.

Geometric Algebra

Frank Quinn

Department of Mathematics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia USA 24061

Introduction

In this paper we develop a hybrid sort of algebra, whose morphisms involve paths
in a space. The primary purpose is to elucidate and extend the algebra with € estimates
developed in [3; 4-6, 1]. The setting is also fruitful for investigating relationships

between the topology of a space ¥, and the algebra of R{m{X] modules.

The first section presents the definitions of geometric R-modules on a space, and
their morphisms. We show that by allowing appropriate "homotopies” of morphisms we
can recover either ordinary R[#,X] homomorphisms of free modules, or € homomorphisms
of geometric modules. Then we show that if K — X is a map from a CW complex to a
space, the cellular chains of K can be seen in a very natural way as a geometric chain

complex on X.

Section two gives decompositions of R[n] chain complexes,; corresponding to
amalgamated free product decompositions of n. The approach is to geometrically realize
the free product structure as the structure induced on the fundamental group of a space
X by a codimension 1 subspace Y. Then we use the equivalence of 1.1 to represent chain
complexes by geometric ones on X. Intersections of the geometric structure of the
tomplex with Y then show how to decompose the complex. The main purpose of this is to

illustrate the technique, which we anticipate will apply to algebraic K and L theory,

Finally in section three, geometric versions of the Whitehead group are defined.
These are shown to be the obstruction groups for the thin h-cobordism theorem, a con-

trolled version of the usual result.

Section 1: Geometric modules and morphisms

Suppose that X is a topological space and R a ring. A Geomeltric R-medule on X is
defined to be a free module R[S] and a map of the basis f:5 — X. We require that
geometric modules be locally Ffinite in the sense that every point in X has a neigh-
borhood whose preimage in S is finite. So for example a geometric module on a compact

space has a finite basis.

A geometric morphism of geometric modules is defined to be a locally finite
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algebraic sum of paths between generators. More specifically suppose ;:5; — X are
bases for geometric modules, i = 0,4. A morphism h:R[S5] — R[S] is a sum EMJAJ where
mJ-ER and Aj is a path. The data for a path consists of elements x;€5; and a map A:[0,t]
— X with A(Q)=f5(xy) and A(t)=f,(xy). Here t is a real number tz0. Finally we require that
for each yeS;, there are only finitely many paths Aj starting at vy which have nonzero

coefficient.

In a morphism we allow deletion of a path with coefficient ¢ (or conversely

insertion of such a pathli. We also identify (m+n)a with (mA)+{nal.

We describe how to compose two morphisms, If § = EmJAJ:R[Sil —+ R[5;], and g =
Zny,«, ‘R[55] — RI[S54], then fg = E(mjnk)(AJock). The sum is taken over all pairs (j,k) such
that the end of 0 is equal to the starting point of A} in 5. The Moore composition of
paths is used: given A:[0,t] — X and «:[0,u] —» X then Aw:[0,t+u] — X is defined by
ax(s)=u(s) for sZu and axi{s)=a{s—-t) for sxu. Notice we are writing compositions of paths

from right to left, so that it will agree with the notation for composition of functions.

The composition is associative, and there is a unit (the unit in the ring times the
constant paths defined on [0,0]). Geometric modules and morphisms therefore form a

category. This is not a directly useful category because there are too many paths.

There is a forgetful functor from geometric morphisms to ordinary R-module
homomorphisms, defined by forgetting the paths. Explicitly, if h = EMJAJZR[SOJ — R[S4]
then we can define an R-homomorphism h’:R[S3] — R[S] by h'(s) = Ei(zjmj)ti. Here the
outer summation is over t;25,, and the inner summation is over j such that the path Aj

goes from s to t;.

We will define several notions of "homotopy" of geometric morphisms. The goal is
to obtain useful intermediate stages between the rigidity of geometric morphisms and

the laxity of ordinary algebra over R.

1.1 Unrestricted homotopy of morphisms A homotopy of a morphism is
obtained by changing all the paths in the morphism by homotopy holding the endpoints
fixed. Bince we are using Moore paths, a "homotopy" is allowed to change the interval
on which the path is defined. Form the category whose morphisms are homotopy classes
of morphisms of geometric R-modules on X. We claim that if X is connected and locally
1-connected then this category is naturally equivalent to the category of free Rlm4X]
modules, with a restriction on rank. (If X is compact, the modules are finitely generated.
If X is noncompact and separable the modules are countably generated, etc.) To simplify

the discussion assume that X is compact.

Let ¥ denote the universal cover of X, which exists since X is locally {-connected.

