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1. INTRODUCTION

In Part I of this paper (6) we proved various index theorems for manifolds with
boundary including an extension of the Hirzebruch signature theorem. We now pro-
pose to investigate the geometric and topological implications of these theorems in a
variety of contexts.

In §2 we consider a generalization of the signature theorem involving unitary
representations of the fundamental group. This leads to a new differential invariant
of manifolds with given fundamental group G independent of any Riemannian metric,
which generalizes previously known invariants for finite G studied in (4). In more
detail the situation is as follows. We consider an oriented Riemannian manifold Y of
odd dimension and a unitary representation oc:n1(Y)-^U(n). On the space of all
exterior differential forms of even degree there is a natural self-adjoint operator B
denned by

B<j> = il(-l)e+1(*d-d*)<f> (deg<f> = 2p, d i m 7 = 2Z-l) .

This can be naturally extended to give a self-adjoint operator Ba acting on even forms
with coefficients in the flat vector bundle denned by a. We then consider the spectral
function 7ja(s) of this operator; that is,

Va(<)= 2(signA)|A|-»,
A*0

where A runs over the eigenvalues of Ba. We now compare na(s) with the corresponding
function v(s) for B, by putting

Va(S) =Va(s)-ni]{s).

Our main result (Theorem (2-4)) is that fjJO) is independent of the Riemannian metric
and so is a differential invariant of (Y, a): we denote it by px( Y). I t is a real number.

For n^Y) finite, or more generally for representations a of 7r1(F) which factor
through a finite group G, our invariant pa( Y) is a rational number which has the
following alternative description. By cobordism theory one knows that some multiple
N Y of Y bounds an oriented manifold X so that the (?-covering NT-+NY (associated
to n1(Y)-^G) extends to a ^-covering X-+X. On H®(X,OL), the cohomology of X
with local coefficients, there is a natural hermitian form induced by the cup-product
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and the unitary structure of a. We denote by signa (X) the signature of this hermitian
form. Then pa( Y) is given by

, y . 7isign(X)-signg(X)
a N

This description shows that pa( Y) is essentially equivalent to the invariants o~g{ Y)
defined in (4), §7. In fact crg(Y) as g varies gives a (class) function on G — {1} and
pa(Y) is its 'Fourier transform', namely

<rg( ? ) = S Pa( Y) Xa(9) f°T 9 4= 1 >
a

where xa ^s *^e character of a and a runs over the isomorphism classes of irreducible
representations of G.

For infinite n^ Y) and general a there does not appear to be at present any non-
analytical definition of pa(Y).

In section 3 we replace the operator B above by other operators such as the Dirac
operator of a Spin (or Spin0) manifold, and we get similar invariants independent of
the metric but only after we have reduced modulo Z. This is because the 0-eigenvalue
no longer represents cohomology (via harmonic forms) and so it produces integer
jumps in 5/(0). These R/Z invariants are cobordism invariants and for finite G, we
can again identify them with the Q/Z-invariants introduced in (4), §7. In fact, for
finite G there are three alternative topological definitions of these Q/Z-invariants
with differing merits. The equivalence of two of these has been established by
G. Wilson (11) and the equivalence with the third is dealt with in § 5. For unitary cobor-
dism we establish in § 3 the equivalence of the analytic definition with one (and hence
all) the topological definitions. This does not cover the case of Spin-cobordism or
oriented-cobordism but these will eventually be included in a much more embracing
general index theorem for flat bundles which will be the main topic of Part III.

In §4 we review some of the work of Chern-Simons (8) and its relation to our in-
variants. In a sense our invariants are more refined and contain some additional homo-
topy information. For instance, if Y is of dimension 4& — 1 and has a parallelism n we
give (Theorem (4-14)) an explicit analytical formula for the Adams e-invariant of the
element in the stable homotopy group 7r^_1 defined by (Y,n). This formula may be
used to investigate the behaviour of the e-invariant under finite coverings. We show
(Proposition (4-16)) that its deviation from being multiplicative is precisely measured
by the Q/Z-invariants for free finite group actions on Spin-manifolds discussed in §3.
We also consider in some detail the question of conformal immersion or embedding of
3-manifolds in R4. The Chern-Simons invariant provides an i?/Z-obstruction to a
conformal immersion. Our invariant 9/(0) turns out to provide an ^-obstruction to a
conformal embedding (Proposition (4-20)).

As already mentioned, section 5 contains a proof of equivalence between two
topological definitions of a cobordism invariant in Q/Z. In fact, this section is essen-
tially a topological Appendix reviewing some elementary properties of isT-theory
with coefficients in Q/Z. Some of this material is in preparation for more extensive
work in Part III.
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The investigation of v(s) for general self-adjoint elliptic operators, not connected
with Riemannian geometry, will be undertaken in Part III.

2. THE SIGNATURE WITH LOCAL COEFFICIENTS

In Part I we established a signature theorem for manifolds with boundary. In this
section we shall consider a generalization involving cohomology with local coeffi-
cients. The main interest of this is that we end up with differential-topological in-
variants, independent of any Riemannian metric.

Let X be a 2?-dimensional compact oriented manifold with boundary Y and let
a:7T1(.X')-> U(n) be a unitary representation of the fundamental group. This defines
a flat vector bundle Va over X, or equivalently a local coefficient system. Hence we
have cohomology groups H*(X;Va) and H*(X, Y;Va), and these have a natural
pairing into C given by the cup-product, the inner product on Va and evaluation on
the top cycle of X mod Y. This induces a non-degenerate form on S*(X; Va), the image
of the relative cohomology in the absolute cohomology (all coefficients in Va). In the
middle dimension, on 6l(X; Va), this form is hermitian for I even and skew-hermitian
for I odd. In the odd case we convert the skew-hermitian form (z, w) to a hermitian
formf by putting

In both cases the signature of the hermitian form will be denoted by signa (X). For
the trivial one-dimensional representation signa (X) reduces to sign (X) for I even and
to 0 for I odd. More generally signa (X) = 0 for I odd and a an orthogonal representation.
However, signa (X) is not in general zero for I odd, which is why we have not restricted
ourselves here to 4&-dimensional manifolds.

Assume now that we have a Riemannian metric on Y, then we can define an elliptic
operator on the space of all differential forms on Y of even degree with coefficients in

Here * is the usual * operator on forms extended by the identity on Va. I t is easy to
check that (2-1) is self-adjoint with respect to the natural inner product induced by
the metric on Y and that on Va. Thus we can define the ^-function of the operator (2-1)
which we shall denote by na(s). Note of course that na(s) exists for any representation
OL:TTX(Y)-+ U(n): it is not necessary for a to extend to a representation of TTX(X).

If we now assume our metric on Y is extended to a metric on X which is a product
near Y, then we have the following generalization of Theorem (4-14) of Part I.

THEOREM (2-2).

signa(X) = n f L(p)-Va(0),
' x

where L(p) = 0 if Us odd and L(p) = Lk{plt ...,i?fc) is the Hirzebruch Lh-polynomial in
the Pontrjagin forms of X when I = 2k.

j" This sign convention (depending on I) is chosen so that our notation shall be consistent
with that of (4), §6.
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The proof of (2-2) is essentially identical with that of Theorem (4-14) of Part I.
We shall not repeat the proof but will content ourselves with a few brief comments.

(1) The starting-point of the proof is to apply the general index formula (3-10) of
Part I to the generalized signature operator Ag, where £ = Va.

(2) The invariant theory of (l) is then used to identify the integrand in the index
formula. Since Va is flat its Chern forms vanish in positive dimensions so the integrand
coincides with that for trivial a, namely nL(p).

