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TWO COMPLEXES WHICH ARE HOMEOMORPHIC BUT
COMBINATORIALLY DISTINCT

BY JOHN MILNOR!

(Received March 14, 1961)

Let L, denote the 3-dimensional lens manifold of type (7, ), suitably
triangulated (see § 1), and let ¢™ denote an n-simplex. A finite simplicial
complex X, is obtained from the product L, x 6" by adjoining a cone over
the boundary L, x #6". The dimension of X, is n + 3.

THEOREM 1. For m + 8 = 6 the complex X, is homeomorphic to X,.

THEOREM 2. No finite cell subdivision of the simplicial complex X, is
isomorphic to a cell subdivision of X,. In particular there is mo piece-
wise linear homeomorphism from X, to X,.

The proof of Theorem 1 will be based on a recent result of B. Mazur.
For the special case n = 3 (which is somewhat more difficult) the proof
will make use of theorems of A. Haefliger and J. Stallings.

The proof of Theorem 2 will be based on the concept of ‘‘torsion’’ as
defined by Reidemeister, Franz, and de Rham.

These two theorems show that the Hauptvermutung? for simplicial com-
plexes of dimension =6 is false. On the other hand Papakyriakopoulos
[10] has proved the Hauptvermutung for complexes of dimension <2.

The Hauptvermutung for manifolds remains open. However Moise [8]
has proved the Hauptvermutung for manifolds of dimension =8; and
Smale [13] has proved it for triangulations of the sphere S, n + 4,5, 7,
which look locally like the usual triangulation. A weak form of the
Hauptvermutung for cells and spheres has been proved by Gluck [4].

As bi-products of the argument, two other curious phenomena appear.

The symbols

S**c D"c R"
will always denote the unit sphere bounding the unit disk in euclidean
n-space.

THEOREM 3. The manifold-with-boundary L, x D® is not diffeomor-
phic to L, x D*. However the interiors of these two manifolds are
diffeomorphic.

1 The author wishes to thank the Sloan Foundation for its support.

2 See, for example, Alexandroff and Hopf [1, p. 152]. I do not know who originated the
term ‘‘Hauptvermutung’’. The problem was clearly formulated by Tietze [18, pp. 13-14] in
1908. See also Steinitz [15, p. 23].

575



576 JOHN MILNOR

Two closed manifolds M, and M, will be called h-cobordant (ignoring
orientation) if their disjoint sum M, + M, bounds a compact differentiable
manjfold W such that both M, and M, are deformation retracts of W.
(The term ‘‘J-equivalent” has previously been used for this concept.
Compare Thom [17], Smale [13].)

THEOREM 4. The manifold L, x S*1is h-cobordant to L, x S* but these
two manifolds are not diffeomorphic.

1. Mazur’s theorem and lens manifolds

Let M, and M, be two closed differentiable manifolds of dimension k
which are parallelizable® and have the same homotopy type.

THEOREM OF MAZUR [6]. If n > k then M, x R" is diffeomorphic to
M, x R™,

An outline of the proof is given in § 2.

The lens manifold L = L(p, q) can be constructed as follows. Let
» > q be relatively prime positive integers. Identify S°® with the unit
sphere in the complex plane, consisting of all (z,, 2,) with |z, > + |2, |* = 1.
Let @ denote the complex number exp (27i/p). Then the cyclic group IT
of order p acts differentiably on S® without fixed points by the rule

T(zlr zz) = (wzly quz) ’

where T denotes a generator of II. The quotient manifold S*/II is the
required lens manifold.

This manifold L can be considered as a cw-complex with only four
cells, namely the images ¢, in L of:

(0) the point ¢, = (1, 0) ,

(1) the set e, of (e*,0),

(2) the set ¢, of (2, V1 — |2, "), and
(8) the set ¢; of (2, e*V'1 — [z, ) ;

where 0 < 0 < 2z/p and |2, | < 1. (Compare de Rham [12].)
Alternatively L can be considered as a simplicial complex. Here is an
example of a triangulation of L which is compatible both with the above
cell subdivision and with the differentiable structure. Consider the convex
polyhedron P spanned by the 2p points («’, 0) and (0, ®*) in the complex
plane. The boundary 8P is a simplicial complex which is homeomorphic

3 Instead of parallelizability, it suffices to assume that the stable tangent bundles of M;
and M; are compatible under some homotopy equivalence M; - M;.
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to S° under radial projection from the origin. Taking two successive
barycentric subdivisions of 8P, and then collapsing under the action of II,
we obtain the required simplicial complex.

