A Nonconnective Delooping of Algebraic K-theory Abstract: Given a ring R, it is known that the topological space $BGl(R)^{+}$ is an infinite loop space. One way to construct an infinite loop structure is to consider the category $\underline{\mathbf{F}}$ of free R-modules, or rather its classifying space $B\underline{\underline{F}}$, as food for suitable infinite loop space machines. These machines produce connective spectra whose zeroth space is $(B\underline{F})^+ = \mathbb{Z} \times BGI(R)^+$. In this paper we consider categories $\underline{\underline{C}}_{0}(\underline{\underline{F}}) = \underline{\underline{F}}, \underline{\underline{C}}_{1}(\underline{\underline{F}}), \ldots$ of parametrized free modules and bounded homomorphisms and show that the spaces $(BC_0)^+ = (BE)^+$, $(B_{2}^{C})^{+},...$ are the connected components of a nonconnective Ω -spectrum $B\underline{C}(F)$ with $\pi_i B\underline{C}(F) = K_i(R)$ even for negative i. #### 0. Introduction. Given a ring R, let \underline{F} be the category of finitely generated free R-modules and isomorphisms. Form the "group completion" category $\underline{\underline{F}}^{-1}\underline{\underline{F}}$ of $\underline{\underline{F}}$ (see [G]); it is known that its classifying space $B\underline{F}^{-1}\underline{F}$ is the algebraic K-theory space $BG1(R)^+$ XZ. The purpose of this paper is to produce a nonconnective delooping of BG1(R) $XK_{O}(R)$ by using the parametrized versions $\underline{C}_{O}(\underline{F}) = \underline{F}$, $\underline{C}_{1}(\underline{F})$,... of $\underline{\mathbf{F}}$ given in [P]. Our main result is this: Theorem A. Write $B_{\hat{1}}$ for the classifying space of the category $\underline{\underline{C}}^{-1}\underline{\underline{C}}$, except that $\underline{B}_0 = \underline{BG1(R)}^+$. Then the spaces \underline{B}_1 are connected, and for $i \ge 0$ we have $$\Omega B_{i+1} = B_i \times K_{-i}(R)$$. ^{*} Partially supported by an NSF/grant Thus the sequence of spaces $\hat{B}_i = B_i \times K_{-i}(R)$ forms a nonconnective Ω -spectrum $\hat{\underline{B}}$ with homotopy groups $$\pi_{i}(\hat{\underline{\underline{\beta}}}) = K_{i}(R)$$, i any integer. In particular, the negative homotopy groups of $\hat{\underline{\underline{B}}}$ are the negative K-groups of Bass (B). Actually, we work in the generality of a small additive category A, rather than just with the additive category F of finitely generated free R-modules. For example, one could take P, the category of finitely generated projective R-modules. The category P is the idempotent completion of F, and we recover the same spectrum \hat{P} if we replace F by P. Note that $BP^{-1}P$ is $BG1(R)^+$ $XK_O(R)$, where P is the category of isomorphisms in P. Given A, we consider the additive categories $\mathcal{C}_i(A)$ of \mathbb{Z}^i -graded objects and bounded homomorphisms (see section 1 for details). If $A = \mathcal{F}$ this definition specializes to the groups \mathcal{C}_i of [P]. Let $\hat{\mathcal{C}}_i$ be the idempotent completion of $\mathcal{C}_i(A)$, and let \underline{A} , \underline{C}_i , $\underline{\hat{C}}$ be the subcategories of isomorphisms in A, \mathcal{C}_i and $\hat{\mathcal{C}}_i$, respectively. Our second result is this: Theorem B. Write \hat{B}_i for the classifying space of the category $\hat{\underline{C}}_i^{-1}\hat{\underline{C}}_i$ and B_i for the classifying space of $\underline{C}_i^{-1}\underline{\underline{C}}_i$. Then $$\Omega \hat{B}_{i+1} = \hat{B}_{i}$$ $$\Omega^i \hat{B}_i = \hat{B}_o = \text{"group completion" (BA)}^+ \text{ of } BA$$. The connected component of \hat{B}_i is B_i (except for i=0), and the sequence of spaces $\hat{B}_0, \hat{B}_i, \ldots$ is a nonconnective Ω -spectrum. In particular, \hat{B}_i is an i-fold delooping of $(B\underline{A})^+$. The outline of this paper is as follows. In section 1 we give the definitions of the \mathbb{Z}^1 -graded categori $\mathcal{C}_1(A)$. In section 2, we recall the passage from categories to spectra, and review the main points of Thomason's paper [T] that we