(3) The arguments of Part I, from (4-9) to (4-14), which lead to the elimination of
the various integers h,h±, etc. from the final formula work just as well for cohomology
with local coefficients. In addition to Poincare duality and the de Rham theorems the
only additional fact used was the Kodaira-de Rham L2-decomposition theorem.

(4) For I odd we have to verify that (i) the tangential component of A^ is essentially
two copies of the operator (2-1), (ii) the hermitian form on Sl(X;Va) (with signature
signa (X)) is positive (negative) definite on the + 1 (— 1) eigenspaces of the involution
T defined by T(f> = iJ>(»-o+' * ^ for 0 a form of degree p with coefficients in Va.

We shall now apply Theorem (2-2) to a manifold X of the form Yxl (with / the
unit interval). Then 8X = Y x {1} - Y x {0} so that the term va(0) in (2-2) is now the
difference

V*(PvO)-Va(Po>°)>

where na(p, s) is the ^/-function for Y with metric p (and for the representation a of
n^Y) =n1(X)). Since H*(X,dX;Va)->H*(X;Va) is now the zero homomorphism,
signa (X) = 0 and (2-2) reduces to

= »f
J

UP), (2-3)
Txl

where the right-hand side is computed from any metric on Y x / which connects px

to p0 (and is a product near the ends). In particular the right-hand side depends on a
only through its dimension n. Hence, if we define a reduced ^/-function by

Va(s) =Va(
s)~nv(s),

where ^(s) = rj^s), (2-3) implies the first part of:

THEOREM (2-4). fja{p, 0) is independent of the metric p. It is a diffeomorpMsm invariant
of Y and a, which -we shall denote by pa{Y). If Y = dX with a extending to a unitary
representation of n^X) then

pa(Y)=n sign (X)-signa(X).

The last part of (2-4) comes by applying (2-2) again to a and the trivial representa-
tion and subtracting.

If TTX(Y) is finite or, more generally, for representations a which factor through
some finite quotient G of n^Y), the invariant pa(Y) coincides essentially with the
invariant defined in (4), § 7, as we shall now explain.

Let I be a compact oriented 2?-dimensional manifold with boundary and let G
be a finite group acting on X and preserving orientation. Then G acts on fLl(X;R)
preserving the bilinear form which is symmetric for I even and skew-symmetric for
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I odd. We can treat both cases together by complexifying and considering, as before,
the corresponding hermitian form. Using any auxiliary ©-invariant inner product on
H\X; C) we get a Cr-invariant decomposition

where the hermitian form is positive definite on Hl
+ and negative definite on H'_.

We definef a virtual representation sign (G, X) by

sign ( (? ,£)=#<+-#-•

In terms of characters this means we have a function on G defined by

sign (g,X) = trace (g \ H\) -trace (g \ HlJ).

For g the identity sign (g, X) reduces to sign (X.) or 0 according as I is even or odd.
Suppose now that G acts freely on X so that X = X/G is a manifold and X -> X a

finite ̂ -covering. Then for every representation a: G -»- U(n) we have the corresponding
representation of n^X) (composing with n1(X)-*G) which we still denote by a. We
therefore have the integer invariants signa (X) defined earlier. These are related to
the function sign (g, X) by the following lemma:

LEMMA (2-5).
sign (g,l) = 2signa(X)^(gr))

a

where a runs over all irreducible representations of G and xa is the character of a.

Proof. The de Rham complex of X has a (?-module decomposition:

Q*(X) = £HomG([a], Q*{X)) ® [a]
a

= £ (Q*(2) ® [a*])° (g) [a],
a

where a* is the dual of a and ()G denotes the (^-invariant part. Taking cohomology
we get

H

Similar decompositions hold for H*(X,dX), H*(X) and therefore Hl
+ and HL. The

lemma follows by taking characters, subtracting and recalling that xa*
 = Xa-

Now let ¥ -> Y be a finite G-covering, where Y is an oriented closed odd-dimensional
manifold. Then for every representation a of G we have an invariant pa( Y) as given
in Theorem (2-4). Assume first that Y = 8X with ?-> Y extending to a (r-covering
2 - > Z . Then by (2-4)

pa( Y) = dim a. sign (X) - signa (X).

Multiply this by xa(g) and sum over all a. Since £ dim a. [a*] is the regular represen-
tation of G,

= 0 for g 4= 1.

•f In (4), §6, the cases I odd and I even are treated differently. The present version is more
uniform and leads to the same result.
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Together with Lemma (2-5) this gives

for g * 1. (2-6)

In (4), § 7, an invariant o~g{ Y) for free actions of 0 was defined by

C7g{f)= -sign (0,2) (</*l) ,

provided ¥ = dX with 6r acting freely on X. For such manifolds (2-6) shows that
(Tg( ~Y) is determined by the pa( Y);

for g #= 1. (2-7)

Conversely, since /^(F) = 0, we can invert (2-7) and express pa(Y) in terms of the

<r{Y) by

In general it is not possible to find X with X = BY as above but it is possible if we
first replace Y by some multiple NT. Then (Tg{Y) is defined by

Since our invariant pa( T") is clearly additive in Y so that pa(NY) = Npa(Y), equations
(2-7) and (2-8) for Y follow from those for NY. Summarizing we have:

THEOREM (2-9). For representations a of n-^Y) associated to a finite O-covering
Y ->Y the invariant pa(Y) of Theorem (2-4) is the 'Fourier transform' of the invariant
o~g(Y) defined in (4), §7. The equations expressing one invariant in terms of the other
are (2-7) and (2-8). In particular pa(Y) is rational.

Note. pa(Y) = 0 for a = 1, but crg(Y) was not defined in (4) for g = 1. In fact it is
convenient to extend the definition of ug to g = 1 by putting

o-i = - S o-g.

Then (2-7) holds also for g = 1. Moreover if f = dX,

measures the deviation from multiplicativity of the signature for manifolds with
boundary.

We see now that our analytical methods using ^/-functions have produced in
Theorem (2-4) a difFerential-topological invariant pa{ Y) which extends the previously
known invariant o~g( T) from finite coverings to infinite coverings. It is by no means
clear whether pa could be defined by non-analytical means.

As a simple illustration let us check Theorem (2-9) explicitly when Y is the circle.
So let a be the representation of 7T1(Y)-^-U(l) taking the generator into exp(27ria),
where 0 < a < 1. If z mod 2n is a coordinate for Y then va(x) = exp (iax) is a generating
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section of the bundle T̂  and any other section is of the form/(a;)?;a(x) with/a function
on Y. The operator (2-1) becomes in this case

Its eigenvalues are therefore ±n + a and so its ^-function is

where 2X is absolutely convergent near 5 = 0. Hence

7)a(0) = l-2a.

For the trivial representation the eigenvalues are just + n so that ^1(0) = 0. Hence

l-2a, (2-10)

showing in particular that PaiS1) is rational if and only if a is rational - that is, if a
factors through a finite group.

