Boundary streaming with Navier boundary condition

Jin-Han Xiea) and Jacques Vanneste

\textit{School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK}

(Dated: December 13, 2012)
Abstract

In microfluidic applications involving high-frequency acoustic waves over a solid boundary, the Stokes boundary-layer thickness δ is so small that some non-negligible slip may occur at the fluid-solid interface. The classical problem of steady acoustic streaming over a flat boundary is therefore revisited to include the effect of slip modelled using the Navier boundary condition $u|_{y=0} = L_s \partial_y u|_{y=0}$, where u is the velocity tangent to the boundary $y = 0$, and the parameter L_s is the slip length. A general expression is obtained for the streaming velocity outside the boundary layer as a function of the dimensionless parameter L_s/δ. Particularising to travelling and standing waves shows that the boundary slip respectively increases and decreases the streaming velocity.

PACS numbers: 47.35.Rs, 43.25.+y, 47.61.Ne
Keywords: streaming, Navier boundary condition, acoustic mixing, microfluidics
I. INTRODUCTION

Among the many techniques devised to manipulate fluid at microscales15,16, the use of high-frequency acoustic waves appears particularly promising. As a result, the field of what Friend and Yeo4 term acoustic microfluidics is rapidly expanding; see Ref. 4 for a review of the experimental and theoretical state of the art in this field.

One of the main ingredients in the techniques developed is streaming—the generation of mean flow by dissipating acoustic waves. Two forms of streaming can be distinguished7,13: (i) interior streaming, induced by wave attenuation in the fluid interior3,10,11,18; and (ii) boundary streaming12 which is confined near solid boundaries but influences the interior mean flow by modifying its boundary condition2,8. Both types of streaming share the remarkable property of non-vanishing mean motion in the limit of vanishing viscosity7,11; both contribute to the interior mean flow, although the boundary contribution is small when the acoustic wavelengths are small compared to the flow scales17.

A feature of many experiments in acoustic microfluidics1,5,14 is the high frequencies employed. A consequence is that the Stokes boundary-layer thickness is very small. This thickness estimates the size of the near-boundary region where viscous effects dominate and is given by $\delta = \sqrt{2\nu/\omega}$, where ν is the fluid’s kinematic shear viscosity and ω is the wave’s angular frequency. In water, and for frequencies in the range 1 MHz to 1 GHz, δ is in the range 500 nm to 10 nm. This implies large stresses at the fluid-solid interface and, as a result, suggests that the no-slip boundary condition that is traditionally used for the study of boundary streaming may not be appropriate.

Motivated by this observation, we assess the effect that the possible slip of the fluid along the boundary has on boundary streaming. We do so by revisiting the classical model of boundary streaming over a flat plate, replacing the no-slip boundary condition by the

a)Electronic address: J.Xie-7@sms.ed.ac.uk
(more accurate) Navier boundary condition

\[u|_{y=0} = L_s \partial_y u|_{y=0}, \]

where \(y = 0 \) defines the boundary, \(u \) is the velocity tangent to the boundary, and \(L_s \) is the so-called slip length, a property of the fluid-solid interactions\(^6\). The key dimensionless parameter in the problem is the ratio

\[\beta = \frac{L_s}{\delta} \]

of the slip length to the Stokes boundary-layer thickness. With typical values for \(L_s \) of 10 to 100 nm (see e.g. Ref. 6), this parameter can take a broad range of values.

We examine the streaming induced on a motionless flat boundary by a plane acoustic wave in the far field. This is a very simple problem, which we solve explicitly using a matched asymptotics technique relying on the small parameter \(\delta k \), where \(k \) denotes the acoustic wavenumber. The solution is instructive, however, since the effect of slip, \(\beta \neq 0 \), on the streaming velocity is not obvious a priori: on the one hand, the slip reduces the shear and hence the Reynolds stress associated with the wave field; on the other hand it can increase the mean flow response to a given wave forcing. The non-trivial impact of the slip is illustrated by the fact that travelling and standing waves—two particular cases of our more general set-up—have different responses, respectively an increase and a decrease of the streaming velocity outside the boundary layer as \(\beta \) increases from zero.