Given a geometric module R[S], with map 8§ — X, form the pullback
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then the action of ny X on 8§ gives RIS] the structure of a finitely generated free R{mX]

module.

Next suppose that EmJAJ:R[SO] —+ R[S,] is a morphism of geometric R-modules on
X. The paths lift into the universal cover to give a m X equivariant family of paths from
go to §1. This defines a lift of the morphism itself to an equivariant morphism R[§0] ——p

R[gij. Forget the paths to get a R{# X] homomorphism.

Notice that there is a unique homotopy class of paths between any two points in X,

so no information is lost in forgetting the paths in the lifted marphism.

Now we go the other way, from n X modules to geometric modules. To a free module
Rlm;X][S] we associate the geometric module R[5], with § — X the map to the basepoint.
To a nyX homomorphism Zm;p;
form the geometric morphism Em;«;.

with pjem X, choose representative loops ; for p; and

It is straightforward to see that the constructions are inverses, and define an
equivalence of categories. The benefits of thinking of m;X modules this way are explored

in section 2.

1.2 € homotopy Suppose X is a metric space, and €>0. We say a Aomotopy h:Y¥xl
—+ X has radiuvs (oss than ¢ if for each yeY the arc hiyxI) lies in the ball of radius ¢
about hiv,0). In particular this gives a notion of € homotopy of morphisms of geometric
modules. This notion is most useful when the morphisms themselves are small. We say
a morphism has radivs less than € if each path A; in the morphism lies in the ball of

radius £ about its starting point A;(0).

Notice that € homotopy is not an equivalence relation: the composition of ¢
homotopies has radius at best 2e. In fact the situation is often worse than this. If X is
not compact then it is necessary to use control Funciions =:X — (0,0} (in which case
the ball of radius € at % means the ball of radius e(x)). When € is a function the
composition of two € homotopies may be much larger than 2¢. We describe how to deal

with this in section 3.1.

I+ the paths in an € morphism are discarded, we get a homomorphism " :R[S5] —
R[S;] with the property that if we write f'(s;) as Zmi,JtJ then the coefficient mi,j is zero
if tj is not in the € ball about s;. This is an € homomorphism in the sense of Connell and
Hollingsworth {31, and Quinn {4, 3]. Morphisms which are € homotopic determine the same
€ homomorphism. As with n4X homomorphisms if X is locally {-connected there is a

converse to this construction, at least in the appropriate £ sense.

e
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Suppose X is locally i-connected. Then given &>0 (a function if X is not compact)
there is 820 such that any two points within & can be joined by a path of radius €. This
means paths can be chosen to represent a homomorphism of radius less than 8 as an ¢
geometric morphism. Similarly there is ¥ so that loops of radius less than y are
nullhomotopic by homotopies of radius less than e. This means that any two
representations of a homomorphism by geometric morphisms of radius less than v are ¢
homotopic. Together these observations imply that for sufficiently small v, ¥

homomorphisms determine geometric morphisms well defined up to € hemotopy.

If X is not locally i-connected then this correspondence between metric and
geometric € theories breaks down. For many purposes it is the geometric theory which
is more fundamental. A precursor of geometric morphisms was developed by Chapman [1]
to allow non-locally il-connected control spaces X in certain controlled manifold

theorems, as in section 3.

1.8 Controlled homotopy This is a combination of 1.1 and 1.2: suppose f:E
— X is a map) X is a metric space, and £>0. Consider homotopies of marphisms in E whose

compositions with f have radius less than e {in X).

Suppose | is a projection of a product XxY — X. If Y is locally {-connected we can
use the universal cover as in 1.1 to obtain R[w,Y] homomorphisms of geometric modules
over X. I+ X is also locally {-connected, then we can proceed as in {.2 to see that the
geometric theory of R-modules on XxY with € control in X is essentially equivalent to the

€ metric theory of R[w Y]-modules on X.

In some more general situations we can generalize from the product situation and
think of geometric algebra on E with £ control in X as being like R['nif‘i(x)l metric
algebra. In other words let the coefficient ring vary from point to point in X. In some
cases (eg. if E is a "stratified system of fibrations over X", Guinn [$]) this can be made

precise. In general, however, it seems best to stick with the geometric description.

The controlled version will be applied in section 3.