need. In section 3, we prove Theorems A and B. The authors would like to thank Bob Thomason for his lucid exposition in $\{T\}$, which clarified a number of technical points. The second author would also like to thank the Danish Natural Science Research Council and Odense University for its hospitality during the writing stage. # 1. The categories \mathcal{C}_i . In this section we give the definition of the categories $\mathcal{C}_i(A)$ associated to a small additive category A. We also review the notions of filtered additive categories and of the idempotent completion of A for the convenience of the reader. <u>Definition 1.1.</u> An additive category A is said to be <u>filtered</u> if there is an increasing filtration $F_{o}(A,B) \subseteq F_{1}(A,B) \subseteq \ldots \subseteq F_{n}(A,B) \subseteq \ldots$ on $\operatorname{Hom}(A,B)$ for every pair of objects A,B of A. Each $\operatorname{F}_n(A,B)$ is to be a subgroup of $\operatorname{Hom}(A,B)$ and we must have $\operatorname{VF}_n(A,B) = \operatorname{Hom}(A,B)$. We require O_A and I_A to be in $\operatorname{F}_0(A,B)$, and assume that the composition of morphisms in $\operatorname{F}_m(A,B)$ and $\operatorname{F}_n(B,C)$ belongs to $\operatorname{F}_{m+n}(B,C)$. We also assume that the projections $\operatorname{A}\oplus \operatorname{B} \to \operatorname{A}$, and inclusions $\operatorname{A} \to \operatorname{A}\oplus \operatorname{B}$ and coherence isomorphisms all belongs to F_0 . If \emptyset is in $\operatorname{F}_d(A,B)$ we say that \emptyset has $\underline{\operatorname{filtration}}$ degree d. The reason for concerning ourselves with filtered categories is that the categories \mathcal{E}_i come with a natural filtration. Of course every additive category has a trivial filtration, obtained by setting $F_O(A,B) = \operatorname{Hom}(A,B)$. Example (1.1.1). Given a Z-graded ring A such as $R[t,t^{-1}]$, let A be the category of graded A-modules. We can filter A by legislating that homogeneous maps of degree $\pm d$ have filtration degree d. We now give our definition of the filtered category \mathcal{C}_i . Let the distance between points $J=(j_1,\ldots,j_i)$ and $K=(k_1,\ldots,k_i)$ in \mathbb{Z}^i be given by $$||J-K|| = \max_{S} |j_{S}-k_{S}|.$$ Definition (1.2). Let A be a (filtered) additive category. We define $\mathcal{C}_i(A)$ to be the category of \mathbf{Z}^i -graded objects and bounded homomorphisms. This means that an object A of \mathcal{C}_i is a collection of objects A(J) in A, one for each J in \mathbf{Z}^i . A morphism $\emptyset: A \to B$ in \mathcal{C}_i of filtration degree d is a collection $$\phi(J,K) : A(J) \rightarrow B(K)$$ of A-morphisms, where we require $\phi(J,K)=0$ unless $\|J-K\|\leqslant d$. If A is filtered, we also require each $\phi(J,K)$ to have filtration degree $\leqslant d$. Composition of $\phi=A\to B$ with $\psi:B\to C$ is defined by $$(\psi \circ \phi)(J,L) = \sum_{V} \psi(K,L) \circ \phi(J,K)$$. Note that composition is well-defined because only finitely many elements in this sum are different from 0. It is easily seen that $\mathcal{C}_{0}(A) = A$. Example (1.2.1). If $\mathcal F$ is the category of finitely generated free R-modules (with trivial filtration), the category $\mathcal C_i(\mathcal F)$ is the same as the category $\mathcal C_i(\mathcal R)$ constructed in [P]. In that paper it was proven that $$K_1(\mathcal{E}_{i+1}(R)) = K_{-i}(R), i \ge 0.$$ This indicated that \mathcal{C}_{i+1} might be a delooping of K-theory, and was the original motivation for this paper. That it cannot be exactly the case follows from (1.3.1) below. Example (1.2.2). Since $\mathcal{C}_1(A)$ is filtered, we can iterate the construction. It is easy to see that $$e_i(e_j(A)) = e_{i+j}(A) .