These complexes were discovered by Tietze [18, p. 110] in 1908. Tietze
computed the fundamental group

m(L) ~ 11

and the homology of L. In particular he showed that the integer p is a
topological invariant of L = L(p, q).

In 1935 Reidemeister [11] classified the lens manifolds combinatorially.
He showed that L(p, q) is combinatorially equivalent to L(p, ¢') if and
only if either

¢ =xqor+qq =1 (mod p) .

(According to Moise [8] or Brody [2] two lens manifolds are homeomorphic
if and only if they are combinatorially equivalent. This fact will not be
needed in the present paper.)

In 1941 J. H. C. Whitehead [20] classified the lens manifolds up to
homotopy type. (For a more recent version see Olum [9].) Whitehead
showed that L(p, q¢) has the homotopy type of L(p,¢q’) if and only if
+qq’ is a quadratic residue modulo p. As an example, for p =7, we
obtain two distinct combinatorial manifolds L(7, 1) and L(7, 2); but only
one homotopy type; since 1-2 = 82 is a quadratic residue modulo 7.

All lens manifolds are parallelizable. This follows from the theorem of
Stiefel [16] and Whitney that all orientable 3-manifolds are parallelizable.
(For p odd the proof is quite easy since the obstructions to parallelizability
lie in groups H™(L; «,,—,(SO;,)) which are zero.)

Hence we can apply Mazur’s theorem and conclude that:

LEMMA 1. If +qq' vs a quadratic residue modulo p, and if n > 3,
then L(p, q) x R™ is diffeomorphic to L(p, q’) x R”.
ProOF OF THEOREM 1 FOR 7 > 3. Recall the definition:
X, =L, x 6" U Cone (L, x 8c¢") ,
where L, = L(7, q). Let x, denote the vertex of the cone. The comple-
ment X, — &, is homeomorphic to the product L, x R”. In fact a specific
homeomorphism f: X, — x#,— L, x R" can be given as follows. Let
h: 6™ — D™ be a homeomorphism, and define
S, 2) = (y, i(z))
Sy, 2') + (1 — t)xy) = (y, h(2")[t)

forye L, z€0", 2€d0™, and 0 < t < 1.
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Therefore X, is homeomorphic to the single point compactification of
L, x R". Using Lemma 1, this implies that X, is homeomorphic to X,;
which completes the proof of Theorem 1 for n > 3.

2. h-cobordism

First let me outline a proof of Mazur’s theorem. Given a homotopy
equivalence f: M, — M,, choose a differentiable imbedding.

f': M, — Interior (M, x D™)

which approximates the function x — (f(x), 0). This is certainly possible
if » is greater than the dimension k& of M,. Since both M, and M, are
parallelizable, it follows that the normal bundle of f'(M,) is trivial provid-
ing that n > k. (See for example Milnor [7, Lemma 5].) Thus a tubular
neighborhood of f’(M,) in Interior (M, x D") is diffeomorphic to M; x D",

This gives an imbedding ¢ : M, x D* — M, x D", Similarly, using a
homotopy inverse to f, one obtains an imbedding j: M, x D* — M, x D"
The main step in the proof is now the following.

LemMA 1. If n > k > 1 then any imbedding
h: M, x D* — Interior M, x D"

which s homotopic to the identity can be extended to a diffeomorphism
of the pair (M, x 2D, M, x D™) onto the pair (M, x D", h(M, x D™)).
In particular this applies to the imbedding h = j1.

Here 2D™ denotes the disk of radius 2. The key step in the proof is to
show that & restricted to M, x 0 is differentiably isotopic to the standard
inclusion map M, x 0 — M, x D". For m» > k + 1, this follows from a
well known theorem of Whitney [23]. For the case n =k + 1 > 2, it
follows from a recent theorem of A. Haefliger [5].