1.4 Geometric cellular chains Suppose that K is a CW complex, and f:K —
X is a map. We interpret the cellular chain complex of K as a geometric Z complex over
Xl

The cellular chain group Ck(K) is the free abelian group generated by the k-cells of
K. To give this the structure of a geometric module we introduce notation for the cells
in K. Let KX denote the k-skeleton. Let ec__.‘:Dk — KX denote inclusions of k-cells, where
s is in an index set Sy . C; is then by definition Z[S) ). Define functions S, — X by
mapping s to OEDk, applying 8; to get a point in K, and then applying f to get a point in
X. To ensure that this is locally finite we should assume something like: each point in
X has a neighborhood U such that 1) is contained in a finite subcomplex. Assuming

this the C) become geometric Z-modules.

et
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The next step is to define geometric boundary homomorphisms 8:C) — Cy._4. In the
definition of a CW complex the maps of the k-cells carry the boundary into the k-1
skeleton: 665:Sk_1 — K¥71, These are the attaching maps for the k-cells, so in fact KK
is defined to be KX™! with cells attached by these 46 . If k>1 then the boundary
homomorphism is defined by ds; = Edi,jtj, where s;e5;, tj'zsk—i' and di,J is the degree of
the map 36.; on the cell 9“:1:)}‘_1 — kK1,

Assume that the attaching maps for the k-cells are transverse to the center points
of the k-1 cells. The inverse image (695)_1(09 is then a finite set of points, and at each
point there is a sign +1 or -1 depending on whether 38 preserves or reverses orientation
at that point. The degree of 36, on the cell 84 is the sum of these signs. Define paths
in X by taking the radial line in DK from 0 to the points taes)‘i(ot) and composing with
95 and f. The geometric boundary morphism is defined by adding up these paths times the
sign of a8, on the endpoint. It is clear from the construction that forgetting the paths

vields the ordinary boundary homomorphism.

The boundary 9:Cy — C4 is defined slightly differently, since degrees are not
defined for O-cells. The i-cells are arcs, and the ordinary boundary of a 1-cell is
defined to be the beginning point minus the endpoint. The geometric boundary is defined

to be the arc from the center to the beginning, minus the arc from the center to the end.

It is suggested that the reader draw a picture of a 2-simplex, and draw in the

geometric chain groups and boundary morphisms.

Next consider the composition d2. In traditional complexes this is equal to zero. In
the geometric context there is a homotopy to 0. To see this note that the center points
in the k-2 cells are codimension k-2 in l{k'g, in the sense that they have neighborhoods
which are products with DK"2, Form a i-complex in gk-1 by adding to these points the
rays to the centers of the k-1 cells. Since the attaching maps are transverse to the

centers, this {-complex is also codimension k-2, except at the centers of the k-1 cells.

rays to centers

{k-1)-cells //'

Assume the attaching maps of the k-cells are transverse to this {-complex. The inverse

images in gk=1 are then i-complexes. The vertices are the inverses of the centers of the
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k-1 cells. There are arcs between these, and disjoint circles. The circles are not useful
to us. The cone on the arcs (union of radial lines from the centers of the k-cells) define

maps of 2-disks into K.

\+~— center of k-cell

These define a homotopy of 33 to 0. In more detail, each of these 2-disks can be

deformed to a map of a sq.uare into K. One vertex goes to the center of a k-cell, the
adjacent edges to radial lines to centers of (k-1)-cells, and the remaining edges go to
radial lines in (k~1)-cells to the center of a (k-2)-cell (see the illustration above). This
is a homotopy between two of the paths in the composition 2. Consideration of
orientations shows that these paths have opposite sign, so the pair of signed paths are
homotopic to a single path with coefficient 0. Therefore up to homotopy they cancel.
Finally it is not hard to see that each path in 33 occurs in exactly one of these squares,

so the entire composition is homotopic to 0.

This entire collection of data, geometric modules Cy+ geometric morphisms 93, and

the homotopy of 33 to 0, forms a geometric chain complex.

Note that if each cell in K has image of sufficiently small diameter in X then the
morphisms and homotopies in the geometric complex have radius less than e. Forgetting
paths then gives the = chain complexes constructed in Quinn [, p.271]. Passing to

unrestricted homotopy classes gives the classically defined Z[myX] chain complex.

Section 2: Splitting of chain complexes

In this section we suppose that m is a group which is a generalized free product,
and construct corresponding splittings of chain complexes over R{n]. The result itself is
not particularly striking. Rather the proof is supposed to suggest benefits of the
geometric point of view even in purely algebraic situations. For example it may be that
the decomposition theorems for algebraic K-theory (cf. Waldhausen [7, &) could be
obtained this way. I am +told that early preprints of Waldhausen’s work have

constructions similar to ones used here.
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Proposition Suppose 7 is a homotopy pushout of moarphisms «,8:A — B af
groupaids, and the composttion A — 7 is an injection on each component of A. Then
any finitely generated free Rln] chain complex is chain eguivalent to a pushout
a,b:E@,RIn] — F@gRIn], where E, ¥ are complexes over Z[A), Z[B), and a, b are chain

maps over «y B.