$$ However, if we forget the filtration on $\mathcal{C}_{j}(A)$ this is no longer the case. Remark (1.2.3). If V is any metric space, we can define a category $\mathcal{C}_V(A)$ in a way generalizing the case $V=\mathbb{Z}^1$. An object A of \mathcal{C}_V is a collection of objects A(v), one for each v in V, subject to the following constraint: for every d>0 and v, A(w) $\neq 0$ for only finitely many w of distance less than d from v. Morphisms are defined as for \mathcal{C}_i . It is easy to see that if $V=\mathbb{R}^1$ then \mathcal{C}_V is naturally equivalent to its subcategory \mathcal{C}_i . This shows that the difference between \mathcal{C}_i and \mathcal{C}_{i+1} is the rate of growth in d of the number n(d,J) of points K within a distance of d from J. Example (1.2.4). If we take $V = \{0,1,2,\ldots\}$ then we will let $\mathcal{C}_+(A)$ denote $\mathcal{C}_V(A)$. This is the full subcategory of $\mathcal{C}_1(A)$ whose objects satisfy A(j) = 0 for j < 0. Similarly, if we take $V = \{0,-1,-2,\ldots\}$, we will write $\mathcal{C}_-(A)$ for $\mathcal{C}_V(A)$. We can identify $\mathcal{C}_+(A) \cap \mathcal{C}_-(A)$ with A in the obvious way. There is a shift functor $T:\mathcal{C}_1(A)\to\mathcal{C}_1(A)$ sending A to TA with TA(j)=A(j-1), and T restricts to an endofunctor of $\mathcal{C}_+(A)$. There is an obvious natural isomorphism t from A to TA in both \mathcal{C}_1 and \mathcal{C}_+ . We include the following result here for expositional purposes, and will generalize it in section 3 below. Lemma (1.3). Every object of $\mathcal{C}_+(A)$ is stably isomorphic to 0. In particular, the Grothendieck group $K_o(\mathcal{C}_+)$ is zero. Proof. Given A in \mathcal{C}_+ , let $B = \sum T^n$ A. That is, $B(j) = A(j) \oplus A(j-1) \oplus \ldots \oplus A(0)$. It is clear that $A \oplus TB = B$. The result follows from the observation that $t : B \cong TB$ is an isomorphism in $\mathcal{C}_+(A)$. Corollary (1.3.1). If $i \neq 0$ then every object of $\mathcal{C}_i(A)$ is stably isomorphic to 0. In particular, $K_o(\mathcal{C}_i) = 0$. <u>Proof.</u> By (1.2.2) we can assume that i = 1. But every object of \mathcal{C}_1 can be written $A_+ \oplus A_-$ with A_+ in \mathcal{C}_+ and A_- in \mathcal{C}_- . Hence $K_o(\mathcal{C}_1)$ is a quotient of $K_o(\mathcal{C}_+) \oplus K_o(\mathcal{C}_-) = 0$. Here is a quick discussion of idempotent completion, as applied to the $\mathcal{E}_{\underline{i}}$ construction. Definition (1.4) (see, e.g., [F, p.61]). Let A be an additive category. The <u>idempotent completion</u> \widehat{A} of A has as objects all morphisms $p:A\to A$ of A satisfying $p^2=p$. An \widehat{A} -morphism from p_1 to p_2 is an A-morphism \emptyset from the domain A_1 of p_1 to the domain A_2 of p_2 satisfying $\emptyset=p_2\emptyset p_1$. It is easily seen that \widehat{A} is an additive category and that $\operatorname{Hom}(p_1,p_2)$ is a subgroup of $\operatorname{Hom}(A_1,A_2)$. Hence \widehat{A} inherits any filtered structure that \widehat{A} might have. There is a full embedding of \widehat{A} in \widehat{A} sending A to 1_A ; if this is an equivalence ogf categories, we say that \widehat{A} is <u>idempotent complete</u>. Example (1.4.1). The idempotent completion of the category $\mathfrak F$ of free R-modules is equivalent to the category $\mathfrak P$ of projective R-modules. Lemma (1.4.2). The categories \hat{A} and $\mathcal{C}_i(\hat{A})$ are cofinal in their idempotent completions \hat{A} and $\hat{\mathcal{C}}_i(\hat{A})$. Moreover, $\mathcal{C}_i(\hat{A})$ is cofinal in $\mathcal{C}_i(\hat{A})$. <u>Proof.</u> This is an easy computation. For example, if p is an object of $\mathcal{C}_i(\widehat{A})$, define q by q(J) = 1 - p(J). Then $p \oplus q$ belongs to $\mathcal{C}_i(\widehat{A})$. To compute the K-theory of A, we need to know which sequences are "exact": a different embedding of A in an ambient abelian category will result in a different family of short exact sequences (see [Q]). In particular, we cannot talk about $K_1\mathcal{C}_i(A)$ unless we know which sequences in \mathcal{C}_i are "exact". It is not clear what the notion of "exact" should be, unless either (a) all exact sequences in A split (we insist the same is true of \mathcal{C}_i), or (b) A is embedded in an abelian category A closed under countably infinite direct sum (for then \mathcal{C}_i is embeddable in A). In