Now consider the infinite direct sequence

M, x D*—> M, x D" M, x D* —> ++. .
The “‘limit’’ or ‘‘union’’ of this sequence is non-compact manifold V.
Using the lemma it is seen that Vis diffeomorphic to the union M, x R™ of
M, x D"Cc M, x 2D"c M, x 4D* C --- .

But a similar proof shows that V is diffeomorphic to M, x R™. Hence
M, x R" is diffeomorphic to M, x R”. For details the reader is referred
to Mazur’s paper.

Now consider the region

W = M, x D® — Interior «(M, x D") .
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This is a compact differentiable manifold bounded by M, x S™* and
WM, x S™71).

LEMMA 2. If n = 3 then both M, x S™* and ©(M, x S™*) are deform-
ation retracts of W.

Proor. It will be convenient to denote the boundaries of Wby W, and
W, respectively. By a dimensional argument, any map of a 2-dimensional
complex into M, x D™ can be deformed off f’'(M;), and hence can be
pushed into W.

This implies that

7 (W) — m(M, x D")

and hence that

T (W) — (W) forqg =1, 2.

Given any system S of local coefficients on M, x D™ we have

H (W, W; S) —— H(M, x D", i(M, x D");S)

by excision. But 7 is a homotopy equivalence, hence these groups are
zero. Using Whitehead [21, Theorem 3] it follows that W, is a deforma-
tion retract of W.

The group H,(W, W,; S) is isomorphic by Poincaré duality to
H"**=2(W, W,; S), and therefore is zero. This implies that W, is a de-
formation retract of W, which completes the proof of Lemma 2.

Thus: if M, and M, are closed parallelizable k-manifolds with the
same homotopy type, and if n > k > 1, then M, x S™* is h-cobordant to
M, x S,

In particular this shows that L, x S*is h-cobordant to L, x S* which
proves half of Theorem 4.

Next we will see that most of the above arguments still work for the
case n = k = 3. According to Haefliger [5], any homotopy equivalence

L, — Interior (L, x D?)

is homotopic to an imbedding f’. The normal bundle of f'(L,) will be
trivial, since the obstructions to triviality lie in groups '

H™(Ly; nm—l(SOé)))

which are zero. Hence, according to Lemma 2, both L,x S? and #(L, x S?)
are deformation retracts of the region

W = L, x D?® — Interior ©(L, x D% .
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Thus L, x S* is h-cobordant to L, x S*.

According to Stallings [14, Theorem 7.4] the space W, with the bounda-
ry L, x S? removed, is homeomorphic to (L, x S* x [0, ). Filling in
the region (L, x D3 it follows that (L, x D% — (L, x S*) is home-
omorphic to '

(L; x D* U (L; x S* x [0, ))

where the two sets are matched along the boundary L, x S% Therefore
L, x R?1s homeomorphic to L, x R°.

It follows that X, is homeomorphic to X, for n = 3. This completes the
proof of Theorem 1.

3. Torsion

This section will describe the torsion invariant of Reidemeister [11],
Franz [3] and de Rham [12]. The presentation will be close to that of de
Rham.

Let II be a discrete group which acts freely on a CW-complex K,
and let

h:11— P

be a multiplicative homomorphism from IT to a commutative ring P. If
(1) the quotient complex K/II has only finitely many cells, and
(2) the equivariant homology groups Hy(P @u C.(K; Z)) are all zero;
then the torsion A,(K), will be defined. The torsion is a unit of P which is
well defined up to multiplication by elements of the form +h(7). We will
use the notation

A=Ay K)e U/+ h(II) ,

where U — P denotes the group of units. This element A is invariant
under equivariant subdivision of K.

In practice K is taken to be the universal covering space of a finite cell
complex, and II = 7,(K) the group of covering transformations. In
particular, letting K = L(p, q) be the universal covering space of a lens
manifold, and letting P be the field of complex numbers, the A,L(p, q)
were used by Reidemeister to give the complete combinatorial classifi-
cation of the lens manifolds.

