Two-dimensional flows in slowly deforming domains

Adiabatic invariance and geometric angle

J. Vanneste

School of Mathematics
University of Edinburgh, UK

www.maths.ed.ac.uk/~vanneste

with D. Wirosoetisno

University of Durham, UK
Motivation: effect of slow, conservative perturbations on perfect fluids

Simplest model:
- 2D, incompressible fluid
Flow in slowly deforming domain

Motivation: effect of slow, conservative perturbations on perfect fluids

Simplest model:

- 2D, incompressible fluid
- slowly deforming domain
Motivation: effect of slow, conservative perturbations on perfect fluids

Simplest model:

- 2D, incompressible fluid
- slowly deforming domain
- (almost) steady flow
Flow in slowly deforming domain

Motivation: effect of slow, conservative perturbations on perfect fluids

Simplest model:
- 2D, incompressible fluid
- slowly deforming domain
- (almost) steady flow

Two issues:
- Eulerian flow $u(x,t)$
- Lagrangian fluid-particle positions for $O(1)$ deformations of the domain.
Motivation: effect of slow, conservative perturbations on perfect fluids

Simplest model:

- 2D, incompressible fluid
- slowly deforming domain
- (almost) steady flow

Two issues:

- Eulerian flow $u(x, t)$
- (Lagrangian) fluid-particle positions for $O(1)$ deformations of the domain.
Finite-dimensional analogue: Hamiltonian system with slowly variable parameters, e.g. pendulum with length $\Lambda(\epsilon t), \epsilon \ll 1.$
Flow in slowly deforming domain

Finite-dimensional analogue: Hamiltonian system with slowly variable parameters, e.g. pendulum with length $\Lambda(\epsilon t), \epsilon \ll 1$.

\[\begin{array}{c}
\text{Amplitude (energy):} \\
\begin{itemize}
\item determined by the \text{adiabatic invariance} of action I, $\Delta I = O(\epsilon)$.
\item adiabatic invariance of I stems from invariance of pdq.
\item energy depends on Λ \text{instantaneously}.
\end{itemize}
\end{array}\]
Flow in slowly deforming domain

Finite-dimensional analogue: Hamiltonian system with slowly variable parameters, e.g. pendulum with length $\Lambda(\epsilon t)$, $\epsilon \ll 1$.

Amplitude (energy):
- determined by the adiabatic invariance of action I, $\Delta I = O(\epsilon)$.
- adiabatic invariance of I stems from invariance of pdq.
- energy depends on Λ instantaneously.

Angle $\langle \theta \rangle$:
- dynamical angle $\int \omega \, dt$
- + Hannay–Berry (geometric) angle
- depends on path in parameter space
Flow in slowly deforming domains

Geometric angle depends only on the curve in parameter space, not on the speed at which this curve is traced.
Geometric angle depends only on the curve in parameter space, not on the speed at which this curve is traced.

Analogy f-d system/fluid:

<table>
<thead>
<tr>
<th>f-d system</th>
<th>fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>amplitude</td>
<td>Eulerian flow</td>
</tr>
<tr>
<td>angle</td>
<td>particle position</td>
</tr>
</tbody>
</table>
Formulation

Domain defined by parameters: $\Lambda = \Lambda(\epsilon t), \quad \epsilon \ll 1.$
Formulation

Domain defined by parameters: \(\Lambda = \Lambda(\epsilon t), \ \epsilon \ll 1. \)

Perfect, incompressible flow in 2D:
\[\partial_t u + u \cdot \nabla u = -\nabla p, \quad \text{div} \ u = 0. \]

Vorticity formulation:
\[\omega = \text{curl} \ u, \ u = \nabla^\perp \psi = (-\partial_y \psi, \partial_x \psi), \]

\[\partial_t \omega + [\psi, \omega] = 0, \quad \Delta \psi = \omega, \]

where
\[[\psi, \omega] = \partial_{x_1} \psi \partial_{x_2} \omega - \partial_{x_2} \psi \partial_{x_1} \omega. \]
Boundary condition: ∂D_Λ is a material curve
Boundary condition: ∂D_Λ is a material curve

The vorticity is rearranged: $\omega(x, t) = \omega_0(g_t^{-1}x)$, i.e.

$$\omega = \omega_0 \circ g_t^{-1},$$

where g_t is an area-preserving diffeomorphism, with $\dot{g}_t = v$.

