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1 Introduction

This report is part of a project funded by the Centre for Learning and Academic Development (CLAD)
at the University of Birmingham and we gratefully acknowledge their support. The objective of
the project was to develop new learning resources to enable staff working in Science, Technology,
Engineering, and Mathematics (STEM) to incorporate puzzle-based learning in their teaching. This
guide to puzzle-based learning accompanies a selection of mathematical and logic-based puzzles,
grouped by mathematical topic and approximate ‘level’, as judged by our experiences. We shall
comment more on this later. It is written to provide advice tostaff on how to adapt such puzzles for
use in their subject at the appropriate level(s).

Our motivation for this project is a belief, based on our experience here and elsewhere, that puzzle-
based learning is under-exploited in the teaching of mathematics and problem solving to STEM stu-
dents. In Section 2 we define our terms and provide examples. Our teaching experience strongly
suggests that embedding puzzles in the curriculum enhancesstudents’ learning by developing their
general problem-solving and independent learning skills.We also expect this will increase their moti-
vation to learn mathematics, whether as a subject in its own right or as vital learning for other STEM
disciplines. We expand on this theme in Section 3, and in Section 4 provide case studies of how such
puzzles have been used with students.

2 What is a puzzle?

The phrasepuzzle-based learningis taken from the title of Michalewicz and Michalewicz (2008),
although it continues a long tradition within the mathematics, science, and engineering communities.
We start by defining our terms. We use the wordtaskas a catch-all for any activity given to a student.
The educational literature contains many terms which describe more specific types of task including
exercise, problemandpuzzle. Unfortunately, there are no agreed definitions and these words are used,
sometimes interchangeably, to encompass a wide variety of tasks. We shall discuss hallmarks and
characteristics of tasks and also how and why they might be useful to students’ education. Some of
these characteristics refer to the mathematics of the task itself, others relate to common experiences
of students and teachers when using the tasks.

Something that is technically complex, at least for the person undertaking it, but can be solved by
a routine well-established technique is called anexercise.

H Example task 1

Show
∫

1

0

x4(1− x)4

1 + x2
dx =

22

7
− π.

The answer to this task contains a mathematical joke. If students are curious about this strange and
amusing result, then this is an exercise in polynomial long division and basic integration. Such ex-
ercises, often without any humour, form an important part ofdirect instruction. This is a form of
teaching in which a teacher explains some theory and gives worked examples. A student is then given
exercises to practise (imitate even) the techniques just shown. Such exercises certainly have their
place and they characterisetraditional teaching. One implicit part of the contract between the teacher
and student is that such exercises relate closely to what hasjust been taught. The following, satirical,
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criticism of a strict diet of such instruction is a reminder to us that dissatisfaction with education is
nothing new.

I was at the mathematical school, where the master taught hispupils after a method scarce
imaginable to us in Europe. The proposition and demonstration, were fairly written on a
thin wafer, with ink composed of a cephalic tincture. This, the student was to swallow
upon a fasting stomach, and for three days following, eat nothing but bread and water.
As the wafer digested, the tincture mounted to his brain, bearing the proposition along
with it. But the success has not hitherto been answerable, partly by some error in the
quantumor composition, and partly by the perverseness of lads, to whom this bolus is so
nauseous, that they generally steal aside, and discharge itupwards, before it can operate;
neither have they been yet persuaded to use so long an abstinence, as the prescription
requires. (Swift, 1726, Chapter 4)

A more substantial review of these issues was undertaken by Mason et al. (2010) and Schoenfeld
(1992). However, part of the motivation for puzzle-based learning is a desire to widen the scope of
activities from such exercises to problems and puzzles.

For us, aproblemis more than an exercise. That is to say, it is more than a predictable task relating
directly to work just taught. It will not be immediately apparent how to proceed and students need to
try to understand what the problem is actually about. So, they have to take responsibility for making
their own decisions.

Problems are often posed in words, somewhat dressed up. One of the skills we seek to develop
in STEM students is the ability to un-dress tasks and isolatethe essential details. This ismodelling
albeit in its most rudimentary form. It requires the studentto make choices about how to represent
a problem mathematically, even when there is a simple (e.g. linear) equation which represents the
situation exactly. It is clearly a vital skill in engineering where problems are rarely presented in
mathematical form.

H Example task 2

A large steel cylindrical tank is required to have a volume of32 m3 and to use the smallest
amount of steel in its construction. What height will it haveto be to satisfy these conditions?

Once this process has been completed, students may then recognize the reformulated task as a rou-
tine exercise and hence be able to solve it. However, writingdown equations poses some serious
psychological challenges.

H Example task 3

Write an equation for the following statement:“There are six times as many students as
professors at this university”. UseS for the number of students andP for the number of
professors.

When Clement et al. (1981) gave this task to150 calculus level students,37% answered incorrectly
and6S = P accounted for two thirds of the errors. There are genuine difficulties in moving from
a word problem to a mathematical system which represents it.Similar conceptual difficulties occur
with algebra story problems, particularly those concerning rates of work, concentration and dilution
problems. A systematic analysis of story problems is given in Mayer (1981). It is precisely because
these difficulties exist that we have a responsibility to address them explicitly in providing such tasks
for our students. Some might argue they should be addressed at school.
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I hope I shall shock a few people in asserting that the most important single task of math-
ematical instruction in the secondary school is to teach thesetting up of equations to solve
word problems. [...] And so the future engineer, when he learns in the secondary school
to set up equations to solve “word problems” has a first taste of, and has an opportunity
to acquire the attitude essential to, his principal professional use of mathematics. (Polya,
1962, Vol. I, pg. 59)

Nevertheless, university students in all STEM subjects, including mathematics, appear to struggle
with word problems. It is clear that practice of such tasks makes them less problematic and closer
to exercises, and this is our point: the student’s experience may have as important a bearing on the
characteristics of the task as does the task itself. To some people a task is an exercise, to others it is
a more challenging problem. Therefore we are unable to differentiate exercise from problem clearly,
without the context of the students for whom the task is intended. Indeed, calculus and algebra are
coherent systems of tools which enable a very wide range of problems to be framed in a way that
they become exercises. Our point here is that exposure to genuine problem solving must accompany
practice of exercises.

Problemsvs exercises is a useful distinction and one we do not claim is novel.

First, what is aproblem? We distinguish betweenproblemsandexercises. An exercise is
a question you know how to resolve immediately. Whether you get it right or not depends
on how expertly you apply specific techniques, but you don’t need to puzzle out which
techniques to use. In contrast a problem demands much thought and resourcefulness
before the right approach is found. (Zeitz, 2007)

It should be noted that there are many valuable problems which requireestimationandapproxi-
mation. These are valuable skills for all STEM students and the following task illustrates this.

H Example task 4

How many dumper trucks would be needed to cart away Mount Everest?

To defend a solution to this task a variety of choices need to be made and approximations used.“How
big is a dumper truck?”, “What do we mean by Mount Everest?”(down to sea level or the plateau?),
“Can we approximate the mountain by a cone or a cube?”. A key part of the task is identifying and
estimating the missing information. By breaking tasks downinto parts, it is often possible to arrive
at an answer that is good to anorder of magnitude. Estimation problems such as this are sometimes
referred to asFermi problems, after the Nobel prize-winning physicist Enrico Fermi (1901–1954).
More comments on these kinds of tasks are given in Weinstein and Adam (2008). Estimation is a
useful skill for all STEM students to develop, particularlyengineers who can use estimates to check
answers todesign problemsthat have been found by more conventional means. Estimationdoes
demand“much thought and resourcefulness”, Zeitz (2007), but the methods can still become, with
practice, mainly routine.

Turning specifically to puzzles, Michalewicz and Michalewicz (2008) have said“sometimes the
difference is not clear between a puzzle and a real problem”. However, for uspuzzleshave additional
characteristics to other problems, which we try to articulate here. They also differ from estimation
tasks in important ways.
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2.1 Hallmarks of a puzzle

Michalewicz and Michalewicz (2008) state that (educational) puzzles satisfy four criteria: generality
(explaining some universal mathematical problem-solvingprinciple), simplicity, “Eureka” factor and
entertainment factor. We believe that generality is a characteristic of problems, not just puzzles. As
noted by Michalewicz and Michalewicz (2008) not all puzzlesmeet the simplicity criterion. However,
the other two criteria are critical. Our contention is that apuzzle is a problem that is perplexing and
either has a solution requiring considerable ingenuity, perhaps a lateral thinking solution, or possibly
results in an unexpected, even a counter-intuitive or apparently paradoxical, solution. Solving the
puzzle usually results in a “Eureka” moment, very satisfying for the solver and the process of finding
a solution is both frustrating and entertaining. The application of ingenuity extends much further than
being able to write down a correct model.

Puzzles constitute a significant intellectual challenge. Because of the difficulties this obviously
presents when using such tasks with students we sought puzzles with a variety of fruitful approaches
which lead to the correct answer. In particular, we sought puzzles where there was both a conven-
tional solution (preferably a contrasting, particularly complex exercise) and alateral thinkingsolution,
de Bono (1967). Lateral thinking is a way of solving problemsby by-passing traditional means, em-
ploying considerable ingenuity to reach a solution. A consequence of this lateral approach is that the
correct answer should be more or lessobviousonce it has been seen. It should certainly be easy to
check an answer. These combine, so that puzzles often have anelegant solution which has identifiable
aesthetic value. Finding such tasks was, we found, very difficult.

H Example task 5

Diagonals of two faces of a cube meet at a vertex. What is the angle between the diagonals?

Clearly this puzzle (Puzzle 17) could be solved with routinetrigonometry or perhaps vector methods,
which would make it more like a problem than a puzzle. However, noticing that joining the other
ends of the segments forms an equilateral triangle gives a lateral thinking solution. This allows us to
classify this as a puzzle with both “Eureka” and entertainment factors. We liked puzzles, such as that
above, with an element of surprise.

The following is one example of a puzzle (Puzzle 25) which students find difficult, but which has
this characteristic.

H Example task 6

You own a rectangular piece of land such as that shown below. The ‘L-shaped’ grey part is
woodland, the rectangular white part is pasture.

Explain, with justification, how to build a single straight fence which divides the pasture in half
and the woodland in half.

The crucial observation is that a straight line cuts a rectangle in half if and only if it goes through the
centre. This line need not, obviously, be restricted to diagonal, vertical or horizontal directions. The
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“Aha!” moment is the observation that if we halve the whole rectangle and the pasture then we have
also cut the woodland in half.

It is intriguing that this leads to an interesting question:what shapes apart from a rectangle have a
point through which any line cuts the area in half? Beware, this is not the centre of mass and the point
need not lie inside the shape itself. Not all shapes have sucha point, e.g. some triangles do not. This
opportunity to store up the observations which were crucialin puzzle solving, or which open the way
to interesting areas, is something else we sought.

One characteristic of a puzzle and something that distinguishes them from estimation tasks, is
that puzzles contain all the needed information; they are self-contained. When posing something
as a puzzle this is implicit. For example, in Example task 6 there are no dimensions given. While
some students might measure the diagram, the lack of this information signals its irrelevance. When
first thinking about a puzzle it may appear impossible without assumptions or estimation. However,
being self-contained is itself a very useful piece of information. Indeed, it may lead to the following
reasoning,“Because I know I have all the information needed, then this follows....” We call such
thinking “meta-inferences”, but such confident logic is notapparent in the solutions most of our
students provide, even when it is clear that “puzzle rules” rather than “estimation rules” are currently
in play.

Sometimes problems are described as puzzles because they require deep knowledge of a specific
discipline and require the student to work out the correct approach in a specific context. There are
many such examples in “200 Puzzling Physics Problems” Gnädig et al. (2001). These may be “puz-
zling” and would seem to be of great pedagogic value but many are not puzzles as we define them
here. This is because we believe the application of ingenuity in a puzzle has to extend much further
than being able to write down a correct model. We admit the distinction is fine but in any case many
of the problems in Gnädig et al. (2001) are more concerned with exploring physical principles rather
than our purpose, which is the teaching of mathematics through puzzles.

The following is an example of a task which appears impossible because there seem to be too
many unknowns. An experienced mathematician might be worried about this, but posing this as a
puzzle (Puzzle 10) indicates itmusthave a solution.

H Example task 7

A man walked for5 hours, first along a level road, then up a hill, then he turned round and
walked back to his starting point along the same route. He walked4 miles per hour on the level,
3 uphill and6 downhill. Find the distance walked.

As described in Section 5, there is also a meta-inference solution to this puzzle. The characteristic
that the mental moves needed to solve the puzzles are useful later counters the charge that such tasks
are contrived and pointless. Yes, they are certainly contrived but that is the point. It is much more
common for students to become disaffected by the problem of “trick questions”.

