible with extension of 
scalars, hence, as one sees over k, nonzero. Picking a homogeneous element in 
Hom A (S, S'), one sees that Sand S' are isomorphic, possibly up to parity change. 
It follows that their commutants are isomorphic. 

Two central simple algebras are said to be similar if the commutants of their 
simple modules are isomorphic, i.e. if they are both of the form Mrls 0 B for the 
same central simple division algebra B. 

The super Bmuer group sBr(k) is the set of similarity classes of central simple 
algebras over k, with product the tensor product. That it is a (commutative) group 
follows from (3.3.2). 

Let B be a central simple division algebra, and A = M rls ® B. If A is not 
purely even, then 

(a) if B is purely even, A+ '" Mr(B) x M,(B), 

(b) if B is not purely even, A '" Mn 0 B with n = r + s and 
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In both cases, the Morita equivalence class of A + depends only on the class of A in 
s Br(k). 

If V is a quadratic vector space over k, C(V) is central simple. Indeed, after 
extension of scalars to k, C(V) becomes isomorphic to the tensor product of dim(V) 
copies of D. If V is hyperbolic, C(V) is a matrix algebra. This can be checked as 
in the proof of 2.2 (i) , or writing (V,Q) = (V"Qd E!) (V" -Qd, it can be deduced 
from (3.3.2) and 2.1 (D)(E). It then follows from 2.1 (D) that V ,.., C(V) induces 
a homomorphism 

(3.4.1) W(k) - s Br(k) 

from the Witt group of k to the super Brauer group. 

Remark 3.5. Using arguments parallel to those of Bourbaki Alg. Ch. 8, one can 
show that for A a nonzero finite dimensional super algebra over k, the following 
conditions are equivalent. 

(i) A is central simple; 

(ii) A ® AD...::., Endk(A); 

(iii) The super center of A is reduced to k, and the super A-module A is semi
simple (equivalently: as an ungraded algebra, A is semi-simple). 

(iv) A is isomorphic to M",®L for some r and s and some super division algebra 
Lover k with super center reduced to k. 

Proposition 3.6 (C. T. C. Wall (1963) p. 195). The super Brauer group of lR is 
cyclic of order 8, generated by the class of R[o] with 0 odd and 0 2 = 1. For V a 
real quadratic vector space, C(V) is similar to R[o]®,gn(V). The similarity class of 
C(V) and the Morita equivalence class of C+(V) (for V -i' 0) hence depend only 
on the signature of V modulo 8. 

That s Br(R) is of order 8 results from the following lemma, valid for any field 
k of characteristic -i' 2. 

Lemma 3.7 (C. T. C. Wall (1963) Th. 3). The group sBr(k) is an iterated exten
sion of'L/2 by k' /k·2 by the ordinary Brauer group of k. 

Proof. The morphism s Br(k) - 'L/2 is given by extension of scalars to k, for Ii 
an algebraic closure of k. By 3.2 (example), one has indeed sBr(k) = 'L/2. 

The kernel sBr(k)' corresponds to central simple super algebras A which by 
extension of scalars to k become isomorphic to a matrix algebra Mr". The algebra 
Ako isomorphic to M"" has two isomorphism classes of simple modules, exchanged 
by parity change. The Galois group Gal(k/k) acts on the set I(Ak) of those iso
morphism classes, defining 

0A: Gal(k/k) _ 'L/2 . 

Using that the simple (A' ® A")k-modules are the tensor product of simple Ai 
and Ai! modnles, one checks that 0MM' = etA + ON and A ,.., OA induces a 
homomorphism 

(3.7.1) sBr(k)' _ Hom(Gal(k/k),'Lf2) = k' W 2 , 
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where to u in k' corresponds the homomorphism giving the action of Galois on 
±y'U. 

If A is purely even, Ai; is isomorphic to Mn{k), one element of I{A) is purely 
even, the other purely odd, and QA is trivial. If A is not purely even, Ai; is 
isomorphic to Mrl,(ic) with T , s > 0, the center Z+ of A+ is of dimension 2, becoming 
isomorphic to Ii; x k over k, and I{A) is in bijection with the two characters Z+ - k 
of Z+, a simple module S corresponding to the character by which Z+ acts on S+ . 
For A the Clifford algebra C(k2,X2 - ay2), one has Z+ = A+ = (l,ele,) and 
(ele2)2 = -e?e~ = a. This shows that (3.7.1) is onto. 

The kernel sBr{k)" of (3.7.1) corresponds to the central simple algebras, for 
which Ai; is isomorphic to Mrls and for which either A is purely even or A + has a 
center isomorphic to k x k. If A is a super division algebra, A must be an ordinary, 
purely even, division algebra, and s Br{k)" = Br{k). 

3.8 Proof of 3.6. For A a central simple algebra over R, let t be the trace for 
the underlying ungraded algebra, let sgn+ (resp. sgn-) be the signatures of the 
quadratic forms t{xy) on A+ (resp. A-), and define 

s{A) := sgn+ + sgn-i E Zli) C C . 

For a tensor product Al ® A2 , t vanishes on the At ® A~ other than Ai ® At , 
where it is the tensor product of t for Al and A2. On At ® A~ , t{xy) is related to 
the tensor product of the bilinear forms tl (XI yd and t2{X,Y2) by 

Ai ® At, Ai ® A2" or Al ® At: t{xy) = tl (xlyJ) ® t,{X2Y2) 

Al ® A2" : t{xy) = -tl (xlyd ® t2{X,y,), 

the latter because {Xl ® yd . (X, ® y,) = -(XIX,) ® (Yl y,) . 
The signature being multiplicative, and changing sign when the bilinear form 

is replaced by its opposite, we get 

For a matrix algebra Mr,s, off-diagonals contribute an isotropic form, and 

s{Mr ,, ) = T + s 

For IR:IE) with E odd and E' = 1, one has s = 1 + i, of order 8 in e /(R+)·. 
As s Br(lR) is of order 8, it follows that s Br{lR) is cyclic of order 8 with RIE) as 
generator. The remaining statements in 3.6 result from 3.4. 