either case, it follows from (1.4.2) and Theorem 1.1 of [Gr] that $$K_n \mathcal{E}_i(A) = K_n \mathcal{E}_i(\hat{A}) = K_n \hat{\mathcal{E}}_i(A)$$, $n \ge 1$. Note that our proofs of theorem A and B only apply to situation (a). Example (1.5). Let p be the idempotent natural transformation in $\mathcal{C}_1(A)$ given by $$(p_{-})_{A}: A \rightarrow A$$, $p_{-}(j,k) = \begin{cases} 1 & \text{if } j = k \leq 0 \\ 0 & \text{otherwise} \end{cases}$ Given an object A of A. let A_ denote the image of p_ on the constant object A(j) = A of $\mathcal{C}_1(A)$. Thus A_(j) = 0 if j > 0 and A_(j) = A if j \leq 0. The map t is an endomorphism of the constant object A \cong TA; write s for the restriction of p_t to A_. Then l-s: A_ \rightarrow A_ is both a monomorphism and an epimorphism in $\mathcal{C}_1(A)$, but not an isomorphism. This is because its "inverse" Σ s is not bounded. In particular, $\mathcal{C}_1(A)$ can never be an abelian category, even if A is. We conclude this section with the following result, which provides motivation for our Theorem B. It is also a consequence of Theorem B. Since we will not use this result, we merely sketch the proof. Proposition (1.6). If all short exact sequences in A split, then $K_1(\mathcal{C}_{i+1}(A)) = K_0(\hat{\mathcal{C}}_i(A))$. In particular, $K_1\mathcal{C}_1(A) = K_0(\hat{A})$. Sketch of proof. This is proven in section 1 of [P], modulo terminology. $$\phi(\alpha) = \left[(\alpha p_{\alpha}^{-1}) \begin{pmatrix} 2d \\ \oplus \\ j=-2d \end{pmatrix} A(j) \right] - \left[p_{\alpha} \begin{pmatrix} 2d \\ \oplus \\ j=-2d \end{pmatrix} A(j) \right].$$ If α has filtration degree less than d, one shows as in $\{P,(1.11)\}$ that this map ϕ is well-defined and independent of d. Clearly the composition is the identity on $K_O(A)$. The proof of [P, (1.20)] applies to show that ϕ is monic, which proves the proposition. Example (1.6.1). Again, let $\mathfrak F$ be the category of finitely generated free R-modules. Then for $i\geqslant 1$ we have $K_{O}\mathcal E_{i}(R)=0 \text{ but } K_{O}\hat{\mathcal E}_{i}(R)=K_{I}\mathcal E_{i+1}(R)=K_{-i}(R).$ Note: Example (1.6.1) follows from [P], not from (1.6). # 2. The pasage to topology. In this section we recall various results on the passage from the categories A, C_i etc. to infinite loop spaces and spectra. We also recall Thomason's simplified double mapping cylinder from section 5 of $\{T\}$. We urge the reader to consult $\{T\}$ for more details. A symmetric monoidal category \S is a category together with a functor \oplus : $\S{\times}\S$ $\to \S$ and natural isomorphisms $\alpha : (A \oplus B) \oplus C \cong A \oplus (B \oplus C)$ Υ : $A \oplus B \cong B \oplus A$. These natural isomorphisms are subject to coherence conditions that certain diagrams commute. We refer the reader to [Mac] for a more detailed definition, contending ourselves with: Example (2.1). If A is an additive category then A is a symmetric monoidal category under \oplus = direct sum. The subcategory \underline{A} of the isomorphisms in A is also symmetric monoidal under \oplus = direct sum. It follows that $\mathcal{C}_1(A)$ and its category $\underline{C}_1(A)$ of isomorphisms are also symmetric monoidal. There is a functor Spt from the category of small symmetric monoidal categories to the category of connective Ω -spectra (i.e., sequences of spaces X_n with X_n being (n-1)-connected and with $X_n=\Omega X_{n+1}$). This functor satisfies - (a) A functor $\underline{\underline{A}} \rightarrow \underline{\underline{B}}$ preserving \oplus up to coherent natural transformation , a "lax" functor, induces a map $Spt(\underline{\underline{A}}) \longrightarrow Spt(\underline{\underline{B}})$ of infinite loop spectra. - (b) The zeroth space $\operatorname{Spt}_{O}(\underline{\mathbb{A}})$ is the "group completion" of BA , the classifying space of the category $\underline{\mathbb{A}}$. The construction of Spt is basically due to May and to Segal, and Spt is unique up to homotopy equivalence. See [A]. One description of Spt may be found in the Appendix of [T]. Lemma (2.2). Suppose that $\underline{A} \to \underline{B}$ is a lax functor of small symmetric monoidal categories, and that $\underline{B}\underline{A} \to \underline{B}\underline{B}$ is a homotopy equivalence of topological spaces. Then $\operatorname{Spt}_{O}(\underline{A}) \to \operatorname{Spt}_{O}(\underline{B})$ is a homotopy equivalence. Proof. See (2.3) of [T]. Lemma (2.3). Suppose that \underline{A} is a full, cofinal subcategory of the small symmetric monoidal category \underline{B} . Then the connected components of $\mathrm{Spt}_{O}(\underline{A})$ and $\mathrm{Spt}(\underline{B})$ are homotopy equivalent. Proof. This is wellknown. The point is that $\begin{aligned} &H_{\star}[\operatorname{Spt}_{o}(\underline{A})_{o}] = \underbrace{\operatorname{colim}}_{A \in \underline{A}} & H_{\star} & B & \operatorname{Aut}(A) \\ & & A \in \underline{A} \end{aligned}$ $&= \underbrace{\operatorname{colim}}_{B \in \underline{B}} & H_{\star} & B & \operatorname{Aut}(B) \\ &= H_{\star}[\operatorname{Spt}_{o}(\underline{B})_{o}] .$ Lemma (2.4) (Quillen). Let \S be a small symmetric monoidal category in which all morphisms are isomorphisms, and assume that all translations $S \oplus : \S \to \S$ are faithful. Then there is a category $\S^{-1} \S$ whose objects are pairs (S_1,S_2) of objects in \S , such that $B\S^{-\frac{1}{2}}\S$ is homotopy equivalent to $Spt_O(\S)$. Proof. See [G, p.221] or p. 1657 of [T]. Corollary (2.4.1). If A is a small additive category, let $\underline{\underline{A}}$ denote the category of isomorphisms in A. Then $\underline{\underline{B}}^{-1}\underline{\underline{A}}$ is homotopy equivalent to $\mathrm{Spt}_{0}(\underline{\underline{A}})$. Example (2.4.2). Let R be a ring for which $R^m \cong R^n$ implies that m=n, and let \underline{F} be the category of finitely generated free R-modules and isomorphisms. The basepoint component of $\underline{F}^{-1}\underline{F}$ has objects $R^m=(R^m,R^m)$ and $$\text{Hom}(R^m, R^{m+n}) = \text{Gl}_{m+n}(R) \times \text{Gl}_{n}(R)^{\text{Gl}_{m+n}(R)}.$$ In particular, $\operatorname{Hom}(0,R^m)$ is $\operatorname{Gl}_m(R)$. The family of the $\operatorname{Hom}(0,R^m)$ gives a map from $\operatorname{BGl}(R)$ to the basepoint component $\operatorname{BGl}^+(R)$ of $\operatorname{Bg}^{-1}F$ The main ingredient in the proof of Theorem B is the simplified double mapping cylinder construction of R.W. Thomason, described in (5.1) of {T}. Let \underline{A} be a symmetric monoidal category with all morphisms isomorphisms and $u:\underline{A}\to \underline{B}$, $v:\underline{A}\to \underline{C}$ strong functors of symmetric monoidal categories (i.e. functors preserving direct sum up to natural isomorphism). Define $\underline{P}=\underline{P}(\underline{A},\underline{B},\underline{C},u,v)$ to be the category with objects triples (B,A,C) with A an object of \underline{A} , B of \underline{B} , and C of \underline{C} . A morphism (B,A,C) \to (B',A',C') is a 5-tuple (ψ,ψ_1,ψ_2,U,V) where U,V are objects of \underline{A} , $\psi:A\cong U\oplus A'\oplus V$, $\psi_1:B\oplus UU\to B'$ and $\psi_2:C\oplus VV\to C'$. U and V may be varied up to isomorphism. Composition of $(\psi,\psi_1,\psi_2,U,V):(B,A,C)\to (B',A',C')$ with $(\bar{\psi},\bar{\psi}_1,\bar{\psi}_2,\bar{U},\bar{V}):(B',A',C')\to (B'',A'',C'')$ is given by $A \cong U \oplus A' \oplus V \cong (U \oplus \overline{U}) \oplus A'' \oplus (\overline{V} \oplus V)$ $B \oplus u (U \oplus \overline{U}) \cong (B \oplus u U) \oplus u \overline{U}) \rightarrow B' \oplus u \overline{U} \rightarrow B''$ $v(\overline{V} \oplus V) \oplus C \cong v\overline{V} \oplus vV \oplus C \rightarrow v\overline{V} \oplus C' \rightarrow C"$ and direct sum in \underline{P} is induced by direct sum in \underline{A} , \underline{B} and \underline{C} . We then have Theorem 2.5 (R.W. Thomason [T,(5.2)] . Up to homotopy the diagram $$\begin{array}{ccc} \operatorname{Spt}_{0} \underline{\underline{a}} & \longrightarrow & \operatorname{Spt}_{0} \underline{\underline{B}} \\ \downarrow & & \downarrow \\ \operatorname{Spt}_{0} \underline{\underline{c}} & \longrightarrow & \operatorname{Spt}_{0} \underline{\underline{p}} \end{array}$$ is a pullback diagram. ## 3. The proof of Theorem A and B. In this section we prove Theorems A and B. We make the standing assumption that A is a small filtered additive category and that \underline{A} is the (symmetric monoidal) category of isomorphisms of A. Similarly we write \underline{C}_{i} , \underline{C}_{+} and \underline{C}_{-} for the categories of isomorphisms of $\mathcal{C}_{i}(A)$, $\mathcal{C}_{+}(A)$ and $\mathcal{C}_{-}(A)$. The idea is to show that the diagram induces a pullback diagram of spectra, and to use the following result: <u>Proposition</u> (3.1). Spt_o($\underline{\underline{C}}_+$) and Spt_o($\underline{\underline{C}}_-$) are contractible. <u>Proof.</u> By symmetry it is enough to consider \subseteq_+ . Recall from the discussion before (1.3) that there is a shift functor $T: \subseteq_+ \to \subseteq_+$ and a natural transformation t from A to TA. The category \subseteq_+ has an $$(\sum_{n=0}^{\infty} T) A(j) = \bigoplus_{n=0}^{j} A(j-n) .$$ (Recall that A(j) = 0 for j < 0 .)We can define $\sum_{n=1}^{\infty}$ T similarly. The natural isomorphism t induces a natural isomorphism t from Σ T A n=0 to $\sum_{n=1}^{\infty}$ T A. But as endofunctors of \subseteq_+ we have $1 \oplus \sum_{n=1}^{\infty}$ T $\cong \sum_{n=0}^{\infty}$ T . Hence as self-maps of the H-space $B\underline{C}_+$ we have $$1 \sim \left(\begin{array}{ccc} \infty & n \\ \Sigma & T \end{array} \right) - \left(\begin{array}{ccc} \infty & n \\ \Sigma & T \end{array} \right) \stackrel{\mathsf{t}}{\sim} 0 .$$ This shows that B is contractible. But then $\operatorname{Spt}_{O}(\underline{\mathbb{C}}_{+})$ is contractible by Lemma (2.2). Proof that Theorem B implies Theorem A. Write \hat{B}_i for $\operatorname{Spt}_o(\hat{\underline{C}}_i)$. Since we have $\pi_o(\hat{B}_i) = K_{-i}(R)$ by (1.6.1) and since translations are faithful in $\hat{\underline{C}}_i$, it follows that \hat{B}_i is homotopy equivalent to $B_i \times K_{-i}(R)$. Since $\Omega B_i = \Omega \hat{B}_i$, the result is now immediate. We now begin the proof of theorem B by making a series of reductions. Since $$\pi_o(B_i) = \pi_o Spt_o(A_i) = K_o(A_i)$$, connectedness of the \mathbf{B}_i for $i \neq 0$ follows from (1.3.1). Now \underline{C}_i is full and cofinal in $\widehat{\underline{C}}_i$ by (1.4.2), so by (2.3) the connected space $\mathbf{B}_i = \operatorname{Spt}_o(\widehat{\underline{C}}_i)$. By construction (or by (2.4.1)), $\widehat{\mathbf{B}}_o = \operatorname{Spt}_o(\widehat{\underline{A}})$ is the group completion of $\mathbf{B}\widehat{\underline{A}}$. Thus the proof of Theorem B is reduced to showing that $\Omega\widehat{\mathbf{B}}_{i+1} = \widehat{\mathbf{B}}_i$ for $i \geq 0$. Next, observe that $\hat{\mathcal{E}}_{i+1}(A) = \hat{\mathcal{E}}_1\hat{\mathcal{E}}_i(A)$, so that $\hat{\hat{B}}_{i+1} = \operatorname{Spt}_0(\hat{\hat{\mathcal{E}}}_1(A))$ and $\hat{\hat{B}}_i = \operatorname{Spt}_0(\hat{\mathcal{E}}_i(A))$. Since we can replace A by $\hat{\mathcal{C}}_i(A)$, it is enough to prove that $\Omega \hat{B}_1 = \hat{B}_0 = \operatorname{Spt}_0(\hat{A})$. There is also no loss in generality in assuming that A is idempotent complete, since $$\Omega \hat{B}_1 = \Omega \operatorname{Spt}_{o}(\hat{\underline{C}}_1(\hat{A})) = \Omega \operatorname{Spt}_{o}(\hat{\underline{C}}_1(\hat{A}))$$ by (2.3). In fact, by (2.3) we also have $$\Omega \operatorname{Spt}_{o}(\widehat{\underline{\mathcal{G}}}_{1}) = \Omega \operatorname{Spt}_{o}(\underline{\mathcal{G}}_{1})$$. Therefore, Theorem B will follow from: Theorem (3.2). Let A be a small, filtered additive category which is idempotent complete. Then Ω Spt_o($\underline{\underline{C}}_1$) is homotopy equivalent to $\operatorname{Spt}_{\underline{O}}(\underline{\underline{A}})$. Lemma (3.3). Let A be a small filtered additive category. Recall that G_+ and G_- are subcategories of G_1 whose intersection is A. Let A be the simplified double mapping cylinder construction applied to $A \to G_-$ and $A \to G_+$. Then $A \to G_+$ is homotopy equivalent to $A \to G_+$. <u>Proof.