2.2 “Tricks” vs lateral thinking

We have already commented on our desire to choose puzzles forwhich there is a lateral thinking
solution as well as a longer routine solution. This risks us choosing tasks for which atrick is needed.

The word trick is also hard to define. Here, by trick we mean an intellectual move which is key to
solving a task but which is unique to that task, or to very few disparate tasks. Actually, most insightful
intellectual moves are worth remembering for use in future problem solving and so we have struggled
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to find convincing examples for this guide. One candidate would be writing
∫

ln(x) dx =

∫

1× ln(x) dx (1)

to facilitate integration by parts. Even here,multiplication by oneandaddition of zerofind uses in
many other mathematical proofs. It is a trick work remembering. Note that a student is unlikely
to re-invent (1), even with lateral thinking. We wanted to avoid questions where there could be a
legitimate charge of it being a trick. This is perhaps best achieved by choosing tasks which have both
elegant lateral thinking and more prosaic solutions. In this case the trick is not necessary. Actually, an
alternative lateral thinking solution begs the question “what constitutes a solution?”. Contemporary
students may not be familiar with some forms of arguments, e.g. purely geometrical reasoning. These
forms of arguments can be just as rigourous as an algebraic calculation, and one of the values of
puzzles lies in expanding the range of ways a problem can be tackled and in the subsequent discussion
about the legitimacy of a particular argument.

Lateral thinking is to be encouraged, but before that we needto encouragethinking! Example task
8 below might be considered an unfair trick by some but it certainly teaches a lesson about thinking
first and problem solving later. It is also a case in which drawing a diagram is helpful, as in so much
problem and puzzle solving.

H Example task 8

There are two telephone poles, perpendicular to level ground. Each one is30 m tall. The poles
are an unknown distance apart. A50 m cable is to be strung from the top of one pole to the top
of the other. Because the cable is heavy, it will of course droop and take up the shape of a
catenary. What must the distance between the two poles be so that the lowest point of the cable
touches the ground?

Drawing a diagram makes it immediately clear that the cable will never touch the ground, even if the
poles are adjacent to each other (or indeed, coincident).

The next example is a trick of another kind (Puzzle 46).

H Example task 9

Below is part of an infinite integer lattice. Alattice triangleis a triangle where the coordinates
of all vertices are integers.

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

What is the size of the smallest equilateral lattice triangle?

The trick here is that is impossible to draw an equilateral triangle1 on the lattice. We have used this
problem with undergraduates during problem solving sessions and with postgraduates and staff during

1A triangle must have three distinct finite vertices.
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teacher training events. Proving that no triangles exist isan interesting task in its own right. More
experienced problem solvers expect problems without a solution and hence this becomes seen as less
of a trick as experience increases. Notice that ultimately “the solution” here is the argument as to why
no equilateral triangles exist on the integer lattice. Disciplines differ in the extent to which such issues
as irrationality are important and this problem is likely toappeal to more mathematically minded
students.

2.3 Cultural artifacts

Mathematics constitutes an intellectual sub-culture. Indeed, mathematics has its own history, folklore
and humor, see Renteln and Dundes (2005). Mathematics, likesport and music, has international
student competitions, see (Djukić et al., 2011).

This sub-culture is not new. Indeed, the first recorded use ofalgebra story problems occurs during
the mathematical training of scribes from around 2500BCE inancient Iraq, see Robson (2008) and
Høyrup (1990). Since then puzzles have always been traded and shared throughout the world and there
is a continuous history of use. Many can be found in the historical record. For examplePropositiones
ad acuendos juvenes(Problems to Sharpen the Young) by Alcuin of York (732–804),is an early
European collection of tasks, many of which we retain in recognizable form today. See Hadley and
Singmaster (1992) for more details and a translation. During the Edo period (1603–1867) the Japanese
developed a distinctive form of geometric puzzles calledSangaku. These were written on wooden
tablets and hung in temples as offerings or challenges (Hidetoshi and Rothman, 2008). Where we are
aware of the provenance of a particular task we have recordedit, and more information is available
from Swetz (2012).

Clearly a mathematician might be interested in this aspect of puzzles. We go further and claim that
an educated scientist and engineer should also engage with puzzles as part of their broader education.
Just as people appreciate poetry and music, so a puzzle can also be savored. Clearly this is not our
primary motivation for asking students to solve puzzles. Webelieve they also have more practical
aims. However, we have included some puzzles mainly becausethey have such historical interest.
They are cultural artifacts in their own right.

3 What do students learn by engaging with puzzles?

It has long been known that students must struggle to solve problems independently and construct their
own meaning. Mathematics education is the art of helping students to reinvent the wheel. For example,
as early as 1543 in one of the first English textbooks on arithmetic, Robert Recorde acknowledges this
as follows.

Scholar. Sir, I thanke you, but I thynke I might the better dooit, if you did showe me the
woorkinge of it.
Master. Yea but you muste prove yourselfe to do som thynges that you were never taught,
or els you shall not be able to doo any more then you were taught, and were rather to
learne by rote (as they cal it) than by reason. (Recorde, 1543, Ground, Sig.F, i, v)2

This fundamental tension betweentelling students the correct methodto solve a problem andrequiring
them to solve for themselvesis particularly marked in the STEM disciplines. More recentscholars
echo this sentiment:

2This highly influential textbook had over 25 editions between 1543 and 1700, see Howson (2008).
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One of the fundamental contributions of moderndidactiqueconsists of showing the im-
portance of the rôle played in the teaching process by the learning phases in which the
students works almost alone on a problem or in a situation forwhich she assumes the
maximum responsibility. (Brousseau, 1997, pg. 229)

When a problem is posed the student trusts that this will be both interesting and lead to useful insights.
This is fundamental to what Brousseau (1997) calls thedidactic contract. The teacher has the respon-
sibility of choosing problems which are sufficiently novel to be a worthwhile challenge, but which
students still have a realistic prospect of solving. The phrasezone of proximal developmentis used to
refer to problem solving processes that have not yet maturedbut are in the process of maturation. It is

the distance between the actual developmental level as determined by independent prob-
lem solving and the level of potential development as determined through problem solv-
ing under adult guidance, or in collaboration with more capable peers. (Vygotsky, 1978,
pg.86)

These ideas are explored more full in, for example, Mason et al. (2007).
What are the learning objectives and educational purpose ofusing puzzles? This is not a simple

question and does not have a unique answer. The hallmarks andcharacteristics of puzzles cited in our
earlier discussion leads us to suggest that puzzles are helpful to students in several ways. It is clear
that in solving problems and puzzles a student needs to

• take personal responsibility;

• adopt novel and creative approaches, making choices;

• develop modelling skills;

• develop tenacity;

• practice recognition of cases, reducing problem situations to exercises.

As discussed earlier, the additional hallmark of a puzzle isthat students often have to apply con-
siderable ingenuity to solve a perplexing problem and that in doing so they will be frustrated and
entertained and in reaching a solution may experience that “Eureka” moment.

Solving puzzles is often a solitary activity and enjoyed as such, but in a teaching context, group
work is prevalent. Although any student in a group might be the first to a solution, the pleasure of the
“Eureka” moment can be shared, with benefits in team buildingand student engagement.

We believe the outcomes for students of successful problem-based courses include an increased
confidence in problem solving. This is tautological of course, because if you practice solving problems
you would expect to become better at it. Problem-based learning addresses a programme level aim
in all STEM courses. In the Quality Assurance Agency (QAA) for Higher Education’s benchmark
statement for mathematics this is explicit:

2.20 Programmes in mathematics typically involve continuous mathematics, discrete
mathematics, logical argument, problem solving and mathematical modelling. (Lawson
et al., 2007)

Similar statements exit in the QAA subject benchmarks for all STEM subjects and are reinforced
by the accreditation criteria issued by all STEM professional societies. Problem solving is a key
skill in all STEM subjects. Furthermore, there are other important affective outcomes, including real
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challenge and therefore satisfaction, a sense of achievement and enjoyment. They provoke curiosity
and help students to refine their intuition. Nunn (1911) claims that“the point of immediate importance
here is that mathematics is conceived not as a static body of ‘truths’ but in the dynamic form of
an activity”. In this context, with appropriately chosen puzzles, puzzle-based learning is a good
opportunity for students to discover that there may be more than one solution to a problem. As a sub-
class of problems, puzzles can provide additional challenges, insight and entertainment, all of which
can increase student engagement and promote independent learning.

4 How can puzzles be used and adapted?

One way of using puzzles in teaching is through bespoke puzzle-based courses, e.g. Michalewicz
and Michalewicz (2008) propose this approach. However our intention is different; we propose that
puzzles should be redrafted into an appropriate STEM context and embedded alongside exercises
and problems in traditional teaching. In order to do this, itseemed that it would be ideal if the core
content of puzzles could be identified, stripped as far as possible of any superfluous context, for
example farmers’ fields and grazing horses, which commonly appear in puzzle books for lay people.
It would then be possible to rebuild the puzzles for specific use and preferably with a clear relevance
to a chosen STEM discipline. However, this is more difficult than it reads and in some cases may
not actually be desirable. For example, subject specificitymay conflict with desirable simplicity, as
discussed in Section 5. It is also possible that trivial contextualization might actually be annoying.
Before we consider this further, we provide three brief cases of activities in which problems play a
leading role but in which puzzle-based learning has alreadybeen incorporated. They have all been
used successfully within the University of Birmingham for many years and are an integral part of our
programmes. The first is being used in Engineering. The second highlights group work, whereas the
third focuses on developing coherent mainstream mathematics topics through a sequence of related
puzzles and problems.

If the reader prefers to consider some specific puzzles immediately, our selection is in Section 5,
page 18.

4.1 Modelling Concepts and Tools

Modelling Concepts and Tools is a first year module currentlytaught to students from three Engi-
neering disciplines (and previously to four). This module includes modelling techniques, Engineering
mathematics, estimation, Excel and MATLAB programming, all taught in an Engineering context.
Mathematics is learned primarily through guided study, although a limited number of lectures de-
scribes both the scope and the context of the intended learning. In regular Mathematical Problem
Classes, this mathematical knowledge is assumed and the bulk of the study is based on problem solv-
ing. Sometimes the problems are little more than exercises with an appropriate context, especially
early in the academic year.
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H Example task 10

The flow of water through a pipe to a heat-treat quench furnaceis given by

Q =

√

(3d)5
H

L

whereQ is the flow of water through a pipe of lengthL and diameterd, with an associated head
loss ofH. If d decreases by1% andH by2%, use the binomial theorem to estimate the
decrease inQ. (Ans.:≈ 3.5%)

However, other problems are true word problems and reflect more closely the type of problem that
students will face later in their progress to professional practice. For example, the following is adapted
from Evans (1997).

H Example task 11

A given volume of a dangerous chemical has to be stored in a closed cylindrical container,
which must be filled completely. The cylinder is to stand on one flat end in an open space. If the
surface area exposed to the atmosphere (i.e. excluding the area of the base) is to be the
minimum possible, calculate the relationship between the diameter and the height of the
cylinder. (Ans.: diameter= 2× height)

Mathematical modelling techniques are taught formally andModelling Problem Classes introduce
students to a very difficult class of word problems in which the initial steps to developing a model and
its solution can be very challenging. For a pre-calculus example:

H Example task 12

Reverse osmosis can be used to recover drinking water from sea water. A large unit is treating
140000 m3 of sea water every day. The sea water contains36000 ppm of salts and the drinking
water is effectively salt free. The plant returns waste brine to the sea at120000 ppm. What is
the volume of drinking water produced per day in acre-feet?
(Hint: An acre is roughly4000 m2 and a foot about30 cm.)
If an American family uses1 acre-foot of water per year, roughly how many families will the
desalination plant support? (Ans.: ca.30000)

Group work is encouraged, particularly in Modelling Problem Classes. It is vital that Engineers
learn to work in teams as they will be most likely to be required to do in professional practice. This
is a requirement of the UK Standard for Professional Engineering Competence (UK-SPEC), which
has been adapted as the Quality Assurance Agency (QAA) benchmark statement for Engineering.
Advantages of group work are described later.

One aspect of modelling, which is also important in mathematics although usually less empha-
sised, is the need for rigorous checking of solutions. In Engineering problems this usually includes a
check on dimensional consistency, consideration of extreme behaviour of equations and the realism of
model predictions (for example compared to experimental data). One useful tool for checking models
is estimation. Whereas Fermi problems or the “guestimation” tasks given in Weinstein and Adam
(2008) tend to be general in nature, many of the estimation tasks in the Modelling Concepts and Tools
module are Engineering specific. For example:
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H Example task 13

In your teams, estimate the height of the tallest possible building.

This problem is interesting in having many solutions, the choice of a particular solution depending on
the student’s view of factors limiting the height. These could be mechanical i.e. considering stresses
and strains in the structure, economic, architectural e.g.lift access to the higher floors, psychological
e.g. asking if people want to live or work so far from the ground, or indeed some other factor not
identified here.