3.9. Let us identify s Br{lR) with the set of isomorphism classes of super division 
algebras over IR. Write E (resp. EO) for an odd quantity with 0' = 1 (resp. (EO)' = 
-1), and write IR, <C, IHI for JR, <C, IHI in purely even degree. The bijection 3.6 between 
s Br{lR) and Z/8 is as follows. 

o .-->lR 

1,......... RIE) 

2 ......... CiEj,ez = ZE, 

3 ......... IHI ® IRIEO
) 

4~ III 

5 ......... IHl ® RIE) 

6 ......... CiEO),EZ = ZED, 

7 .......... IR[<O) 
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The image of 2 is the class of RIEbE21 with Er = 1, E1E2 = -E2El' One has 
(E1E2)2 = -1 and the claim for 2 follows. Passing to the opposite algebra, we 
get the image of 6. As the class of H is of order 2, it must be the image of 4. 
One concludes by using that 5 = 4 + 1 and that nand -n correspond to opposite 
algebras. 

By 3.4, to justify lA, it suffices to read the even part of the super algebras in 
this table. 



CHAPTER 4 
Pairings and Dimension Modulo 8, over IC 

Let V be a complex quadratic vector space, and S a spinorial representation 
of Spin(V) or, what amounts to the same, a C+(V)-module (2.6) . Let (3 be the 
principal antiautomorphism of C(V) (2.1 (B» . 

Proposition 4.1. A bilinear form ( , ) on S is invariant by Spin(V) if ond only 
if for a in C+(V), 

(4.1.1) (a5 , t) = (5 ,(3(a)t) . 

If (4.1.1) holds, for 9 E G+ C C+(V) (2.7), one has 

(4.1.2) (g5 ,gt) = (5, (3(g)gt) = (3(g )g(5 , t) . 

In particular if 9 is in the spin group, i.e. if (3(g)g = 1, 9 leaves ( , ) invariant. 
Conversely, if Gleaves ( , ) invariant, its Lie algebra so(V) C C+(V) leaves it 

invariant too: for x in so(V), 

(xs,t) + (s,xt) = o. 

As (3(x) = -x (a consequence of (2.4.1) (2.4.2)), this gives (4.1.1) for a = x and 
one concludes by using that so (V) generates C+(V) (2.6). 

4.2 Variants. (i) If S is a C(V)-module, and if a bilinear form ( , ) on S is such 
that (as , t) = (s , (3(o)t) , for 0 in C(V) , the same proof shows that for 9 in the 
subgroup G of C(vl' (2.6), (4.1.2) holds. In particular, ( , ) is invariant by the 
kernel of (3(g)g: G ~ C. The converse holds. The condition (as , t) = (s,(3(a)t) for 
a in C(V) is equivalent to 

(4.2.1) (vs,t) = (s,vt) for v in V . 

(ii) Let V be a complex quadratic vector space. We have Q(v) = (v , v) and we 
use the symmetric bilinear form ( , ) to identify V with its dual. Let Sand S V be 
vector spaces in duality, provided with r: S ® S -> V and r': Sv ® SV -> V, both 
symmetric. The self-duality of V allows us to identify rand r' with T V ® S ~ SV 
and -y': V ®Sv -> S . Assume that -y and -y' turn S$Sv into a C(V)-module. The 
vector spaces Sand SV become C+(V)-modules, hence representations of Spin(V). 
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Claim: the duality pairing S®Sv -+ C, f and f' are morphisms of representations. 

By the remark in 2.6, "/ and "/' are morphisms of representations of Spin(V), 
so that it suffices to check that the duality pairing is a morphism too. Define, on 
SEll SV, €(s + 5', t + t') = s'(t) + t'(s). The symmetry of f and f' translates as 

€(vs, t) = (f(s, t), v) = €(s, vt) 

€(vs',t') = (f'(s',t')v) = €(s',vt), 

and (i) gives the G-invariance of €, a fortiori the Spin(V)-invariance of the duality 
pairing of S with S'. 

4.3. It follows that the pairings between irreducible spinorial representations of 
Spin(V) are encoded in (C+(V),,B). As in §3, it is convenient to consider the full 
Clifford algebra. 

This leads to considering central simple super algebras A, endowed with an even 
involution ,B: A -+ A which is an antiautomorphism of the underlying ungraded 
algebra: 

(4.3.1) ,B(xy) = ,B(y),B(x). 

The tensor product is defined as follows: take the tensor product of super 
algebras, and define ,B as extending the involutions of the factors: 

(4.3.2) ,B(a ® b) = (_1)"(a)p(b) ,B(a) IS> ,B(b). 

Tensor product is associative and commutative. For Clifford algebras, endowed 
with their principal antiautomorphisms, it corresponds to the orthogonal direct 
sum of quadratic vector spaces. 

4.4 Example. Let S be a super vector space, and A := End(S). Antiautomor
phisms ,B of the underlying ungraded algebra correspond to nondegenerate bilinear 
forms on the ordinary vector space underlying S, taken up to a factor, by 

(ax,y) = (x,,B(a)y). 

Involutive ,B correspond to symmetric or antisymmetric forms. Even,B correspond 
to even or odd forms. 