The proof of Theorem 2 will be based on a more general concept of
torsion in which the cw-complex K is replaced by a cw-pair (K, L). The
group IT must act cellularly on K and freely on K — L. The resulting
torsion
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A (K, L)e U/ + h(IT)
is still a combinatorial invariant. That is:

THEOREM A. If the cw-pair (K', L) is a I-equivariant subdivision
of (K, L), and if A,(K, L) is defined, then

An(K’, L’) = An(K, L) .

The proof will be given in § 4.

In this generality, the torsion is definitely not a topological invariant:
it depends on the cell structure of (K, L). However in the classical case,
with L vacuous, it is not known whether or not A,(K) really depends on
the cell structure of K. (If K/II is a compact differentiable manifold then
A,(K) can also be defined. See [12], [19].)

For the definition of torsion, it will be convenient to assume that P is
a principal ideal domain. The more general case is considered in the ap-
pendix.

DEFINITION. Let F be a free P-module of finite rank q. A wvolume v in
F will mean a generator for the ¢ exterior power A%(F). If ¢>0, then
any volume can be written in the form b, A --- A b, where b,, « -+, b, form
a basis for F. If ¢ = 0 then a volume is defined to be a unit of P.

Now let 0 — F' — F— F"” — 0 be a short exact sequence of free,
finitely generated modules. Let v' = b/ A --« Ab,and v" =b/ A +-- A b
be volumes in F”’ and F" respectively. Then each basis element b/ can
be lifted to an element b, of F. Thus we obtain a well defined volume

V=0 A AD,AbA -+ AD,
in F. It is clear that any two of the volumes v', v, and v"” determine the
the third uniquely. In particular we will write
,UII — ,v/,vl

to indicate the dependence of v" on v and v'. If F’ or F" is zero then
this notation, suitably interpreted, still makes sense. For example if

0 F'-=5F—0 0
then v" and v can be considered as generators of the same module. Their
ratio v/v’ is a unit of P,
Now consider an exact sequence
8 9 ]
0 C, C,_. ces C, C, 0
of free P-modules, and suppose that a volume v, is given in each C..
Since P is assumed to be a principal ideal domain, it follows that each
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submodule 6C; c C;_, is free. Using the exact sequence
0_’Cn—"Cn71_’aCn—1_’0 ’

the volumes v, and v,_, give rise to a volume v,_,/v, in 8C,_,. Now using
the sequence

0—9C,,—C,,—9C,_,—0 ’
the volumes v,_,/v, and v,_, give rise to a volume

vnfz/(vn—llvn)

in 8C,_,. Continuing by induction we obtain a volume

V(Vyf + + J(Vn—a (V—s[V))* + +)
in 8C, = C,. Comparing this with the given volume v, in C, the ratio

Vo[ (01/(Va] + + * [(V—af (Vy—s[ V) + +))

is a well defined unit of P. The unit obtained in this way will be denoted
briefly by

[vovitvwste v le UC P
Now consider a cw-complex K on which the group II operates.

Hypothesis 1. II permutes the cells of K freely. The quotient complex
K/TI has only finitely many cells.

Thus the integral chain groups C,(K; Z) can be considered as free
modules of finite rank over the integral group ring ZII. In fact each
1-cell of K/II gives rise to a basis element of Cy(K; Z) which is well de-
fined up to sign, and up to multiplication, by elements of II.

Using the homomorphism A :II — U c P we can form the chain
complex

Cy =PRQulCK;Z)
where the subseript IT indicates that
Ph(T) ® ¢ — p @ c)

is set equal to zero for each pe P, 7€ 1l, and ce C(K; Z). Thus C; is a
free P-module of finite rank with one basis element for each ¢-cell of K/II.
Taking the exterior product of these basis elements, we obtain a volume
v, in C; which is well defined up to multiplication by elements of the form
+h(T).

Hypothesis 2. The homology groups H(P X.C.(K; Z)) are all zero, so
that the sequence
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0—> C, — C,_, e C— 0

is exact.
Then the torsion A,(K) can be defined as the residue class of
[vovr vwst <o wE] e U

modulo the multiplicative subgroup =+ A(II).