</u> This is immediate from Thomason's Theorem (2.5), since by (3.1) the spaces $\operatorname{Spt}_{o}(\underline{\mathbb{C}}_{+})$ and $\operatorname{Spt}_{o}(\underline{\mathbb{C}}_{-})$ are contractible. By the universal mapping property of \underline{P} (see p. 1648 of $\{T\}$), there is a strong symmetric monoidal functor $\Sigma:\underline{P}\to\underline{C}_1$. This functor is defined on objects by $$\Sigma(A^-, A, A^+) = A-\oplus A \oplus A_+$$ where A^-,A,A^+ are objects of \underline{C}_+ , \underline{A} and \underline{C}_- , respectively. A morphism $(\psi^-,\psi,\psi^+,U^-,U^+)$ in \underline{P} from (A^-,A,A^+) to (B^-,B,B^+) is sent by Σ to the composite $$A^- \oplus A \oplus A^+ \xrightarrow{1 \oplus \psi \oplus 1} A^- \oplus U^- \oplus A \oplus U^+ \oplus A^+ \xrightarrow{\psi^- \oplus 1 \oplus \psi^+} B^- \oplus B \oplus B^+ .$$ Theorem (3.4). Let A be idempotent complete, and let \underline{P} be the double mapping cylinder of Lemma (3.3). Then the functor $\Sigma:\underline{P}\to\underline{C}_1$ induces a homotopy equivalence between the classifying spaces $B\underline{P}$ and $B\underline{C}_1$. Note that Theorem (3.4) immediately implies Theorem (3.2) by (3.3) and (2.2). Thus we have reduced the proof of Theorem B to the proof of Theorem (3.4). <u>Proof.</u> We will show that this functor satisfies the conditions of Quillen's Theorem A from [Q]. Fix an object Y of \mathbb{Q}_1 ; we need to show that $Y \downarrow \Sigma$ is a contractible category. To do this, we use the bound d for $\mathcal{C}_1(A)$ to filter $Y \downarrow \Sigma$ as the increasing union of subcategories Fil_d , and show that each Fil_d has an initial object *d . Therefore Fil_d is contractible; their union $Y \downarrow \Sigma$ must also be contractible by standard topology. The category ${\rm Fil}_{d}$ is the full subcategory of all $\alpha: Y \to \Sigma(A^-,A,A^+)$ where both α and α^{-1} are bounded by d. Define Y_d , Y_d^- and Y_d^+ in \underline{A} , \underline{C}_+ and \underline{C}_+ respectively by setting $$Y_d = Y(-d) \oplus ... \oplus Y(d)$$ in \underline{A} $$Y_d^{\sim} = Y(j)$$ if $j < -d$, and $= 0$ otherwise $$Y_d^+ = Y(j)$$ if $j > -d$, and = 0 otherwise. The obvious isomorphism $\sigma: Y \cong Y_d^- \oplus Y_d^+ \oplus Y_d^+$ in \subseteq_1 is bounded by d, and forms the object $*_d: Y \to \Sigma(Y_d^-, Y_d, Y_d^+)$ of Fil_d . We will show that $*_d$ is an initial object of Fil_d . Given the object $\alpha:\,Y\to\Sigma(A^-,A,A^+)\,,$ we have to show that there is a unique morphism $$\eta = (\psi, \psi^-, \psi^+, e_-(Y_d), e_+((Y_d)) : (Y_d^-, Y_d, Y_d^+) \rightarrow (A^-, A, A^+)$$ in \underline{P} so that $\Sigma(\eta) = \alpha \sigma^{-1}$ in \underline{C}_1 . Let pr_- , pr_+ be the projections of $\Sigma(A^-,A,A^+)$ onto A^- , A and A^+ , respectively. Since α^{-1} is bounded by d, $\alpha^{-1}(A)$ is contained in Y_d , or rather in the image $\sigma^{-1}(Y_d)$ of Y_d in Y. Hence it makes sense to let e be $\sigma \alpha^{-1}(\operatorname{pr})\alpha \sigma^{-1}$ restricted to Y_d , and it is clear that e is an idempotent of Y_d . Similarly, $\sigma \alpha^{-1}(A^-)$ is contained in $Y_d \oplus Y_d$, and $\alpha^{-1}(A^+)$ is contained in $Y_d \oplus Y_d^+$. Let e_- and e_+ be $\sigma \alpha^{-1}(\operatorname{pr}_-)\alpha \sigma^{-1}$ and $\sigma \alpha^{-1}(\operatorname{pr}_+)\alpha \sigma^{-1}$ restricted to Y_d . These maps are also idempotents of Y_d , and it is easy to see that e_- + e_+ = 1. Since A is idempotent complete, the composition $$Y_d \cong e_-(Y_d) \oplus e(Y_d) \oplus e_+(Y_d)$$ makes sense in A. Define ψ to be the composite $$\mathbf{Y_d} \cong \mathbf{e_{-}}(\mathbf{Y_d}) \oplus \mathbf{e}(\mathbf{Y_d}) \oplus \mathbf{e_{+}}(\mathbf{Y_d}) \xrightarrow{\mathbf{1} \oplus \alpha \oplus \mathbf{1}} \mathbf{e_{-}}(\mathbf{Y_d}) \oplus \mathbf{A} \oplus \mathbf{e_{+}}(\mathbf{Y_d})$$ Similarly, define maps $$\psi^-: Y_{\mathbf{d}}^- \oplus