Now consider only those representations which factor through

then a = k/m with k = 1,2, ...,m— 1. Now using (2-7) to compute <r, from (2-10) we
get

But for any mth root of unity u =)= 1 we have

m-1 m-\ m

2 u = — I and 2 &« = r,

and so taking u = exp 2niljm for !=)=Owe get

^ ~i~n^i = T^L = i0Otm- ( 2 - 1 1 )

Now we recall that the invariants <rg{Y) of (4), §7, can be computed from any G-
manifold X with boundary T (the action of G on %. being not necessarily free) by the
formula

crg(Y)=L(g,l)-sign(g,2:),

where L(g, Y) is an explicitly defined number depending on the fixed-point set of g
in X. In particular, when Y is the circle, X the disc and g rotation through an angle 6,

L(g,l) = -i cot (9/2.
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Since H2(3L) = 0 in this case we have sign (g, X) = 0 and hence

<Tg{f)= - i cot 0/2,

which checks with (2-11) for 6 = 2-nljm.
Similar explicit calculations can be made when Y is a lens space of any odd dimen-

sion. We shall not carry these out here but will content ourselves with the following
Proposition which identifies rj(O) for lens spaces:

PROPOSITION (2-12). Let the cyclic group G of order m act on R2n = R2@R2® ••• ® R2

so that its generator rotates thej-th copy of R2 through an angle 6y Assume G acts freely on
gtn-i c j?2 n

 ami j o r m the lens space Y = 82n~1jG. Then for the standard metric on Y
let 7]{s) denote the n-function of the operator (2-1). The value ats = Ois given by the general-
ized Dedekind sum: ' -nm-l n

v(o) = l— s ncotp*?,.
m fc=xi=i

Proof. Let us write i}( Y, s) and v( Y, s) to distinguish between the ^-functions on the
lens space Y and on the sphere T. Clearly we have

where a runs over the m irreducible characters of G. Now by definition

Pa(Y) =Va(Y,0) -y(7,0),

hence r,{ f, 0) = S pa( Y) + mv( Y, 0).
a

But the sphere Y admits an orientation reversing isometry which therefore takes our
basic operator (2-1) for T into its negative. This shows n( Y,s) = 0 and so

7/(7,0)= - - ^

A?) by (2-7) for g = 1.

On the other hand crg( Y) can be computed by taking S2n~x = T to bound the unit
ball X in R2n and then we get

crg(T)=L(g,X)-sign(g,l)

3=1

using the definition of L(g, X) as in (4), § 7 (here we have written g — £k, where £ is
the generator of G referred to in the Proposition). This completes the proof.

The general relation between the invariants cru and pa suggests that we should
generalize our ^-invariants in yet another direction. Suppose quite generally that A
is an elliptic self-adjoint operator commuting with the action of some compact group
G, then the A-eigenspace Ex of A will be a finite-dimensional G-module and so we can
define a function . . _, . , rTl_. , _, . ,.., , ,„ _ „.

Vfaa) S signATr(gr|^)|A|-s (2-13)
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for any geG. In particular we can consider such ^/-functions when A is our basic
operator (2-1) and G is a group of orientation preserving isometries. For example,
when Y is the circle and g is rotation through an angle a,

. . fL sin not
v(g,s) = 2i% ——.

Suppose first that G is finite and acts freely on our manifold Y with Y — T/G.
Then we have

which shows that i](g, s) is meromorpbic in s and finite for s = 0. Comparing with
(2-7) we see that

f (2-15)

where It is the regular representation of g. Hence

7j(g,0) = <rg(Y) for g * 1, (2-16)

which shows that ij(g, 0) is independent of the metric provided g 4= 1. In fact one can
give a direct treatment of the function r/ (g, s) not assuming that G acts freely and
(2-16) will still hold provided g has no fixed-points on T. For this one needs first to
extend the results of (l) to group actions and this will be done in (2). After that it is
straightforward to extend Part I of this paper also to include group actions.

If G acts on X with free action on 8X, then Theorem (4-14) of Part I gets replaced by

sign (g, X) = w -
J xs

ij{g,O),

where Xa is the fixed-point set of the element g + 1 of G, and the integrand w is the
characteristic class expression occurring in the Cr-signature theorem of (4), §6.

3. (J-COBORDISM INVARIANTS

In the preceding section we studied the ^-function of the operator related to signa-
ture in connexion with coverings. We now proceed to do the same for the other
classical operators. In general terms the situation is quite similar but with one all-
important difference which we now explain.

For any self-adjoint elliptic operator A the ^-function

VA(*)= SsignA|A|-s

discards the zero-eigenvalue. In general, when we vary A continuously the zero-
eigenvalue moves so that fiA{s), and in particular ^ (0 ) , is not a continuous function
of A. However the jumps in ^ ( 0 ) are simply due to eigenvalues changing sign as they
cross zero and this means TJA(O) has only integer jumps. This will be proved more
formally in a later section but for the classical first order systems we are investigating
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now it is a consequence of the explicit index formula for manifolds with boundary
established in Theorem (3-10) of Pa r t i :

index D = oco(x) dx —
J x

h + 7)(0)

Here v(0) refers to an operator on Y = dX. Since the integrand is continuous in the
coefficients of the operators and index D is an integer we see that, if we put

-, , h + v(s)
£(«) = ~ ~ (3-1)

then £(0) has only integer jumps; this is a slightly more refined statement than saying
rj(O) has integer jumps.

In our geometrically denned classical operators the data which is varied consists
of the Riemannian metric on Y and possibly also a metric and connexion on an auxi-
liary vector bundle. Now in the particular case in which the null space of our operator
consists of harmonic forms this has a dimension h equal to the appropriate Betti
number and is independent of the Riemannian metric. Thus we get no jump for v(0)
in this case and the same holds for harmonic forms in a local coefficient system. It is
for this reason that in section 2 we were able to define real-valued invariants pa(Y).
For other classical operators we have no such control over the integer h and we can
only define invariants in R/Z. In return these invariants will be stronger than those
of section 2: they will be cobordism invariants not just diffeomorphism invariants.

Suppose now that Y is a closed odd-dimensional Spin-manifold (or more generally
a Spinc-manifold). For any choice of metric on Y we then have the Dirac operator!)
acting on the space of Spinors: this is self-adjoint. Moreover we can twist D by any
unitary representation a of 7r1( Y) to obtain a new self-adjoint operator Da, analogously
to the case of forms. Put

where £(s) is related to the usual function rj(s) by (3-1). Finally put

!«(0)=£ a (0) -U0) rnodZ, (3-2)

where n = dim a and £n(s) refers to the trivial ?i-dimensional representation so that
gn(0) = ngD(0). Thus |a(0) takes values in R/Z.

The analogue of Theorem (2-4) is

THEOREM (3-3). fa(0) is independent of the metric on Y. It is a cobordism invariant
of (Y, a) in the sense that |a(0) = 0 if Y = dX (as Spinc-manifolds) vnth a extending to
a unitary representation of n^X).

The only differences between this and (2-4) are that we use Theorem (4-2) of Part I
(instead of the signature formula) and that we work always modulo integers.

Remark. More cobordism invariants can be obtained if we replace the Dirac operator
D by the Dirac operator with coefficients in an auxiliary vector bundle V associated
to the Spin-structure.
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If we consider only those a which factor through a finite quotient G of 7T1( Y) then
E,x(0)eQjZ. This follows from the fact that the corresponding cobordism group is
finite so that some multiple of Y bounds.

Just as in section 2 we can in this situation replace f a(0) by a function on G - its
Fourier transform, defined by

f (3-4)

where a runs over the irreducible representations of G. Clearly / must be viewed as
a complex-valued function modulo characters. Now G-cobordism invariants of this
form were denned in (4), §7, by use of the fixed-point formula in the G-index theorem.
We propose to show that our present invariants (for finite G), given by (3-4), coincide
with those of (4), § 7. In fact there are four different definitions of these invariants and
we shall see that they are all equivalent. The definitions may be summarized as follows.

I. The analytical definition. This is our invariant |a(0), constructed from the Dirac
operator on Y, or equivalently the function / given by (3-4).

II. The K-theory definition. As will be explained later in section 5, the representation
a defines an element [a] eK~l(Y; Q/Z). Since Y is a Spinc-manifold we have a direct
image homomorphism

K

Applying this to — [a] gives an element of Q/Z.

III. The fixed-point definition. If ?-> Y is the given 0-covering we assume that
Y = 8X (as Spinc-manifolds) with the action of G extending to X (but not necessarily
freely). We then define/(gr) to be the contribution of the fixed-point set X° of g in the
Lefschetz formula for the Dirac operator (4), §5. Because of the formula on closed
manifolds, / modulo characters of G is independent of the choice of 3£.