The definition of torsion for a c¢w-pair (K, L) is similar. In this case
one assumes that II is a group of automorphisms of the pair; that II
operates freely on the cells of K — L; that (K — L)/II has only finitely
many cells; and that

H((PRWC.(K,L; Z)) =0 for all <.
(The group II is definitely allowed to have fixed points in L.) The torsion
ALK, L) e U/i h(II)

is defined just as above; using the chain complex Cy =PRuC.K, L; Z).
As an example let K be the 3-sphere considered as the universal cover-

ing space L of L(p, q) and let IT be the cyclic group of covering trans-
formations. As described in§1, L hasa IT-equivariant cell structure with
4p cells; so that)L(p, ¢) = L/i1 has only 4 cells. Thus C,(L; Z) is a free
ZTl-module with 4 generators: e, e, ¢, and e¢,. The boundary relations
are easily seen to be as follows:

de, = (T — 1)e,

O, =1+ T+T*+ -+ + T? Ve,

oe; = (T" — 1)e, ,
where 7 is determined by the congruence ¢gr = 1 (mod p).

A homomorphism % from II to the complex numbers P takes the
generator T into some p'® root of unity . If 7 == 1 then
l+c4+7224 e + 7271 =0;
so that the boundary relations in
C* = P®HC*(Er Z)
become
oe, = (t — 1)e, , oe, =0, oe; = (7" — 1)e, .
Clearly the chain complex C, is acyclic. The torsion
ALL) = [eee0 e U / =+ A(II)

is defined; and is equal to (r — 1)(z" — 1)!. This complex number is
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well defined up to multiplication by numbers of form +z*. Taking the
absolute valute of A,(L) we obtain a well defined real number | A |.

Applying this construction to L(7, 1) we obtain |A| = 1.83 or 0.41 or
0.26 (to two decimal places) depending on the choice of . On the other
hand for L(7, 2) we obtain | A| = 0.74 or 0.59 or 0.33. Thus the torsion
invariant distinguishes L(7, 1) from L(7, 2). Together with Theorem A,
it follows that no cw-subdivision of L(7, 1) is isomorphic to a CW-sub-
division of (7, 2).

Next consider the complexes X, and X, defined in the beginning of this
paper. Each X, is a manifold except at one exceptional point x,. Re-
moving this point we obtain a space X, — x, which is homeomorphic to
L(7,q) x R™. The fundamental group II of X, — x, is cyclic of order 7.

Let K, denote the single point compactification of the universal cover-
ing space of X, — «x,. Thus the fundamental group II of X, — x, operates
on K, with a single fixed point. The quotient space K,/II is equal to X,.
Any cell structure on the pair (X, x,) gives rise to II-equivariant cell
structure on K,.

The simplest cell structure on X, has five cells: namely the four cells
e; x R of I(7,q) x R"~ X, — x,; together with the vertex x,. The
corresponding cell structure on K, has 28 cells of the form T7e; x R";
together with one vertex which will be denoted by k,

Consider the chain complex C,.(K,, k,; Z). This complex is free over
the group ring ZII with 4 preferred generators ¢; x R". It is isomorphic
to the chain complex C,(L(7, q); Z) except for a shift in dimension. Hence
the torsion A,(K,, k,) is defined and is equal to A,(L(7, 9))*'. (The ex-
ponent is +1 or —1 according as n is even or odd.) Therefore the
torsion invariant distinguishes (K, k,; II) from (K,, k,; IT). It follows that
no Ccw-subdivison of the cw-complex X, is isomorphic to a cw-subdivi-
sion of X,. Since the simplicial structure on X, defined in §1 is a subdivi-
sion of the above cell structure, this completes the proof of Theorem 2;
except for the verification that torsion is invariant under subdivision
(Theorem A).

4. Invariance under subdivision

The proof of Theorem A will be based on three lemmas.
First consider a commutative diagram of short exact sequences.
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0 0 0
l l l

0 El Flz -F'13 0
l l l

0— F) F, Fp—0
l l l

0 4 -F'gl F‘32 4 F33 0
l l l
0 0 0

The F, are to be free P-modules of finite rank.

LEMMA 3. Given volumes v;, in F, for 1,5 < 2 the identity

(Vo V1) (Ve[ V1) = + (7)22/7721)/(7712/7711)
s satisfied.