Puzzle-based learning has been embedded within the module for some years, primarily as exten-
sion activities in Mathematics Problem Classes for more able students. However, it was found that
few students actually attempted these problems because they were “bolted on” to other problems.
Nevertheless, the answer to one (Example task 14) is so counter-intuitive that it inspired one diligent
student to a significant self-guided investigation.

H Example task 14

A railway track is exactly1 km long. It sits on a piece of ground that is flat. One day, under
intense heat from the sun, the track expands1 m in length. Its ends remain fixed to the ground,
so the track bows up to form a circular arc of length1001 m. At the centre of the arc, how high
is the track above the ground? What do you think about your answer?

This problem has a surprising answer (20 m), which can be found in several conventional ways. We
contend that the surprise alone is not enough to call this a puzzle.

To overcome this lack of engagement, many puzzles are now embedded alongside other problems
in Mathematics and Modelling Problem Classes. In most cases, they are presented in an Engineering
context. A typical example, adapted from Cooper (2010), would be Puzzle 19:

H Example task 15

An Icelandic civil engineer is in charge of laying a pipe between a geothermal power plantA
and a townB. BetweenA andB there is a small mountain range of uniform width3 km. The
pipe must go through a straight tunnel through the mountainsperpendicular to the edges of the
latter. The perpendicular distance ofA from the mountains is3 km, andB is 6 km away. The
distance between the town and the power plant, as the crow flies, is15 km. Where should the
tunnel be built to minimise the pipe length?

(Ans: 3 km from the point nearest toA on the mountains)

Recent experience suggests that this deep embedding has increased student engagement.
Finally, it should be noted that the Engineering context should not be just a trivial change to a

puzzle. For example a classic puzzle was rewritten as:
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H Example task 16

“Each day,” said the demanding boss to the metallurgist, “you must fill some casting moulds
with molten titanium and you will continue to do this until all the moulds are full. Moreover,
each day your work will become more strenuous. On each day after the first, you must fill
double the number of moulds that you have so far filled. For example, if you fill3 moulds with
titanium on the first day, you will fill6 on the second,18 on the third and so on. Clear?”
“Perfectly clear,” said the metallurgist who summoned his team and with great skill and
dedication, the moulds began to fill. After a week, a third of the available moulds were full.
How long did it take them to do the job? Prove this mathematically. (Ans.: 8 days)

It was pointed out by a colleague that no metallurgist would recognise this situation, which made
the adaptation useless; this is not proper discipline specific contextualisation. This will be discussed
further in Section 5 where examples of puzzles are given.

4.2 Workshops

The School of Mathematics at the University of Birmingham runsWorkshopsfor first year students.
The purpose, stated in the course description, is explicitly to develop problem solving skills:

The material covered here is not on any syllabus and is not needed later in your degree
course. Instead, it is designed to improve vital skills essential to all courses:

• understanding and solving problems;

• tackling problems unlike ones you have met before;

• thinking clearly and logically;

• communicating solutions clearly, concisely and convincingly.

[...] The Workshops are designed to make you think for yourself rather than being told
what to do; you may need to explore various approaches beforeyou find one that works
for you. For the most part, there is no one right way to solve the problems and no solutions
are handed out.

The Workshops take place in the even weeks of the term in the first year. Each week students
are assigned to a group of three or four students who will worktogether. Each group has 2 hours to
produce its solution to the week’s problem on at most two sides of A4 paper. An important part of the
Workshops is to be able to submit precise, concise and well argued solutions on which all members of
the group agree. Marks are awarded for mathematical presentation and clarity of exposition. Lastly,
during the last session of the Spring term each student givesa short talk (4–5 min) on a mathematical
topic of their own choosing. The assessment includes mathematical content, presentation and the talk.

Notice during these workshops the students work in a group and produce a joint report. The social
dynamic here is an important part of the activity.

One of the tasks used is the Monty Hall problem (Puzzle 42), another is the game of NIM (Puzzle
45). Both of these can certainly be puzzling. The following puzzle, common in problem solving
books, is also used.
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H Example task 17

How many squares, of all sizes, with vertical and horizontalsides can you draw with all four
corners on the dots of a 5-dot by 5-dot square lattice?
(+ further problems which generalize.)

Other workshops are much more mathematical, these include geometry, formal logical systems or
classical topics such as the following.

H Example task 18

We want to find
n
∑

k=1

kd for various powersd ∈ N.

1. What is
n
∑

k=1

1?

2. Simplify(k + 1)2 − k2. Sum the equation you get fromk = 1 to n.

Hence find the formula for
n
∑

k=1

k.

3. Now consider(k + 1)3 − k3. Find a formula for
n
∑

k=1

k2.

3. How far can you go?

This example, as posed in this form, is more like a structuredsequence of exercises than a puzzle.
However, we argue that we could adapt some of the mathematicsunderlying the task into a puzzle in
the following way. We don’t claim that these puzzles will reveal the general power of finite difference
methods, as students are instructed to do in the task above. The point of puzzles is that a particular
method is not prescribed. We also note that physical artifacts3 are being used to motivate a puzzle.

Figure 1: Illustrating the sum from1 to n

3Figure 1 and Figure 2 are reproduced from Bryant and Sangwin (2008) with permission.
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Figure 2: Summing the squares of the numbers from1 to n
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Figure 3: Summing the cubes of the first four integers.
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H Example task 19

1. Examine the first model (shown in Figure 1). What does this tell us about1+2+3+ · · ·+n?
2. Examine the second model (shown in Figure 2). What does this tell us about
12 + 22 + 32 + · · ·+ n2?
3. What does Figure 3 tell us about13 + 23 + 33 + · · · + n3?

One of the key points about workshops is the development of group working skills. We believe
that embedding puzzles in such activities leads to improvedgroup work as it is less likely (than with
more conventional problems) that one student would jump immediately to a solution or a solution
method. Indeed, some students who are excellent at solving routine tasks may lack the ingenuity to
solve puzzles easily. In any case, a puzzle solution should and does engender considerable group
discussion as it is explained by the solver to his or her groupmembers.

4.3 Moore Method

The Moore Method is a type of enquiry based learning (EBL) developed by the influential Texan
topologist Robert Lee Moore (1882–1974) for university mathematics courses and it has been used
widely within a variety of STEM subjects and at a number of levels. A biography of Moore, together
with a discussion of his contribution to education, is givenby Parker (2004). A Moore Method class
works in the following way

1. Tasks, which might be puzzles, are posed by the lecturer tothe whole class.

2. Students solve these independently of each other.

3. Students present their solutions to the class, on the board.

4. Students discuss solutions to decide whether they are correct and complete.

Solutions are not imposed by the lecturer, who chairs discussion before offering their own com-
ments. Moore is quoted as saying“That student is taught the best who is told the least”, (Parker,
2004, vii).

Moore has a reputation for running his classes in an authoritarian way. For example, he required
that students worked alone; those who sought help from theirpeers or the published literature were
expelled (Parker, 2004, pg. 267). One misconception regarding Moore’s Method is that he simply
stated axioms and theorems and expected students to expounda complete theory. W. Mahavier (see
Parker (2004)) said of Moore

Moore helped his students a lot but did it in such a way that they did not feel that the
help detracted from the satisfaction they received from having solved a problem. He was
a master at saying the right thing to the right student at the right time.

Moore was particularly successful in attracting and encouraging graduate students, many of whom
adopted his teaching approach. As a result, this method is still used widely. Naturally, each teacher
varies the precise approach, with some colleagues encouraging students to work as a group, both an-
swering questions and formulating research topics of theirown. Alternative solutions are sometimes
encouraged, presented and discussed, helping students refine their sense of aesthetics and providing
other strategies. In all forms, a key aspect is thatthe students’ take responsibility for their activ-
ity. Furthermore, in all versionsthe groupcriticises these solutions and ultimately, together with the
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teacher, decides if a solution is complete and correct. Given such variations, (Coppin et al., 2009,
pg. 13) lists six principles common to versions of Moore’s Method:

1. The goal of elevating students from recipients to creators of knowledge.

2. The commitment to teaching by letting students discover the power of their minds.

3. The attitude that every student can and will do mathematics.

4. The time for students to discover, present, and debate mathematics.

5. The careful matching of problems and materials to students.

6. The material, varying widely in difficulty, to cover a significant body of knowledge.

It is important to note that the Method does not aim to transmit coherent bodies of knowledge in a
polished professional and pre-defined format. The teacher does not normally provide model solutions
to problems. Hence, the method itself can be used with a very wide range of tasks and clearly the
choice of these by the teacher is key.

We have found the Moore Method to be a particularly productive way of using puzzles with
students. It has both the benefits of individual work and the social dynamic. The course was set up as
an optional 10 credit module outside the main discipline (MOMD) in 2003 by Dr Chris Good. Since
then it has been taught by two other colleagues and from 2011 all students on the Mathematics MSci
are expected to choose this MOMD in preference to the other MOMD offered by Mathematics. After
four years of using one set of problems there is a surprising consistency and stability of the way the
class runs. Indeed, each year we have ended up±2 problems from the same place with little or no
effort to set a particular pace for the work. The following list is a caricature of the cycle of the class.

Week 1: Anticipation.
“What is this class going to be about?”

Week 2: Excitement and enthusiasm.
“Someone is going to take me seriously and this sounds like fun!”

Week 3: Frustration.
“Actually I’m finding these problems a bit difficult!” “So-and-so’s presentation was aw-
ful. What a waste of time!”

Week 4-5: Despondency, Doldrums and Despair.
“I can’t do these!” / “They can’t do these!”

Week 6-7: Re-build confidence.
“Actually, I can do some of them.”

Week 8-9: Adjust expectations.
“Problem-solving takes time, so how many problems do we expect to do?”

Week 10-11:Collegiate conviviality.
“Ok, so let’s get on with it...”

This collegiate conviviality remains after the class with students forming close working friendships
which are seen to persist throughout their degree programme. We are currently undertaking a substan-
tial follow-up analysis of the effectiveness of this coursein a separate research project.

One drawback of the Moore Method is that it becomes very unproductive with groups of fewer
than 5 or more than 20 students. This is a serious flaw which limits its use in institutions which rely
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on large class sizes and lectures. Furthermore, if classes are run in parallel then each needs different
tasks to avoid potential collusion.

Puzzles have many characteristics suited to a Moore method class. For example, puzzles should
constitute a significant intellectual challenge, require considerable ingenuity and in some cases, suc-
cumb to a variety of fruitful approaches. That said, Moore’soriginal approach was to structure tasks
that led students through a major mathematical topic in a coherent way. This is much more difficult
to achieve using puzzles and creating class materials represents a serious intellectual challenge for
teachers.

Serious attempts have been made to provide sequences of tasks in mainstream mathematics suit-
able for a Moore Method course. There following are examples.

1. Calculus of a single variable. Wall (1969)

2. Classical real analysis. Burn (2000)

3. Number theory. Burn (1996)

4. Group theory through geometry. Burn (1987)

5. Axiomatic systems in geometry. Yates (1949)

There are many problem sets in geometry, such as Gutenmacherand Vasilyev (2004), Hubbard (1955)
and Yates (1949). Contemporary students’ unfamiliarity with geometry makes such tasks puzzling,
even at an elementary level. Hence geometry is likely to be a fruitful choice of topic for a puzzle-based
course, independent of the mainstream curriculum, but withfew prerequisites. The solution we have
given to puzzle 32 is typical of the kind of geometric reasoning we mean here. TheJournal of Inquiry-
based Learning in Mathematics(www.jiblm.org) contains peer-reviewed course notes which have
been tested in classes for a variety of Moore Method courses.Some of these are closer to puzzle-based
approaches than others. These are freely available for download and use. It is perfectly sensible, and
reassuring, for colleagues new to puzzle-based learning toadopt or adapt tasks which other colleagues
have found to work well with similar groups of students. As wehave already commented, expecting
each teacher to write entirely novel puzzles is unrealisticand wasteful. However, when selecting and
using existing puzzles, the teacher needs to consider carefully the prior knowledge and experience of
the students, as mentioned in Section 2.1.

Even the goal of finding coherent problems can be achieved, itis not clear that the careful structure
in the tasks is evident to students. To the participants of the class the tasks mayappear to themto be
disconnected puzzles!

It is then assumed that if learners ‘work through’ the particular cases, they will emerge
with a sense of the generalised whole. This assumption is contradicted by the observation
that ‘one thing we do not seem to learn from experience, is that we rarely learn from
experience alone’. Something more is required. Mason et al.(2007)

Such a development of some deeper structure may appeal particularly to mathematics students. The
best way to use puzzles with the Moore method is not clear to us, nor is it obvious how this might be
investigated, given that there are so many variables that the coherence of the tasks is only one aspect
of many. As with Workshops (section 4.2), a key aspect of the Moore method is a development of the
group working skills that are so important to the STEM disciplines.

