Oliver's Formula and Minkowski's Theorem

Shmuel Weinberger

In this note we give an elementary verification of an unpublished formula of Bob Oliver. This leads to a three line proof of Minkowski's theorem, that a finite group acting effectively on a surface of genus at least two is represented faithfully by its action on homology.

Theorem. (Oliver)

If \mathbb{Z}_n acts cellularly on a finite complex X then

$$\chi(X^{n}) = L(g)$$

where L(g) is the Lefshetz number of a generator.

Proof.

Examine the equivariant chain complex of X

$$C_{\star}(X) \approx C_{\star}(X^{n}) \oplus \overline{C}_{\star}(X)$$

where $\overline{C}_{\star}(X)$ is freely generated by cells not in X . Thus

$$L(g) = \Sigma (-1)^{i} \operatorname{Tr} g_{i_{\star}}$$

$$= \Sigma (-1)^{i} \operatorname{Tr} g|_{C_{i}}(X)$$

$$= \Sigma (-1)^{i} \operatorname{Tr} g|_{C_{i}}(X^{ZZ} n)^{i} + \Sigma (-1)^{i} \operatorname{Tr} g|_{C_{i}}(X)$$

$$= \chi(X^{ZZ} n)$$

since $g \mid C_i (X^{n})$ is the identity and $g \mid \overline{C}_i(X)$ has only zeroes along the diagonal.

Corollary. (Minkowski)

If π acts effectively on a surface M of genus at least two then π \to Aut $H_{\mbox{\scriptsize 1}}(M;\mbox{\scriptsize 0}\!\!\!\!Q)$ is injective.

Proof.

Let \mathbb{Z}_n Kernel. Since the action is effective \mathbb{M}^n is a union of circles and points so that $\chi(\mathbb{M}^n) \geq 0$. On the other hand, by assumption g_\star = 1 so L(g) = $\chi(\mathbb{M})$ < 0.

An easy consequence is that only finitely many groups act effectively on any fixed surface of genus larger than one.

Princeton University