A Nonconnective Delooping of Algebraic K-theory

*
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Abstract: Given a ring R, it is known that the topological space
BGl(R)+ is an infinite loop space. One way to construct an infinite
loep structure is to consider the category E of free R~modules, or
rather its classifying space BE , as food for suitable infinite loop
space machines. These machines produce connecktive spectra whose
zeroth space 1is (B§)+ = ZXBGl(R)+ . In this paper we consider
categories QO(E) = E, gl(g),... of parametrized free modules and
bounded homomorphisms and show that the spaces (Bgo)+ = (B§)+,

(Bg1)+,... are the conneched components of a nonconnective

NI-spectrum BC(F) with xiBg(F) = Ki(R) even for negative 1i.

0. Introduction.

Given a ring R, let F be the category of finitely generated

free R-modules and isomorphisms. Form the "eroup completion”

category g_lg of FE (see [G]); it is Xnown that its classifying

space Bg_lg is the algebraic K-theory space BGl(R)+ XZ . The purpose

of this paper is to produce a nonconnective delcoping of BGl(R)+
XKO(R) by using the parametrized versions go(g ) = E , gl(g Jyeas of
FE given in [P}. Our main result is this:

Theorem A. Write B, for the classifying space of the category
g_ig ., except that Bo = BGl(R)+ . Then the spaces Bi are connected,

and for i 2 0 we have

By 4y = ByXK_(R).

* Partially supported by an NSF/grant
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o~
Thus the sequence of spaces Bi = BiXK“i(R) forms a nonconnective

Q-spectrum B with homotopy groups

-~
xi(g) = Ki(R) . i any integer.
-~
In particular, the negative homotopy groups of B are the negative
K-groups of Bass [B].
Actually, we work in the generality of a small additive

category A, vrather than just with the additive category F of
finitely generated free R-modules. For example, one could take ¥,
the category of finitely generated projective R-modules. The
category f is the idempotent completion of F, and we recover the
same gpectrum g if we replace ¥ by (F. Note that Bg_lg is BGl(R)+
XKO(R) » where P is the category of isomorphisms in .

Given f, we consider the additive categories Cj(ﬂ) of Zi-graded
objects and bounded homomorphisms (see section 1 for details). If
A = F this definition specializes toc the groups Ci of [P]. Let 81 be
the idempotent completion of Ci(ﬂ) » and let A , 91’ § be the
subcategories of isomorphisms in A, Ci and Ei y respectively. Our

second result is this:

e,
Theorem B. Write B, for the classifying space of the catepory
-1 -1
£; € and B, for the classifying space of €; € - Then
~ -~
0By = By
iz -~ +
0 B, = B_ = “"group completion" (BA ) of BA .
~
The connected component of Bi is Bi (except for i=0 ), and the
-~ ~

sequence of spaces Bo’Bi"" 18§ a nonconnective Q-spectrum. In

.

particular, Bi is an i-fold delooping of (BA )+ .

The outline of this paper is as follows. In section 1 we give
the definitions of the Zi—graded categori Ci(ﬂ) - In section 2, we
recall the passage from categories to spectra, and review the main
points of Thomason's paper [T] that we need. In section 3, we prove
Theorems A and B.

The authors would like to thank Bob Thomason for his lucid

exposition in [T}, which clarified a number of technical points.
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l. The categories Ci'

In this section we give the definition of the categories Ci(ﬂ)
associated to a small additive category A. We also review the
notions of filtered additive categories and of the idempotent

completion of ﬂ for the convenience of the reader.

Definition 1.1. An additive category f is said to be filtered if

there is an increasing filtration

FO(A,B) c Fl(A,B) c...C Fn(A,B) c...
on Hom(A,B) for every pair of objects A,B of f. Fach Fn(A,B) is to
be a subgroup of Hom(A,B) and.we must have |} F,n(.if\,li")'= Hom(A,B)}. We
require 0A and lA te be in FO(A.B), and assume that the composition

of morphisms in Fm(A,B) and Fn(B,C) belongs to (B,C). We also

Fm+n
assume that the projections A@B - A, and inclusions A — ADB and
coherence isomorphisms all belongs to Fo. If ¢ is in Fd(A,B) we say

that ¢ has filtration degree d.

The reason for concerning ourselves with filtered categories is
that the categories Ci come with a natural filtration. Of course
every additive category has a trivial filtration, obtained by
setting F_(A,B) = Hom(A,B).