Steady Flows: $[\psi, \omega] = 0$

$$\Rightarrow \psi = F_\Lambda(\omega) \quad \text{in } D_\Lambda.$$

Vorticity and streamfunction are functionaly related.
Perturbation expansion

Expand in power series:
\[\omega = \omega^{(0)} + \epsilon \omega^{(1)} + \cdots, \quad \psi = \psi^{(0)} + \epsilon \psi^{(1)} + \cdots \]

and substitute into 2D Euler.

Assuming all coefficients depend on \(\epsilon t \), we find:
Expand in power series:
\[\omega = \omega^{(0)} + \epsilon \omega^{(1)} + \cdots, \quad \psi = \psi^{(0)} + \epsilon \psi^{(1)} + \cdots \]

and substitute into 2D Euler.

Assuming all coefficients depend on \(\epsilon t \), we find:

At leading order,
\[[\omega^{(0)}, \psi^{(0)}] = 0 \quad \text{(instantaneously) steady flow,} \]
\[\psi^{(0)} = F(\omega^{(0)}). \]
Expand in power series:

\[\omega = \omega^{(0)} + \epsilon \omega^{(1)} + \cdots, \quad \psi = \psi^{(0)} + \epsilon \psi^{(1)} + \cdots \]

and substitute into 2D Euler.

Assuming all coefficients depend on \(\epsilon t \), we find:

At leading order, \([\omega^{(0)}, \psi^{(0)}] = 0 \) (instantaneously) steady flow,
\[\psi^{(0)} = F(\omega^{(0)}). \]

At the next order, \(\partial_{\epsilon t} \omega^{(0)} + [\psi^{(1)}, \omega^{(0)}] + [\psi^{(0)}, \omega^{(1)}] = 0. \)

Rewriting as
\[\partial_{\epsilon t} \omega^{(0)} + [\phi, \omega^{(0)}] = 0, \quad \text{with} \quad \phi = \psi^{(1)} - F'(\omega^{(0)})\omega^{(1)} \]

shows that \(\omega^{(0)} \) is rearranged by velocity \(\nabla \perp \phi \).
Eulerian flow

The leading-order flow $\omega^{(0)}$ can be found by imposing that it is:

- steady, $\psi^{(0)} = \Delta^{-1} \omega^{(0)} = F(\omega^{(0)})$ for some $F(\cdot)$.
- a rearrangement, $\omega^{(0)}(x, t) = \omega_0(\Lambda^{-1} x)$ for an area-preserving diffeomorphism Λ.

Two-dimensional flows in slowly deforming domains – p.8/20
Eulerian flow

The leading-order flow $\omega^{(0)}$ can be found by imposing that it is:

- steady, $\psi^{(0)} = \Delta^{-1} \omega^{(0)} = F(\omega^{(0)})$ for some $F(\cdot)$.
- a rearrangement, $\omega^{(0)}(x, t) = \omega_0(g_{\Lambda}^{-1} x)$ for an area-preserving diffeomorphism g_{Λ}.

Two-dimensional flows in slowly deforming domains – p.8/20
Eulerian flow

The leading-order flow $\omega^{(0)}$ can be found by imposing that it is:

- steady, $\psi^{(0)} = \Delta^{-1} \omega^{(0)} = F(\omega^{(0)})$ for some $F(\cdot)$.
- a rearrangement, $\omega^{(0)}(x, t) = \omega_0(g^{-1}_\Lambda x)$ for an area-preserving diffeomorphism g_Λ.