Suppose given two super vector spaces Si (i = 1,2) provided with even or odd, 
symmetric or antisymmetric bilinear forms. Let (A,,B) be the tensor product of the 
corresponding (Ai,,B). One has 

We leave it to the reader to check that the involution ,B of A corresponds to the 
following bilinear form on S, IS> S2: 

(4.4.1) 

If the form ( , )i on Si is of parity Pi and of sign Si (+ for symmetric, - for 
antisymmetric), the parity and sign of the form (4.4.1) on S, IS> S2 are given by 

(4.4.2) 
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4.5 Remark. (4.3.1) flouts the sign rule. This could be repaired by considering 
rather "( defined by 

"((a) := ,8(a) for a even, 

:= i,8(a)for a odd. 

The condition (4.3.1) translates into "((ab) = (-I)p(o)p(b)"((bh(a) , involutivityof 
,8 translates as the square of "( being the parity automorphism "multiplication by 
(_I)p(o)", and (4.3.2) becomes "( = "(' 0"(". 

4.6. Let us call (A,,8) neutral if A is of the form End (S) and if,8 is given as in 4.4 
by an even symmetric form ( , ) on S: the sum of symmetric forms on S+ and S- . 

Define (A , ,8) and (B,,8) to be similar iffor suitable neutrals (M,,8) and (N, ,8) , 
one has 

(A , ,8) 0 (M,,8) '" (B,,8) 0 (N,,8). 

Similarity is an equivalence relation, and is stable under tensor product. Let B(C) 
be the set of similarity classes. Tensor product induces on B(C) a composition law 
associative, commutative and with unit. The following proposition shows that it is 
a group. 

Proposition 4.7. Let (A , ,8) be as in 4.3, and let Tr be the trace of the underlying 
ungraded algebra. Let Q be the parity automorphism a ...... (-I)p(o)a. Then (A,,8) 0 
(Ao,Q,8) is neutral. More precisely, by the isomorphism 

A 0 A°"":::'" End(A) 

and its involution corresponds to the even symmetric form Tr(x,8(y)) on A. 

Proof. We have 

Tr((a 0 b . x),8(y)) = (-1jP(b)p(x)Tr(axb,8(y)) = (-1jP(b)p(x)Tr(xb13(y)a) . 

As b,8(y)a = 13(,8(a)y,8(b)) = (-l)p(b)p(Y ),8(,8(a) 0,8(b)· y), this equals 

= (_l)P(b)(p(x)+p(Y))Tr(x . ,8(,8(a) 0 ,8(b) . y) . 

Both sides are zero if pta) + p(b) + p(x) + ply) is odd. We hence may replace 
p(b)(p(x) + pry)) by p(b)(p(a) + p(b)), giving 

= Tr(x.13((-I)p(o)p(b),8(a) 0 Q,8(b)· y), 

and a0b ...... (-I)p(o) p(b),8(a) 0Q,8(b) is the tensor product of,8 and Q,8. 

Proposition 4.8. The group B(C) is cyclic of order 8, generated by the class of 
the Clifford algebra C(V) for dim(V) = 1. 
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Proof. We first consider the kernel B'(C) of the morphism "forgetting (3" from 
B(C) to s Br(C) = 2/2, i.e. we consider the (A, (3) for which A is a matrix algebra 
M rl ,. By 4.4, there are four similarity classes of them, characterized by a parity p 
and a sign s: the parity, and the symmetry, of a bilinear form on a simple A-module 
defining (3. The product is given by (4.4.2), showing that B'(C) is cyclic of order 
4, with generators the elements for which the parity p is odd. 

The Clifford algebra C(V) with dim(V) = 1 maps to a generator of s Br(C). It 
remains to check that its square, the Clifford algebra C(W) with dim(W) = 2, is a 
generator of B'(C). The algebra C(W) is a matrix algebra MIll = End(C1,1) with 
W as its odd part. The transposition relative to the odd symmetric form xy on 
CI,I fixes W, hence is the principal antiautomorphism, giving for C(W) the sign + 
and the parity 1: the parity is odd as required. Applying (4.4.2), we also see that 
for dim(V) even, the parity p and the sign s of C(V) are given in terms of dim (V) 
mod 8 by the table 

dimension mod 8 s p 

0 + 0 
2 + 1 
4 0 

(4.8.1) 6 1 

4.9. Suppose V odd-dimensional, and let S be the even part of a simple super 
C(V)-module. Let Z be the center of the ungraded algebra C(V), and z be a 
generator of Z-. Then, v, s 1----+ zvs is a morphism of representations of the Spin 
group: V 0 S -> S. 

If V is even-dimensional and S a simple super C(V)-module, the Clifford mul
tiplication induces morphisms of representations of the Spin group: V 0 S+ -> S
and V 0 S- -> S+. 

We now check the uniqueness claim in 1.5 that, up to a scalar factor, these 
morphisms are the only morphisms V 0 SI -> S2, for SI and S2 irreducible spino
rial representations. If V is of dimension 1 or 2, this is clear by inspection, us
ing the description 1.1. If dim V '" 2, the representation V is irreducible. As 
Hom(V 0 SI, S2) = Hom(V, Hom (SI, S2)), it suffices to check the 

Lemma 4.9.1. (i) For d := dim(V) odd, the irreducible representation V occurs 
exactly once in End (S). 

(ii) For d even, V occurs exactly twice in End (S). 

Proof. By the odd analogue of the Poincare-Birkhoff-Witt Theorem, the Clifford 
algebra C(V) is, as a representation of O(V), isomorphic to N V, with C+(V) 
isomorphic to 1\2* V. 

If d is odd, End (S) "" C+(V) "" 1\2. V. As I\i V"" I\d-i Vasa representation 
of SO(V), this can be rewritten 

S0S=E9l\ i V (sumforO~i",(d-l)/2). 