IV. The differential-geometric definition. Let Va be the complex vector bundle over
Y defined by a: note that it is flat. Assume now that Y = dX (as Spinc-manifolds) and
that there is a complex vector bundle W on X (not necessarily flat) which extends Va.
Choose any connexion on W which extends the flat connexion on Va and choose any
metric on X. Then our invariant (depending on a) is defined to be

L (3-5)

where &~ = eici a is the total Todd polynomial.
To see that definition IV is independent of all choices we first note that the differen-

tial form (chJF — n) is zero on Y (because Wr = Va is flat) and hence represents a
relative cohomology class in H*(X, Y;R). It is easy to show (see Lemma (5-8)) that
this class is independent of the connexion on W. Moreover (3-5) now has a cohomo-
logical interpretation and the class oi^(X) in H*(X;R) is independent of the metric
on X. Finally, if we make another choice (X', W), then by glueing W to W over
M = X\j —X' we can apply the integrality of (3-5) for closed Spinc-manifolds to
deduce that our invariant, taken modulo Z, is independent of the choice of (X, W).
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Definitions I and II should be viewed as the fundamental ones since they are in-
trinsically defined on Y. Definitions III and IV involve an extraneous manifold X
(or X) which may not always exist. On the other hand III and IV, when they apply,
have the merit of being more readily computable.

Definitions II , III , IV are purely topological, so their identification is a problem
in Jf-theory. In fact the equivalence of II and III has been proved by G. Wilson in
(ll) while the proof that I I ~ IV proceeds on somewhat similar lines and will be
given in §5.

The main problem is therefore to bridge the gap between the analysis and the
topology by proving that definition I is equivalent to one of the other three. Now
the equivalence I ~ IV is an immediate consequence of the general index formula of
Part I applied to the Dirac operator on X with coefficients in W (see formula (4-3)
of Part I): An alternative direct approach proving the equivalence of I ~ III will be
given in (2) using the extension of Part I to group actions.

The best result in this direction would of course be to prove the equivalence of the
two basic definitions I and II . This does not follow from I ~ III and III ~ II because
I I I is only defined under a more restrictive hypothesis. In fact if we consider only
manifolds Y which are stably almost complex (a much stronger condition than being
Spin0) then III is always denned, that is we can always find X with Y = dX and a
bundle W on X extending V on Y. This follows from complex cobordism theory and
is equivalent to saying that Q%(BU(n)) = 0 for odd q, a consequence of the fact
that H * (BU(n),Z) and Q% = Qu (point) both vanish in odd dimensions (see (10),
p. 144). Thus we can for the present state

THEOBEM (3-6). / / Y is stably almost complex then definitions I and II coincide.
This theorem should be viewed as a Riemann-Roch Theorem for flat bundles asso-

ciated to finite groups. As such it is a special case of a more general index theorem for
flat bundles which we shall prove in Part III. In particular our proof of the general
theorem will make no use of cobordism theory and it will include the identification of
definitions I and I I without the restriction imposed in Theorem (3-6). It will also
include the case of oriented manifolds which are not Spin0 - on which we still have
interesting operators.

As we explained at the beginning of this section the main difference between the
signature operator and the general Dirac operator is that in the latter case we do
not have control of the zero eigenvalue and hence we only get invariants in RjZ. I t
is, however, possible to get invariants in R if we impose suitable restrictions on our
metric so as to eliminate the zero eigenvalue. For the Dirac operator D of a Spin
manifoldf this is particularly simple in view of the result of Lichnerowicz (9). We recall
from (9) that

{ 3 7 )

where V is the total covariant derivative, V* its adjoint and R is the scalar curvature.
On a closed manifold (3-7) implies

(Df, Df) = <Vf, V̂ > + l(Rf, f) (3-8)

•f Here we work strictly with Spin and not the more general Spin6.
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and hence R > 0 implies that there are no (non-zero) harmonic Spinors (solutions of
DTJT = 0 or D2rjr = 0). Essentially the same reasoning applies to the non-compact
' elongated' manifold X introduced in Part I (we recall that for a compact manifold
X with boundary Y, we put X = X[) (Yx R~)). More precisely let ijr be an Z2-harmonic
Spinor on X thenf, as shown in Part I, §3, Dijr = 0 and ^ has an expansion of the
form

in the cylinder u ^ 0. This shows that x(r decays exponentially as «-> — oo. Moreover
for the covariant derivative V̂ Jr we have

where || || F denotes the 2/2-norm on Y. Hence Vi/r is also exponentially decaying and
so (using Green's formula for Xv and then letting J7-> — oo) we deduce as in Part I,
§3, that

Lichnerowicz's argument now applies and shows that, if i? > 0, there are no harmonic
2/2-Spinors on X. Since B(X) > 0 implies R( Y) > 0 we also have no harmonic Spinors
on the closed manifold Y. Hence Theorem (4-2) of Part I reduces now to

THEOREM (3-9). / / the scalar curvature of the Spin-manifold X is positive then

where v(s) is the ^-function of the Dirac operator on Y = 8X.
A similar result holds for Da, the Dirac operator twisted by a unitary representa-

tion a:77X( Y)-> U(n). The formula becomes

n[ l(p) = iva(0). (3-10)

Suppose now we put

where we have explicitly indicated the metric p on Y. Then (3-9) and (3-10) assert
that /(Y, a, p) = 0 if Y = dX with a extending to TT^X) and p extending so as to
have positive scalar curvature. Theorem (4-2) of Part I applied to Yxl shows that
the difference/(F,a^pj)— f(Y,a,p0) is always an integer, and is in fact the index of
our basic boundary value problem. As long as p has positive scalar curvature, so that
there are no zero-eigenvalues, this boundary value problem varies continuously with
p and hence its index is constant. Hence/(Y, a,p) depends only on (Y, a) and on the
component of p in ^ + ( Y) - the space of those metrics on Y which have positive scalar
curvature. In this differential-geometric sense we have a refined invariant in R
which reduces modulo Z to the cobordism invariant studied earlier.

•f We deal with + and — Spinors together so D here is the total Dirac operator (D © D*
in the notation of Part I, §3).
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We conclude this section with a comment on the way our invariants f a(0) depend
on the representation a. For a finite group O the (classes of) representations are finite
in number and, under continuous variation, they remain constant. However, for an
infinite group F we can certainly have a continuous family at of unitary representa-
tions in which the isomorphism class is not constant. This is trivially the case for
F = Z and at the family of representations Z->U(1) given by lt-^exp(2nit). For
this family we explicitly computed the Signature invariant ijat(0) in section 2 and
found the value l — 2t (for 0 < t < 1), which therefore depends non-trivially on t.
This example is typical of the abelian case, but we shall now show that, for representa-
tions a: Y-+SU(ri), the invariants fa(0) are constant under continuous variation of a.

Let <xt be a 1-parameter family of unitary representations n1(Y)->-8U(n). Then
using the differential-geometric definition! IV we see that

!«,(<>)-fjO) = f (ehW-n)^(IxY) modZ, (3-11)
J ixr

where W denotes the bundle over I x Y whose restriction to t x Y is just Va. More
precisely, if Y is the universal covering of Y, then W is the quotient of I x f x C "
by the action of F = TT1( Y) given by

(t,y,u)^(t,y(y),at(y)u) for yeF.

Thus W has a natural flat $£7(%)-connexion on each t x Y and this can be extended to
a full SU (n)-conneidon o n / x T (this extension amounts to giving an action of d/dt
or equivalently of identifying W with a bundle pulled up from Y). With such a choice
of connexion it follows that the curvature of W is a multiple of dt and so the only
non-zero component of chW — n is the first Chern form in dimension 2. Since the
structure group of W is assumed to be SU(n) the first Chern form (trace of the curva-
ture) vanishes identically and so (3-11) gives zero as asserted.