II. WAVE FIELD

We consider a plane acoustic wave with velocity

\[\mathbf{U}_1 = \text{Re} \left(U(x)e^{-i\omega t}\mathbf{e}_x \right), \]

propagating over a horizontal plate located at \(y = 0 \). Here \(U(x) \) is an arbitrary complex function, \(\omega \) is the (angular) frequency and \(\mathbf{e}_x \) the unit vector in the \(x \) direction. Note that
the form (3) includes both travelling waves (for which $U(x) \propto e^{ikx}$) and standing waves (for which $U(x)$ is real).

The dynamics is governed by the compressible Navier–Stokes equations

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0,$$

$$\rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mu \nabla^2 \mathbf{u} + \left(\mu^b + \mu/3 \right) \nabla \nabla \cdot \mathbf{u},$$

where μ and μ^b are the shear and bulk viscosities, supplemented by an equation of state $p = p(\rho)$. Assuming that $U(x)$ is small compared with the sound speed c_0, we introduce the expansions

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 + \ldots, \quad p - p_0 = p_1 + p_2 + \ldots,$$

and similarly for ρ, where the subscripts indicate the order in $U(x)$. We are seeking a perturbative solution of (4) with \mathbf{u}_1 matching the far-field form (3) away from the boundary and satisfying the Navier boundary condition (1) at $y = 0$. We consider the case of a small viscosity, characterised by $k\delta \ll 1$, with $k = \omega/c_0$ the wavenumber; in this case, the effect of viscosity is confined in a layer of thickness δ above the boundary. The solution in this boundary layer is best written in terms of the rescaled coordinate $Y = y/\delta$. This yields the order-one equations in the boundary layer,

$$\partial_t \rho_1 + \rho_0 \left(\partial_x u_1 + \delta^{-1} \partial_Y v_1 \right) = 0,$$

which indicates that $v_1/u_1 = O(k\delta)$,

$$\rho_0 \partial_t u_1 = -\partial_x p_1 + \mu \delta^{-2} \partial_Y^2 u_1 \quad \text{and} \quad \partial_Y p_1 = 0,$$

where we have neglected terms of relative size $O(k\delta)$. Away from the boundary layer, in the outer region, the flow is irrotational and viscous terms are negligible, so $R_1 = \lim_{Y \to \infty} \rho_1$, $\mathbf{U}_1 = \lim_{Y \to \infty} \mathbf{u}_1$ and $P_1 = \lim_{Y \to \infty} p_1$ satisfy

$$\partial_t R_1 + \rho_0 \partial_x U_1 = 0,$$

$$\rho_0 \partial_t U_1 = -\nabla P_1.$$
For consistency with (3), \(V_1 = \lim_{Y \to \infty} v_1 = 0. \)

It follows from (6) and (7) that \(p_1 \) is independent of \(Y \), leading to

\[
\partial_t u_1 = \partial_t U_1 + \omega \partial^2_{YY} u_1 / 2. \tag{10}
\]

Solving (10) with the boundary conditions \(u_1 \to U \) as \(Y \to \infty \) and \(u_1 = \beta \partial u_1 / \partial Y \) at \(Y = 0 \), we obtain

\[
u_1 = \text{Re} \left(U e^{-i\omega t} \left(1 - \frac{e^{-(1+i)Y}}{1 + (1 + i)\beta} \right) \right) \tag{11}
\]

to leading order in \(k\delta \). The equation of state implies that \(p_1 = c_0^2 \rho_1 \) and, using (7), that \(\rho_1 \) is independent of \(Y \): \(\rho_1 = R_1 \). Subtracting (8) from (6), integrating and imposing \(v_1 \) bounded as \(Y \to \infty \) then gives

\[
v_1 = -\delta \text{Re} \left(U' e^{-i\omega t} \frac{(1 - i)}{2(1 + (1 + i)\beta)} \left(1 - e^{-(1+i)Y} \right) \right), \tag{12}
\]

also to leading order in \(k\delta \). The two components \((u_1, v_1)\) of the wave velocity in the boundary layer for different values of \(\beta \) are shown in Figure 1. The figure shows how the two components of the wave velocity and hence the shear in the boundary layer decrease as \(\beta \) increases.