The 1\ i V for i '" (d - 1)/2 are irreducible, non isomorphic representations: they are 
the trivial representation, and all fundamental representations except the spinorial 
one. The representation V occurs only once, for i = 1. 



CHAPTER 4. PAIRINGS AND DIMENSION MODULO 8, OVER C 123 

If d is even, End (S) 0; C{V) 0; /\' V, which decomposes as follows into irre
ducible representations: twice Ell /\i V and the two constituents of /\d/2V (the 

1<d/2 

eigenspace of *). The representation V occurs twice. 
We now check the table in 1.5 for d := dim(V) even. Let ( , ) be the nond ... 

generate bilinear form on S for which 

(4.9.2) (vs, t) = (s, vt) 

for v in V. It is unique up to a scalar factor. Its parity and sign (4.4) are given 
by (4.8.1). If of odd parity, it makes of S+ the dual of S-. If even, it gives a 
nondegenerate form on S+ and S-, of sign given by (4.8.1). This confirms the 
column "forms on spinors" in 1.5. 

The morphism of representations (2.6, Remark) 

(4.9.3) 

induced by the Clifford module structure of S can, as V is self dual, be reinterpreted 
as a morphism from S®Sv to V, or, using ( , ) to identify Sand SV, as a morphism 
of representations 

(4.9.4) r: S®S~ V. 

Its defining characteristic property is that 

(4.9.5) (r(s, t), v) = (vs, t) . 

As (4.9.3) is odd, the parity of (4.9.4) is opposite to that of ( , ). By (4.9.2), its 
sign (symmetric, or antisymmetric) is the same as that of ( , ) and (4.8.1) confirms 
the column Hsymmetry of spinors, spinors -+ V" of 1.5. 

Corollary 4.9.6. Let L + and L - be spinorial representations of Spin{V), and 
.: V ® L± ~ L'f be morphisms of representations which turn L := L + Ell L - into a 
C(V)-module: 

v.v.t=Q{v)t. 

Then the resulting C+ (V)-module structure of L± induces its structure of represen· 
tation ofSpin{V). 

Proof. We first assume that L + and L - are isotypic. Let S be a simple super 
C{V)-module, with its resulting structure of representation of Spin{V). Replacing 
S by ns if needed, we may assume that L± is a multiple of S±: L± = S± ® W±. 
As the morphism V ® S± .... S'f induced by the module structure is the unique 
morphism of representations from V ® S± .... S'f, the morphisms V ® L± ~ L'f are 
induced by Q±: W± ~ W'f. That they turn L into a C(V)-module implies that 
Q+ and ,,- are inverses of each other: L, as a representation of Spin{V) and as a 
C{V)-module, is a multiple of S. 

If L + or L - is not isotypic, the dimension of V is even, they are two irreducible 
spinorial representations SI and S2 and if L; is the Si-isotypic part of L±, as there 
is no morphism V ® s, .... S, the data V ® L± ~ L'f breaks into the direct sum 
of (V ® Li .... L:;, V ® L:; .... Lil and of (V ® Lt .... L1, V ® L, .... Lt). This 
reduces us to the already considered isotypic case. 
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4,10 Lemma. Fix (A,,8) as in 4.3, with A nontrivial in s Br(C) , i.e. of the form 
A + €I Z , where A + is a purely even matrix algebra and wh",." the center (not super 
center) Z of A is of dimension Ill. Whether,8 acts by + 1 or by -Ion Z- depends 
only on the similarity class of (A,,8) . 

Proof. Take (B,,8) with B = End (S) and,8 defined, as in 4.4, by a nondegenerate 
bilinear form on S of parity p and sign s. The involution ,8 of B+ acts trivially on 
the center Z(B+) if P = 0, nontrivially if p = 1. The center Z(B+) is <C if B is 
purely even, <C x <C otherwise. Let v be 1 in the first case, and a nonzero element 
(a, -a) ill the second. One has ,8(v) = (-I)Pv. For z in Z-, v 0 z commutes with 
(B0A)+. Indeed, both v and z commute with B+ 0A+, and anticommute with 
B- €I A-. The negative part Z-(B 0 A) of the center of B 0 A is hence vZ-, and 

(4.10.1) 

Indeed , ,8(vz) = ,8(z),8(v) = ,8(v),8(z) = (-I)"v,8(z). If (B , ,8) is neutral, p = 0 
and 4.10 follows. 

4.11 Corollary. The similarity class of (A +,.8) depends only on that of (A,.8). 

Proof. It is the difference of (A,,8) and (Z,,8) in B(C). 
From 4.10 and 4.11, we get two similarity invariants of (A,.8) as in 4.10, i.e. 

of (A,,8) whose class in B(C) = Z/8 is odd: the sign s(,8) by which ,8 acts on Z - , 
and the sign s(A+) of the form corresponding to (A+,.8) by 4.4. The class 1 in 
B(C) = Z/8 is represented by (<C[f],,8) with f odd, f2 = 1 and ,8 the identity. By 
4.7, the class -1 is represented by <C[f) with,8f = -f. The classes 0 and 4 can be 
represented by purely even algebras, and writing any odd element of Z/8 as (0 or 
4) ± 1, one deduces from (4.8.1) the following table: 

n s(A+) s(.8) 

1 + + 
3 
5 + 

(4.11.1) 7 + 

4.12 . We now check the table in 1.5 for V odd-dimensional. The Clifford algebra is 
as in 4.10: C(V) = C+(V)0Z. Let S be a simple super C(V)-module. The C+(V)
module S+ is then the unique irreducible spinorial representation of Spin(V). On 
S+, there is a nondegenerate bilinear form ( , ) for which 

(4.12.1) (as, t) = (s, ,8(a)t) 

for a in C+(V). It is invariant under Spin(V). Its sign is the sign s(C+(V)) 
attached to (C(V),,8) in 4.4, and (4.11.1) confirms the column "forms on spinors" 
in 1.5. 