17



5 The Puzzles

This section contains the puzzles that we have gathered and selected4 during the course of this work.
Our criteria in selecting puzzles is eclectic. Most we have actually used with students. Some we
experienced ourselves as students and others are simply classics. The vast majority already appear,
under various guises, in many other books, including the following.

1. Mathematical puzzles, Zeitz (2007)

2. For mechanics and physics, Gnädig et al. (2001).

3. School competition mathematics, Haese et al. (1995) and Haese et al. (1998).

4. Classic puzzle books, Dudeney (1907), Dudeney (1917), Dudeney (1932).

Since it is unlikely that students will exhaust the potential of more than one or two puzzles per hour
session, our selection is brief. We have included a variety of levels of difficulty and topics. Our
contribution here is to make a selection suitable for undergraduates in the STEM subjects, particularly
those learning mathematics in early years of study. As mentioned in Section 2.1, we sought puzzles
where there was both a conventional solution (preferably a contrasting, particularly complex, exercise)
and a lateral thinking solution. In some cases, we have been able to strip puzzles down to essential
details and have then provided variants for subject specificuse. However, in most cases we have given
a generic version of the puzzle and whatever useful subject specific variants we could find or develop
ourselves or with colleagues. In each case we provide solutions and a brief commentary. We welcome
correspondence on STEM subject specific variants to the puzzles, and especially any tested examples.

It should be noted that a STEM context is not always appropriate. For example, take the following
(Puzzle 27).

H Example task 20

Alice and Bob take two hours to dig a hole. Bob and Chris take three hours to dig the hole,
while Chris and Alice would take four hours. How long would they take working together?

This has been used in a modelling class by one of the authors. It led to a long and fruitful discussion
about formulating equations, using rate equations and defining (and checking) units. It would of
course be possible to rewrite this problem in a STEM context e.g.

H Example task 20 variant

There are three construction companies:A, B andC. Working together,A andB take two days
to erect a building.B andC would take three days to build a similar building whilstA andC
would take four days. How long wouldA, B andC take working together?

This may well detract, however, from the usual (and incorrect) first attempt of many students (and
staff) to solve this puzzle i.e. writing equations such as

A+B = 2

4We acknowledge preliminary work on this problem by L. Holyfield.
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The simplicity of the original formulation is valuable. A similar situation is found with Puzzle 22. In
other cases, such as that described in Exercise task 16, Section 4.1, the context might be too contrived
to have any real value.

Our original intention was to “classify the puzzles by levelof difficulty”. However, on reflection
this seems like an erroneous goal. The difficulty a particular person, student or colleague, has when
solving a puzzle will be determined as much by their prior experience as the characteristics of the
puzzle itself. For example, we have provided a purely geometric solution to Puzzle 32 which involves
recognizing that all the points on the pitch with a particular property lie on a circle. Familiarity with
similar puzzles make this quite a natural move, but otherwise we have to fall back on general tools
such as coordinates, algebra and trigonometry. In practical situations there is often a homogeneity
within a particular group of students which enable an appropriate puzzle to be used. Hence, we have
ordered the puzzles in a broadly increasing level of challenge.

It is important to note that most of the puzzles have a provenance and a heritage that is difficult
fully to discover – they have been passed down from teacher tostudent over centuries, and in the case
of Puzzle 28, millennia, changing to suit the zeitgeist. We have modified or adapted puzzles to our
purpose here. However, we have recorded the immediate source of the puzzles, where known to us,
and investigated the history of the puzzles and puzzle-solving as an activity. It follows that the sources
we offer for each puzzle are unlikely to be original, and are either where the puzzles were found or
give an example close to a puzzle already known by one of the researchers on the project. However,
historical concerns were not a primary aim of the project.
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Grazing Horse

H Puzzle 1

A horse is tied with a10 m rope to the middle of one side of a square barn with side length
10 m. What area of grass does it have to graze?

Solution

On the side of the barn to which the horse is tethered, the areathat can be grazed will be a semicircle
of radius10 m. However, the rope will also allow the horse to graze aroundthe corner of the barn, as
demonstrated in the picture.

b

5 m of the rope will run along the side of the square and so the length remaining to reach around
the corner will be5 m. On each side the perimeter of the accessible area will trace out a quarter circle
and so the total area above the line of the side of the square will be a semicircle of radius5 m.

Thus to total area will beπ(12.5 + 50) m2.

Extensions and Commentary

This puzzle is something of a cultural artefact in mathematics education, but its origins are unknown.
One example is Mason et al. (2010), pg. 27.

This question was co-author Matthew Badger’s EdExcel GCSE coursework in 2000, posed in
terms of a horse and a barn. The coursework encouraged students to extend the problem and there are
many options for doing so. Two are to move the point at which the horse is tethered and to increase
the length of the rope so that is more than half the perimeter of the barn. It is possible to strip this
puzzle to its core content.

H Puzzle 1 variant

One end of a10 m rope is tied in the middle of one side of a square with side length 10 m.
What area is enclosed by the set of points which the other end of the rope may meet?

This variant has the apparent advantage of not referring to agrazing horse, which is outside the
STEM disciplines. However, the original formulation makesit clear that all the points that the non-
tethered end of the rope can reach are of interest (because the horse can graze there). This variant
might be less accessible to many students and therefore not as enjoyable.
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Mile markers

H Puzzle 2

There are12 successive mile markers on a road. A motorist takes10 min to drive from the
first to the sixth. If she continues to drive at the same speed,how long will she take to
reach the last marker?

Solution

After leaving the first marker, the motorist has to drive past5 markers to reach the sixth marker, so it
takes2 min from a marker to the next marker. From the sixth marker to the twelfth marker, there are
a further6 markers, which will take12 min.

Extensions and Commentary

This is a classic “fence and gateposts” puzzle of which thereare many variants.

H Puzzle 2 variant

A civil engineer has been instructed to design a security fence for one side of a building
site. Whilst his design had the posts for such a fence 6 metresapart, the number of posts
delivered was actually5 fewer than he needed. However, after some quick recalculation,
he found he could do it if the posts were8 m apart. How long was the side of the building
site?
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Intersecting squares

H Puzzle 3

Two squares intersect as shown in the diagram. The smaller square has side length30 cm,
the larger40 cm, and the top left corner of the larger square sits at the centre of the
smaller square.

Find the area of the intersection of the two squares.

Solution

This can either be answered with basic trigonometry, or by noticing that the triangle cut off byB in
the top half ofA is congruent to the triangle left byB in the bottom-right quadrant ofA. Thus the
area removed is independent of the angle between the squaresand so its value is152 cm2, or225 cm2.

A

B

The lateral thinking solution is to note that the angle thatB is rotated with respect toA is not
given. By meta-inference (Example task 6, Section 2.1) it can be concluded that the angle does not
matter. One may therefore assume that the sides of the squares are parallel to one-another; it is then
clear that the area of intersection is a quarter of the area ofthe smaller square.

Extensions and Commentary

Source: Townsend (1994).
For a STEM context, this puzzle could be written about squarebuildings or other facilities. Real-

ising that one might assume the sides of the squares are parallel to each other provides students with
a real “Eureka” moment.
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Beware of the Road Sign

H Puzzle 4

This road sign means “Beware of the Road Sign”. What is the ratio of the area of the
smaller triangle to that of the larger?

Solution

Rotate the inner triangle by180o. Its vertices bisect the sides of the larger triangle from which it can
be seen that the ratio is1

4
.

Alternatively, let the radius of the circle be1 unit. The height of the large triangle is3 units because
the incentre of an equilateral triangle is1

3
of the length of the bisector from the base. Similarly, the

height of the smaller triangle is1.5 units. As the areas are proportional to the squares of the heights,
the ratio is1

4
.

Extensions and Commentary

Source: Maslanka (1990). Either solution to this puzzle maylead to further discussion as neither in
its current form is entirely mathematically rigorous.

It is also possible to argue that the smaller triangle is in the same proportion by area to the incircle
as the larger is to the excircle, which has a radius of 2 units,again leading to the answer that the ratio
is 1

4
.

H Puzzle 4 variant

A gyrangle is a structure built from hollow triangles, some flat, some folded. See
(http://www.georgehart.com/DC/index.html). If the geometry of a flat
hollow triangle is as shown in the figure, what fraction by area of a solid triangle is
removed to make the hollow version?
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Holey Road Sign

H Puzzle 5

This holey road sign has a circular hole in its middle, cut using the equilateral triangle
inscribed into the larger circle as a guide. What is the ratioof the area of the smaller
circle to that of the larger?

Solution

Let the radius of the inner circle be1 unit. The radius of the larger circle will be2 units and therefore
the ratio of the area of the smaller circle to that of the larger will be a 1

4
.

Using the result of Puzzle 4, inscribing an equilateral triangle in the smaller circle and noting that
the smaller triangle is in the same proportion by area to the smaller circle as the larger triangle is to
its excircle, the ratio must be1

4
.

Extensions and Commentary

Source: Maslanka (1990).

24



A Packing Puzzle

H Puzzle 6

You have some objects that need packing in containers. If youpack24 objects per
container, you will have one of the objects left over. If you pack25 objects per container,
you will have one container left over. How many objects and containers do you have?

Solution

Consider the situation when you have25 objects per container and one container left over. Take one
object from each (packed) container leaving24 objects per container. You would need24 of those
objects to pack the spare container and25 if you are to have one object left over. You must therefore
have taken objects from25 containers and with the spare, you must have had26 containers altogether.
It follows there were26× 24 + 1 = 625 apples.

Algebraically: let the number of objects be n and the number of containers beN . Then

24N + 1 = n

and
25(N − 1) = n

Solving these simultaneous equations givesN = 26 andn = 625.

Extensions and Commentary

Source: Maslanka (1990).
In this case, the algebraic solution might be considered easier than the lateral thinking solution

and likely to be less error prone. However, this could be an opportunity to emphasise to students the
need to check solutions.

The original puzzle concerned apples and boxes but can be re-written with any objects and any
containers. In a realistic case, the objects would be identical as would be the containers but this is not
essential given the formulation of the problem. The number of containers could also be changed. This
can therefore lead to many puzzles with a STEM context. For example:

H Puzzle 6 variant

Some columns are to be loaded with chromatography beads. If9 kg of beads are packed in
each column, one column will be left unfilled. However, if only 8 kg of beads are put in
each column,1 kg of beads will be left over. What weight of beads must be put in each
column so that every column contains the same amount of beadsand there are no left over
beads?
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Lasers

H Puzzle 7

Two lasers are mounted above a detector in such a way that their beams are orthogonal.
The beams are switched on simultaneously. The light from both reaches a particular point
on the surface of a flat detector, also simultaneously. The perpendicular distance from the
plane of the detector to one of the lasers is12 m and to the other16 m. What is the
distance between the lasers?

Solution

12 m
16 m

The velocity of light is the same for both laser beams and therefore the distance from laser to
detector along the beams must also be the same. As the beams are orthogonal, the two triangles in the
figure must be congruent, each with two (perpendicular) sides of lengths12 m and16 m. The path
length for either beam is

√
122 + 162 = 20 m. It follows that the distance between the lasers is20

√
2

m≈ 28.3 m.

Extensions and Commentary

Source: Maslanka (1990).
This is a puzzle rather than just a problem because it is not intuitively obvious that the triangles

are congruent. Clearly more mathematically experienced students will find this less puzzling.
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Buckets

H Puzzle 8

You have two buckets; one of5 litres and one of3 litres, and a tap for water. How can you
measure4 litres?

Solution

Fill the 5 litre bucket and pour it into the3 litre bucket. Empty the 3 litre bucket and pour the remaining
2 litres from the5 litre bucket into it. Fill the5 litre bucket again, and use the water in it to top up the
3 litre bucket. As there was already2 litres in it, only one litre will be removed from the5 litre bucket,
leaving four litres.

Extensions and Commentary

This puzzle was made famous in the 1995 film Die Hard with a Vengeance, though variations on it
have appeared in many puzzle books and on the web. The earliest reference we could find was in
O’Beirne (1965).

It is interesting to see which volumes of water one can measure using two jugs; it can be proved
that any multiple of the highest common factor of the two jugscan be measured, up to the capacity of
the largest jug.

The essence of this puzzle is the containers of different volumes. It could easily be adapted to
other contexts. For example, there might be two fermentation vessels and a supply of fermentation
medium.
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Moisture Content

H Puzzle 9

Fresh apricots have a moisture content of80%. When left in the sun to dry they lose75%
of their moisture content. What is the moisture content of dried apricots?

Solution

Let w indicate a unit of water anda indicate a unit of apricot flesh, then a (non-dimensional!) fresh
apricot consists of80

100
w + 20

100
a. If the water content is reduced by75% then the dried apricot is

1

4
× 80

100
w +

20

100
a =

20

100
w +

20

100
a.