Proor. Choose a basis {b,, ++,b,, <=+, by, +++,b,, -+, b} for F), so that
{b,, ++-, b,} forms a basis for F},, so that {b,, - -+, b,} forms a basis for F,,
and so that {b, «--, b,, by11, +++, b,} forms a basis for F}, (using the same
symbol for corresponding elements in different groups). Set

Vi = Upby A o0 A D, Vg = Upby A =++ A D,
Vg = u21b1 VANERRIVAN bp A bq+1 JANERRIVAN br Vya :u22b1 VAYRREIVAN bs ’
where the u;; are units. Then it is easily verified that both (v,,/v.,)/(v,/v,,)

and (vy,/vy)/(v1s/v,,) are equal to & (UpU uyn uy,)b, ., A +++ A b,. This proves
Lemma 3.

LEMMA 4. Suppose that I operates cellularly on a cw-triple (K, L, M).
Then

An(K, M) = Au(K, L)AL, M) .
To be more precise: if two of these three invariants are defined, then the
third is also defined and equality holds.

ProoF. If two of the three invariants are defined, then certainly II
permutes the cells of K — M freely; and (K — M)/II has only finitely
many cells. Let

;« - P®HC*(Lr M; Z)
Ci. = PQuC.(K, M; Z)
¥ =PQuCuK, L; Z) .
Then there is an exact sequence

0-Ci—C,—Ci{—0
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of chain mappings. Since two of these three chain complexes are acyclic,
it follows that the third is also. Let v, v;, v}’ denote the preferred volumes
in C}, C;, C}' which are determined by the preferred bases. Each of these
is well defined up to multiplication by elements of the form =+h(x).
Furthermore it is clear that

v[v; = £+ h(m)v}

for some 7. Applying Lemma 3 to each of the diagrams

0 0 0
l l l

0 0Ci 0C;, oCY, 0
l ! l

0—> C C; cy 0
| l |

0 —> aC" aC; aC! 0
l l l
0 0 0 ,

it follows by induction on 7 that
Vil Wima] + = # [V + D@V s] =+ [V0+ < +))
= & h(m) (v [(Wis]++ < [0}« - +))
for some ;. This completes the proof of Lemma 4.

LEMMA 5. If II permutes the components of K — L freely, and if
HJ(K,L;Z) =0, then A,(K, L) = 1.

PrRoOF. Let K, denote the union of L with one component of K — L.
Then the injection

PR CuKy, L; Z) — PQu(K, L; Z)
is an isomorphism. Thus the torsion
AWK, Lye U/ + R(I1)
is the image in U / +h(II) of the torsion invariant
A(K,, L)e U[+1,

where the subscript 1 denotes the homomorphism from the trivial group
to U. But this is in turn the image of a corresponding invariant with the
ring P replaced by the ring Z of integers. Since the only units in Z are
+1, it follows that A,(K, L) is trivial.

PRrOOF OF THEOREM A (following Whitehead [22]). Choose a sequence

L=K,cKc.-+-CcK,=K
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of subcomplexes of K so that each K;,, — K consists a single cell, to-
gether with its translates under II. Let I denote the unit interval consid-
ered as CW-complex, with II acting trivially.

Given a subdivision K’ of K let (4, B) denote the CW-pair formed
from (K x I, L x I) by subdividing K x 1 only. Let A, denote the sub-
complex of A formed from

(Kx0) UK, x1I

by subdividing K; x 1.
The inclusion C (K x 0, L x 0) — C,(A,, B) is an excision isomorphism,
and hence

Ah(AOr B) = Ah(K’ L) .

Each pair (4., A;) clearly satisfies the conditions of LLemma 5. Hence
by Lemma 4

Ah(AOy B) = Ah(Aly B) = = An(Ar’ B) )

where A, = A. Thus A,(4, B) is equal to A,(K, L).
Now let A; denote the subcomplex of A formed from (Kx1)U(K; xI)
by subdividing K x 1. Then by a similar argument

C,(K' x 1, L' x 1)—> C,(4,, B)
hence A,(K', L") = A,(4,, B), and
Ay(Ay, B) = Ay(A,, B) = -++ = A,(4,, B)
where A, = A. Therefore
AnK', L") = Ay(A, B) = Ai(K, L),

which completes the proof of Theorem A.
In conclusion, here is a theorem concerning the torsion of a product.
Let A be a finite CW-complex with Euler characteristic x(4). Assume
that IT acts trivially on A.