The map g_Λ

- satisfies $\det g_\Lambda = 1$,
- maps ∂D_0 to ∂D_Λ.
- depends on t only through Λ
The existence of g_Λ also answers the question of robustness of steady flows to domain deformation:

given a steady flow in the domain D_0, does it persist when the domain is deformed to D_Λ? (Wirosoetisno & V, 2005)
The existence of g_Λ also answers the question of robustness of steady flows to domain deformation:

given a steady flow in the domain D_0, does it persist when the domain is deformed to D_Λ? (Wirosoetisno & V, 2005)

The problem is written entirely in terms of g_Λ and F:

- g_Λ satisfies the nonlinear PDE,

$$\omega_0 = \Delta(F \circ \omega_0 \circ g_\Lambda^{-1}) \circ g_\Lambda,$$

- F is determined by a solvability condition.
Use an implicit-function-theorem argument to show:

- a solution exists for small domain deformation,
Use an implicit-function-theorem argument to show:

- a solution exists for small domain deformation,
- provided that rotation period \(T = \int \frac{d\theta}{|\nabla \psi(0)|} < \infty \) (+ technical hypotheses),
Use an implicit-function-theorem argument to show:

- a solution exists for small domain deformation,
- provided that rotation period \(T = \oint d\theta / |\nabla \psi(0)| < \infty \) (+ technical hypotheses),
- the solution is unique modulo translation along constant \(\omega^{(0)} \) (gauge freedom).

This leads to unique \(\omega^{(0)} \) and \(\psi^{(0)} \) that depend on \(t \) only through \(\Lambda \).
Use an implicit-function-theorem argument to show:

- a solution exists for small domain deformation,
- provided that rotation period \(T = \int \frac{d\theta}{|\nabla \psi(0)|} < \infty \) (+ technical hypotheses),
- the solution is unique modulo translation along constant \(\omega^{(0)} \) (gauge freedom).

This leads to unique \(\omega^{(0)} \) and \(\psi^{(0)} \) that depend on \(t \) only through \(\Lambda \).

For adiabatic deformations, the constraint \(T < \infty \) is a requirement of slowness.
Eulerian flow (continued)

How can we find g_Λ?

- The PDE may be solved numerically, e.g. using an iterative scheme.
- This is simpler if D_0 is a channel or a disc, but convergence appears limited to very small boundary deformations.
- A perturbative scheme can be developed for small boundary deformations $\delta \ll 1$, using Lie series.
How can we find g_Λ?

- The PDE may be solved numerically, e.g. using an iterative scheme.
- This is simpler if D_0 is a channel or a disc, but convergence appears limited to very small boundary deformations.
- A perturbative scheme can be developed for small boundary deformations $\delta \ll 1$, using Lie series.

Lie series: write g_Λ as the flow at δ of vector field $\nabla^\perp \phi(\delta)$, and expand ϕ to find

$$f(g_\Lambda x) = f(x) + \delta [\phi_1, f](x) + \frac{\delta^2}{2} ([\phi_1, [\phi_1, f]](x) + [\phi_2, f](x)) + \cdots.$$

This leads to a sequence of linear problems for the ϕ_i and

$$F = F_0 + \delta F_1 + \cdots.$$
Eulerian flow (continued)

Example: deformation of an axisymmetric flow in a disc. Take D_0 to be the unit disc, and $\psi(0) = \psi(r, 0) = r^{1/2}$. The deformed domain D_Δ is defined by

$$r = 1 + \delta \sum_m \Lambda_m \exp(im\sigma) + O(\delta^2)$$

We find that:

$$\varphi_1 = \sum_m \frac{i}{m} r^\beta_m \Lambda_m \exp(im\sigma), \quad \text{with} \quad \beta_m = \sqrt{m^2 - 3/4} + 3/2 \quad \text{and} \quad F_1 = 0.$$
Example: deformation of an axisymmetric flow in a disc.

Take D_0 to be the unit disc, and $\psi(0) = \psi(r, 0) = r^{1/2}$.