Multiplication by zv gives a morphism of representations 

(4.12.2) V0S+-S+ 
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which, as in 4.9, defines 

(4.12.3) S+0S+-V 

characterized by 

(4.12.4) (f(s 0 t) , v) = (zvs, t) . 

One has {3(zv) = {3(v){3(z) = v{3(z) = {3(z)v and, by (4.12.1), the sign of (4.12.3) 
is that of ( , ) if s({3) = +, and is the opposite if s({3) = -. The table (4.11.1) 
confirms the column "symmetry of spinors, spinors -+ V" of 1.5. 



CHAPTER 5 
Passage to Quadratic Subspaces 

In this Chapter we work over C. As promised in §l.l, we first check the 

Proposition 5.1. Forr > 0, if one restricts the spin representation ofSpin(2r+l) 
to Spin(2r), one obtains the sum of the two semi-spin representations ofSpin(2r). 
Each of the two semi-spin representations of Spin(2r) restricts as the spin repre
sentation of Spin(2r - 1). 

Proof. Let V be the orthogonal direct sum of Wand of a line L, and put D := 

C(L). If dim(W) is odd, one has a tensor decomposition C(W) = C+(W) ® Z. 
The commutant Z of C+(W) is of dimension 111, and C(V) = C+(W) ® (Z®D) 0: 

C+(W) ®MlI" If S is a simple C+(W)-module, S®C'" is a simple C(V)-module. 
As a C+(W)-module, this is S ens, and the second statement follows. 

Suppose now that dim(W) is even. For some r, C(W) ",M'I" If S is a simple 
C(W)-super module, S ® D is a simple C(W) ® D-module. Its even part (the spin 
representation of Spin(V)) is, as a C+(W)-module, isomorphic to S+ eS- and the 
first statement follows. 

5_2. Let V ! 0 be an even-dimensional complex quadratic space, and let S be a 
simple super C(V)-module. Let ( , ) be a nondegenerate bilinear form on S for 
which 

(5.2.1) (vs, t) = (5, vt) . 

As we saw in 4.4, this form is unique up to a factor. 
Let v ! 0 be an isotropic vector in V. Define V, = vl. lev. The square zero 

endomorphism v of S super commutes with vl.. Its kernel ker(v) is hence stable 
under vl.. The action of vl. on Ker( v) factors through V" and turns Ker( v) into a 
C(Vd-module. 

Proposition 5_3. With the notations of 5.12 
(i) Ker(v) = Im(v); 

(ii) Ker(v) is an irreducible representation ofC(V,); 

(iii) The form ( , ) vanishes on Ker(v); 

(iv) Define the form (, ), on Ker(v) = Im(v) by (s,vt), = (-I)P(s)(s,t). It is 
nondegenemte. The C(vd-moduie Ker(v), and ( , h, obey (5.2.1). 
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Proof (i) , (ii). Lift V, in v.i and let H be the orthogonal complement of V, in 
V . The quadratic space V becomes the orthogonal direct sum of V, and H, with 
dim(H) = 2 and v E H. Let 8 , be an irreducible super representation of CiVIl, 
and let 8H be one of C(H). The super vector space 8H is of dimension III and, 
possibly after parity change and in a suitable basis, the matrix of multiplication by 
v is 

(5.3.1) 

One has C(V) = C(V,) ® C(H) and, possibly after a parity change for 8
" 

the 
C(V)-module 8 is 8 , ® 8H. This reduces (i) to the case of H , clear on (5.3.1) , 
which also shows that the C(V, )·module Ker(v) is isomorphic to 8" proving (ii). 

(iii) As (vs, vt) = (s, vvt) and v 2 = Q(v) = 0, (iii) results from (i). 

(iv) As ( , ) is nondegenerate, for s oF 0 in Ker(v) there exists t such that (s , t) oF O. 
By (iii) , t rt Ker(v) and (s, vt) 1 oF 0: the form ( , ), is nondegenerate and it remains 
to check that it obeys (5.2.1). Indeed, if t, = vt and if w is in v.i, one has 

(ws,t , ) = (-I)p(ws )(ws,t) = (_I)p(ws )(s,wt) 

= (-I)p(ws)+p(s)(s,vwth = -(s,-wvt) = (S , wt), . 

Proposition 5.4. Under the same assumptions, let r: 8 ® 8 -; V be defined by 
{4. 9. 5). For s, t in Ker(v) one has in V 

(5.4.1) r(s, t) = (-1)P(S)(8, t),v . 

Proof. We check that both sides have the same inner product with any w E V. If 
t = vx, the left side indeed gives 

(w , r(s , t)) = (ws , vx) = (vws , x) = «vw+wv)s,x) 

= (v ,w)(s, x) = (-I)P( s)(v,w)(S,t), . 



CHAPTER 6 
The Minkowski Case 

6.1 Theorem. Let (V, Q) over It be of signature (+, -, . . . , -). Let SR be an 
irreducible real spinorial representation of Spin (V, Q). The commutant Z of SR is 
R, C or Ill. Let - be the standard anti-involution of Z. 

(i) Up to a real factor, there exists a unique symmetric morphism r: SR <8> SR - V. 
It is invariant under the group Zl of elements of norm 1 of Z. 

(ii) For v E V, if Q(v) > 0, the form (v, r(s, t)) on SR is positive or negative 
definite. 

The set of v for which Q( v) > 0 has two connected components. It follows from 
(ii) that for v in one of them, call it C, the form (v, r(s, t)) is positive definite and 
that for v in the other, i.e. for -v in C, it is negative definite. 