Example (l.1.1). Given a Z-graded vring A such as R[t,t_l], let A

be the catepery of graded A-modules. We can filter § by legislating

that heomogeneous maps of degree +d have filtration degree d.

We now give our definition of the filtered category Ci. Let the
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distance between points J = (jl""’ji) and K = (kl"'°‘ki) in Zi be
given by
la-xj = max |3 -k | -
s
Definition (1.2). Let A be a (filtered) additive category.We

define Ci(ﬂ) to be the category of Zi—graded objects and bounded
homomorphisms. This means that an object A of €; 1s a collection of

objects A(J) in J, one for each J in Zi. A morphism ¢ : A —- B in Ci
of filtration degree d is a collection

(J,K) : A(J) - B(K)
of A-morphisms, where we require ¢(J,K) = 0O unless BI-KJ} € d. If g

is filtered, we also requixe each @¢(J,K) to have filtration degree
§ d. Composition of ¢ = A —- B with ¢ : B - C is defined by

(od)(J, L) = Z ¢(K,L)od(J,K) .
K
Note that composition 1is well-defined because only finitely many

elements in this sum are different from 0. It is easily seen that

€ (A) = A-

Example (1.2.1). Ff ¥ is the category of finitely generated free

R-modules (with trivial filtration), the category Ci($) is the same
as the category Ci(R) constructed in [P]. In that paper it was

proven Lthat

K (&, ((RY) = K_,(R) , i 0 .

W

This indicated that &.

i+l might be a delooping of K-theory, and was

the original motivation for this paper. That it cannot be exactly

the case follows from (1.3.1) below.

Example (1.2.2). Since ﬁi(ﬂ) is filtered, we can itevate the

consktruction, It is easy to see that

L (E(A) = &, (A -

However, if we forget the filtration on Ej(ﬂ) this is no longer the
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case.,.

Remark (1.2.3}). If V is any metric space, we can define a category

Cv(ﬂ) in a way generalizing the case V = Zi. An object A of £ is a
collection of objects A(v), one for each v in V, subject to the
fellowing constraint: for every d > 0 and v, A(w) # 0 for only
finitely many w of distance less than d from v. Morphisms are
defined as for €;- It is easy to see that if v = ®1 then Cy 1is

naturally equivalent ¢to its subcategory Ci.This shows that the

difference between Ci and €.

i+1 1S the rate of growth in dd of the

aumber n(d,J)} of points K within a distance of d from J.

Example (1.2.4). If we take V = (0,!,2,...) then we will let 6+(ﬂ)

denote CV(H)' This is the full subcategory of Cl(ﬂ) whose objects
satisfy A(j) = 0 for j < 0. Similarly, if we take V = {(0,-1,-2,...%,
we will write &_(4) for CV(H). We can identify C+(ﬂ) N E_(4) with §

in the obvious way.

There is a shift functor T : ﬁl(ﬂ) - Cl(ﬂ) sending A& to TA
with TA(j) = A(j-1), and T restricts to an endofunctor of C+(£).
There is an obvious natural isomorphism t from A to TA in both Cl

and & . We include the following result here for expositional

-+

purposes, and will generalize it in section 3 below.

Lemma (1.3). Every object of C+(ﬂ) is stably isomorphic to 0. In

particular, the Grothendieck group Ko(€+) is zero.

Proof. Given A in 6+, let B = £ T" A, That is,
B(3) = A(j)@A(i-1)&...5A(0)., It 1is clear that A$TB = B.The result
follows from the observation that t : B @ TB is an isomorphism in
e, (A

Corollary (1.3.1). If i # 0 then every object of ﬁi(ﬁ) is stably

isomorphic to 0. In particular, Ko(Ci) = (.

Proof . By (1.2.2) we can assume that i1 = l. But every object of
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61 can be written A+$A_ with A+ in €+ and A_ in €_. Hence KO(CI) is

a quotient of K _(& )&K_(€_) = 0.

Here is a quick discussion of idempotent completion, as applied

to the Ci construction.