Hence the moisture content is now50% of the remaining units.

Extensions and Commentary

This puzzle is classical and there are many variations on this theme. Such problems with ratios are
notoriously difficult. Except for the difficulty many students have in formulating the correct equation
to solve this puzzle, it might be considered just a problem.

A diagrammatic solution is helpful here.

20 units

80 units

20 units
20 units

75% evaporates

Whilst processing of apricots may be considered part of agricultural or food engineering, it seems
likely that this could be put into several STEM discipline specific contexts by choice of a material to
be dried and the change in the method of drying. For example:

H Puzzle 9 variant 1

A wet precipitate of calcium carbonate has a moisture content of 80%. When heated in an
oven at105o C for 2 h, the precipitate loses75% of its moisture content. What is the
moisture content of the dried precipitate?

H Puzzle 9 variant 2

Wet cells have a moisture content of80%. When heated in an oven at105o C for 2 h, the
cells lose75% of their moisture content. What is the moisture content of the dried cells?
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Walking

H Puzzle 10

A man walked5 hours, first along a level road, then up a hill, then he turned round and
walked back to his starting point along the same route. He walks4 miles per hour on the
level,3 uphill, and6 downhill. Find the distance walked.

Solution

Let x be the total distance walked andy be the distance uphill. The walk has four parts: level, uphill,
downhill, level. The time taken can be written as

x/2− y

4
+

y

3
+

y

6
+

x/2− y

4
= 5.

One equation in two unknowns — appears insufficient! But, collect like terms to get

x

4
= 5.

Hencex = 20 miles.

Extensions and Commentary

Source: “Knot I” of “A Tangled Tale”, by Lewis Carroll Carroll (1936).
This puzzle appears not to have all the required informationin it and indeed most variations on

the speeds render the puzzle insoluble. It could be re-written for any moving object. The discovery
that this puzzle can be solved with apparently insufficient information should lead students to question
how this can work and to consider what combination of speeds make a solution possible.

There is a “meta-inference” solution to this puzzle. The length of the road on the hill is not
specified so we can assume the solution is independent of thislength. If the length is zero, the man
walks5 h at4 miles per hour i.e.20 miles.
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Buying Pipes

H Puzzle 11

A pipe engineer had a budget of£1000. She could order10 m lengths of pipe at£50 each,
6 m lengths at£30 each, and2 m lengths at£5 each, but she could only buy whole
numbers of each pipe length. She ordered at least one of each pipe length, and used the
entire budget. If she bought100 lengths of pipe, how many of each length did she buy to
ensure she bought the longest total length of pipe possible,and what length was that?

Solution

Let us assume the engineer boughtm 10 m pipe lengths,n 6 m lengths andp 2 m lengths, wheren,
m andp are integers.

m+ n+ p = 100, n ≥ 1, m ≥ 1, p ≥ 1. (2)

Let the total cost of the pipes be£c.

c = 50m+ 30n + 5p, (3)

where
c ≤ 1000. (4)

Let the total length of length of pipe bel m.

l = 10m+ 6n+ 2p. (5)

l has to be as large as possible.
There doesn’t seem to be enough information to solve this problem. We need to findc, n, m and

p but only have3 equations, (2), (3) and (5). From (3) and (4)

50m+ 30n + 5p ≤ 1000

and from (2)p = 100 −m− n so that

50m+ 30n + 5(100 −m− n) ≤ 1000

or
9m+ 5n ≤ 100. (6)

Now 10 m pipes are the same cost per m as6 m pipes and given the overall limit on the number of
pipes it is best to buy as many10 m pipes as possible. However,n has to be at least1 as the pipe
engineer buys at least1 of each type. This givesm = 10 andn = 2. From equation (2),p = 88.
From equation (5),l = 100+12+176 = 288 m. Therefore, the cost is£(500+60+440) = £1000
as required.

Extensions and Commentary

Source: Snape and Scott (1991). This problem is easily adapted to STEM scenarios, as we have done
here.
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Fermenters

H Puzzle 12

When asked about the laboratory fermenters she had in stock,the vendor jokingly replied
that they were all5 L working volume except for17, all 10 L except11, and all20 L except
20. How many of each working volume did she have?

Solution

In adding together all the fermenters that are not5 L, not 10 L and not20 L, each fermenter has
effectively been counted twice. Hence the total number is48/2 = 24. There are therefore seven5 L
fermenters, thirteen10 L fermenters and four20 L fermenters. As a check:7 + 13 + 4 = 24, which
is OK.

Alternatively, let the number of fermenters beN . Then the number of5 L fermenters isN − 17,
of 10 L fermentersN − 11, and20 L fermentersN − 20. Adding these together should give the total
number of fermentersN .

N − 17 +N − 11 +N − 20 = N

so2N = 48 andN = 24.
5 L fermenters:N − 17 = 7.
10 L fermenters:N − 11 = 13.
20 L fermenters:N − 20 = 4.
As a check:7 + 13 + 4 = 24, which is OK.

Extensions and Commentary

Source: Maslanka (1990). This problem is easily adapted to STEM scenarios, as we have done here.
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Frustum Cone

H Puzzle 13

A large (right circular) cone required3 L of paint to cover all its surfaces,2 L for the
curved surface and1 L for the base. It was then decided that the conical top of the cone
would be removed and discarded, leaving a frustum of half theheight of the original cone.
All surfaces of the frustum were then painted or repainted. How much paint was needed?

Solution

Consider the discarded conical top. Being half the height, this had a surface area1
4

of that of the
original cone. The curved surface of this smaller cone wouldhave required0.5 L to paint. Subtracting
this from the original requirement leaves2.5 L of paint needed for the curved surface of the frustum
and its base. However, the frustum also has a top surface. This has the same area as the bottom surface
of the discarded top, i.e. an area1

4
of that of the base of the original cone. That would require0.25 L

to paint. Total paint needed= 2.75 L.

Extensions and Commentary

Source: Maslanka (1992).
This puzzle can be solved by tedious calculation. The solution above provides scope for discus-

sions of geometric similarity and the concept of a frustum.
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Rectangle 2

H Puzzle 14

Which of the two shaded rectangles is biggest?

Solution

The diagonal cuts the shape in half. Identical white triangles are removed, so the areas are the same.
Algebra is also possible.

Extensions and Commentary

Source: Borovik and Gardiner (2005).
This puzzle has both an uninspired algebraic solution and the neat lateral one given above. Further,

given that the problem is posed without defining the sizes of the white rectangles, one may assume by
meta-inference (Example task 6, Section 2.1) that they are the same size and meet at the centre of the
large rectangle. From this one concludes that the two grey rectangles have the same area as, in this
particular instance, they are the same size and shape.

This could also be expressed as a puzzle concerning a sheet ofmetal.

33



Wall Slide

H Puzzle 15

A ladder stands on the floor and against a wall. It slides alongthe floor and down the wall.
What curve does the midpoint of the ladder move along?

Solution

The midpoint moves along the arc of a quarter circle.
There are two ways to approach this puzzle. The first is to define coordinates with the origin at the

intersection of the wall and floor, which respectively definethex andy axes. Then assign coordinates
P = (x, y) to the point in the middle of the ladder and to define the ladderto be length2l.

b
P = (x, y)

A straightforward application of similar triangles and thePythagorean Theorem leads to

(2x)2 + (2y)2 = (2l)2,

or x2 + y2 = l2 which is the equation for a circle, centred at the origin.
The other, lateral thinking solution, is to place an identical ladder to form anX-shape with the

ladders crossing atP . As the ladders move, thisX opens and closes. Since one end of the new ladder
is fixed at the corner formed by the wall and the floor, the distance from the midpoint is a constant
distance from the corner and it is clear that the midpoint must indeed move along a curve centred at
the origin.

Extensions and Commentary

Source: Gutenmacher and Vasilyev (2004).
This problem would be recognized by most STEM students and the mechanism which is implicit

here is widely used. The solution appears to many students tobe counter-intuitive and therefore can
engender useful discussions and investigations.
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Life Jacket

H Puzzle 16

Two identical motor boats set off from the same pier heading in opposite directions along a
river. A lifejacket, which is dropped off the end of the pier,floats downstream just as the
two boats set off. An hour later both boats reverse their courses in pursuit of the lifejacket.
Which boat gets to the lifejacket first?

Solution

If the river is flowing atr km h−1 and the boats travel ats km h−1 on calm water then the downstream
boat will be travelling ats+r km h−1 for the first hour ands−r km h−1 until it reaches the lifejacket.
Thus it will be travelling away from the lifejacket ats + r − r = s km h−1 until it turns around and
s − r + r = s km h−1 on the return journey, therefore taking an hour to reach the lifejacket. The
equations are reversed for the upstream boat; hence the boats arrive at the lifejacket at the same time.

Extensions and Commentary

Source: Michalewicz and Michalewicz (2008).
A meta-inference solution (see the discussion of Example task 6, Section 2.1) could be that be-

cause no speeds are specified, zero speed is an acceptable case. In that case, the lifejacket and boats all
float downstream together for an hour and both boats “reach” the lifejacket together. This is effectively
a “reduce to rest” solution.
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Cube Faces

H Puzzle 17

Diagonals of two faces of a cube meet at a vertex. What is the angle between the
diagonals?

Solution

60◦. The block is a cube so its faces are all the same size and thus the diagonals of each face are the
same length. Thus the diagonals will form an equilateral triangle.

As a vector solution, let the cube sides be unit length. Set up3D Cartesian coordinates with one
vertex of the cube at the originO and the axes along the sides meeting at the vertex. Consider the
angle between linesAO andAB. The coordinates ofA are(1, 0, 1) and ofB are(0, 1, 1). The vector
a from A to O is [−1 0 −1] andb from A to B is [−1 1 0]. It follows that the angle between these
vectors is

cos−1

(

a · b
|a||b|

)

= cos−1(1/2) = 60o.

a

b

O

A

B

x

y

z

Extensions and Commentary

Source: Townsend (1994).
This puzzle has been used in a problem class of one of the authors. For Chemical Engineering

students, for example:

H Puzzle 17 variant 1

As part of her plant layout, as shown in Figure 1, a chemical engineer has a pipe going
from pointA on a cubical tank up to pointB and then across to pointC. What angle does
the pipe have to be bent to fit the tank?

Figure 1: A schematic of the tank design (omitted)

For Mechanical Engineering students, this might read:

H Puzzle 17 variant 2

As part of his latest engine block design shown in Figure 1, a mechanical engineer has a
pipe going from pointA in his cubical block up to pointB and then across to pointC.
What angle does the pipe have to be bent to fit the block?

Figure 1: A schematic of the engine block (omitted)
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For Chemistry students we might have:

H Puzzle 17 variant 3

Sodium chloride crystallises into a face centred cubic structure. The unit cell has sodium
ions at each corner. Diagonals on two faces of the unit cell meet at one of the corner ions.
What is the angle between the diagonals?

37



Bees and trains

H Puzzle 18

Two model trains are travelling toward each other at5 km h−1 on the same track. When
they are50 metres apart, a bee sets off at10 km h−1 from the front of one train, heading
toward the other. If the bee reverses its direction every time it meets one of the trains, how
far will it have travelled before it must fly upwards to avoid agrisly demise?

Solution

The trains are travelling at the same speed, so each will cover a distance of25 m before they collide.
The bee is travelling twice as fast as one of the trains and so will cover twice as far, i.e.50 m.

Let the speed of the trains bev and the beeu. For a typical train to train leg of the bee’s flight,
let the initial distance between the trains beln. Then the time taken for that leg istn = ln

u+v
. Given

the bees is flying at a speedu, the distance the bee flies in this typical leg isdn = utn = uln

u+v
. In the

time taken for the leg, the trains move2vtn closer, so for the next legln+1 = ln − 2vtn = tn(u− v).
Hencedn+1 = utn

u−v

u+v
= dn

u−v

u+v
. The first leg when the trains startL apart isd1 = uL

u+v
. This gives

a geometric series, which can be summed to get the total distance travelled. Therefore the bee travels
∞
∑

n=1

dn =
uL

u+ v

1

1− u−v

u+v

=
uL

2v
.

In the puzzle,v = 5 km h−1, u = 10 km h−1, L = 50 m so the bee travels50 m.

Extensions and Commentary

Allegedly posed by a dinner party guest to either Norbert Weiner (see Gilkey (1990)) or John von
Neumann (see Nalebuff (1990)) who, it is claimed, summed theinfinite series in their head so quickly
that the questioner believed them to have settled on the easier method.