e_-(Y_{\mathbf{d}}) \xrightarrow{\alpha \sigma^{-1}} A^- \text{ in } \underline{\mathbb{Q}}_-$$ $$\psi^+$$: $e_+(Y_d) \oplus Y_d^+ \xrightarrow{\alpha \sigma^{-1}} A^+$ in \underline{c}_+ . This completes the definition of the map $\eta:(Y_d^-,Y_d^-,Y_d^+)\to (A^-,A,A^+)$ in \underline{P} . By definition of Σ we have $\Sigma(\eta)=\alpha\sigma^{-1}$. Because all maps in \underline{A} , \underline{C} and \underline{C}_+ are isomorphisms, it is an easy task to verify that η is the unique map with $\Sigma(\eta)=\alpha\sigma^{-1}$. It follows that \star_d is an initial object of Fil_d. Q.E.D. ### 4. An overview. To place our construction in perspective, it is appropriate to review a little history. The definition of the functors $K_{-i}(R)$ was given by Bass [B] in 1966 during an attempt to formalize his decomposition of $K_1(R\{t_1,t_1^{-1},\ldots,t_n,t_n^{-1}\})$. In 1967, Karoubi $\{K-1\}$ gave another definition of $K_{-i}(R)$ by defining $K_{-i}(A)$ for any abelian category. A third and fourth definition of $K_{-i}(R)$ were given independently by Karoubi Villamayor $\{K-V\}$ using the ring S(R) and by Wagoner $\{W-1\}$ using the subring $\mu(R)$ of S(R). Happily all these definitions were shown to agree by Karoubi's axiomatic treatment in $\{K-136\}$. In 1971, Gersten [Ger] constructed a nonconnective delooping of $K_O(R) \times BG1^+(R)$ using the fact that $\Omega BG1^+(S(R)) = K_O(R) \times BG1^+(R)$. Wagoner [W-2] then constructed the Ω -spectrum $K_O(\mu^1(R)) \times BG1^+(\mu^1(R))$ and showed that the inclusions $\mu(R) \to S(R)$ induced an equivalence of spectra. To our knowledge, nonconnective deloopings of the K-theory of other additive categories besides $\mathcal F$ has not been studied until now. The construction in [P] is very much in the spirit of the early definitions of the $K_{-i}(R)$, but works for any additive category. Needless to say, an open question in our work is whether or not the $\Omega BQ\mathcal{C}_n(A)$ yield a nonconnective delooping of any (idempotent complete) additive category with exact sequences. A major difference between the categories $\mathcal{C}_i(A)$ and Karoubi's categories S^iA is that SA is defined as a quotient of the flasque category CA (see [K-136]) while $\mathcal{C}_1(A)$ may be viewed as an enlargement of the flasque category $\mathcal{C}_+(A)$. It would be interesting to see if the natural inclusion of CA in $\mathcal{C}_+(A)$ could be made to induce an isomorphism between K-groups. #### References. - [A] J.F. Adams, <u>Infinite Loop Spaces</u>, Princeton University Press, Princeton, 1978. - [B] H. Bass, Algebraic K-theory, Benjamin, New York, 1968. - [F] P. Freyd, Abelian Categories, Harper and Row, New York, 1964. - [Ger] S.M. Gersten, On the spectrum of algebraic K-theory, $\underline{\text{Bull.}}$ AMS 78 (1972), 216-219. - [G] D. Grayson, Higher algebraic K-theory: II (after D. Quillen), Lecture Notes in Math. No 551, Springer-Verlag, 1976. - [K-1] M. Karoubi, La periodicite de Bott en K-theorie generale, Ann. Sci. Ec. Norm. Sup. (Paris) 4 (1971), 63-95. - [K-136] M. Karoubi, Foncteur derives et K-theorie, Lecture Notes in Math. No. 136, Springer-Verlag, 1970. - [K-V] M. Karoubi and O. Villamayor, K-Theorie algebrique et K-thorie topologique, <u>C.R. Acad. Sci.</u> (Paris) 269, serie A (1969), 416-419. - [Mac] S. Maclane, <u>Categories</u> for the <u>Working Mathematician</u>, Springer-Verlag, 1971. - [P] E.K. Pedersen, On the K_ifunctors, <u>J. Algebra</u> 90 (1984), 461-475. - [Q] D. Quillen, Higher algebraic K-theory: I, Lecture Notes in Math. No 341, Springer-Verlag, 1978. - [T] R. Thomason, First quadrant spectral sequences in algebraic K-theory via homotopy colimits, <u>Comm. in Alg.</u> 10 (1982) 1589-1668. - [W-1] J.B. Wagoner, On $K_{\underline{2}}$ of the Laurent polynomial ring, Amer. J. Math. 93 (1971), 123-138. - [W-2] J.B. Wagoner, Delooping classifying spaces in algebraaic K-theory, $\underline{\text{Topology}}$ 11 (1972), 349~370. - [Gr] D. Grayson, Localization for flat modules in Algebraic K-theory, J. of Algebra 61 (1979), 463-496.