FProof The homotopy pushout hypothesis on 7 means that there is a space (CW complex)
X with a subspace Y with a neighborhood homeomorphic to YxR. The fundamental group of
X is m, the fundamental groupoids of Y, X-Y are A, B respectively, and «, B are induced
by the inclusions ¥ — Yx{0,tw) — X-Y. (Groupoids are disjoint unions of groups. Here
they occur as the union of fundamental groups of components of disconnected spaces, see
[732

Suppose that C, is a finitely generated free chain complex over R{w{X]. Represent
Cy as a geometric R-complex on X. Tha data for this are bases 5; — X for the chain
groups C;, geometric morphisms 2:R[5;] — R[S;_;], and homotapies a2~0. For simplicity
we will assume that all paths in the morphisms are defined on the unit interval 1. The
homotopies then consist of maps of squares 12 — X; the (0,0) corner goes to an element

of 844 the adjacent sides to paths in 3;, 4, and the remaining sides to paths in ¢;.

We will say that a geometric complex is "special” if the paths A:l — X have a-l(Y)
either I, {1}, or ¢, and the homotopies h:14 — X have h-(Y) either I¢, or properly

contained in 3(I2). We claim that such a complex splits in the desired way.

Suppose C, has this special form. Define E, to be the submodule of C, generated
by basis elements which map into Y. E, and the restriction of the boundary morphisms
in C, define a geometric complex on Y; by hypothesis if a path in 8 starts in Y it stays
in Y. The composition a¢ is homotopic to ¢ in X, but the homotopies are squares with
entire boundary mapping to Y. Such squares are required to map to Y, so 3l is

nullhomotopic in Y.

Next define F, by "doubling" E inside C: replace each basis element of C with image
in Y by two elements,; with images yx{-1} and yx{+1} in Y&xR C X. The boundary morphism
is that of F in each copy of F, and unchanged in the rest of C except for paths which
terminate at a point in Y. Such paths by hypothesis intersect Y in only the #inal
endpoint. Just before the path hits Y, it is either on the + or - side of ¥ in YxIR. Push
the path off Y, to terminate at the appropriate yx{ti}. The homotopies of 32 to 0 also

tan be pushed off Y. F is therefore a geometric complex over X-Y.

There are chain maps a,b:E; — Fo defined by inclusions of the copies of E over
Yu{til. Cy is the quotient of Fy by the image (a~b)E,, hence chain equivalent to the
pushout. Passing to homotopy classes of morphisms gives complexes over R[m Yl

Rin,{X-Y)]. This gives the decomposition required for the proposition.
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The proposition theretfore will follow if we show that an arbitrary geometric chain

complex on X is equivalent to a special one.

The wunderlying Z-complex of a geometric chain complex C, is formed from the
geometric data. The vertices are the union of the generators for the chain groups. The
edges are the paths with nonzero coefficient in the boundary homomorphisms. The
2-cells are the squares in the homotopy 3240, Denote this underlying complex by UC. The
maps of the pieces fit together to give a map UC — X. The underlying complex is filtered
by dimension in the chain complex; define U;C to be U(Cy, #zi). Finally note that the

i-cells are oriented, in that one end has lower filtration than the other.

We say a filtered Z-complex mapping to X is "special” if ¢-1{Y) is a subcomplex, and
if the vertex of highest filtration of a cell is in f-i{Y) then the entire cell is also. In
these terms the proof of the proposition is reduced to: show that every geometric chain

complex is equivalent to one whose underlving 2-complex is special.

Assume, as an induction hypothesis, that the i-1 filtration U;_(C is special. By
small homotopy holding U;_,; fixed we may assume that there is a neighborhood N of U;_
4 in U; such that N-U;_4 C X-Y. Then we may assume that U;-U;_4 is transverse to Y. The
inverse image will therefore be a i-complex. Squares in U;-U .4 intersect this

1-complex in arcs with ends on the upper edges, and circles.

- vertex in Si

inverses of Y
-—— a square

S vertices in 5;_»

The first step in simplifying the intersection is to note that if there is an arc with both

ends on one side of a square, then it encloses a disk in the square. We can push the edge
across this disk (draging along any other squares which share that edge). This operation
may generate new arcs and circles, but it reduces the number of intersections with the

edges.
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push across

By induction on the intersections with edges, we may assume there are no such arcs.

