Oliver's Formula and Minkowski's Theorem

Shmuel Weinberger

In this note we give an elementary verification of an unpublished

formula of Bob Oliver. This leads to a three line proof of Minkowski's

theorem, that a finite group acting effectively on a surface of genus

at least two is represented faithfully by its action on homology.

Theorem. (Oliver)

If Zg acts cellularly on a finite complex X then
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y(x ™ = L(g)

where L(g) is the Lefshetz number of a generator.

Proof.

Examine the equivariant chain complex of X
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where C, (X) is freely generated by cells not in X . Thus
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the diagonal.

T orr g C. (X)

is the identity and glEi(X) has only zeroes along
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Corollary. (Minkowski)

If m acts effectively on a surface M of genus at least two then

T ~ Aut H1(M;Q) is injective.

Proof.

SN/4
Let ZZnCZ Kernel. Since thezgction is effective M - is a union of

circles and points so that x (M ") 2 0. On the other hand, by assumption

gy = 1 so L(g) = x(M) < 0.

An easy consequence is that only finitely many groups act effective-

ly on any fixed surface of genus larger than one.
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