Definition (1.4) {(see, e.g., [F, p-61]). Let fi be an additive

”~

category. The idempotent completion A of A has as objects all

Ll
morphisms p : A - A of f satisfying p2 = p. An A-morphism from p; to

v

Py is an f-morphism ¢ from the domain Al of Py te the domain A2 cf

p, satisfying ¢ = p2¢pi. It is easily seen that f is an additive
category and that Hom(pl,pz) is a subgroup of Hom(Al,Az). Hence §

inherits any filtered structure that § mwight have. There is a full
-~

embedding of 4 in A sending A to 1 if this is an eguivalence ogf

AY

categories, we say that f] is idempotent complete.

Example (l.4.1), The idempotent completion of the category F of

free R-modules is equivalent to the category (¥ of projective

R~modules.

Lemma (1.4.2). The categories f and 6i(ﬁ) are cofinal! in their
~ o~
idempotent completions 4§ and Ci(ﬂ). Moreover, Ei(ﬂ) is cofinal in

€, (A)-

Proof . This is an easy computation. For example, if p is an object

of Ci(ﬁ), define g by q(J) = 1-p(J). Then p®q belongs to @i(ﬂ).

To compute the K~theory of A, we need to know which sequences
are "exact": a different embedding of J in an ambient abelian
category will result in a different family of short exact sequences
{see [Q]). In particular, we cannot ¢talk about KICi(H) unless we
know which sequences in 61 are "exact". It is not clear what the
notjon of "exact" should be, unless either (a) all exact sequences
in A split (we insist the same is true of Ci), or (b) | is embedded

in an abelian category § closed under countably infinite direct sum

{for then Ci is embeddable in E). In either case, it follows from
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(1.4.2) and Theorem 1.1 of {Gr] that

Ko (A) = K E(A) =X E (A, n3z1.
Note that our proofs of theorem A and B only apply to situation

(a).

Example (1.5). Let p_ be the idempotent natural transformation in

Cl(ﬂ) given by

(p—)A A A, p_(i,k) = {é iihegw:s: €0
Given an object A of f. let A_ denote the image of p_ on the
constant object A(j) = A of Cl(ﬁ). Thus A _(j) =0 if j > 0 and
A (jy = A if j £ 0. The map t is an endomorphism of the constant
object A = TA; write s for the restriction of p_t to A_. Then
l-s : A_ > A_ is both a monomorphism and an epimorphism in 61(5),

: ) : ) : ) noo,
but not an isomerphism. This is because its "inverse" E=s is not

bounded. In particular, ﬁl(ﬂ) can never be an abelian category, even

if A is.

We conclude this section with the following result, which
provides motivation for cur Theorem B. It is also a consequence of
Theorem B. Since we will not use this result, we merely sketch the

proof .

Proposition (1.6}. If all short exact sequences 1in A split, then

K1(51+1(ﬁ)> = KO(Ei(Q)). In particular, chl(ﬂ) = Ko(ﬁ).

Sketch of proof., This 1is proven in section 1 of [P], modulo
terminciocgy.

First of all, we can assume that A is idempotent complete and that
i = 0 by (1.4.2) and (1.2.2). The map from Ko(ﬂ) to Klﬁl(ﬁ) sends
the object A of f to the shift automorphismt of the constant object
A(j) = A of Cl(ﬂ). The map ¢ : Kl(el) - Ko(ﬂ) is defined by sending

the class of d € Aut(A) to the difference (for d » 0) in Ko(ﬂ)

2d 2d
#(a) = [Cap_a™')C @& AC§))) - (p.C & ACId)] -
j=-2d i=-2d

If o has filtration degree less than d, one shows as in fp,(1.115]
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that this map @ is well-defined and independant of d. Clearly the
composition 1is the identity on Ko(ﬂ). The proef of [P, (1.20)]

applies to show that ¢ is monic, which proves the proposition.

Example {(1.6.1). Again, tet F be the category of finitely

generated free R-modules. Then for i 2 1 we have

Koﬁi(R) = 0 but Koci(R) = chi+l(R) = K_i(R).

Note: Example (1.6.1) follows from [(P), not from (1.6).
2. The pasapge to topology.

In this section we recall various results on the passage from
the categories f, Ci etec. to infinite loop spaces and spectra. We
alse recall Thomason's simplified double mapping cylinder from
section 5 of [T]. We urge the reader to consult [T] for more

details.