Next we eliminate the circles interior to each square. These circles map to Y, and
the map on the disk the circle bounds in the square gives a nullhomotopy in X. By the
hypothesis of injectivity of the fundamental group of Y, these circles are also
nullhomotopic in Y. Using the nullhomotopy in Y we can redefine the map to take the disk

the circle bounds to Y. This disk can then be pushed off Y.

These changes in the CW complex define changes in the chain complex. Note that the
edges, and therefore the boundary morphisms, are changed by homotopy. The homotopies
320 are changed by more than homotopy, but that is acceptible; only their existence is

part of the data.

Now consider one edge with vertex v in 5;» and consider the point intersection
nearest to v of the edge with the inverse of Y. Let L C U; be the component of inverse
of Y containing this intersection point. We claim that the region in U; between v and L
is isomorphic with the cone v#L (see the illustration below). For this it is sufficient to
show that every intersection of L with an edge is the first intersection of the edge with
the inverse of Y. To see this, suppose there is one which is not the first. Choose a path
(=sequence of i-cells) in L from the intersection which is a first, to one which is not.
Somewhere in the path there is a single arc so that one end is a first intersection and
the other is not. This implies the existence of an arc with both ends on one edge, which

contradicts the earlier improvement.

or

Now construct a new complex U‘; by inserting an arc between v and the cone on L. There
is a map U; — U’; defined by mapping the cone v#L to the arc. We modify the map U —
X so that U; — X factors through this map.
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Choose a maximal tree in L, and a collapse of it to a vertex w. Let vw denote the edge

between v and w. Then the collapse defines a homotopy of the cone on the tree into
Lu{vw). The remaining edges in L define loops in Y which are nullhomotopic in X. The
injectivity hypothesis implies that they are alsc nullhomotopic in Y. A nullhomotopy
gives a new map of the cone on this edge, into Y union the image of vw. This factors the
map through U’. Push U’ off Y as in the picture above, to leave an intersection point with

the arc.

The next step is to define a new complex C’ equivalent to C, which has U’; as
tiltration i in the underlying 2-complex. For this we introduce some notation in U’. Let
2 denote the new cone point, so the arc has been inserted between v and z. Let v denote
the intersection point of the arc vz with Y, and let vy, zy denote the paths in vz from
the endpoints to v. Let D dencte the complex with Riy] in dimension i-{, R[z] in
dimension i, and boundary i(zy). C’ will be defined by modifying the boundary homo-

morphisms in C&D.

Write 9:C; — C;_4 a5 & = a+b, where a consists of the pieces of 8 whose paths pass
through L in U, and b is all the rest. Note that the homotopy a(a+b)~0 breaks into
homotopies da~0 and ob~0: since L is an entire component of the intersection with Y,
any square in the homotopy with one edge on a path in a must have the other edge on a
path in a as well. Note a is defined on the module R[v]. Define a’:R[z] — C;_{ so that
a is homotopic to a‘lvz). We use this to construct isomorphisms of the chain groups of
C&D, and define C’ to have boundary morphisms obtained by conjugation by these

isomorphisms. Explicitly C’ is the bottom line in the diagram:

31 (%0 9] [2 0]
—+ G4y —— C;®R[z] + C;_®R[y] ————— = Cj_ o —
x [t 91 5o |
—+ Cjyy —— C;®R[z] * Ci®Rly] ———— C{_5 ———b

[f2)a] [.bv\, 21 [2 0]
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The vertex y is special in C’, and there are fewer components of the inverse image of
Y in U;C’. Therefore by iterating the construction we can get a complex equivalent to C

with filtration i special.

This completes the induction step, and shows that we can find an equivalent
complex whose entire underlying 2-complex is special. As indicated above, this implies

the proposition.

Section 3: The controlled h—cobordism theorem

The classical h-cobordism theorem states that an h-cobordism with vanishing
Whitehead torsion is isomorphic to a product. In the contolled version of this there is
a map to a metric space X, >0 is given, and we want a product structure such that the
image in X of each product arc lies in the ball of radius £ about its beginning point.
Another way to say this is that the product structure has radius less thanm ¢ as a
homotopy. We will see that the obstruction to this lies in a controlled version of the

Whitehead group.

The section begins with some generalities on control functions, necessary on
noncompact control spaces. Then € Whitehead groups are defined, and the theorem is

proved.

3.1 Control functions Suppose X is a metric space, and =:X — (0,c0) is a map.
If £,0:Y — X are functions then we say g is within € af f, and write d(f,gl<es, if
d(f{y),aly)) < e{fly)) for each yeY. Notice that this usually does not imply that d(g:fi<e,

and the triangle inequality does not hold. To deal with this we introduce some notation.