The difficulty in formulating a practical version of this puzzle is the need to find a creature or
object (e.g. a bee) that can move between the two approachingobjects (e.g. trains) at a greater speed
than the objects are moving (hence model trains in the version given here). There is a version of this
puzzle in which a dog runs between a couple out for a walk. Thisleads to a possible STEM version
such as:

H Puzzle 18 variant

Two XXXs are out for a walk with a dog. At a particular moment there are50 m apart and
are walking at5 km h−1 towards each other. At that moment, the dog sets out from one of
the XXXs towards the other. If the dog reverses its directionevery time it reaches one of the
XXXs, how far will it have travelled before they meet?

XXX could be chemists, physicists, engineer or any other (STEM) discipline. This customisation is,
of course, trivial but may nevertheless make the puzzle lookmore discipline specific.

This puzzle has to be idealised to generate the infinite series or indeed to reach the lateral thinking
solution. In particular, it must be assumed the bee or dog hasnegligible size and that it can reverse
its direction instantaneously. Which way is the bee facing at the end? This can lead to an interesting
discussion with students about the use of abstraction in practical problem solving.
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Tunnel

H Puzzle 19

An Icelandic civil engineer is in charge of laying a pipe between a geothermal power
plantA and a townB. BetweenA andB there is a small straight mountain range of
uniform width3 km. The pipe must go through a straight tunnel through the mountains
perpendicular to the edges of the latter. The perpendiculardistance ofA from the
mountains is3 km andB is 6 km away. The distance between the town and the power
plant, as the crow flies, is15 km. Where should the tunnel be built to minimise the pipe
length?

Solution

Mountains

b

x

A

b Bb

O

6 km

3 km

3 km

15 km

Let O be the point on a line throughA (the power plant) perpendicular to
the mountains and on a line throughB (the town) parallel to the mountains.
OA = 12 km and asAB = 15 km and soOB = 9 km. Let the distance from
OA along the mountains to the tunnel bex km. Then the length of the pipe
from A toB, l km, is given by:

l =
√

32 + x2 + 3 +
√

(9− x)2 + 62.

The minimum length will be whendl
dx

= 0, i.e.

x√
x2 + 9

− 9− x
√

(9− x)2 + 36
= 0.

from whichx = 3 is the only positive root. The tunnel should be3 km from OA.
The following is an alternative lateral thinking solution.

b
A

b Bb

O

6 km

3 km

Call the axis throughO andB theX axis and throughO andA the
Y axis. As the pipe crosses the mountains, there is no change inits X
coordinate. Therefore imagine the situation with no mountains. This is
equivalent to movingA 3 km down theY axis. The shortest route for the
pipeline would then be the straight line fromA toB. OB is still 9 km so
by symmetry, the tunnel should be3 km along the mountain fromOA.

Extensions and Commentary

Source: Cooper (2010).
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Pyramid

H Puzzle 20

A 100 m high pyramid with a square base of side length150 m has a straight line running
around the pyramid diagonally across each face as shown in the diagram.

If the slope of the line is1 metre gained for every10 metres horizontal travel, how long is
the line?

Solution

This puzzle would be very tedious to answer by summing the lengths of the line over each of the
individual sides. However, if we note that the pyramid is100 m high and the slope of the line is0.1,
the length of the line is(100/0.1)(1 + 0.1)2 ≈ 1005 m.

Extensions and Commentary

This is a variation on a puzzle in Townsend (1994).
STEM variants might include asking for the amount of asphaltneeded to pave a path up the

pyramid. As an extension one might ask if the shape of the structure affects the length of the line
and/or what happens if the structure is a triangular pyramidor a cone?
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Gears

H Puzzle 21

There are two gears of the same size and number of teeth rotating around one-another.
Relative to the second gear, the first gear rotates around thesecond until it returns to its
starting point. How many revolutions does the first gear makewhilst doing this?

Solution

Because both gears are the same size, they have the same circumference. Relative to the surface of
the second gear the first gear rotates once. However, the surface of the second gear makes a complete
revolution about its centre (as it is a circle) and so the firstgear rotates twice as it moves around the
second.

Extensions and Commentary

Source: Bolt (1984). Most STEM students would recognize therelevance of this puzzle.
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Marriage

H Puzzle 22

Alice looks at Bob and Bob looks at Clare. Alice is married butClare is not. Prove that a
married person looks at an unmarried person.

Solution

Bob is either married or unmarried. If Bob is married then Boblooks at Clare. If Bob is unmarried
then Alice looks at Bob. In both situations a married person looks at an unmarried person.

Extensions and Commentary

The point of this puzzle is that you can solve it without knowing whichperson looks at a married or
unmarried person.

There is an interesting more mathematical use of this kind oflogic: prove that an irrational power
of an irrational number can be rational.√

2 is irrational. Consider
√
2
√
2
. If this is rational we are done. Assume this is irrational and

consider
(√

2

√
2

)

√
2

=
√
2

√
2
√
2
= (

√
2)2 = 2

which is rational.
The simplicity of this puzzle means that trying to put it intoSTEM discipline specific context

could destroy much of its value. See also Puzzle 27 and a discussion at the beginning of Section 5.
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Balancing balls

H Puzzle 23

You are given a set of 27 ball bearings and a balance. One of thebearings is known to be
heavier than the others, which weigh the same. In how few balances can the heavy ball be
determined?

Solution

Three. Divide the bearings into three sets of 9; then balancetwo sets. If they are equal, the third
set has the heavy ball, otherwise it is the heavy set. Take theheavy set and divide it in three again,
balancing two sets. Take the heavy set again and balance two balls. Either one is the heavy ball or the
remaining ball is the heaviest.

Extensions and Commentary

Source: Bolt (1984).
Variations of this puzzle are seen in several mathematics puzzle books; a variation using 9 balls

and two weighings is Problem 55 of Eastaway and Wells (1995),pg. 43. The solution we provide here
is essentially a careful and systematicenumeration of cases. Ball bearings are sufficiently familiar to
all STEM students that this puzzle does not need modificationto make it STEM specific. However, a
suitable variant is given below.

H Puzzle 23 variant

You have27 samples containing mixtures of oil and water. You know that all the samples
have the same volume but that one weighs less than the others because it contains a higher
mass fraction of oil. Using a beam balance, in how few balances can the anomalous
sample be identified?
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Burning Rope

H Puzzle 24

You have two lengths of rope, each of which will burn for an hour. However, each rope will
not burn at a constant rate along its length; so you cannot assume that half a rope burns in
half an hour. You may have as many lighters as you want, how canyou measure 45
minutes?

Solution

If you light one length of rope at both ends simultaneously itwill burn out in half an hour. Thus, if
you light one length of rope at both ends andat the same timelight the other rope at one end only,
half an hour of that rope will have burnt. Thus, when the first rope has run out, light the second rope
from the other end and it will have burnt out in another 15 minutes.

Extensions and Commentary

It is very difficult to put this into a specific STEM context, although rope is of course familiar to all
students. One possibility for chemists or mining engineersmight be:

H Puzzle 24 variant

William Bickford (1774–1834) invented the safety fuse for use in mining. These fuses had a
core of gunpowder wrapped in jute and then varnished for waterproofing. You have two
such fuses, each of which will burn for an hour...
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Rectangle

H Puzzle 25

You have two rectangles, one within the other, as shown below. There are no dimensions
given, and you must not measure the diagram.

Explain, with justification, how to draw a single straight line which divides both the
smaller rectangle and the ‘L’-shaped area in half.

Solution

Any line which cuts a rectangle in half goes through the centre. Hence, the line goes through the
centre of the large rectangle and the small rectangle.

Extensions and Commentary

Source: Hubbard (1955).
In practice many students initially attempt to impose coordinates and use algebra, which is usually

fruitless. A STEM version of this puzzle might involve two joined pieces of metal. A variant of this
puzzle if given in Example Task 6 on page 4.

There are various extensions to this where themethodwill still work. Any two shapes which have
acentre of areacan be used in place of the rectangles. An extension to this would be require students
to place a third rectangle that is also bisected by the straight line. There is a much deeper problem
here, with arbitrary sets. Givenn measurable sets of finite measure inn-dimensional space, it is
possible to divide all of them in half (with respect to their measure) with a single(n− 1)-dimensional
hyperplane. This is sometimes called the Stone-Tukey theorem, see Stone and Tukey (1942), or the
“ham sandwich theorem”.
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Table

H Puzzle 26

Imagine a square table, with legs placed half way along each side, rather than at the
corners. What is the maximum mass which can be placed on one corner before the table
tips over?

Solution

Imagine we have the table viewed from above, with legs atA, B, C andD, as shown in the diagram
below. We assume that a mass is placed at the cornerX in order to topple the table.

b

A

b B

b
C

bD

b

X

b O

b
P

This can be solved most easily by thinking laterally, reducing it to a one-dimensional problem by
taking moments along the diagonal throughX.

The weight of the table including the legs,w, acts throughO. Let the weight causing the table to
tip over beW . When the table is about to tip over there is no reaction (force exerted by the floor) on
the legs atC andD. Taking moments along the diagonal throughX about the pointP , givesW = w,
as the distance fromO toP equals the distance fromP toX.

Therefore the maximum weight that can be placed atX is the weight of the table, or (as the
acceleration due to gravity is a cancellable constant) the maximum mass that can be placed atX is
the mass of the table.

Extensions and Commentary

Source: Austen (1880).
This puzzle appears not to have all the required informationin it, but it is relatively straightforward

to solve. It could be used as an introduction to moments and the concept of the centre of mass.
Alternatives for civil engineers could be when looking at a structure or scaffolds in three dimensions.
This puzzle should lead to a discussion of the difference between “weight” and “mass”, the appropriate
(SI) units of each and how non-technical language is sometimes scientifically imprecise.
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Working Together

H Puzzle 27

Alice and Bob take two hours to dig a hole. Bob and Chris take three hours to dig the hole,
while Chris and Alice would take four hours. How long would they take working together?

Solution

LetA, B, andC represent the number of holes dug per hour by Alice, Bob and Chris respectively. As-
suming the holes are the same and independence of work we havethe following system of equations.
Note thatA represents therateof Alice’s work, etc.

2A+ 2B = 1,

3B + 3C = 1,

4A+ 4C = 1.

These equations can be solved in a number of ways giving

B =
7

24
, A =

5

24
, C =

1

24
.

Extensions and Commentary

The difficulty of this puzzle is not the algebra, although this might cause problems, but rather the
modelling step in which the student needs to recognise thatA is a rate, not an amount of work. It
helps if they consider units of the variables they use.

This puzzle has a built in check. If students form equations incorrectly asA + B = 2, etc., then
working together takes longer than when working in pairs! There is further discussion of this puzzle
at the beginning of Section 5.

STEM variants may be possible with a variety of zero order processes, i.e. where the process rates
can be considered to be independent. Such a variant was presented in the introduction to Section 5
(Example task 20 variant), although we do not believe this isan improvement on the original, because
of the loss of simplicity.

Alternatives using chemical kinetics:

H Puzzle 27 variant

X producesY catalyser byA+B in 2 hours,B +C in 3 hours andA+C in 4 hours. All
processes are first order. What would be the rate if we combineA, B andC?
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The Pursuit

H Puzzle 28

A dog starts in pursuit of a hare at a distance of30 of his own leaps from her. He takes5
leaps while she takes6 but covers as much ground in2 as she in3. In how many leaps of
each will the hare be caught?

Solution

We solve this by finding an equation to represent the situation and then solve it. If we say that the dog
takesx leaps to catch the hare, then we know that the hare will have travelled 2

3
× 6

5
x dog leaps in

the same time, since the hare covers two-thirds the amount ofground but does so 20% more quickly
than the dog. The hare begins thirty of the dog’s leaps ahead so we add those to the hare’s side of the
equation. The result is the solution of the equation

x = 30 +
2

3
× 6

5
x.

We solve the equation to find when the dog and the hare have covered an equal distance (including
the hare’s head-start); giving us 150 leaps.

Extensions and Commentary

Source: Hadley and Singmaster (1992).
The puzzle as we have given it is a classic problem in Europeanmathematics teaching whose

origin is Alcuin of York’s Propositiones Alcuini Doctoris Caroli Magni Imperatoris ad Acuendes
Juvenes, more briefly titledProblems to Sharpen the Young, written around 775 (see Hadley and
Singmaster (1992) for an annotated translation). Alcuin’share and hounds problem is thought to be,
see Swetz (1972), a version of a problem in (The Nine Chapters on the Mathematical Art),
a book compiled in the first century AD from texts dated between 1000BC and 200BC. This problem
too regaled the reader with the story of a hound in pursuit of ahare.

The authors have not yet thought of a non-trivial STEM discipline specific example of this puzzle.
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Trains

H Puzzle 29

In a railway journey of90 kilometres an increase of5 kilometres per hour in the speed of
the train decreases the time taken by15 minutes. What is the speed of the slow train?

Solution

We define positiond to be the arc length along the track from start to destination. Then we form a
system of equations using the formulad = vt, i.e.

90 = tv,

90 = (v + 5)(t− 15

60
).