The deformed domain D_Λ is defined by

$$r = 1 + \delta \sum_m \Lambda_m \exp(i m \sigma) + O(\delta^2)$$

We find that:

$$\varphi_1 = \sum_m \frac{i}{m} r^\beta_m \Lambda_m \exp(i m \sigma), \quad \text{with} \quad \beta_m = \sqrt{m^2 - \frac{3}{4}} + \frac{3}{2} \quad \text{and} \quad F_1 = 0.$$
Example: deformation of an axisymmetric flow in a disc.
Take D_0 to be the unit disc, and $\psi(0) = \psi(r, 0) = r^{1/2}$.
The deformed domain D_Λ is defined by

$$r = 1 + \delta \sum_m \Lambda_m \exp(i m \sigma) + O(\delta^2)$$

We find that:

$$\varphi_1 = \sum_m \frac{i}{m} r_m^\beta \Lambda_m \exp(i m \sigma), \quad \text{with} \quad \beta_m = \sqrt{m^2 - 3/4} + 3/2 \quad \text{and} \quad F_1 = 0.$$
Eulerian flow (continued)

Example: deformation of an axisymmetric flow in a disc. Take D_0 to be the unit disc, and $\psi(0) = \psi(r, 0) = r^{1/2}$. The deformed domain D_Λ is defined by

$$r = 1 + \delta \sum_m \Lambda_m \exp(i m \sigma) + O(\delta^2)$$

We find that:

$$\varphi_1 = \sum_m \frac{i}{m} r_m^\beta \Lambda_m \exp(i m \sigma), \quad \text{with} \quad \beta_m = \sqrt{m^2 - 3/4} + 3/2 \quad \text{and} \quad F_1 = 0.$$
Eulerian flow (continued)

Example: deformation of an axisymmetric flow in a disc.
Take D_0 to be the unit disc, and $\psi(0) = \psi(r, 0) = r^{1/2}$.
The deformed domain D_Δ is defined by

$$r = 1 + \delta \sum_m \Lambda_m \exp(i m \sigma) + O(\delta^2)$$

We find that:

$$\varphi_1 = \sum_m \frac{i}{m} r^\beta_m \Lambda_m \exp(i m \sigma), \quad \text{with } \beta_m = \sqrt{m^2 - 3/4} + 3/2 \quad \text{and } F_1 = 0.$$
Lagrangian trajectories

For $t = O(\epsilon^{-1})$, position $(x, y)(t)$ of particles is governed by:

\[
\begin{align*}
\frac{dx}{dt} &= -\frac{\partial}{\partial y}(\psi^{(0)} + \epsilon\psi^{(1)}) + O(\epsilon^2), \\
\frac{dy}{dt} &= \frac{\partial}{\partial x}(\psi^{(0)} + \epsilon\psi^{(1)}) + O(\epsilon^2).
\end{align*}
\]
Lagrangian trajectories

For \(t = O(\epsilon^{-1}) \), position \((x, y)(t)\) of particles is governed by:

\[
\frac{dx}{dt} = -\frac{\partial}{\partial y}(\psi^{(0)} + \epsilon \psi^{(1)}) + O(\epsilon^2), \quad \frac{dy}{dt} = \frac{\partial}{\partial x}(\psi^{(0)} + \epsilon \psi^{(1)}) + O(\epsilon^2).
\]

This is a ‘doubly perturbed’ Hamiltonian system with Hamiltonian

\[
H(x, y; \Lambda) = \psi^{(0)}(x, y, \Lambda(\epsilon t)) + \epsilon \psi^{(1)}(x, y, \Lambda(\epsilon t)).
\]
Lagrangian trajectories

For \(t = O(\epsilon^{-1}) \), position \((x, y)(t)\) of particles is governed by:

\[
\frac{dx}{dt} = -\frac{\partial}{\partial y} (\psi^{(0)} + \epsilon \psi^{(1)}) + O(\epsilon^2), \quad \frac{dy}{dt} = \frac{\partial}{\partial x} (\psi^{(0)} + \epsilon \psi^{(1)}) + O(\epsilon^2).
\]

This is a ‘doubly perturbed’ Hamiltonian system with Hamiltonian

\[
H(x, y; \Lambda) = \psi^{(0)}(x, y, \Lambda(\epsilon t)) + \epsilon \psi^{(1)}(x, y, \Lambda(\epsilon t)).
\]

Determination of \(\psi^{(1)}\): recall

\[
\partial_{\epsilon t} \omega^{(0)} + [\phi, \omega^{(0)}] = 0, \quad \text{with} \quad \phi = \psi^{(1)} - F'(\omega^{(0)})\omega^{(1)}.
\]