Suppose «,8 are maps X — (0,c0). Define a#B(x) to be max {oGO+R{y), di,y)ax(). If

%y B are constant then o#B = x+8.

It follows easily that if d{f,g)«<« and d{g,h)<B then d{f,h) < x#B. Also for functions
®:3:8, x#H(BHE) £ (x#B)#8 (both expressions are maxima of x () +B{y)+8(z)y and more values
of z are allowed in the second expression). Denote by n#g the n-fold iteration of this
operation; with parentheses arranged to give the largest value. For example 4#8 means
((BHRIRBIHB, and m*(n*B)) = (mn)#R. If B is constant then n#R is the ordinary product ng.

These expressions are usually used as upper bounds. Note that if an expression
with any arrangement of parentheses is an upper bound, then the largest arrangement is

an upper bound as well. This is why the notation n#8 is useful.

In the geometric algebra context note that if f,g are geometric morphisms with
radius less than «,8 respectively, and gf is defined, then gf has radius less than o#8.

Compositions of homotopies behave similarly.

3.2 Whitehead groups Suppose E is a space. The Whitehead group Wh(R[wED

is defined to be the set of equivalence classes of isomorphisms of free based modules
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over R[myE]. The equivalence relation is generated by direct sums with identity
isomorphisms, and by composition with triangular automorphisms. In this context an
automorphism is triangular if there is an ordering of the bacis of the module so that the
matrix expression is zero below the diagonal, and the diagonal entries are units in R

times elements of 'rriE.

Usually a triangular matrix is required to have diagonal entries all equal to 1. The
group obtained with this definition is the reduced K-group ﬁi(R[ﬂjE]). The Whitehead
group is obtained from this by dividing by the subgroup generated by the automorphisms
of R[nyE] given by products (unit in R){element of nmyE). But this is equivalent to

allowing such products on the diagonal of triangular matrices.

Using the equivalence of section 1.1 we can describe Wh(R[7{E]} as equivalence
ctlasses of geometric isomorphisms of finitely generafced geometric R-modules on E. We

obtain a version with € control by adding € to this description, as in 1.3.

Suppose p:E — X is a map, and X is a metric space. A geomelric ¢ isomorphism of
geometric R-modules on Eis a morphism of radius <& (measured in X) with an "inverse"
also of radius <€, such that the compositions are € homotopic to the identity morphisms.
Unfortunately it is possible to have a morphism of radius <€ which is an isomorphism,
but whose inverse has very large radius. Therefore the estimate on the radius of the

inverse must be included in the definition.

Suppose M = R[8] is a geometric R-module on E. A geometric morphism A:tM — M is
(upper) triangular provided there is an ordering of the basis of M such that A has no
paths from t to s unless t=s, and if t = s there is exactly one path, whose coefficient

is a unitin R.

We observe that a triangular morphism is an isomorphism: it can be written as
D{I+B) where D is diagonal with entries a unit times a loop, and B has entries strictly
above the diagonal. D1 is obtained by inverting the units and reversing the loops, and
(I+B)-1 = I+E'1"(-B)i, where n is large enough so that B! = 0. Note that the radius of the

inverse depends on the radius of the original, and this n.

We define a deformation of a geometric module to be a sequence ApApoyeAy of
triangular morphisms. We write it as a product, and think of it that way, but actually
need to keep track of a little more information than is retained in the product. What is

needed is a refined version of the radius.

The underiying I-complex of a morphism is the collection of paths which occur in
the morphism. We think of these as trees eminating from the basis of the module, by
identifying the beginning points of all paths coming from a given basis element. The
underlving i-copplex of a sequence AoAy again consists of a tree for each basis
element: start with the tree for Ay beginning at the element, and at the end of each

branch add a copy of the tree of An which begins there. Trees for a sequence with n
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terms are built up similarly. We now say that a sequence ApAp—yAy has radius less
than € it for each basis element s the tree in the underlying 1-complex starting at s lies
inside the ball of radius e(s) about s. As with the radius of isomorphisms, we must
require that the trees for the inverse sequence A7l;A-l,....A"l  lie inside the ¢ balls

about their starting points as well.

Notice that the paths which occur in the composition of the sequence are just paths
in these trees. The radius of the composition is therefore less than or equal to the
radius of the sequence. The difference is that in the composition we allow deletion of
paths when the coefficients cancel, whereas no cancellations are allowed in the

underlying {-complex. Therefore the radius of the composition may be strictly smaller.

Finally if A is a geometric morphism, an € deformation of A is a composition DyADy,

where Dy Dy are = deformations of the range and domain modules of A.