Seeing thatt = 90

v
we can substitutet in the second equation to give us

90 = (v + 5)

(

90

v
− 15

60

)

,

which we can rewrite as
0 = v2 + 5v − 1800.

This quadratic has solutions−45 and40. The negative solution represents a train moving in the other
direction, which we reject. As our answer must be positive weconclude that the slower train was
travelling at40 km h−1.

Extensions and Commentary

This puzzle was created by the authors though it is unlikely to be unique. Except for the difficulty
many students have in formulating the correct equation to solve this puzzle, it might be considered
just a problem. Notice the units trap, with the velocity in kilometres per hour, but the time in minutes.
This sort of puzzle should be easily adapted to other moving objects or indeed rates of reaction as
below.

H Puzzle 29 variant

A chemical process is controlled to occur at a constant rate as the reactant concentration
decreases from0.1 mol dm−3 to 0.01 mol dm−3. Due to a process upset, the reaction rate
increased by5× 10−3 mol dm−3 and the time taken by the reaction decreased by15
minutes. What was the rate of the reaction before the processupset?
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Bricks

H Puzzle 30

A brick has faces with areas110 cm2, 52.5 cm2 and231 cm2. What is its volume?

Solution

If the brick has linear dimensionsA cm, B cm andC cm, the volume isABC cm3. The volume
squared= A2B2C2 cm6 = (AB)(BC)(AC) cm6. Regardless of the choice of which dimensions
match which area, the volume squared= 110× 52.5× 231 cm6 = 55× 105× 231 cm6 = 5× 11×
3× 5× 7 × 3× 7× 11 cm6 = (3 × 5× 7× 11)2 cm6 = 11552 cm6. The volume is therefore1155
cm3.

Alternatively, letAB = 110, BC = 52.5 andAC = 231. ThenB/A = 52.5/231 or B =
52.5A/231. Therefore,52.5A2/231 = 110 andA =

√

25410/52.5 = 22. It follows thatB = 5 and
C = 10.5. The volume of the brick is therefore22× 5× 10.5 cm3 = 1155 cm3.

Extensions and Commentary

Source: Maslanka (1990).
The surprise in this puzzle is that the volume can be found without knowing the linear dimensions

of the brick. Bricks are of course familiar to all (STEM) students.
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Socrates and Meno

H Puzzle 31

Socrates and Meno each receive box-shaped presents. Each istied with three loops of
string - one in each of the three possible directions. Socrates’s package has loops of
lengths 40 cm, 60 cm, 60 cm, while Meno’s package has loops of lengths 40 cm, 60 cm, 80
cm. Decide whose package has the larger volume and find the volumes of the two packages.

Solution

Let Socrates’s package bex cm byy cm byz cm. The first loop has length2x + 2y = 40, second
2y + 2z = 60, and the third2z + 2x = 60. Adding gives4x+ 4y + 4z = 160; so

x = (x+ y + z)− (y + z) = 40− 30 = 10.

Similarly
y = (x+ y + z)− (z + x) = 40− 30 = 10;

z = (x+ y + z)− (x+ y) = 20.

So Socrates’s cuboid has volume10 × 10 × 20× = 2000 cm3. If we do the same with Meno’sp cm
by q cm byr cm, we get2p+ 2q = 40, 2q + 2r = 60, 2r + 2p = 80, sop+ q + r = 45; so

p = (p+ q + r)− (q + r) = 45− 30 = 15;

q = (p+ q + r)− (r + p) = 45− 40 = 5;

r = (p+ q + r)− (p+ q) = 25.

So Meno’s cuboid has volume15× 5× 25 = 1875 cm3.

Extensions and Commentary

This is an interesting puzzle with a highly counter intuitive solution, because “larger” in the sense of
volume does not mean “larger” in the sense of amount of stringneeded.
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Rugby

H Puzzle 32

In a rugby pitch you wish to kick a ball to convert a try. You canplace the ball any
distance from the try line, but must place it on the line perpendicular to the try line through
the point at which the try was scored. What is the position to ensure the angle between the
lines connecting the goal posts to the ball is maximised?

Solution

bcA

bcA′

b
l

bP

b
O′

bO

c

Let A, A′ be the goal posts and letP lie on a line,l, perpendicular toAA′ outside segmentAA′.
Maximize∠APA′.

Draw the circlec through theA, A′ andP , centered atO on the perpendicular bisector ofAA′.
For any other pointP ′ on c to the right of the goal line we note that (i)∠APA′ = ∠AP ′A′ and

(ii) ∠AOA′ = 2∠APA′. Hence to maximize∠APA′ we need to moveO as close as possible to the
line AA′. This happens when circlec is tangent tol, shown in the diagram as a dashed circle with
centreO′.

From these observations a formula for the position ofP can be derived and the argument can be
examined when the line lies betweenAA′.

Extensions and Commentary

This puzzle is an equivalent formulation of Regiomontanus’Maximum Problem, originally posed in
1471, see Dorrie (1965). We note that many similar problems occur in ancient texts on gunnery.
However, it may be that this is not really a puzzle in the sensedescribed in Section 2.1. For less
experienced students, it may indeed be perplexing while forthose familiar with geometry of circles it
may be routine.
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Sums of angles

H Puzzle 33

γ β α

Assume these are squares. Prove thatα = β + γ.

Solution

γ β α

A

B

C

γ
β

Note thatABC is a right angled isosceles triangle, so that∠ABC = α.

Extensions and Commentary

This puzzle has the “thinking out of the box” solution described above.
The more prosaic solution notes that

tan(α) = 1, tan(β) =
1

2
, tan(γ) =

1

3
,

and then uses the identity

tan(β + γ) =
tan(β) + tan(γ)

1− tan(β) tan(γ)
= 1 = tan(α).

H Puzzle 33 variant

The figure shows part of the (001) surface of Mg0 (with Mg2+ and O2− ions lying at
alternate vertices of a square lattice). Prove that the marked anglesα, β andγ between
the ions satisfyα = β + γ.
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Diagonals

H Puzzle 34

A rectangle grid is covered with19× 91 identical squares. How many squares are touched
by a line going from diagonally opposite corners of the grid?[Repeat this problem and
devise a general rule for a grid covered byn×m square tiles.]

Solution

The line leaves one square and enters the next by crossing an edge of the square, either horizontally
or vertically, or through the corner of a square. Ifn andm areco-primethen the line does not cross a
corner of any square. However, ifn andm have a common factor there will be a corner.

19 (is prime) and is co-prime to numerical91 = 7 × 13. So in our first example there are no
corners to cross. To get from the top to the bottom we cross19 − 1 = 18 edges. To get from the left
to the right the line crosses numerical91 − 1 = 90 edges. So, in total108 edges are crossed. If there
are108 crossings, the line crosses 109 squares.

Whenn andm are co-prime the formula for the number of squares crossed isn + m − 1. In
general, if a line crosses a corner it touches either no squares or two. To find a general formula we
need to agree a convention here.

Extensions and Commentary

Source: Borovik and Gardiner (2005).
The puzzle as it is stated makes certain assumptions about the pipe and the tiles that remove it

from the real world. If the tiles have a gap between them for grout and the pipe is not infinitely thin,
the problem requires a more pragmatic approach involving modelling.

A STEM version of this puzzle might concern a pipe crossing a tiled floor. Formulating the puzzle
in this way makes it appear less abstract and therefore it mayengage better non-mathematicians.
However, it would be necessary (and interesting) to discusswith students that a real pipe has thickness
and to discuss how in some situations we might want to idealise a real situation to obtain a problem
solution.
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Fly on the wall

H Puzzle 35

How do you find the shortest path between two points on opposite walls of a room,
travelling without leaving the walls?

Solution

The essence of the solution is to open up the net of the room andflatten it. The fly takes a straight
line.

Extensions and Commentary

This is the simple lateral solution.
An interesting extension activity is to ask whether it is possible to open the net of the room in

different ways and whether this would affect the apparent “shortest” path. If so, how is the “correct”
net opening to be chosen. Note that the shortest path need notbe unique.

It is challenging to prove mathematically that the correct opening of the net leads to the shortest
path.
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Handshaking

H Puzzle 36

Prove that, for any graphG, the number of vertices of odd degree is even.

Solution

Each edge requires two vertices. Thus the sum of the vertex degrees, summed over all vertices, is
even. Any number of “even vertices” can be ignored, however only anevennumber of “odd vertices”
can have an even sum of vertex degrees, as an odd number would result in an odd total. Hence the
number of “odd vertices” is even.

Extensions and Commentary

This is a classic graph theory problem. Its extension to handshaking is shown below.

H Puzzle 36 variant 1

127 chemical engineers attend an event at their Institutionto discuss the use of puzzles in
teaching. Prove that the number of them who shook hands an oddnumber of times is even.

Such adaptations, although perhaps somewhat trivial, makethe puzzle look more discipline specific,
adding to student engagement particularly for non-mathematicians. An interesting variant for chem-
istry students is given below.

H Puzzle 36 variant 2

Fullerenes are closed polyhedral clusters of carbon, in which each carbon atom is bonded
to three other carbons. Explain why fullerenes of differentsizes always have an even
number of carbon atoms e.g. buckminsterfullerene (C60).
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Wason selection test

H Puzzle 37

Imagine you have a four cards on a table and every card has a letter on one side and a
number on the other.

With the cards placed on a table, you see

D 3 K 7
Turn over the fewest cards to establish the truth of the following statement “Every card
which has aD on one side has a7 on the other.”

Solution

Turn overD and3 only.

Extensions and Commentary

This puzzle is a classic and well studied logic test, devisedin 1966 by Peter Wason, see Wason (1968).
When put in the context of social relations, such as “If you are drinking alcohol then you must be over
18” people perform much better overall (Griggs and Cox, 1982). This suggests that it would not be
advantageous to put this puzzle into a STEM discipline specific context.
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Circles inside circles

H Puzzle 38

Take a stationary circle and inside it put another of half thediameter, touching the larger
one from within. Roll the smaller along the inside of the larger circle without sliding.
Describe the path of a pointK, on the small circle.

Solution

Every point on the small circles moves along a diameter of thelarger circle. I.e. it moves on a straight
line segment. To solve this you need to match up the arc lengthof the small circle with that of the
large one.

Let C1 have radiusr1 andC2 have half the radius, so2r2 = r1. Begin with both horizontal
diameters coinciding. OnC2 mark two points,c whereC1 andC2 touch andp the point on the
perimeter ofC2 which is also the centre ofC1.

C1

C2 bb cp

b c
′

b
c

b
p

t2

t1

Assume thatC2 has rolled around the inside ofC1, as shown on the right hand above. We now have a
new contact point,c′ of C1 with C2 and we consider the anglet2 which is the angle between the two
radii in C2 connecting the horizontal toc′. Assume there is no slipping between the two circlesC1

andC2 as they roll thearc lengthfrom c to c′ onC1 must equal that fromc to c′ onC2. Arc length
l = tr so

r1t1 = l = r2t2.

Since2r2 = r1,
2r2t1 = r2t2,

so thatt2 = 2t1. Hence,c remains on the horizontal diameter ofC1 asC2 rolls.

Extensions and Commentary

Source: Gutenmacher and Vasilyev (2004).
Note that this puzzle is quite hard to solve. Key is the choiceof coordinates. The solution is so

simple that one suspects that there must be a a lateral thinking solution but this has eluded the authors
so far.

This observation was really used as a mechanism with a small cog wheel inside a larger one to
generate straight line motion. For example, in 1801 James White patented the following mechanical
device. However, in practice this mechanism places great strain on the central bearing and it was not
particularly widely used. See, e.g. Bourne (1846).
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The puzzle could be redrafted for mechanical engineering students using reference to this mecha-
nism, possibly asking the students to consider why it was notparticularly widely used.
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Pick’s Theorem

H Puzzle 39

A piece of metal has small holes drilled in it on a square lattice. By cutting in straight
lines from hole to hole, polygon shaped pieces can be created, of any size and various
shapes. The holes at the ends of cuts do not have to be adjacentto each other on the lattice
and the polygons can be concave in parts. What is the area of a polygon expressed in
terms of the number of small holes remaining in the interior of the piece of metal, the
number of holes on the perimeter of the piece through which cuts were made and the
distance between adjacent holes.

Solution

Stripped of its context this might be rephrased as follows.

H Puzzle 39 variant

A simple grid-polygonis a closed chain of line segments constructed on a grid of integer
coordinates in the plane which do not have points in common other than the common
vertices of pairs of consecutive segments. Find the area of asimple grid-polygon in terms
of the number of lattice points in the interior of polygon andthe number of lattice points
on the boundary.

Pick’s theorem provides a simple formula for calculating the areaA of this polygon in terms of the
numberi of lattice points in the interior located in the polygon and the numberb of lattice points on
the boundary placed on the polygon’s perimeter

A = i+
b

2
− 1

This is an example where some experimentation will enable students for form a conjecture. Also, by
proving this formula for simple shapes, e.g. squares, rectangles and triangles, the student can devise
a strategy for justifying why the formula holds in general. Adetailed worked solution is available
online at
http://www.geometer.org/mathcircles/pick.pdf.