4. RELATION WITH CHERN-SIMONS INVARIANTS

In this section we shall explain the relation between our work and the results of
Chern-Simons(8). We begin with some rather general constructions involving charac-
teristic classes of connexions.

Let Y be a compact oriented manifold of dimension I and let ̂  = <S{ Y) denote the
space of all C00 connexions on the tangent bundle of Y. Then ̂  is an infinite-dimensional
(affine) linear space. It will be convenient formally to consider exterior differential
forms on <€ (and on ̂  x Y). This presents no serious problems but the reader may, if
he prefers, always replace ^ in what follows by a finite-dimensional submanifold.
Now let us lift the tangent bundle of Yto&x Y. Here it acquires a natural connexion
6, namely the connexion which is trivial in the ^-direction and, on ex Y, coincides
with the connexion parametrized by c. Let K denote the curvature of d, and let/ be
any invariant polynomial on the Lie algebra of GL(l, R), then we can form the corre-
sponding characteristic differential form f(K) o n ? x 7 . By partial integration over

t Note that, when IV is defined, the equivalence I ~ IV (as a consequence of Part I) does
not require finiteness of F.
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Y we then obtain a differential form co, on ^S of degree = 2 deg/— I. Since f(K) is
closed and since integration over Y commutes with d, it follows that wf is also closed.

We shall be primarily concerned with the special case when I = 4fc — 1 and f(K) is
a form of degree 4k (some polynomial in the Pontrjagin forms). Then o)f is a closed
1-form and since # is simply connected (being a linear space) this implies that

<Df = dF (4-1)

for some smooth function F on *€, determined up to an additive constant. Because of
(4-1), for any path y on ^ joining two connexions c0, cx we have

F{c1)-F(ca)= f OJ,. (4-2)
J y

The integral in (4-2) can be expressed more explicitly as follows. The path y:l^s-ct>
defines a connexion 6y for the tangent bundle of Y pulled up to I x Y. If Ky denotes
the curvature of 0y then, essentially by definition of (of,

J y J J

f(K7). (4-3)
IXT

Since the tangent bundle of I x Y is naturally the direct sum of the pull-back of the
tangent bundles of Y and of/, we can take onl x Y the direct sum By of the connexion
6y with the trivial connexion on / . The curvature is then Ry = 0 © Ky and so if we
extendf / to an invariant polynomial of GL(4k,E) we have f{Ry) =f(Ky). Now let
<f> be any connexion o n / x f which coincides with By near the boundary then

f f{Ry) = f f(K(<j>)). (4-4)
J IXT J IxT

This is proved in the usual way by considering the family s<j> + (1 — s) By as a connexion
over Jxlx Y, where J is the interval 0 ^ s ^ 1 :f(K) for this connexion is a closed
form so its integral over d{J xl)x Y vanishes, but the form is zero on J x dl x Y
(because the family is constant near dl x Y) and the integral over 8J xl gives (4-4).

Combining (4-2), (4-3) and (4-4) we see that

F(Cl)-F(c0)= f f{K{<f>)) (4-5)
J IXY

for any connexion <f> on I x Y which coincides near the boundary with a connexion
of the form By. In particular (4-5) holds if, near the boundary, <j> is a,product connexion
(so that (j> = By with y constant near 0 and 1).

We now restrict ourselves to Riemannian connexions, so let ^ denote the space of
all Riemannian metrics on Y and let gft-*^ be the map which associates to a metric
its Levi-Civita connexion. Then the 1-form w, and the function F can be pulled back
to Si and will be denoted by the same symbols. If po,Pi are two metrics on Y, and if

t This extension exists and is unique because / has dimension 4k and so involves only the
Pontrjagin forms plt ...,pk which occur already for GL{2k, R), and 2k sg 4k— 1.



420 M. F . A T I Y A H , V. K. P A T O D I AND I . M. S I N G E R

p is any metric on / x Y which coincides near the boundary with the product metric
(for p0 on {0} x Y and px on {1} x Y), we can apply (4-5) and deduce

F(Pl)-F(p0) = ( f{K(p)), (4-6)
J IXY

where K{p) is the Riemannian curvature of p. In the notation of previous sections we

Pt denoting the Pontrjagin forms of p and / being regarded as a polynomial in the
basic invariants of GL(&k,R), namely the Pontrjagin forms. In particular we shall
t a k e / = Lk, the Hirzebruch ^-polynomial, and we compare (4-6) with the signature
theorem for / x Y (Theorem (4-14) of Part I):

sign (/ x Y) = f L(p) - {V(Pl,0) - r,{p0,0)}.
J IXY

As observed in section 2 we have sign (J x Y) = 0 and so

y(pi,O)-V(Po>°)= f L(p). (4-7)
J IXY

Comparing with (4-6) we see that

V(p,0)=F(p,0) + C

for some constant C. Recall now that F was only determined up to an additive con-
stant by the equation (4-1). Thus our spectral invariant i)(p,0) provides a natural
choice for F, the indefinite integral of u>t.

Remark. Theorem (4-14) of Part I could be easily differentiated with respect to p, to
yield a formula for dw(p, 0), were it not for the restriction that our metric has to be a
product near the boundary. The somewhat involved discussion concerning families of
connexions was designed to get round this difficulty without explicit computation.

For the other classical operators, including the Dirac operator, we have similar
results except that we must work modulo integers. As observed in section 3, if we put

where h(p) and w(p,s) are the dimension of the space of harmonic spinors and the v-
function of the Dirac operator (for the metric p), then £(/o, 0) gives a smooth function

(4-8)

and as before, using Theorem (4-2) of Part I, its differential d% can be identified on R
with the 1-form o)f, where/ = Ak is the Hirzebruch ^-polynomial. If we restrict our-
selves to the subspace 8$+ c M representing metrics with positive scalar curvature
then the theorem of Lichnerowicz(9) implies that £(p, 0) is a continuous function
dt^ ->- R and so provides a natural indefinite integral for a»̂ .

The functions | : ^ - > R / Z given by the Dirac operator and its generalizations are
in fact conformal invariants, that is to say %(<pp) = !(/>), where <j> is any positive smooth
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function on Y. To see this we take a metric o n / x F o f the form a = ijrp where p is
the product metric defined by p and ^ is a positive function such that

f(t,y) = l for < < | ,

Now apply Theorem 4-2 of Part I and we get

ixr
Now we use the fact that the Pontrjagin forms are conformally invariant,^ so that

Ak(p(a)) = Ak{p(p)) = 0

since p is the product metric. Hence I(^p) = f (p) as required. Of course since we have
an explicit formula for the differential a% the conformal invariance can also be verified
directly without using the invariance of the Pontrjagin forms.

We are now ready to explain the relation between our invariants and those of
Chern-Simons(8). In the first place we should make it clear that we are concerned
only with the special case of the Chern-Simons theory involving the tangent bundle
and cohomology in the highest dimension. Moreover, for simplicity, we shall consider
only the case in which Y is an oriented boundary: Y = 8X. Since dimF is odd, 27
is always an oriented boundary, and so we are at most ignoring a factor of 2. For every
polynomial/ (pv ..., pk) of dimension 4& and having integer coefficients Chern and Simons
define a function F-.^-^-R/Z. In the simplest case when Y is parallelizable F is defined

re
F(c) = (o,,

J n
(4-9)

where the integration is taken along any path joining c to the flat connexion defined
by the parallelism n. Note that, by the definition of Wp F(c) is actually given by an
integral over 7 x 7 :

F(c) = f(K(<j>)),
J IXT

where K(<j>) is the curvature of the connexion <j> onlxY defined by the path, from n
to c, of connexions on Y. If n' is another parallelism the difference

J 77 J It J JT

is an integer because it can be interpreted cohomologically as the relative characteristic
number of / x Y defined by f(p^,..., pk) using the framings n and n' on the two boun-
dary components. In general when Y is not parallelizable the definition of F is more
sophisticated, but if, as we are assuming, Y = 8X it can be expressed as an integral
over X, namely

F(c) = /(!>(«)), (4-10)
J x

t In fact the Weyl curvature tensor (kernel of the contraction giving the Ricci tensor) is
conformally invariant and the Pontrjagin forms involve only the Weyl tensor.