III. MEAN FLOW

Using the form (11)–(12) for the wave field, we can calculate the Reynolds stress and solve the mean-flow equation which, in the boundary layer, takes the form

\[
\omega \partial^2_{YY} \overline{u_2}/2 = \delta^{-1} \left(\partial_Y \overline{u_1 v_1} - \partial_Y \overline{u_1 v_1|_\infty} \right) + \partial_x \overline{u_1^2} - \partial_x \overline{u_1^2} \bigg|_\infty, \tag{13}
\]

where the subscripts \(\infty \) indicate the limit \(Y \to \infty \) and the overbars indicate averaging over a wave period. This expression is obtained by averaging (4), retaining only leading-order terms in \(k\delta \), and subtracting from the inner equation its limit as \(Y \to \infty \) to eliminate the \(Y \)-independent pressure term in exactly the same manner as employed for the wave equations.
FIG. 1. Wave field in the boundary layer. The solid lines show the amplitudes $|u_1/U'|$ (top row) and $|v_1/U'|$ (bottom row) for $\beta = 0$ (left), 0.5 (middle) and 2 (right). The time evolution is illustrated by the dashed lines showing U_1/U and v_1/U' assuming that U is real and for the phase $\omega t = 0$, $\pi/4$, $\pi/2$, $3\pi/4$, π.

It is convenient to consider the effect of $\partial_Y u_1 v_1$ and $\partial_x u_1 u_1$ separately, taking advantage of the linearity of (13) in \overline{w}_2. First we calculate the effect of $\partial_Y u_1 v_1$. A short computation leads to

$$\delta^{-1} u_1 v_1 = \frac{1}{8} \frac{UU'^*}{(1 + \beta)^2 + \beta^2} \left((1 + i(1 + 2\beta) - (1 + i)e^{-(1+i)Y}
ight.$$

$$- (1 + i(1 + 2\beta))e^{-(1-i)Y} + (1 + i)e^{-2Y} \bigg) + \text{c.c.},$$

where c.c. denotes the complex conjugate of the previous term. Since $\partial_Y u_1 v_1|_\infty = 0$, the Y-dependent terms give the shear $\omega \partial_Y \overline{w}_2/2$. Integrating these terms and using the averaged Navier boundary condition $\overline{w}_2 = \beta \partial_Y \overline{w}_2$ at $Y = 0$ finally gives the first contribution to the mean velocity,

$$\overline{w}_2 = \frac{1}{4\omega (1 + \beta)^2 + \beta^2} \left(e^{-(1+i)Y} - 1 + \frac{(1 + i(1 + 2\beta))}{1 - i} (e^{-(1-i)Y} - 1) - \frac{(1 + i)}{2} (e^{-2Y} - 1) + \beta(-1 - i(1 + 2\beta))) \right) + \text{c.c.}. \quad (15)$$
Next we calculate the effect of $\partial_x \overline{u_1}$: starting with
\[
\omega \partial_{\gamma Y} \overline{u_2}/2 = \partial_x \left(\overline{u_1^2} - \overline{u_1^2} \right) = -\frac{\partial (|U|^2)^{\gamma}}{4} \left(\frac{2}{1 + \beta + i\beta} e^{-(1+i)Y} - \frac{e^{-2Y}}{(1 + \beta)^2 + \beta^2} \right) + \text{c.c.,} \tag{16}
\]
integrating twice and applying the boundary conditions $\partial_Y \overline{u_2} \to 0$ as $Y \to \infty$ and $\overline{u_2} = \beta \partial_Y \overline{u_2}$ at $Y = 0$ yields
\[
\overline{u_2} = \frac{1}{2\omega (1 + \beta)^2 + \beta^2} \left((\beta + i(1 + \beta)) e^{-(1+i)Y} + \frac{e^{-2Y}}{4} - \frac{1}{4} - \frac{\beta}{2} \right) + \text{c.c..} \tag{17}
\]
Combining (15) and (17) and letting $Y \to \infty$, we obtain the total steady streaming in the outer region
\[
\overline{U}_2 = -\gamma_s (|U|^2)^{\gamma}/\omega + \gamma_t i(U^*U' - U(U')^*)/\omega, \tag{18}
\]
where
\[
\gamma_s = \frac{3 + 4\beta}{8 ((1 + \beta)^2 + \beta^2)} \quad \text{and} \quad \gamma_t = \frac{1 + 4\beta + 4\beta^2}{8 ((1 + \beta)^2 + \beta^2)}.
\]
This expression provides an effective slip condition for the flow in the interior. It generalises to the Navier conditions results obtained by Lighthill7, Nyborg11 in the no-slip case $\beta = 0$. We emphasise that (18) gives the Eulerian mean flow: results of this type can alternatively be formulated in terms of the Lagrangian mean slip velocity, as in Ref.17; the difference between the two mean velocities is the Stokes drift.