THEOREM B. If A,(K) is defined then A,(K x A) is defined and is
equal to A,(K)*,

PROOF. Choose subcomplexes A, c 4, C -+ C A, = A so that A4, is
vacuous and each A;,, — A; consists of a single cell. The chain complex

C K x A, Kx Ay Z)
is isomorphic to C,(K; Z) except for a shift in dimension; hence

AyK x A, K x A) = A(K)*
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where the exponent is exactly the difference y(A4;.,) — x(A4:). Now by
Lemma 4,

AyK x A) =T5A (K x A, K X A) = An(K)Y 5
which completes the proof.

COROLLARY 1. For any n the differentiable manifold L, x D" is not
diffeomorphic with L, x D".

ProOF. The triangulation of L, described in § 1 isa C'-triangulation in
the sense of Whitehead [19]. Choosing any C'-triangulation of D", con-
sider the resulting product triangulation of L, x D". According to
Theorem B

An(f/q X Dn) = An(iq)l

hence L, x D" (in this triangulation) is not combinatorially equivalent
to L, x D*. But, according to Whitehead, if two manifolds are diffeomor-
phic then any C'-triangulation of one is combinatorially equivalent to any
C'-triangulation of the other. Therefore L, x D" is not diffeomorphic to
L, x D". This proves Corollary 1, and (together with Lemma 1) completes
the proof of Theorem 3.

COROLLARY 2. For n even the manifold L, x S™ is not diffeomorphic
to L, x S

(I do not know what happens for # odd.) The proof is similar except
that

An(f/q X Sn) = Ah(Eq)2 ’

since the Euler characteristic of an even dimensional sphere is +2. The
absolute value of the torsion distinguishes L, from L,, hence its square
will also distinguish L, from L,. This completes the proof of Corollary 2,
and hence of Theorem 4.

Appendix: Torsion and simple homotopy type

The definition of torsion in § 8 can be extended to the case where P is
an arbitrary commutative ring with unit as follows. Call a P-module M
quasi-free of rank r if the direct sum of M with a free module of rank
n is free of rank r + n for large n. It follows easily that A"M is free on
one generator, so that volumes can be defined as before. Furthermore,
using the exact sequences

0“"aCi+1”"Cz"’60¢—’0y

it follows by induction on ¢ that each 8C, is quasi-free. The definition of
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torsion now proceeds as in § 3.

In his study of simple homotopy types, Whitehead has defined a sharper
torsion invariant which makes sense even over a non-commutative ring.
In this construction the group U of units is replaced by an abelian group
W(P) which is defined as follows.

Let G, denote the group of all non-singular » x % matrices over P.
Using the standard imbeddings

U=G,cG,cG,C +--,

one can form the union G: the infinite general linear group of P. Let E
denote the subgroup of G generated by all elementary matrices (i.e., all
matrices which coincide with the identity matrix except for one off-
diagonal element). Whitehead shows that E is exactly the commutator
subgroup of G. Define the Whitehead group W(P) to be the quotient
G/E. Thus each non-singular matrix A € G, determines an element of
W(P) which will be denoted by w(A). (Note that w(A) behaves very much
like a determinant of A.)

ExampLES. If P is an euclidean domain then W(P) = U; however 1
do not know whether or not this is true for a principal ideal domain. In
general, if P is a commutative ring, then W(P) splits as the direct sum
of U and a second group W,(P). If Pis a skew-field, then W(P) is the
commutator quotient group of the multiplicative group U.