Let d be the dimension of V. The signature is 2 - d and, by the table 1.4.1, 
proved in 3.1 , 3.9, Z and the complexification of SR are given as follows as a function 
of d modulo 8. For d even, S+ and S- denote the semi-spinorial representations. 
For dodd, S denotes the spin representation. 

2 IR ,S+ or S-

3 or 1 IR , S 

(6.1.1) 4 or 0 C , S++S-

5 or 7 H ,2S 

6 IHI ,2S+ or 2S -

Proof. We first show that if d is congruent to 2 modulo 8, a morphism r with the 
listed properties exists. In this case, the signature is 0 modulo 8, so that C(V) is a 
matrix algebra. Let S = S+fI)S- be a simple C(V)-module. The possible SR are S+ 
and S- . The pairing ( , ) on S, relative to which the principal anti automorphism (3 
is transposition, is odd and the corresponding r: S <8> S - V is even and symmetric 
«1.5.1) proved in 4.8, 4.9) . 

Fix v with Q( v) > 0 and let VI be its orthogonal complement. By 5.1 , the 
graded module S remains simple as a graded C(VI )-module, and S+ remains abso
lutely irreducible as a representation of the group Spin(Vd. The symmetric bilinear 
form (v , r(s, t)) on S+ is not identically zero: if it were zero for one v, it would 
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be zero for all v by Spin(V)-invariance, and r would be zero. This form is invari
ant under the compact group Spin(V,) . As S+ is an irreducible representation of 
Spin(V,), it must be definite. The same applies to S-. 

We now show I in all dimensions, the existence of a morphism SR ® Sa --+ V 
with the properties listed in 6.1 (i) (ii). Embed V in a Minkowski space Vo of 
dimension congruent to 2 modulo 8: Vo is the orthogonal direct sum of V and of a 
negative definite quadratic space of a suitable dimension. Let pr be the orthogonal 
projection of Vo onto V. 

Let So = Sri Ell So be a simple C(Vo)-module. As Vo is of dimension congruent 
to 2 modulo 8, there exists a morphism of representations of Spin(Vo): roo st ® 
st - Yo, with the properties listed in 6.1 (i)(ii). As Spin(V) C Spin(Vo), we 
Can by restriction consider So as a Spin(V)-representation. The action of Spin(Vj 
comes from the structure of C(V)-module of So, deduced from its structure of 
C(Vo)-module by the inclusion of C(V) in C(Vo). It follows that So is a spinorial 
representation of Spin(V). Further, So being a faithful C(Vo)-module, and hence 
a faithful C(V)-module, any irreducible real spinorial representation of Spin(V) 
occurs as a direct factor of So: there exists a morphism of Spin(V)-representations 
SR ...... Sit or SR '--+ So . On S", we now define r, as the orthogonal projection 

r, (s, t) = pr rots, t) 

of ro on V. From the same properties of r o, it follows that the form r, is symmetric 
and that if Q(v) > 0 with V in V, the form (v,r,(s,!)) = (v, ro(s, t)) on SR is 
definite. It remains to average ro over the compact group K of elements of norm 
1 in Z to obtain the required 

r(s, t):= 1 r, (ks , kt)dk . 

We now prove the uniqueness claim in (i). Let Se := SR ® C be the complex
ification of SR. It suffices to show that symmetric morphisms of representations 
Se 0 Se - Ve are unique up to a (complex) factor. 

Case 1. Z = R, that is Se is an irreducible representation. It i. spinorial for d 
odd, semi-spinorial for d even. If we exclude the case d = 2, V is an absolutely 
irreducible representation, and over C, Ve occurs at most once in Se 0 Se (4.9.1). 
Uniqueness follows. 

The case d = 2 is easy to treat directly: V decomposes as D, Ell D 2 , for D, 
and D2 the two isotropic lines, and the S± are of dimension one with tensor square 
isomorphic, respectively, to D, and D2' 

Case 2. Z = 1lJ, i.e. Se is twice an irreducible representation So: Se = So ®c W 
with dim(W) = 2. We know the existence of a symmetric Z'-invariant r. After 
complexification, the Z'-invariance amounts to SL(W)-invariance, and means that 
r is the tensor product of roo So 0 So - Ve and of the unique (up to a factor) 
antisymmetric..p: W®W - C. Symmetry ofr implies antisymmetry of roo there is 
a morphism roo So®So - Vc (unique up to a factor by 4.9), and it is antisymmetric. 
Any symmetric r: SR ® SR _ V is, after complexification, a multiple of ro ®..p; 
uniqueness follows. 
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Case 3. Z = C, i.e. Se is the sum of two inequivalent (complex conjugate) repre
sentations. This can happen only for d even, with Se = S+ EIlS- the sum of the two 
semi-spinorial representations. We know the existence of a symmetric Zl-invariant 
r. After complexification, the Z' -invariance amounts to saying that r is a linear 
combination of a morphism S+ ® S- .... Ve and of its symmetric. It follows that 
there is a morphism of representations ro: S+ ® S- .... Ve. By 4.9, any symmet
ric morphism r: S ® S .... V is a multiple of the sum of ro and of its symmetric. 
Uniqueness follows. 

Corollary 6.2. Let S be a real spinorial representation, not necessarily irreducible, 
and r: S (8) S .... V be symmetric and such that for v in the open positive cone C of 
V, (v, res, t) be positive definite. 

(i) S is the direct sum of irreducible subrepresentations S(o), with r = I: r(o). 