From (18) we can compute the steady streaming by travelling and standing waves, with $U = \hat{U} \exp(i k x)$ and $U(x)$ real, respectively, to find
\[
\overline{U}_2 = -2\gamma_t |\hat{U}|^2/c_0 \quad \text{and} \quad \overline{U}_2 = -2\gamma_s U U'/\omega. \tag{19}
\]
These expressions, which provide an interpretation for the coefficients γ_t and γ_s, reduce to well-known expressions7,11, including Rayleigh’s result for standing waves12, when $\beta = 0$. The dependence of γ_t and γ_s on β is illustrated in Figure 2. One (not necessarily intuitive) conclusion is that slip at the boundary increases the streaming velocity away from the boundary for travelling waves while it decreases it for standing waves. More specifically,
FIG. 2. Coefficients γ_t and γ_s in expression (18) for the streaming velocity as a function of the slip parameter β.

in the limit of large slip the streaming velocity for travelling waves is increased by a factor 2 for travelling waves but reduced to zero for standing waves.

IV. DISCUSSION

This paper derives the general expression (18) for the streaming velocity induced by acoustic waves over a flat boundary with Navier boundary condition. This expression can be used as an effective boundary condition for the mean flow in the interior when both interior and boundary streaming are important. Naturally, it reduces to well-known results in the no-slip case $\beta = 0$.

In the opposite limit $\beta \to \infty$, corresponding to a stress-free boundary condition, the two parameters γ_t and γ_s that appear in (18) and are associated, respectively, with travelling and standing waves, behave very differently, with $\gamma_t \to 1/4$ while $\gamma_s \to 0$. The second property is easy to explain using (17) but the first deserves further consideration. Because the outer flow is fixed and the wave velocity is bounded, the wave shear, Reynolds stress and hence mean-flow forcing decrease as the slip length increases. However, for a given mean-flow forcing, the mean velocity at the boundary and indeed across the boundary layer increases
as the slip length increases. The competition between the two effects leads to a balance as
\(\beta \to \infty \). This can be verified directly by combining the Navier boundary condition with
the mean momentum equation to obtain
\[
\bar{u}_2|_0 = L_s \partial_y \bar{u}_2|_0 = (L_s/\nu)\bar{u}_1\bar{v}_1|_\infty = (L_s/\nu)\bar{U}_1\bar{V}_1,
\]

neglecting the contribution of \(\partial_x \bar{u}_1 \) which is \(O(\beta^{-1}) \). In the outer region
\(U_1 = \text{Re} \left(U e^{-i\omega t} \right) \) and \(V_1 = \text{Re} \left(i\delta U' e^{-i\omega t}/(2\beta) \right) \) as \(\beta \to \infty \) (see (11)–(12)), so that
\(\bar{U}_2 = i(U^*U' - U(U')^*)/(4\omega) \), consistent with (18). It is only for standing waves, for which \(U \) and \(U' \) are in phase, that
this vanishes.

We conclude with two remarks. First, different wave frequencies lead to very different
mean velocity profiles because of the dependence of the boundary-layer thickness on the fre-
quency. One can therefore imagine that acoustic waves with a rich, variable wave spectrum
may provide a method for controlling the mean-velocity profile near a solid boundary. Sec-
ond, the dependence of the mean velocity on the slip length suggests that acoustic streaming
could be used for the (notoriously difficult) estimation of the slip lengths of various fluid-solid
combinations.

V. ACKNOWLEDGEMENTS

Jin-Han Xie acknowledges financial support from the Centre for Numerical Algorithms
and Intelligent Software (NAIS).

References

1 M. Alghane, Y. Q. Fu, B. X. Chen, Y. Li, M. P. Y. Desmulliez, and A. J. Walton.

List of Figures

FIG. 1 Wave field in the boundary layer. The solid lines show the amplitudes $|u_1/U'|$ (top row) and $|v_1/U'|$ (bottom row) for $\beta = 0$ (left), 0.5 (middle) and 2 (right). The time evolution is illustrated by the dashed lines showing U_1/U and v_1/U' assuming that U is real and for the phase $\omega t = 0, \pi/4, \pi/2, 3\pi/4, \pi$.

FIG. 2 Coefficients γ_t and γ_s in expression (18) for the streaming velocity as a function of the slip parameter β.

13