A symmetric monoidal category § is a category together with a

functor B : EXE -8 and natural isomorphisms
a : (A®B)YSC = A@(BEC)

¥ : AGB = BhA .
These natural isomorphisms are subject to coherence conditions that
certain diagrams commute. We refer the reader to [Mac] for a more

detailed definition, contending ourselves with:

Example (2.1). If A is an additive category then f is a symmetric

monecidal category under & = direct sum. The subcategory A of the
isomorphisms in f§ is also symmetric monoidal under & = direct sum.
It feollows that ﬁi(ﬁ) and its category gi(ﬁ) of isomorphisms are

also symmetric monoidal.
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There is a functor Spt from the category of small symmetric
moncidal categories to the category of connective (l-spectra (i.e.,
sequences of spaces Xn with Xn being (n-1)-connected and with
Xn = 0 Xn+l Y. This functor satisfies

(a) A functor A ~ B preserving & up to coherent natural
transformation , a "lax" functor, induces a map Spt{A) —— Spr(B)
of infinite loop spectra.

(b) The zeroth space Spto(é) is the "group completion” of BaA ,

the classifying space of the category A.

The construction of Spt is basically due to May and to Segal,
and Spt is unique up to homoetopy equivalence. See [a). One

description of Spt may be found in the Appeundix of (T]}.

Lemma (2.2). Suppose that A -» B is a lax functor of small

symmetric monoidal categories, and that BA - BE is a homotopy
equivalence of topological spaces. Then Spto(é) -3 Spto(g) is a
homotopy equivalence.

Proof. See (2.33 of [T}.

Lemma (2.3). Suppose that A is a full, cofinal subcategory of the

small symmetric menoidal category B. Then the connected components

of Spto(é) and Spt(B) are homotopy equivalent.

Proof. This is wellknown. The point is that

colim H, B aAut{Aa)
r——_—
AEA

HelSpt _(4) ]

1]

colim Hy, B Aut(B)
BEBR

Hy[Spt _(B),] -

Lemma (2.4) (Quillen)}. Let § be a small symmetric monoidal category

in which all morphisms are igsomorphisms, and assume that all

translations S® : § - 5 are faithful. Then there is a category g“ls
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whose objects are pairs (51’52) of objects in £, such that Bg'lg is

homotopy equivalent to Spto(g).
Proof . See (G, p.221] or p. 1657 of [(T].

Corollary (2.4.1). 1f § is a small additive category, let 4 denote

the category of isomorphisms in A. Then Bg_lé is homotopy equivalent
to Spt_(4).

n

Example (2.4.2). Let R be a ring for which R™ = Rr implies that

m = n, and 1let E be the category of finitely generated free

R-modules and isomorphisms. The basepoint component of E_IE has

objects R™ = (Rm,Rm) and

m+n
)

Hom(R™,R Gl (R)

m+n 1m+n(R).

X G
Gln(R)

In particular, Hom(0,R™) is Glm(R). The famiiy of the Hom(O,Rm)

gives a map from BGl(R) to the basepcint component BGl+(R) of Bg_lg

The main ingredient in the proof of Theorem B is the simplified
double mapping cylinder construction of R.W. Thomason, described in
(5.1) of {T)]. Let A be a symmetric monoidal category with all
morphisms isomorphisms and u : A -2 B, v : A 3> € strong functors of
symmetric monoidal categories (i.e. functors preserving direct sum
up to natural isomorphism). Define P = P(A,B,G,u,v) te be the

category with objects triples (B,A,C) with A an object of A, B of B,

and C of c. A morphism (B,A,C) = (B',Aa',C') is a 5-tuple
(¢,¢l,¢2,U,V) where U,V are ocbjects ot 4, Yy A 2 Ugatav,
¢l ¢+ B&uU —» B'" and &2 : CdvV - C', U and V may be varied up to
isomorphism. Composition of (¢,¢1,¢2,U,V) : (B,A,C) = (B',A',CY)
with (J,Jl,iz,ﬁ,ﬁ) : (B',A',C') = (B",A",C") is given by

A= UDA'QOV & (UBIDGA"G(VEV)

BHU(UPL) & (BOuU)IGuU) - B'@ull — B"

vVavVeC - vidC' — oY

R

v{V@V)ac
and direct sum in P is induced by direct sum in 4, B and €. We then

have
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Theorem 2.5 (R.W. Thomason [T,(5.2)] . Up to homotopy the diagram

Sptoé — Sptog
Sptog —irh Sptog

is a pullback diagram.

o]