Since \(\omega^{(0)}\) is known, \(\phi\) can be determined up to an arbitrary function of \(\omega^{(0)}\):

\[
\nabla^\perp \phi = \frac{d}{d\epsilon t} g_\Lambda x = d_\Lambda g_\Lambda \cdot \dot{\Lambda}.
\]
Hence, $\psi^{(1)} = \Delta^{-1} \omega^{(1)}$ is found by solving

$$\psi^{(1)} - F'(\omega^{(0)})\omega^{(1)} = \phi,$$

The gauge freedom in ϕ is fixed by the condition that the total vorticity is rearranged:

$$\int \int_{\omega^{(0)} + \epsilon \omega^{(1)} = \Omega} dx - \int \int_{\omega^{(0)} = \Omega} dx = O(\epsilon^2) \implies \int_{\omega^{(0)} = \Omega} \omega^{(1)} ds = 0,$$

where $ds = dl/|\nabla \omega^{(0)}|$.

A consequence is that

$$\int_{\omega^{(0)} = \Omega} \psi^{(1)} ds = \int_{\omega^{(0)} = \Omega} \phi ds.$$
To find particle trajectories, we use action–angle coordinates:

- \(I = A(\omega^0) \), area inside contour, is an adiabatic invariant,
- \(\theta \), conjugate to \(I \), gives position along \(\omega \)-contours.

Note: \(2\pi ds = A'(\omega^0) d\theta \).
Lagrangian trajectories (continued)

To find particle trajectories, we use action–angle coordinates:

- \(I = A(\omega^{(0)}) \), area inside contour, is an adiabatic invariant,
- \(\theta \), conjugate to \(I \), gives position along \(\omega \)-contours.

Note: \(2\pi ds = A'(\omega^{(0)})d\theta \).

Use a generating function: \(x_2 = \partial_{x_1} S(x_1, I), \ \theta = \partial_I S(x_1, I) \), with the new Hamiltonian

\[
\tilde{H}(I, \theta, \Lambda) = \psi^{(0)}(I, \theta, \Lambda) + \epsilon \psi^{(1)}(I, \theta, \Lambda) + \partial_t S
\]
Lagrangian trajectories (continued)

With $\partial_t S = \partial_t \bar{S} - \bar{x}_1 \partial_t \bar{x}_2$, we find the evolution equation for the angle:

$$\dot{\theta} = \nu + \epsilon \partial_I \left[\partial_t \bar{S} - \bar{x}_1 \partial_t \bar{x}_2 + \bar{\psi}^{(1)} \right],$$

where $\nu = \partial_I \bar{\psi}^{(0)}$ is the frequency.
With $\partial_t S = \partial_t \bar{S} - \bar{x}_1 \partial_t \bar{x}_2$, we find the evolution equation for the angle:

$$
\dot{\theta} = \nu + \epsilon \partial_I \left[\partial_t \bar{S} - \bar{x}_1 \partial_t \bar{x}_2 + \bar{\psi}^{(1)} \right],
$$

where $\nu = \partial_I \bar{\psi}^{(0)}$ is the frequency.

Consider cyclic deformation of the domain, and use averaging:

$$
\Delta \theta \sim \frac{d}{d I} \int_0^t \left[\bar{\psi}^{(0)} - \langle \bar{x}_1 \partial_t \bar{x}_2 + \bar{\psi}^{(1)} \rangle \right] dt', \quad \text{where} \quad \langle \cdot \rangle = \frac{1}{2\pi} \int \cdot \, d\theta.
$$
Now, use:

- $\int \psi^{(1)} \, d\theta = \int \phi \, d\theta = \int \Psi \cdot \dot{\Lambda} \, d\theta$, where $\Psi = \sum_m \Psi_m \, d\Lambda_m$ is a function-value one-form (connection), with $\nabla \perp \Psi = d_\Lambda g_\Lambda$,

- $\bar{x}(I, \theta, \Lambda) = g_\Lambda x(I, \theta, 0)$,

- Stokes’ theorem.