27 P S P 78
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where c is any connexion on X which extends the product connexion given by c near
the boundary. If X' is another choice for X we can glue X and — X' together to form
a closed oriented manifold M. The connexions c and c' on X, X' fit to give a smooth
connexion y on M and

J X J X' J M

which is an integer, namely the Pontrjagin number of M defined by / . Thus (4-10)
gives a unique value in R/Z independent of the choice of X. If Y has a parallelism n
then taking c = n in (4-10) we again get an integer value for the integral (the relative
characteristic number) so that F(n) = 0 in R/Z. This shows that (4-10) is compatible
with the previous definition (4-9).

We see therefore that our invariants are essentially the same as the Chern-Simons
invariants except that we allow ourselves certain polynomials with rational coeffi-
cients, e.g. / = Lk,Ak. Of course these polynomials give integer characteristic numbers
on closed manifolds precisely because they are indices of elliptic operators. Thus the
basic difference between our invariants and those of (8) can be summarized as follows.
The theory of (8) is analogous to (and derived from) the theory of characteristic
classes: it gives odd-dimensional 'characteristic classes' for vector bundles with con-
nexion. On the other hand our invariants are analogous to index invariants of mani-
folds : they are defined for odd-dimensional manifolds with connexion.

If Nk denotes the L.C.M. of the denominators of the coefficients of the polynomial
Ak, so t h a t / = NkAk has integer coefficients, then NkI, is a Chern-Simons invariant
where f is the invariant of (4-8) and Tis assumed to be a Spin-manifold. Since these
invariants take values in R/Z it is clear that | is a more refined invariant than Nk £.
We shall now exploit this extra refinement to derive an analytical expression for the
Adams e-invariant.

We recall first that, by the Pontrjagin-Thom construction, the stable homotopy
groups of spheres can be identified with the cobordism groups of framed manifolds.
In particular a parallelism n on a manifold Y induces a framingf on Y and hence
defines an element

[Y,TT]€7T% where n = dim Y.

The Adams e-invariant for n = 4& — 1 is a homomorphism

which can be defined as follows (10). According to (10) the Spin-cobordism group in
dimension 4fc - 1 is zero and so Y = 8X for some Spin-manifold X, the Spin-structure
induced on Y coinciding with the trivial Spin-structure defined by n. We now put

e[ Y, n] = A(X) if k is even]
\ \ (4-11)

= \A(X) if k is odd, J

t A framing means a trivialization of the stable normal bundle and up to homotopy this is
equivalent to a trivialization of the stable tangent bundle. A parallelism is a trivialization of
the tangent bundle.
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where A(X) is the relative characteristic number defined by A using the trivialization
n on the boundary. Because A (M) is integral for a closed Spin-manifold (and divisible
by 2 if dim M = 4 mod 8) it follows that e[Y, n] is well-defined as an element of Q/Z
by (4-11), independent of the choice of X.

I t is natural to ask whether there is any analytical way of computing e[Y, n] using
Y alone. We shall solve this problem by using our spectral invariants. Consider first
the case when k is even and define F-.tf

F(c) = f A(p{c)) mod 2 , (4-12)
J x

where c is any connexion on X extending the product connexion defined by c near Y.
The discussion at the beginning of this section shows that

dF = o>A, (4-13)

while the restriction of F to & coincides (by our main theorem) with the spectral
invariant £(p, 0) associated to the Dirac operator. On the other hand, when c = n we
have F(c) = e[Y,n]. Hence

e[ Y, n] = F(c) =F(p) + {F(c) - F(p)} mod Z

x)j modZ.

In particular we can take for p the metric pn denned by n, in which the vector-fields
of the parallelism are defined to be orthonormal. Then the above formula for e[Y,n]
involves only analysis on Y. For k odd we must divide by 2 and for this to work we
have to know that £(p, 0) has even integer jumps. Returning to Theorem (4-2) of Part I
this means knowing that index D is even. But in dimensions 8q + 4 the Spin bundles
are quaternionic so that the spaces of harmonic spinors (satisfying the various boun-
dary conditions) are all of even complex dimension. Thus index D is even (just as
in the case of closed manifolds) which gives the integrality of \A.

Summarizing therefore we have established

THEOREM (4-14). Let Ybea smooth manifold of dimension 4fc — 1 and, n a parallelism
on Y. Denote by p^ the Riemannian metric defined by n and put

where y is the y-function of the Dirac operator and h is the dimension of the space of
harmonic spinors. Then the Adams e-invariant of \Y, n] is given by

e[Y,n]=e()

where e(k) = 1 if kis even and e(k) = \if kis odd.

Remarks. (1) This is Theorem 5 of (5) although an error of sign has been corrected
here.

(2) The integral in (4-14) is in effect an integral over I x Y (see the explanation fol-
lowing (4- 9)) but this is quickly reduced to an explicit integral over Y. When multiplied
by Nk it gives the Chern-Simons invariant for NkA and the metric pn.

27-2
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Only in very special cases such as homogeneous spaces can eigenvalues be explicitly
computed so that Theorem (4-14) is of more theoretical than practical interest. However,
it can be applied to the general question raised in (7) concerning the behaviour of the
e-invariant under finite coverings. Suppose therefore that ?-> Y is a finite covering
and that we pull back the parallelism n on Y to a parallelism ff on Y. Applying (4-14)
we see that

e[?,1t]-ne[Y,7T]=e(k){g(P,,0)-ng{p,,0)} modZ, (4-15)
where n is the degree of the covering (the integral contributions J CJJ cancel out). If
a:TTX( Y) -> O(n) is the representationf associated to the covering then

£(/>ff,0)-«£(/>„, 0) = fa(0)

and is independent of p when viewed as an element of Q/Z. In fact, when k is odd,
we can divide by 2 because the Spin bundles are quaternionic and so all dimensions
are even. Thus e(&)fa(O) is well defined in Q/Z and (4-15) gives

PROPOSITION (4-16). For a finite covering Y-+Y of parallelized manifolds the
e-invariant satisfies

e[Y,7t]-ne[Y,n]=e(k)£a(0) modZ,

where n is the degree of the covering, dim Y = 4Jc — 1, e(k) = 1 (for lc even) and \ (for k odd).
Finally a denotes the representation TT1( Y) -*• O(n) associated to the covering and £a(0) is
the spectral invariant of the Dirac operator defined by (3-2). In particular e(k) f a(0) mod Z
depends only on the covering and on the Spin structure given by the parallelism.

If we drop the factor e(k) from the definition of the e-invariant we obtain a slightly
weaker invariant (for k odd) denoted by ec (whereas e = e^). Clearly for ec (4-16)
becomes

eo[T,if]-neo[7,n]=£a(0) modZ. (4-17)

We can now replace the invariant |a(0) by any one of the other three equivalent de-
finitions (note that our manifolds are framed hence certainly stably almost complex).
In particular the e-invariant difference in (4-17) can be expressed as a K-theory charac-
teristic number or alternatively in terms of the fixed-point invariants o/(4).

To improve these results to cover the e-invariant (and not ec) we have to work
with real iST-theory. This will be covered by Part III and to a certain extent by (2).