3. The proof f Theorem A and B.

In this section we prove Theorems A and B. We make the standing
assumption that 4 is a small filtered additive category and that 4
is the (symmetric monoidal) category of isomorphisms of &. Similarly

we write ¢ C and c

€, C4 for the categories of isomorphisms of Ci(ﬂ),

C+(ﬂ) and €_(A). The idea is to show that the diagram

|

HEY i |2
el |9 ]

—)

|

induces a puliback diagram of spectra, and te use the following

result:
Proposition {(3.1). Spto(g+) and Spto(g_) are contractible.
Proof. By symmetry it is enough to consider C,. Recall from the
discussion before (1.3) that there is a shift functer T : g+ - g+
and a natural transformation t from A to TA. The category €, has an
o0 n
endofunctor z T with
n=0
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o n
(Recall that A(j) = 0 for j <€ 0 .)We can define Z T similarly. The
n=1
o0 n
natural isomorphism t induces a natural isomorphism t from E T A
n=0
o0 n 5] n o n
to b T A. But as endofunctors of g+ we have 1 & E T L T .
n=1 n=1 n=0

Hence as self-maps of the H-space Bg+ we have

0 n o n
1~ T ) - (L T)
n=0 n=1
This shows that B is contractible. But then Spto(g+) is contractibile

Lo .

by Lemma (2.2).

o o~
Proof that Theorem B implies Theorem A. Write Bi for Spto(gi).
"~
Since we have Ko(Bi) = K—i(R) by (1.6.1) and since translations are
o)

)
faithful in gi' it follows that Bi is homokopy equivalent to

o)
Bixx_i(R). Since QBi = ﬂBi, the result is now immediate.

We now begin the proof of theorem B by making a series of

reductions. Since

m,(By) = x_Spt_(4,) = K _(4,) ,
connectedness of the Bi for i # 0 follows from (1.3.1). Now 91 is

full and cofinal in gi by (1.4.2), so by (2.3) the connected space

Bi = Spto(gi). By construction (or by (2.4.1)), B0 = Spto(é) is the

~
group completion of BA. Thus the proof of Theorem B is reduced to

o~

showing that ﬂgi+1 B for i 2 0.

Next, observe that ai+1(ﬁ) = Elgi(ﬂ), 850 that
B,,, = Spt, (3, (E,(A)) and B, = spr (&, (A)).

Since we can replace A by 8i(ﬂ), it is enough to prove that
O gl = go = Spto(g).There is also no loss in generality in assuming

that § is idempotent complete, since

~

"~ "~ Fal
Q B, = 0 Spt_(C,(A)) = 0 spr (g, (A)
by (2.3). In fact, by (2.3) we also have

0 Spto(gl) = 0 Spto(gl) -

Therefore, Theorem B will follow from:
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Theorem (3.2). Let § be a small, filtered additive category which

is idempotent complete. Then N Spto(gl) is homotopy equivalent to

Spto(é).

Lemma (3.3). Let f} be a small filtered additive category. Recall

that &, and C_ are subcategories of o8 whose intersection is 4. Let

P be the simplified double mapping cylinder construction applied to
4 » C_ and A > G, . Then 0 Spto(g) is homotopy equivalent to
Spto(é).

Proof. This is immediate from Thomason's Theorem (2.5), since by

{3.1) the spaces Spto(g+) and Spto(g_) are contractible.

By the universal mapping property of P (see p. 1648 of [T]),

there is a strong symmetric monoidal functer E : E = 91' This

functor is defined on objects by

E(aT,a,87) = a-oaga,

where A_,A,A+ are objects of §+: 4 and ¢_, respectively., A morphism
- + - o+
(l,ff ”vf/;tf/ U LU

composite

) in P from (A”,A,AT) to (B7,B,BY) is sent by T to the

- + eyl s wTeleyT +
AT@A@AT ———— AToU gAsUTHAT ——" B gBoBt .

Theorem (3.4). Let f be idempotent complete, and let P be the

double mapping cylinder of Lemma (3.3). Then the functor I : E - gl
induces a homotopy equivalence between the classifying spaces BP and
BG, -

Note that Theorem (3.4) immediately implies Theorem (3.2) by (3.3)
and (2.2). Thus we have reduced the proof of Theorem B toc the proocf

of Theorem (3.4).

