Some Nilpotent Complexes

Shmuel Weinberger

In this note we construct some nilpotent complexes whose existences were unknown. (A CW complex X is nilpotent if $\pi_1(X)$ is, and $\pi_i(X)$ are nilpotent π_1X modules.

<u>Proposition 1:</u> For any finite nilpotent group π , there is a three dimensional nilpotent complex with fundamental group π .

<u>Proposition 2</u>: There are nilpotent finite Poincaré complexes with $\pi_1 = \mathbb{Z}_{15}$ which are not simple Poincaré complexes in the sense of (W_a) Wall.

For Proposition 1, it is not hard to see that dim X \geq 3 (if π is nontrivial) and P. Kahn asked if one can arrange for dim X = 3, for then by crossing with a torus one obtains for abelian groups nilpotent spaces of smallest possible dimension with the given group $\otimes \pi_1(\{BK\})$.

For Proposition 2, note that in [CW] it is shown that nilpotent finite Poincaré complexes with $\pi_{\,1}$ an odd p-group are simple.

Lemma. If $\pi_1 X$ is nilpotent and acts nilpotently on $H_1(\widetilde{X})$, then X is nilpotent.

Proof. Quite easy from localization theory. See eg. [We].

<u>Proof of Proposition 1</u>: Nilpotent groups are products of their p-Sylow subgroups, $\pi = \Pi \pi_p$. The version of Wall finiteness obstruction theory given in [We] shows that $S^3 \times K(\pi_p, 1)$ has the $\mathbb{Z}[\frac{1}{p}][\pi_p]$ homology type of a finite 3-dimensional complex M_p. Now just Zabrodsky mix the M_p's. This produces a finitely dominated three dimensional homologically nilpotent complex as desired. Q.E.D.

Problem: Can this complex be taken finite?

<u>Proof of Proposition 2</u>: Recall from [KM] that $K_0 (\mathbb{Z}_{15}) = \mathbb{Z}_2$. As a result

$$L_{\text{odd}}^{p} (\mathbb{Z}_{15}) \rightarrow H(\mathbb{Z}_{2}; K_{0}(\mathbb{Z}_{15})) \rightarrow L_{\text{even}}^{h}(\mathbb{Z}_{15})$$

$$\mathbb{Z}_{2}$$

Lh (\mathbb{Z}_{15}) has an element of order 2 which we will construct shortly. Since L^S is torsion free [Wa 2] this element is detected by $H(\mathbb{Z}_2; \mathbb{W}h(\mathbb{Z}_{15}))$ in the Rothenberg sequence.

Let M be the nontrivial module \mathbb{Z}_{9} over \mathbb{Z}_{15} . M is nilpotent, and has a resolution $0 \to P \to \mathbb{Z}$ $(\mathbb{Z}_{15}) \to M \to 0$ where P is the nontrivial element of $K_0(\mathbb{Z}_{15}) \cdot P \oplus P^*$ admits a hyperbolic form which is the desired element of L^h . Better yet, consider the form (= as an element of L^h) on N \oplus N* where N = $\mathbb{Z}_{15} \oplus P^*$. This has a free hyperbolic pair in it based on P \oplus P* \subset N.

Apply the proof of the Wall realization theorem to $S^2 \times L_{15}^3$ and the form on N \oplus N* and glue in copies of D³ $\times L_{15}^3$. It is easy to see that the result of surgering the geometric spheres corresponding to P \oplus P* produces the desired complex. Q.E.D.

Remark: Mislin has also used the module M in his work on finiteness obstructions for nilpotent complexes.

References

- [BK] K. Brown and P. Kahn, Homotopy dimension and simple cohomological dimension of spaces, Comm. Math. Helv. 52(1977) 111-127.
- [CW] S. Cappell and S. Weinberger, Homology Propagation of Group Actions (preprint)
- M. Kervaire and M. Murthy, On the Projective Class Group of cyclic groups of prime power, Comm. Math. Helv. 52(1977) 415-452.
- [M] G. Mislin, The geometric realization of Wall obstructions by nilpotent and simple spaces, Math. Proc. Comb. Phil. Soc. 87 (1980) 199-206.
- [Wa] C.T.C. Wall, Surgery on Compact Manifolds, Academic Press.
- [Wa2] _____, Classification of Hermitian Forms VI. Group Rings , Ann. of Math. 103(1976) 1-80.
- [We] S. Weinberger, Homologically trivial Group Actions I, II (preprints).