The definition of torsion using W(P) in place of U can be carried out
as soon as one has a suitable concept of ‘‘volume’’. Let M be a quasi-
free left P-module of rank r and let F'denote the free P-module generat-
ed by countably many elements b, b,, b,, ---. A quasi-basis for M will
mean an ordered basis (m,, m,, m,, + ++) for the free module M P F, which
satisfies the condition m, ,; = b, for large . An elementary transforma-
tion of such a quasi-basis will mean the operation of adding a left multiple
of m; to m,, © #+ j. Define a volume in M to be an equivalence class of
quasi-bases, where two quasi-bases are equivalent if and only if one can
be obtained from the other by a finite sequence of elementary transfor-
mations. For the special case M = 0, note that a volume in M can be
considered as an element of the Whitehead group W(P).

Proceeding just as in § 3 one can now define the torsion invariant

Au(K, L) e W(P)/w(xhII) .
The hypotheses are the same as those of § 3 except that the ring P need
not be commutative.

As a case of particular interest suppose that IT operates freely on the
simply connected complexes K O L, and suppose that H, (K, L; Z) = 0.
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Let 7: I — ZTI denote the inclusion homomorphism. Then the torsion
A(K, L)e W(ZTI)]w(x11)

is defined. This invariant plays a fundamental role in Whitehead’s theory.
It vanishes if and only if the inclusion map

LTI — K11
is a simple homotopy equivalence.

PRINCETON UNIVERSITY

REFERENCES

1. P. ALEXANDROFF and H. HoPF, Topologie, Springer, Berlin, 1935.
2. D. J. BRODY, The topological classification of the lens spaces, Ann. of Math., 71 (1960),
163-184.
3. W. FRANZ, Uber die Torsion einer Uberdeckung, J. fiir reine u. angew. Math., 173
(1935), 245-254.
4. H. GLUCK, The weak Hauptvermutung for cells and spheres, Bull. Amer. Math. Soc.,
66 (1960), 282-284.
. A. HAEFLIGER, Plongements différentiables de variétés dans variétés, to appear.
. B. MAZUR, Stable equivalence of differentiable manifolds, to appear.
. J. MILNOR, A procedure for killing homotopy groups of differentiable manifolds, Dif-
ferential Geometry: Symposia in pure mathematics III, Amer. Math. Soc. 1961.
. E. MOISE, A ffine structures in 3-manifolds, V, Ann. of Math., 56 (1952), 96-114.
. P. OLUM, Mappings of manifolds and the notion of degree, Ann. of Math., 58 (1953),
458-480.
10. CH. PAPAKYRIAKOPOULOS, A new proof of the invariance of the homology groups of a
complex, (Greek), Bull. Soc. Math. Gréce, 22 (1943), 1-154.
11. K. REIDEMEISTER, Homotopieringe und Linsenrdume, Hamburger Abhandl., 11 (1935),
102-109.
12. G. DE RHAM, Complexes @ automorphismes et homéomorphie différentiable, Ann. Inst.
Fourier (Grenoble), 2 (1950), 51-67.
13. S. SMALE, Differentiable and combinatorial structures on manifolds, Ann. of Math., (to
appear).
14. J. STALLINGS, The topology of high-dimensional piecewise-linear manifolds, (mimeo-
graphed) Princeton University, 1961.
15. E. STEINITZ, Beitrage zur Analysis Situs, Sitz. Berlin Math. Gesell., 7 (1908), 29-49.
16. E. STIEFEL, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannig faltig-
keiten, Comment. Math. Helv., 8 (1935-6), 305-353.
17. R. THOM, Les classes caractéristiques de Pontrjagin des variétés triangulées, Symposium
internacional de topologia algebraica Mexico 1958.
18. H. TIETZE, Uber die topologischen Invarianten mehrdimensionaler Mannig faltigkeiten,
Monatsh. fiir Math. u. Phys., 19 (1908), 1-118.
19. J. H. C. WHITEHEAD, On C!-complexes, Ann. of Math., 41 (1940), 809-824.

N o O

©

20. ————, On incidence matrices, nuclei and homotopy types, Ann. of Math, 42 (1941),
1197-1239.

21. —, Combinatorial homotopy, I, Bull. Amer. Math. Soc., 55 (1949), 213-245.

22. ——, Simple homotopy types, Amer. J. Math., 72 (1950), 1-57.

23. H. WHITNEY, Differentiable manifolds, Ann. of Math., 37 (1936), 645-680.