Proof. We will show that this functor satisfies the conditions of
Quillen's Theorem A from [Q]. Fix an object Y of Gy we need to show

that ¥|E is a contractible category. To do this, we use the bound d
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for ﬁl(ﬂ) to filter ¥ |Z as the increasing union of subcategories
Fild, and show that each Fi]d has an initial object *d. Therefore
Fild i contractible; their union Y |E must also be contractible by
standard topology.

The category Fil, is the full subcategory of alil

a : ¥ - E(A_,A,A+) where both a4 and aul are bounded by d. Define ¥

d?
Y; and Y; in A, ¢_ and ¢, respectively by setting

Y4 = Y(-d)®...6Y(d) in A

Y; = ¥Y(j) if j <« -d , and = 0 otherwise

Yy = ¥(j) if j > -d , and = 0 otherwise.

The obvious isomorphism g : Y = Y;@Yd$Yz in 91 is bounded by d, and

We will show that *

. x . - + .
forms the object : Y - E(Yd,Yd,Yd) of Flld. d

d

is an initial object of Fild.

Given the object d : ¥ - E(A_,A,A+), we have to show that there

is a unique morphism
no= T e (Y, e ((Y ) 1 (Y5, Y5 » (AT,a,a%)
in B so that Z(p) = do'l in 91' Let pr_, pr, pr be the projectiocns
of E(A_,A,A+) onte A, A and A+, respectively. Since awl is bounded
by d, a_l(A) is contained in Yd, or rather in the image o_l(Yd) of

Yd in Y. Hence it makes sense to let e be oanl(pr)aa-l restricted to

Yd’ and it is clear that e 1is an idempotent of Yd. Similarly,

1

oad (A ) is contained in Y&@Yd, and a_l(A+) is contained in YdQYz.

Let e_ and e, be o'l:l_l(pr_)aa_1 and aa—l(pr+)aa-l restricted to Yd.

These maps are also idempotents of Yd’ and it is easy to see that
e_+ e + e = i. 8ince f is idempotent complete, the composition

makes sense in ﬂ. Define ¢ to be the composite

- lgagl
Yy 8 e (Yy) @ e(Y) & e (v —RIL, o (v Hoase, (¥
Similarly, define maps
-1
¢ 2 ¥ @ e (V) ~Hees AT in ¢ _



180

This completes the definition of the map 7 : (Y;,Yd,YZ) - (A_,A,A+)
in B. By definition of E we have Z(p) = aa‘l. Because all maps in A,
€_ and £, are isomorphisms, it is an easy task to verify that p is
the unique map with Z{(p) = aoui. It follows that *d is an initial
object of Fild. Q.E.D.

4 . An overview.

To place our construction in perspective, it is appropriate to
review a little history. The definition of the functors K_i(R) was
given by Bass [B] in 1966 during an attempt to formalize his

-1 -1

decomposition of KI(R{tl’tl P o ’tn

n 13, In 1967, Karoubi {K-1]

gave another definition of K—i(R) by defining K«i(ﬂ) for any abelian
category. A third and fourth definition of K_i(R) were given
independantly by Karoubi Villamayor [K-V] using the ring S5(R) and by
Wagoner [W-1] wusing the subring H(R) of S(R}. Happily all these
definitions were shown to agree by Karcubi's axiomatic treatment in
fk-136].

In 1971, Gersten [Ger] constructed a nonconnective delooping of
K_(R)XBG1T(R) wusing the fact that 0BG1 (S(R)) = K_(R)XBG1 (R).
Wagoner (W-2] then constructed the (Q-spectrum Ko(ui(R))XBGI+(gi(R))
and showed that the ianclusions (R) - S{(R) induced an equivalence of
spectra. To our knowledge, nonconnective deloopings of the K-theory
of other additive categories besides F has not been studied until
now.

The construction in [P] is very much in the spirit of the early
definitions of the K_;(R), but works for any additive category.
Needless to say, an open questiom in our work is whether or not the
OBQCn(ﬂ)A yield a nonconnective delooping of any (idempotent
complete) additive categpory with exact sequences. A major difference
between the categories Ci(ﬂ) and Karoubi's categories Siﬁ is that S§
is defined as a quotient of the flasque category CA (see [K-136])

while Cl(ﬂ) may be viewed as an enlargement of the flasque category
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€,{A). 1t would be interesting to see if the natural inclusion of Cj

in C+(ﬁ) could be made to induce an isomorphism between K-groups.
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