Finally we should point out that Proposition (4-16) also holds for framed manifolds.
The only place where we used a strict parallelism n rather than a stable parallelism
was in the explicit choice of metric pn in (4-14). However, any metric would have done
equally well and, in any case, as far as (416) is concerned the metric finally disappears
from the formula.

We turn now to questions concerning conformal immersions and for simplicity we
shall deal only with the case of immersing 3-manifolds in R4. Let Y be an orientable
3-manifold, then Y is parallelizable and by the Hirsch-Smale theory it can be im-
mersed differentiably in R4. In (8) Chern and Simons showed how then- invariants
can be used to provide obstructions to conformal immersions. We shall review this
from our present point of view.

t For a Galois covering with group G this would be the regular representation.
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Let Y be an oriented 3-manifold immersed in R* and let g: Y ->• S3 be the Gauss map.
Then TY ~ g*(TS3), where T denotes the tangent bundle, so that Y inherits a
parallelism n from that of 8s (given by right translation in the group of unit quater-
nions). Moreover g* takes the Riemannian connexion on S3 into the Riemannian
connexion on Y (for the metric p induced by the immersion). Letting 0)p denote as
before the closed 1-form on the space ^ of connexions on Y associated to the first
Pontrjagin form p1 we have

CLEMMA (4-18). o)p = 2d, where d is the degree of the Gauss map.

J "

Proof. Recall that, essentially by definition,

IXY

where c is the connexion on T Y (pulled up to / x Y) corresponding to any path in #
joining the flat connexion v to the Riemannian connexion of p. Since both these
connexions are induced by g we can choose c to come from a path of connexions c'
on S3 and then

Piifi) = d p ^ c ' ) =d\ °o)p,
J IXY J IXS3 J "o

where n0, p0 denote the standard parallelism and metric on Sz. To compute this last
expression we now view S3 as the boundary of the ball B* which we endow with a
metric p0 having the properties

(i) near the boundary p0 is the product of p0 and the standard metric on I,
(ii) p0 is invariant under the reflexion

T\ (Xi, X%, X$, X4) I • ( Xi, XfyXfyX^).

Then !"°^P= ( P1(Po)-Pi(Bi,no),

where Pi(B*, n0) denotes the relative Pontrjagin number given by the parallelism n0

on S3 = dBi: this is the same as the Pontrjagin number of the standard 4-dimensional
bundle over <S4 (underlying the quarternionic Hopf bundle) and so is equalf to — 2.
Since p^ipo) 1S invariant under r, which is orientation reversing, it follows that the
integral over B* vanishes. Thus

J Wo

which completes the proof of the Lemma.
fp

As we have seen o)p is a conformal invariant of/9 and modulo Z it is independent

of n. In fact, as noted by Chern and Simons, this statement can be improved by a
factor 2. More precisely the canonical bundle over the suspension of SO(3) has

t The sign depends on various orientation conventions but is not of great importance here.
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Pontrjagin numberf 2 and so wp is an even integer. Thus <x(p) = | wp is a well-
J IT J n

defined conformal invariant of p with values in R/Z (independent of n). Lemma 4-18
shows that this invariant vanishes for metrics which admit a conformal immersion in
BA This is the result of Chern-Simons.

We now return to our spectral invariant v(p, 0) for the operator on even forms of
Theorem (4-14) of Part I. As we have seen this defines a function

on the space £% of Riemannian metrics on Y which satisfies df = ^cop. Its precise
relation to the Chern-Simons invariant <x(p) is given by

PROPOSITION (4-19). 2a(p) is the mod Z reduction of SF(p). Moreover

S(Y) = a(p)-%F(p) mod Z

is an invariant of the oriented manifold Y {independent of p): it takes the values 0 or \.
If X is a Spin manifold with boundary Y then S( Y) = | sign (X) mod Z.

Proof. Let Y = dX with X a Spin-manifold compatible with a given parallelism n
of Y. Then

a(p) = 2 j °>p =^ modZ,

where as usual p is a metric on X extending p. The relative characteristic number
Px(X, n) is even because py is divisible J by 2 in the cohomology of B Spin (4). Thus

But by our main theorem, since Lx = \px,

F(p) = V(p,0) = i f Pl(p)-Sign(X).

Hence a(p) = f F(p) + f Sign X modZ,

showing that 2a(p) = 3F(p) modZ.
Moreover in the congruence

. , 3F(p) Sign(X)
«(P) ^ - = %

the left side is independent of X while the right side is independent of p. Thus each
defines an invariant S( Y) depending only on Y and the Proposition is proved.

Remarks. (1) I t has been pointed out to us by N. Hitchin that 8( Y) = \a( Y) mod Z,
where er( Y) is the number of 2-primary summands in H2{ Y; Z). This is a special case
of a more general result of Brumfiel and Morgan (Topology 12 (1973), 105-122).

t Equivalently over the suspension of S* the Pontrjagin number is 4. The weights of the
adjoint representation S3 -»• SO(3) are + 2x so px = 4a;2 and a;2 represents the generator.

% In general, px = w| mod 2.
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(2) If (Y, p) admits an orientation reversing isometry then

F(p) = -F(p) and a(p) = -ct(p) modZ.

Since F is real-valued this implies F(p) = 0, but a taking values in R/Z can have
order 2. In fact the Proposition shows that <x{p) = S( Y) will now be independent of p.
For Y = S3 we have S(Y) = 0 so a(p) = 0 for the standard metric p. On the other
hand for Y = £0(3) we have S{Y) = \ and so a(p) = \ for the standard metric. As
noted by Chern and Simons this shows that $0(3) cannot be immersed conformally
iniJ4.

We shall now show that our function F(p) gives an obstruction to conformal
embeddings in i?4.

PROPOSITION (4-20). Assume (Y,p) can be conformally embedded in R4 then F(p) = 0.

Proof. Since F is a conformal invariant we may assume p is the metric induced by
an embedding of Y in R4. Let X be the interior of Y then (4-18) can be rewritten

L1 X

where p is a suitable extension of p (coinciding with a product near Y). Hence

F(P) =lj Pi{p)8ignX

To show that F(p) = 0 we shall prove that

(i) SignZ = 0,

(ii)2»1(X>7r)=-2ei.

For (i) we note that the quadratic form on H2(X, Y) = Hlomp(X- Y) ~ H2{X- Y),
given by the intersection of cycles, can be computed via the open inclusion

J.X-Y-+R*

(i.e. a.b = j*(a).j*(b)) and hence is identically zero (since H2(R*) = 0). For (ii) we
compare n with the standard parallelism n' of i24 and deduce that

Pl(X, it) = Pl(I x Y; n, *') = dPl(I x S3; n0, n') = - 2d

as computed in the proof of (4-18). Herep1(/ x Y, n, n') denotes the relative Pontrjagin
number o f / x 7 with the trivializations n,it' on 1 x Y, 0 x Y respectively.

5. -K^-THEOBY WITH COEFFICIENTS IN Q/Z.

This section is in the nature of a technical appendix in which we give the definition
of IT-theory with coefficients in Q/Z and derive a number of elementary properties.
In particular we shall explain how a bundle associated to a representation a of a finite
group G defines an element [a] of K~x( Y, Q/Z), where ?r1( Y) = O, and we shall prove
the statement made in section 3 concerning the equivalence of definitions II and IV.
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The material of this section will also serve as a basis for a more systematic approach
in. Part III in connexion with the general index theorem for flat bundles.