to find

$$\Delta \theta(t) \sim \frac{d}{dI} \int_0^t \psi^{(0)}(\Lambda(s)) \, ds + \frac{d}{dI} \int_{\mathcal{D}_\Lambda} d_\Lambda \Psi - \frac{1}{2} [\Psi, \Psi]$$

with $[\Psi, \Psi] = \sum_{m,n} [\Psi_m, \Psi_n] \, d\Lambda_m \wedge d\Lambda_n$.
Now, use:

- \(\int \psi^{(1)} \, d\theta = \int \phi \, d\theta = \int \Psi \cdot \dot{\Lambda} \, d\theta \), where \(\Psi = \sum_m \Psi_m d\Lambda_m \) is a function-value one-form (connection), with \(\nabla^\perp \Psi = d\Lambda g_\Lambda \),

- \(\tilde{x}(I, \theta, \Lambda) = g_\Lambda x(I, \theta, 0) \),

- Stokes’ theorem.

to find

\[
\Delta \theta(t) \sim \frac{d}{dI} \int_0^t \psi^{(0)}(\Lambda(s)) \, ds + \frac{d}{dI} \int_{\mathcal{D}_\Lambda} d\Lambda \Psi - \frac{1}{2} [\Psi, \Psi]
\]

given dynamical angle geometric angle
Lagrangian trajectories (continued)

Geometric angle:
- determined completely from the connection Ψ defined by g_A with suitable gauge,
Lagrangian trajectories (continued)

Geometric angle:
- determined completely from the connection Ψ defined by g_Λ with suitable gauge,
- has 2 parts:
Geometric angle:

- determined completely from the connection Ψ defined by g_{Λ} with suitable gauge,
- has 2 parts:
 - $d_{\Lambda}\Psi$, due to $\psi^{(1)}$
Lagrangian trajectories (continued)

Geometric angle:

- determined completely from the connection Ψ defined by g_A with suitable gauge,
- has 2 parts:
 - $d_A \Psi$, due to $\psi^{(1)}$
 - $- [\Psi, \Psi]/2$, Hannay–Berry angle, due to ϵt-dependence of $\psi^{(0)}$
Lagrangian trajectories (continued)

Geometric angle:

- determined completely from the connection Ψ defined by g_Λ with suitable gauge,
- has 2 parts:
 - $d_\Lambda \Psi$, due to $\psi^{(1)}$
 - $-[\Psi, \Psi]/2$, Hannay–Berry angle, due to ϵt-dependence of $\psi^{(0)}$
- curvature of the connection form Ψ
Lagrangian trajectories (continued)

Geometric angle:
- determined completely from the connection Ψ defined by g_Λ with suitable gauge,
- has 2 parts:
 - $d_\Lambda\Psi$, due to $\psi^{(1)}$
 - $-[\Psi, \Psi]/2$, Hannay–Berry angle, due to ϵt-dependence of $\psi^{(0)}$
- curvature of the connection form Ψ

Small deformations: $f(g_\Lambda x) = f(x) + \delta[\varphi_1, f](x) + \cdots$, leads to

$$\Psi = \delta d_\Lambda \varphi_1 + \frac{\delta^2}{2} (d_\Lambda \varphi_2 + [d_\Lambda \varphi_1, \varphi_1]) + \cdots$$
Example: deformed axisymmetric flow:

\[r = 1 + \delta \sum_m \Lambda_m \exp(i m \sigma) + O(\delta^2) \] gives

\[\langle \theta \rangle_{\text{geom}} = \delta^2 \sum_{m > 0} f_m(r) A_m + O(\delta^3), \]

where \(A_m \) is the area enclosed by path of \(\Lambda_m \) in the complex plane.

For \(\psi(0) = r^{1/2} \), \(f_m(r) \) is a sum of 2 powers of \(r \).
Conclusions

- Procedure for computing flows in slowly deforming domains
- Eulerian flow is quasi-steady
- Eulerian flow depends only on the initial and final domain shapes
- Particle positions defined by their angle along vorticity contours
- Angle depends on the history of the domain, in a geometric manner

Extensions:
- rotation period T unbounded (non-parallel critical levels)
- 3D flows