Definition Suppose pE — X s @ map lo a metric space, and €:X — (0,0) is
given, Then WhiX,pe) is defined to be sguivalence classes of geomelric isamorphismns
on E with radius <e in X, with sguivalence relation generated by direct sum with

identity morphisms, and homotopies and defoermations of radius « 3%,

The next lemma shows this to be a convenient place to work. However, see the

comments following the proof.

Lemma Direct sum induces an abelian group structure on Whiypye). Further if &
icamorphisms are egquivalent in this sense, then there is a Y4%c deformation between

isomarphisns Yte homotopic to appropriate stabilizations of the criginals,

Froof of the lemma Since direct sum clearly induces an abelian monoid structure, the
point of the first statement is that there are inverses, If A is an isomorphism there is

a matrix identity

b f100, 2100 21050 %00 10 200 1 = 3 91
If A is a geometric morphism of radius <&, the left side of the equation is a 3#*e
deformation of ABA-1, (The left three, and right three, terms are triangular.) When the
lett side is multiplied out there are terms like A-AA-1A, so the composition is actually
3#2 homotopic to I®] rather than equal to it. This shows that A-l is a 3#e additive

inverse for A.

Next suppose that there is a sequence A; of € isomorphisms, such that there is a
3#c deformation from A; to A;,4, and i goes from 1 to n+i. Consider the seguence of

deformations
n n -1 n -1 -
Ai o A1€B2‘.1(I&11) ~ Aieazimi &iAi) ~ A,&Ei(Ai @AiH) =

[E0A; @A IBA Ly ~ [ETISDIBA Ly ~ Anyy.
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The first and last are stabilizations, the second and fifth are the 3%¢ deformations
which cancel inverses, and the third is the sum of the deformations A; ~ A;;y. The
composition of these give a 7#¢ deformation from a stabilization of Ay to a stabilization

Usually there will be stabilizations in the deformations A; ~ A;;4. These are

easily incorperated in the above argument.

Remarks The point of the second statement in the lemma is that geometric control is not
lost by allowing arbitrarily many deformations. If we simply compose the seguence of
deformations A; ~Aj;q we get a deformation of radius 3n#e, which can be arbitrarily
large. The method for getting a short deformation comes from Quinn [5, lemma 4.4]; its

use in this context is due to Chapman [2, thecrem 3.5].

In general the groups WhiX,p;c) are quite mysterious. If = is much larger than § then
the image of WhiX,p,8) in Wh{X,p,;e) is sometimes more accessible. Chapman [2] gives
criteria for this image to be trivial, in terms of vanishing of ordinary Whitehead groups
of my(p1)), for open sets U in X. In a more rigid setting (p a stratified system of
fibrations) but no condition on 7y {(p-1(UN, Quinn [5] shows the image to be a generalized

homology group of X.

3.3 Controlled h-cobordisms Suppose 8:X — (04c0) iz given. Then a manifold
triad (W,0qWid W) with a map #:W — X is a (8,h)-cobordism if f is a proper map, and

there are deftormation retractions of W to a iw which have radius <8 in X.

The question we consider is: when does a (8,h)-cobordism have a product structure
W = (3;Winl of radius <€ in X7 This has been considered at length in the literature; the

objective here is just to see the obstructions in geometric algebraic terms.

Some local control of the fundamental group is necessary. For this fix a map p:E —
X. A map f:W — E is relatively 8,1 connected (over X) if for every relative 2-complex
{K,L) and commutative diagram

L—W

| I

K—E

there is a map K — W which agrees with the given map on L, and whose composition with

f is within = of the given map into E, measured in X.

Theorem Suppose £:W — E, p:E — Xy and &8:X — (0,0) are given, so that pfis a
(8, )~cobordism cver X, Then there is a well-defined invariant Qi {WyapW) e WhiX,p,9%8)
which vanishes if W has a § product struciure, Conversely there is a funcition kin)

such that if nxé and q(W,dgW) = 0 then W khas a product structure of radius < kin)#8.

/WM
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Proof This is theorem 3.1 of Quinn [5), with some minor refinements in estimates and
the use of geometric instead of metric algebra. We outline that proof. A similar
statement, with a more geometric definition of the Whitehead group, is given by Chapman
[2: 14.2].

Choose a handlebody structure on (W,3,W) with handles whaose images in X have
diameter less than 8. By diameter less than 8 we mean here that if » and v are in the
set, then dlx,y) <« 8(x). If W is smooth or FL such a handle structure can be defined from

a fine triangulation.