We first define modn if-theory. For this we take the standard map

of degree n given by z\-> zn and we let Mn denote its ' cofibre' - that is, the mapping
cylinder Gn oifn with the initial S1 collapsed to a point. Homotopically Mn is a circle
with a 2-cell attached by a map of degree n so that H2(Mn, Z) £ ZjnZ is the only non-
trivial cohomology group. We put

K(X; Z/nZ) = K(X xMn;Xx point). (5-1)

Equivalently, and more briefly, we can write

K(X;ZlnZ)=K(lxxfn), (5-2)

where for any map g we denote by K(g) the reduced if-group of the cofibre of g.
The various properties of If-theory, applied to X x Mn, immediately yield corres-

ponding properties of modw if-theory. In particular this extends to a periodic co-
homology theory of period 2 and the exact sequence associated to the map lx xfn

gives the expected coefficient exact sequence

K*(X; Z/nZ)
For a point P we have

K°{P; Z/nZ) ~ ZjnZ, K^P; Z/nZ) = 0.

If X is a Spin0 manifold the direct image map in K-theory (3), § 3,

K*(XxMn)-+K*(Mn)
induces a direct image map

K*(X; Z/nZ)-+K* (point; ZjnZ).

For Q/Z coefficients we now put

K*(X; Q/Z) = Urn K*(X; ZjnZ), (5-3)

the map being induced by the diagrams

In view of the definition (5-2) of modnK-theory as a relative group we can consider
K(X;ZjnZ) as constructed from triples (E,F,a), where E,F are vector bundles on
XxS1 and a is an isomorphism

(lxxfn)*E^(lxxfn)*F.
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Replacing X by its suspension it follows that K~x{X;Z\nZ) can be constructed from
triples (E, F, a), wkere now E, F are vector bundles o n l x S 2 and a is an isomorphism

T,fn:S
2->82 denoting the suspension of/n.

To obtain a somewhat more convenient representation for K~l(X;Z/nZ) we now
observe that in K(S2) we have

where E, is the class of the Hopf bundle H. Let us fix a definite isomorphism (for each

^ nH s Hn © [n — 1) 1, (5*4)

where 1 is the trivial line-bundle: the homotopy class of (5-4) is certainly unique be-
cause 7T2(U(n)) = 0. Now suppose that E,F are two vector bundles on X and that a
is an isomorphism nE s nF. In view of (5-4) E and F become naturally isomorphic
after tensoring with Hn ® {n — 1) 1. Since Hn may be identified with (2/n)* H we see
that V = E ® {H © (n- 1) 1) and W = F ® (H © (n- 1) 1) are bundles onXxS2

with a definite isomorphism (lx x 2 / n )* F ^ (lx x S/B)* W. Thus we have established

PROPOSITION (5-5). A triple (E, F, a), where F, E are vector bundles on X and a. is an
isomorphism nE ^ nF defines a natural element [E, F, a] eK^X; Z\nZ).

Remark. An alternative approach would have been to define K~1(X;ZjnZ) using
such triples and then to have shown it had the required exact sequence properties.
On the whole the definition using the spaces Mn is probably quicker to set up.

Suppose now that E, F are bundles on X and that oc:nEy eg nFY is an isomorphism
over a closed subspace Y of X. On the one hand, just restricting to Y, we have by
(5-5) an element \EY,FY,a\eK"x{Y;Z\nZ). On the other hand we also have an
element [nE, nF, oc]eK(X, Y). The following lemma asserts that these are compatible:

LEMMA (5-6). The elements [Er,Fr,a] and —[nE,nF,cc] have the same image in
K(X,Y;Z/nZ), namely

S[EY,FY,a] = -p[nE,nF,a],

where 8: Z-x( Y; ZjnZ) -• K(X, Y; Z/nZ) is the coboundary and

p:K(X, Y)->K(X, Y;Z/nZ)
is ' reduction modulo n'.

Proof. Consider the diagram

0
-*• YxS*

where the vertical maps are induced by the inclusion Y->X and the horizontal maps
by S/n:#2-*-#2. From E,F,ccv?e construct the two bundles

V = E<S>(H®(n-1)1), W = F®(H@(n
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on XxS2 together with an isomorphism ifr*V ̂  ifr*W. This gives an element *F of
K(ijr) which restricts to [EY,FY,a] in K{6) and to [nE,nF,a] in K{<f>). The Lemma
now follows formally. To see this we replace our diagram by the homotopy equivalent
diagram of inclusions

M
C-+D

using the mapping cylinders so that A = B n C. Now consider the diagram of K-
groups

K(D, A)

The middle row is exact while the vertical arrows express K(B U C, A) as a direct sum
(by excision). Hence the top and bottom maps from K{D,A)->K1{D,B\j C) must
cancel, that is they must differ by — 1. In our case the top map applied to our element
*F gives 8[EY, FY, a] while the bottom map applied to the same element gives

p[nE,nF,a].

COROLLARY (5-7). In the situation of (5-6) assume further that X is a compact even
dimensional Spin0 manifold with boundary Y. Applying the direct image homomorphisms

we have A[E,F,a,~\ = -fj.[nE,nF,ac] mod?i.

Passing to cohomology this gives

A[E,F,a] = -{c\i[nE,nF,oC\.ST{X)}[X],

where ^ is the Todd class of X.

Proof. A factors as vS where v:K(X, Y\Z\nZ)-+Z\nZ is also a direct image homo-
morphism. Since /i reduced modn agrees with u the result follows at once from (5-6).

We come now to bundles associated to representations of a finite group G. Let Bo

be the classifying space of G, B% its N-skeleton (a finite complex), then we shall
d e & i e K*(BG; Q/Z) = lim K*(B%; Q/Z).

*N~

Since the rational cohomology of BG is trivial it follows that

K~l(B%) ® Q = 0, £0CBjf+1) ® Q = 0.

Applying the coefficient sequence for Z->Q-^QjZ to B% and letting N-+co we de-
duce that }
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Now we have the standard homomorphism

B(G)->K°{BO),

which assigns to each representation a of G the corresponding bundle on BG. Restricting
to the augmentation ideal maps I(G)^-R°(BG) and hence composing with 8~x we get
a map y:I{G)^K-\BG;QIZ).

Thus to any representation a:G-*U(k) we get an element

If now we have a representation

a:

which factors through G we can pull pack this element by the map

to get finally an element \oi\&K-x(Y \Q\Z). This is the construction referred to in
Definition II of section 3.

In more concrete terms this means that if V is the bundle over Y associated to a
then we can find a trivialization 0 of nVa (pulling it back from BG) and any two such
become homotopic after passing to some larger multiple mriVa. The triple (Va, Ik, <j>),
where Ik is the trivial bundle of dimension k, thus defines an element in K~x( Y; Z/nZ)
whose image in K~l( Y; Q/Z) is independent of the choice of n and 0.

The equivalence of definitions I I and IV of section 3 is then an immediate conse-
quence of Corollary (5-7) and the following Lemma:

LEMMA (5-8). Let X be a manifold with boundary Y and assume that the bundle Va

associated to the representation a'.n^Y)->(?-> U(k) extends to a vector bundle W on X.
Take any connexion on W which extends the flat connexion on Va, and let ch W denote
the differential form on X representing the total Chern character and constructed from
the connexion. Then (ch W — k) vanishes on Y and n (ch W — k) represents in H*(X, Y)
the Chern character of [n W, Ink, <j>\ e K(X, Y).

Proof. The Chern character of the relative element [nW,Ink, <j>] can be constructed
from a connexion on nW which extends the trivial connexion on Y whereas

n(chW-k)

uses the flat connexion of riVa on Y. The difference between these connexions on Y
leads to a differential form onFxJf (which we can view as a collar in X) vanishing at
both ends, and it is enough to show that this represents the zero class in

Hev(YxI,YxdI;R)^ HoAi{Y;R).

But since our trivialization <j> on nVa is induced from BG, so is this cohomology class
and hence it must be zero because BG has trivial cohomology over R.
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