Extensions and Commentary

Source: Pick (1899). This puzzle would not be appealing to the majority of non-mathematicians in its
current form, mainly because the language. Pick’s Theorem can be used to solve Puzzle 46, because
the area of an equilateral triangle of baseA is an irrational multiple ofA2, whereas an equilateral
triangle drawn on the lattice would have an integral area.
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Double weighings

H Puzzle 40

Four weights,A, B, C andD, were weighed in pairs. However, the two largest weights,C
andD, were too heavy for the scales to be weighted together. Only the following five
weights were recorded:31.2 kg,35.6 kg,37.8 kg,44.4 kg and46.6 kg.

What are the individual weights?

Solution

We have the following pairs of weighings:A + B, A + C, A +D, B + C, B +D. If we order the
weights by weightA < B < C < D, we do not know which of the pairsA + D or B + C will
be heaviest, though we do know that they will be the third and fourth heaviest. If we therefore add
together these to weighings, giving usA +D + B + C we can subtract the lightest pair,A + B, to
determine the weight ofC +D. Hence

A+B +C +D = 37.8 + 44.4 = 82.2,

C +D = 82.2 − 21.2 = 51.0.

Now we have a situation which reduces to standard simultaneous equations, an exercise.
Deciding thatA + D < B + C or vice-versa is not a valid answer because it is not known

beforehand which is the case.

Extensions and Commentary

This puzzle was an example posed to attendees to the Moore Legacy Conference, Washington D.C.,
June 2011.

This is usable in most STEM contexts. However, it should leadto a discussion of the difference
between “weight” and “mass”, the appropriate (SI) units of each and how non-technical language is
sometimes scientifically imprecise.
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Dice

H Puzzle 41

I have a set of three fair dice, Red, Green and Blue. The numbers on their faces are

R 1, 4, 4, 4, 4, 4

B 3, 3, 3, 3, 3, 6

G 2, 2, 2, 5, 5, 5

Two people play the following game which begins by each player choosing one of the die.
They then play an agreed number of rounds in which the highestroll wins. Which dice is
best?

Solution

On average,G beatsR, R beatsB andB beatsG, so there is no “best” die for pairwise comparison
games. However, the winning strategy is clearly to choose second.

We consider the three possible combinations of die and the associated probabilities of each player
winning. First considerR versesB. The symbol� indicatesB wins.

R

1 4 4 4 4 4

3 �

3 �

B 3 �

3 �

3 �

6 � � � � � �

SoB wins 11

36
whileR wins 25

36
. Next considerR versesG. The symbol� indicatesG wins.

R

1 4 4 4 4 4

2 �

2 �

G 2 �

5 � � � � � �

5 � � � � � �

5 � � � � � �
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SoG wins 21

36
whileR wins 15

36
. Last considerB versesG. The symbol� indicatesG wins.

B

3 3 3 3 3 6

2

2

G 2

5 � � � � �

5 � � � � �

5 � � � � �

SoB wins 21

36
whileG wins 15

36
.

Extensions and Commentary

With this particular set of dice there is a very interesting extension game. Each player takes two
identical die. Each time they throw they add the numbers together and the highest total in each round
wins. What happens now?

The dice described in this problem can be bought at
http://www.grand-illusions.com/acatalog/

Non Transitive Dice - Set 2.html

Other sets are available from
http://www.mathsgear.co.uk/
A lateral thinking solution is to compare the times which oneface number will win or lose against

the numbers on the other die, then multiply up by the number ofthese face numbers. For a similar
problem with different values on the faces of the dice, see Bolt (1984), pg. 57.

It is really difficult to see how at STEM version of this puzzlecould be created, at least one that
was not clearly an artifice.
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Monty Hall

H Puzzle 42

You are a contestant on a game show and are faced with the choice of opening one of three
doors to choose your prize. You know that behind two of the doors the prize is a goats and
behind the other a new car, but you do not know which prize is behind which door.

You pick a door, but before opening it the host opens one of theother two doors to reveal a
goat. They then give you the choice of changing to the third, unchosen and unopened door.
Should you?

Solution

Yes, when faced with three doors the chances that the car is behind any one of them is1/3. Therefore,
the chances that the car is behind a door that you did not pick are 2/3. When the game show host
reveals that there is a goat behind one of the two remaining doors, it does not change the original odds
on those two doors having a car behind them. Thus the chances that the car is behind the remaining
door are2/3.

Extensions and Commentary

This is a classic puzzle based on the U.S. game showLet’s Make a Deal; the puzzle itself was first
posed in a letter by Steve Selvin to the American Statistician in Selvin (1975). Its usual formulation
was given by Marilyn vos Savant in vos Savant (1990) as

Suppose you’re on a game show and you’re given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1 and the host, who
knows what’s behind the doors, opens another door, say No. 3,which has a goat. He then
says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch your
choice?

This is such a classic puzzle, which in its original form generates so much discussion, that it is not
worthwhile considering STEM discipline specific examples.
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Snails

H Puzzle 43

Three small snails are each at the vertex of an equilateral triangle of side60 cm. The first
sets out toward the second, the second toward the third, and the third toward the first, each
with a uniform speed of5 cm/min. During their motion, each snail always heads towardits
respective target. How much time elapses and how far does each snail travel before they
all meet?

Solution

The way to find the time taken is to begin to resolve one snail’sspeed towards either the snail chasing
it, or towards the centre. For this solution we will go back towards the previous snail. Resolvingv1 in
the horizontal place (formingv2):

v2 = v1 sin(60
◦) =

v1
2
.

The60◦ is from the equilateral triangle and thus snail 3 is approaching snail 1 along the bottom line
of the triangle at the relative speed of

v1 +
v1
2

=
3v1
2

.

We know that the snail speedv1 is 5 cm/min, so

3v1
2

=
3(5)

2
= 7.5 cm/min.

It can now be said the time taken for the snails to meet is the distance of the bottom side of the triangle
divided by the relative approach speed, so

time =
60

7.5
= 8 minutes.

Given the snails’ speed of5 cm/min the distance each travels is40 cm.

Extensions and Commentary

Source: Gnädig et al. (2001). We are unsure if this can be converted to a puzzle rooted in STEM. This
is because each snail is attracted to only one of the other snails whereas objects or particles in similar
physical situations would be mutually attractive or would not have three-fold symmetry.
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Stacking Blocks

H Puzzle 44

You have an unlimited supply of identical blocks. You stack one on top of the other and
make the stack lean in one direction. What is the maximum horizontal distance you can
cover before the stack collapses? (No glue, no nails etc...)

Solution

We construct a balancing stack by induction, assuming that the width of each block is2 “units”. Our
strategy is this: at each stage we consider an existing balancing stack ofn blocks which has its centre
of mass a distancecn from its left hand edge. Obviouslycn ≤ 2 for all n as the centre of mass is to
be above the bottom domino! We then place this stack ontop of a new block a distanceδn from the
left of the domino.

b

cn

The new domino

δn

There will clearly be no toppling if

δn + cn ≤ 2 for all n. (7)

The new centre of mass of the whole stack ofn + 1 blocks will becn+1 from the left of the bottom
block where

cn+1 =
(δn + cn)n+ 1

n+ 1
with c1 = 1 (one domino). (8)

Using (7), the maximum displacement without toppling isδn := 2− cn. Combining this with (8) and
solving forδn (the displacements) givesδ1 = 1 and

δn+1 = 2− cn+1 = 2− (δn + cn)n + 1

n+ 1
= 2− (δn + 2− δn)n+ 1

n+ 1
=

1

n+ 1
.

So that for alln, δn = 1

n
. The question becomes, what is the value of

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

N
=

N
∑

n=1

1

n
, (9)

for largeN? This is theharmonic series, which diverges. I.e. it is possible to make the sum (9) as
large as one would wish so in theory we can produce an arbitrarily large horizontal displacement.
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Extensions and Commentary

Source: A classic, going back to 1850, see Winkler (2007). Extensions to this problem are given by
Paterson and Zwick (2009) and Paterson et al. (2009). This puzzle can be made more STEM discipline
specific by giving a context, for example build a structure across a river. One could also consider what
is possible if the stack has to support a load as would be the case with a real bridge.
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NIM

H Puzzle 45

This is a competitive game, to be played between two players.Start with three heaps of
any number of objects. The two players alternate taking any number of objects from any
one heap. The goal is to be the last to take an object. What is a winning strategy and why?

Solution

This is a classical game, which has been solved for any numberof initial heaps and objects. It is
possible to determine which player, first or second to move, will win and what winning moves are
open to that player.

The key is the binary digital sum, also known as “exclusive or” (xor), of the heap sizes. This is
the sum (in binary) neglecting all carries from one digit to another. The winning strategy is to finish
every move with a binary digital sum of zero.

Extensions and Commentary

Clearly the game, as stated, uses only three heaps. Any number of heaps is possible, without changing
the theory. A full explanation is given by, for example, Rouse Ball (1960).

We note in passing that games such as this are enjoyable and many are susceptible to a complete
analysis. Such games are a fruitful source of puzzles. Another particularly simple game with in-
teresting puzzling questions is known as “Hex”, see Browne (2000). This is a puzzle for which the
simplicity provides clarity that would be lost by artificially putting it into a specific STEM context.
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Lattice triangle

H Puzzle 46

Below is part of an infinite integer lattice. Alattice triangleis a triangle where the
coordinates of all vertices are integers.

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

What is the size of the smallest equilateral lattice triangle?

Solution

There are no equilateral lattice triangles. For a justification of why see Puzzle 39.

Extensions and Commentary

This puzzle may be considered unfair as students are likely to assume that there is such a triangle to be
found. Notice that a lattice triangle in three dimensions isessentially given in Puzzle 17. Extensions
to other triangles and higher dimensions are found in Beeson(1992).

A STEM discipline specific version of this might be too artificial e.g. cutting out an equilateral
triangle from a piece of metal, with each side of the trianglebeginning and ending at pre-drilled holes
arranged in a lattice pattern.
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Why Bother with Proof?

H Puzzle 47

Draw an integral number of points on the circumference of a circle and join every pair of
points with a segment. What is the greatest number of regionsinto which the circle can be
divided?

Solution
b b

b

bb

b

bb

b b

b

bb

b b

b

bb

b b

b

This is a well-known puzzle. You will get the sequence1, 2, 4, 8, 16 for the number of regions.
Now consider6 dots. It would seem only reasonable that there should be32 regions. In fact there are
31. For7 dots there are57 regions instead of the64 we might have expected.

If N is the number of regions andn the number of points then the number of regionsr is given by

N = Cn

4 + Cn

2 + 1 =
1

24

(

n4 − 6n3 + 23n2 − 18n + 24
)

.

There is a real challenge in finding the correct formula and understanding why the first5 instances
agree with the formulaN = 2n−1.

For many puzzles, especially those with a lateral solution,the solver will be guided by intuition
or prior experience, with little or no attempts at proof. This puzzle is useful to remind students why
mathematicians often insist on formal and rigorous proofs.
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VC10

H Puzzle 48

As the sun was setting in a clear African sky, it was noticed ina Super VC10 flying north
that the outline of the westward windows was projected on theother side of the cabin
about 6 inches above the window on that side. Estimate roughly the height of the aircraft.

Solution

This problem cannot be solved with the given information.

Extensions and Commentary

Source: Brian Thwaites, SMP A-level mathematics exam.
This problem needs extra information. It may therefore not be a proper puzzle as with puzzles

there is implied contract with the puzzle-setter is that thepuzzle can be solved (see the discussion in
Section 2.1). As an estimation problem it might be solved by estimating the width of the aircraft and
using prior knowledge of the radius of the Earth. However, itis entertaining and with no solution
without extra information, perplexing.
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Endnote

Higher Education Academy Workshop, 7th May 2012.
Embedding Puzzle-based learning in STEM Teaching.

There were 36 attendees at this meeting including:
Matthew Badger University of Coventry
Andrew Csizmadia Newman University College
Neil Currie University of Salford
Sarah Hart Birkbeck, University of London
Phil Harvey De Montfort University
Eleanor Lingham De Montfort University
Ken McKelvie University of Liverpool
Susan Moron-Garcia University of Birmingham
Natalie Rowley University of Birmingham
Chris Sangwin University of Birmingham
Jon Scaife University of Sheffield
Duc Tham University of Birmingham
Colin Thomas University of Birmingham
Esther Ventura-Medina University of Manchester
Nik Whitehead Swansea Metropolitan University
Nicola Wilkin University of Birmingham

We are grateful for feedback, new ideas and encouragement from these participants and others, both
during and after the meeting.
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