A handlebody structure has a spine, which is a CW complex structure on (WydpW).
For example the spine of a handlebody structure obtained from a triangulation is just
the triangulation itself. We require that the CW structure also have cells of diameter

less than 8. This is automatic if the handles are small enough.

We also require the CW structure to be satwrated. This means that the attaching
map 8:57 —4 K™ for an n+! cell has image a union of cells. In other words, if a cell
intersects the image of 8, it is contained in the image. If the CW structure is a
triangulation it is automatically saturated. In the topoleogical case it is not hard to

arrange saturation.

The saturation condition is used to push things rapidly into skeleta. Suppose that
K~ X is a saturated complex of dimension n whose cells have diameter less than 3 in
X. Suppose h:L — K is a map; L a j-complex with j<n. L can be pushed off the n-cells of
K, to obtain a map h,_y of L into the n-1 skeleton with dthyh,_4q) = 8 (measured in X, as
always). Similarly we can push L off the n-{ cells, and repeat until we have hj mapping
L into the j-skeleton of K. Since L has been moved n-j times, in general we only know
that d(h,hj) < (n-j}#&. However if K is saturated, then a point which is moved out of the
interior of a cell in one push stays in the image of the boundary of that cell during later

pushes. Therefore d(h,h‘j) < &.

Choose a & deformation retraction of W to dgWy h:Wxl — W. Put the product CW
structure on (Wxl,(d,WixI). Use the fact that the structure on W is saturated to get a
deformation retraction h’ with dth,h") < 8, dth’,h) < &, and which preserves skeleta. In

particular note that images of cells under h’ have diameter « 3%8.

Apply the cellular chain construction of 1.4 to obtain C, = CulWdpgWl, a geometric
chain complex of radius «<8. The deformation retraction h’ defines a chain homotopy 5:Cy

—+ Cy4q of radius <3#8, such that sd+3s is 4#8 homotopic to the identity map of Cg.

Consider the morphism (565+656)=E(J even)Cj — Z'(J odd)Cj' This is a 9#8 isomor-
phism; it has radius «<7#8 and the same formula from odd j back to the even ones is a 9#8

inverse. We define q;(W,d,W) to be the equivalence class [sds+3sd] in WhiX,p,7#8).

The first step in proving the theorem is to show the invariance. If 5’ is another 48

cthain contraction then s’ is 4#8 homotopic to s+(s'sd-9s’s). Using this we can write
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(s’as’+as’a) as (I+D)X(sas+3dsd), where for example D = ass‘dss’dsds. D raises dimension in
E(J odd)Cj so 1+D is triangular. It has radius less than 3{(%)%8 so is an equivalence in

WhX,p,9#8). This shows that qq is independent of the deformation retraction.

Now suppose there is another handle decomposition of (W,2,W) satisfying the
conditions above. Then there is a i-parameter family of handlebody structures; all of
diameter less than 8§, joining them. In this family the handles can change by isotopy,
cancelling pairs can be introduced or be cancelled, and handle additions can occur.
Isotopy changes the chain complex only by homotopy. The other changes occur at isolated
points in the parameter arc. Choose points between these and apply the construction.
This gives a sequence of 9#8 isomorphisms, with adjacent ones related by homotopy and
a single modification. Cancelling pairs change the complex by addition of an identity
morphiem. Handle additions change the boundary morphisms by product with a triangular
morphism, so change the isomorphism in the same way. We conclude that adjacent
isomorphisms in the sequence are equivalent, hence the ends are equivalent in
WhiX,p,?#8).

This shows that gy is well defined. If W has a & product structure then the product
structure is a handle structure with no handles. The chain complex is therefore trivial,

/

and the invariant equal to 0.

The converse is essentially proved in section 8 of Quinn [4]), which is independent
of the rest of that paper. The estimate there is k(n) = (54+3mN, but this can be improved

guite a lot using the "saturation” idea above.

The idea of the proof is to first show that (W,35W) has a handlebody structure with
handles only in two adjacent dimensions. In this case the boundary morphism between
the geometric chain groups is an isomorphism, which when mapped to E represents *qy.
The hypothesis that gy = 0 implies, by the lemma in 3.Z, that there is an 8138
deformation of the image of the boundary morphism to the empty morphism. This
deformation takes place in E. Since W — E is relatively (§,1)~connected, the paths and
homotopies of the deformation lift back to give a deformation in W. The proof of [4,

section 6] then shows how to use such a deformation to cancel the remaining handles.

This completes the sketch of the controlled h-cobordism theorem. We remark that
recent work of M. Freedman and the author shows that this theorem also applies to
S-dimensional topological h-cobordisms, provided the local fundamental groups are

"poly-(finite or cyclic)”.
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