(ii) There is a unique r: SV (8) S v ...., V such that, if rand r are reinterpreted as 
morphisms 1': V .... Hom (S, SV) and i: V .... Hom (SV, S), the Clifford relations 

(6.2.1 ) i(vh(v),1'(v)i(v) = Q(v) 

hold. For v in C one has again (v, res, t) symmetric and positive definite. 

In (ii), there is a factor of 2 ambiguity. Our choice here is to write Q(v) = (v, v) 
and to define l' by 

(-y(v){s), t) = ([(5, t), v) 

It results from 4.9.6 that the structure of Spin(V)-representation of S is induced 
by the C(V)-module structure of SEll SV defined by (6.2.1). 

Proof. If there are two nonisomorphic irreducible real spinorial representations S, 
and S2, after extension of scalars to C, they must be mUltiples of irreducible complex 
spinorial representations S; and S2' This results from there being at most two such. 
The existence of nontrivial morphisms Si (8) S, .... V (i = 1,2) implies over C that of 
nontrivial morphisms S;®S; .... Ve. By 4.9.1 (ii), it in turn implies the nonexistence 
of morphisms S; ® S2 ...., Ve, hence the nonexistence of morphisms S, ® S2 .... V. 
The representation S is the direct sum of a multiple S(l) of S, and of a multiple 
S(2) of S2 , and r, being a morphism of representations, is the sum of morphisms 
r{i): S(i) (8) S(i) .... V. This reduces the proof of (il. and the existence statement in 
(ii), to the case where S is isotypic: a multiple of an irreducible real representation 
So. Let Z be the field of endomorphisms of So. Define W := Hom(So, S). It is a 
right Z-vector space, and 

W®zSo~S. 

Fix a symmetric morphism ro: So ® So .... V with (r(s, t), v) positive definite for v 
in C. If f: S®S .... V is symmetric, for each w in W, [(w®so , w®to) is symmetric 
too, hence a multiple of ro (6.1 (i)): 

Fixing So and to , one sees that the function F is quadratic, and the Z'-invariance of 
fo (6.1 (i)) implies that it is invariant by Z, C Z·. It is hence of the form <I>(w, w), 
for some Z-Hermitian form <I> on W. The quadratic function F , or equivalently the 
Hermitian form q> 1 uniquely determines r 1 and any Hermitian 1> is obtained, as one 
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sees by writing (W, <1» as an orthogonal sum of subspaces of dimension lover Z. 
The f for which (f(s, t), v) is positive definite for v in C correspond to the positive 
definite forms <1>. Decomposing (W, <1» as an orthogonal direct sum of subspaces of 
dimension lover Z, we obtain (i). 

For v in V, the relation (6.2.1) between f and r means that, if Q(v) '" 0, 
(r(s', t'), v) is Q(v)-I times the inverse of the bilinear form (f(s, t) , v). This makes 
the uniqueness of r clear, as well as its symmetry and positivity property. In 
coordinates, for a basis e" of V and ea of S, (6.2.1) reads 

(6.2.2) ~ (f~/lVi3' + same with fl., v permuted) = 9"" oJ . 

To prove the existence of r , we begin, as in 6.1 , by treating the case where V 
is of dimension congruent to 2 modulo 8. In this case, if S is irreducible, there are 
up to scalar factors unique morphisms f: S 0 S _ V and r: Sv 0 Sv --> V; they 
~e deduced from the Clifford module structure of S $ SV, and (6.2.1) follows, for 
f replaced by a suitable scalar multiple. 

Going from V to a subspace as in 6.1, and projecting f and r orthogonally 
onto that subspace, we obtain in any dimension systems (S, f , f V) as in (ii) , where 
S can be assumed to contain any preassigned irreducible spinorial representation 
SI. A decomposition of S as in (i) induces a similar decomposition of (SV, fV) and 
we obtain a system (SI , f, fV) as in (ii). By (i), taking direct sums of such systems, 
we prove existence in iii). 

6.3 Remark. (i) The proof of 6.2 (i) gives us a classification of the (S, r) for S a 
multiple of So, with commutant Z. Once fo for So has been chosen, f corresponds 
to a positive definite Z-Hermitian form on W := Hom{So, S). 

iii) Let us compute the group of automorphisms of a structure of the following 
kind: V is a vector space with Minkowski metric ( , ) and positive cone C, Sand 
SV are vector spaces in duality, f: S0S _ V is symmetric and positive: (f(s, t), v) 
is positive definite for v in Co, and for some (unique) r: sv 0Sv - V, (6.2.1) holds. 
In fact , we will compute the group of automorphisms acting on V with determinant 
1. 

By (6.2.1) , S$Sv is a C(V)-module. This turns Sand S V into representations 
of Spin(V). By 4.2 (ii), the representations Sand SV are contragredient, and f, r 
are morphisms of representations: Spin(V) acts by automorphisms. If 9 acts on V 
with determinant 1, and respects the positive cone C, its image in O(V) is in the 
connected component of O(V), the image of Spin(V): we have 9 = 9192 , with 91 
in Spin(V) and 92 acting trivially on V, hence on Spin(V). By (i) , if Sis isotypic: 
S = So 0z W, 92 is in the unitary group of the Z-Hermitian space W. In the 
nonisotypic case: S the sum of the Si 0z, Wi (i = 1,2), it is in the product of 
two such unitary groups. The group U(W) (resp. U(WJ) x U(W2 )) is called the 
R-group. 

6.4. The cases where V is of dimension d = 3,4, 6 or 10 (i.e. d-2 = 2', t = 0, ),2,3) 
are particularly interesting. In those dimensions, an irreducible real spinorial rep
resentation S is of dimension 2t+ I . For d = 3,4,6, the commutant is respectively 
JR, C and !HI, S is of dimension 2 over Z and 

Spin(l,d - 1) --':::"'SL(2, Z) . 
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6.5 . We now explain how the case d = 10 is similarly related to the octonion 
algebra O. To avoid unnecessary signs, we will work in signature (9, I) rather than 
(1 , 9) . This does not affect the spin group. We write the Minkowski space V as the 
orthogonal direct sum of W positive definite of dimension 8 and of H hyperbolic of 
dimension 2. We choose an isotropic basis {e, J} of H with Q(e + f) = I. 

Here is a model for W , its quadratic form, the irreducible C(W)-module S = 
Sit E& S;V , the Clifford multiplication p, quadratic forms on Sit and S;V for which 
(p(w)s,t) = (s , p(w)t) and the resulting pairing (4.9.4) r: sit @s;v - W: 

W, sit and S;V : the space I() of octonions; 

quadratic forms on W , Sit and Sw: the octonion reduced norm N(x ) = xx; 

morphisms W @ Sit~S;v , Sit @S;V-SV and S;V 0 W = W 0 s;v~Sit: 
x 0 y ...... xy. 

One has to check that (a) p turns sit E& S;V into an irreducible C(W)-module, 
(b) (p(w)s , t) = (s , p(w)t) and (c) (w,r(s , t)) = (p(w)s , t) . The bilinear form ( , ) 
associated to the octonion norm is Tr(xy), where Tr is the octonion reduced trace 
x + x. The proof will use that in I(), the subalgebra generated by two elements x 
and y (to which one can add x = Tr( x) . I - x and y = Tr(fi) . I - y) is associative, 
and that Tr(x(yz)) = Tr((xy)z) , Tr(xy) = Tr(yx) and Tr(x) = Tr(x). 

Proof of (a). That p(w)' = N(w) is seen as follows: for w in Wand s in sit , 
p(w)'s = (tlis) - tli = (sw)tli = s(wtli) = N(w)s. For s in Sw, one repeats this 
argument in the opposite algebra I()0. Irreducibility is clear. 

Proof of (b). For s in sit and t in S;V, (p(w)s,t) = Tr(tlist) while (s , p(w)t) = 
Tr(sitli). For s in S;V and t in Sit, one repeats this argument in I()0 . 

Proof of (e). For s in sit and t in S;V, (w, r(s, t)) = Tr(tli(st)) while (p(w)s, t) = 
Tr((tlis)i). 

In this octonionic description of w, Sit and S;V , triality is in evidence. 
An irreducible C(H)-super module is of dimension Ill. Up to parity change, it 

has a basis Ct (even) , {J (odd) in which the matrices of e and / are 

(6.5.1) e= (~ D /=(~ ~). 
In those models, the even part of the irreducible super C(V)-module S = 

(sit E& S;V) 0 (Ct, {J) is 

(6.5.2) 

An element v = a + Ae + Il-/ of V is isotropic if aa + All- = O. An element XCt + y{J 
of S+ is in the kernel of the multiplication by v if 

(6.5.3) ax - AY = 0 

ay + /l-X = 0 . 
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Suppose v nonzero and isotropic. If a # 0, .\ and I' are then nonzero and by the 
isotropy equation aa = -.\1', the first equation (6.3.3) implies the second. If a = 0, 
one of .\ and I' is 0 and the equations (6.5.3) reduce either to x = 0 or to y = O. 

In the octonion plane 0 2 , the octonion lines are the subspaces y = ax (for a in 
0), as well as the subspace x = O. We have obtained a model of S+ as the octonion 
plane. In this model, the map lRv ,...., Ker (multiplication by v) is a bijection from 
the set of isotropic lines in V to the set of octonion lines. The octonion line y = ax 
corresponds to the line in V spanned by (a, 1, -N(a)) and the line x = 0 to the 
line spanned by (0,0,1). 

It is not unreasonable to define GL(2,O) as the group of lR-linear transforma
tions of the octonion plane, which transform octonion lines into octonion lines. The 
Spin group, as it respects the Clifford multiplication, is contained in GL(2,O). 

Proposition 6.6. After extension of scalars to C, the algebraic group GL(2,O) 
becomes the group generated by Spin(V) and the multiplicative group of homotheties. 

Sketch of proof. The map v ,...., Ker( v) maps the quadric of isotropic lines to the 
Grassmannian of 8-dimensional subspaces of 0 2 • It follows that the Zariski closure 
in the complex Grassmannian of the space of real octonion lines is a homogeneous 
space of Spin(V), and a quadric. The automorphism group of a quadric (viewed as 
an algebraic variety) is the projective orthogonal group. This gives GL(2, 0) -> PO. 
Using the nonassociativity of 0, one checks that the only elements of GL(2,O) 
respecting each octonion line are the homotheties. It remains to check that GL(2, 0) 
maps in fact to PSO. There are, over the complex numbers, two kinds of maximal 
isotropic subspaces of Vc, and SO is the subgroup of 0 which does not permute the 
two kinds. One of the two kinds is singled out by the property that for L of that 
kind, the intersection of the octonion lines relative to v in L is not reduced to zero. 

The intersection of the group of homotheties and of Spin (V) c GL(2, OJ is the 
center of Spin(V). It is the group of 4th roots of 1. There is hence a "determinant" 

det: GL(2,O) -> multiplicative group, 

which on a scalar .\ takes the value det(.\) = .\4 and, if SL(2, 0) is defined to be 
the kernel of det, 6.6 gives 

(6.6.1) Spin(V) = SL(2, 0) . 

6.7 Remark. Over lR, the group Spin (V) acts transitively on S+ - {O}. Indeed, 
it permutes transitively the octonion lines Ker( v) (v isotropic) and the stabilizer of 
an octonion line L acts on L as a group of orthogonal similitudes. 
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