EVALUATING THE SWAN FINITENESS OBSTRUCTION
FOR PERIODIC GROUPS

by
R. James Milgram*

In [17] R. Swan introduced the finiteness obstruction Un(G) for free
actions of a periodic group G on finite complexes having the homctopy
type of the sphere $™ 1. Tt takes its value in a certain quotient of
%O(Z(G)), EO(Z{G))/T, and was cne of the main motivations in the develop-

ment of algebraic K-theory.

Meore recently Ib Madsen, C. Thomas, and C.T.C. Wall [22], [20],
\jO] proved a sharpened version of one of Swan's theorems, roughly that
if G has period n then G acts freely on a homotopy Sn_1 or Szn"j, and
no examples were known for which 2n-1 was actually necessary. Indeed
it was somewhat hesitantly suggested that n-1 is always correct.

In[4], [5], [6], [8], [14], [15], a subgroup D(G) < %0(Z(G)) was
studied and shown to be computable in terms of determinants or reduced
norms and the structure of units in certain algebraic number fields.

D(G) contains T and we prove
Theorem 2.B.71: ¢ (G )€ D(G)/T.

- In particular, we relate Un(G) to the behaviour of these groups
TorlZ(G)(M,Z} where M is a maximal order containing Z(G) in @(G).
In §3 we calculate these Tor groups for hyperelementary groups (this
section may have independent interest), and in §4 we study D(G) for
a class of periodic groups of period 4, Qldp,q,1).
The Swan obstructions for these gioupsqa}e written down in

Theorem 4.B.6, and we have

Theorem A (4.C.2, 4.C.5, and 4.C.8): The Swan obstruction 04(G) # 0 for
G = Q{12,5,1), Q(12,7,1), or Q(12,11,1). (The groups Q(a,b,c) are defined
in §3.B, but the notation isg standard.)

In "act we have
-

Theorem B: Among periodic groups of period n and order « 280 only one

group of each order 120, 168, 240, and 264 fails to act freely on a

* Research supported in part by NSF MCS76~0146-A01
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finite complex having the homotopy type of sV7T,

However, for the next group in the geries of theorem A we have

Proposition 4.C.1: 53(Q(12,13,1)) = 0.

Hence there is a 3-complex homotopic to S3 on which ©(12,13,1} acts

freely.

The number theory involved in these guestions is subtle since
Theorem A shows that Q(12,5,1), Q(12,7,1) and Q(12,11,1) can't even

act freely on a homology 3-sphere.

Remark D: The procf that 7 (G) € D(G)/T came out of several conversat-
n

ions with R. Oliver, and I also profited from a conversation with

H. Bass. The initial question which led to this work came up in dis-

cussions with I. Hambleton.

This paper was originally written in 1978. For various reasons it
has not been previously published but it has been circulated privately.
It initiated a vigorous attack on the space form problem for the last
and demonstrably most interesting class of groups, the Q(8a,b,c} with
a,b,c cdd coprime integers.

The initial theorem A and B above were quickly extended in [25] by
constructing large numbers of odd index subgroups of the units in the
cyclotomic fields Q(kp), Q(h4p), Q(kp,kq) studied here. Indeed the
proofs of the result in [25] are direct extensions of the proofs here.
The only thing preventing their being given in this original paper was
the fact that the unit theorems had not yvet been proved.

The main result of [25] as slightly extended in [26] is

Theorem C: Let Kn be the maximal 2-abelian extension of @ contained in

the cyclotomic field Q(qn). If K is Kp, qu with the quadratic symbol

Fﬂ= -1, or the maximal 2 extengion in @iz ntt n~T,Qp+c-1} p 7 1(8),

g P
2 2
then the c¢yclotomic units have odd index in the units of K.

Next, by the technigues developed here and in [25] we cobtain

Thecrem D: Let p be a prime and

a) suppose p = 3(4) then 04(q(8p,q,1)) =0
for g prime if and only if

(i} g & 1(8) or
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(11) g = 5(8) but p¥ = I1(q) for some odd .
b)  5,(Q8p,q,1)) =0 if p = g = 1(4)

but [?]= -1.
== 14

Using this as a starting place a spirited attack by the author

and Ib Madsen on the actual surgery problems took place. {(Preliminary
results had already been indicated in Eﬂﬂ).

Again the results depended on finding sufficient units, hence had
to be restricted to the cases covered by theorem C. The results [261

are

Theorem E: Let p,q be distinct odd primes and suppose p = -1 (mod 8);
then

]R8k+4

a) 0(8p,q,1) acts freely on -{pt} (k z 1) 1if g = 1{mod 4)

and p has odd order {(mod q).
R8k+4

b) Q(8p,q,1) acts freely on 8k+3

-{pt) but not on 8
if g = 5(8) and p has eodd order (mod q)l .

85+3 (k > 1) if q = 1(8) and p has

(k

I

1)

c}Q(8p,qg,1) acts freely on S

odd order (mod q).

For special c¢lasses of numbers there are further results [2?]. But
all these results rest on the idea of identifying the Swan obstruction

studied here as the image under 5 of an element © where

9

o€ im (8, (3 (@) K, (z(@)))

rPrg
which is developed here. This class © rather than its image is shown to
correspond to the surgery obstruction for certain surgery problemsg over
the Poincaré complex constructed here, and using recent results on the
calculation of these groups, if ( as usual} one has sufficient inform-
ation about units, Theorem E follows.

I would like to thank A. Ranicki and the other editors of this
Proceedings for giving me the opportuniry to finally publish this
work.

Edinburgh
September, 1984
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§1. K,(2(G) and D(G) for G a finite group.

A. Preliminary remarks on KO(Z(G))
Let Mn(D} be a matrix ring over a division algebra D whose center

F is a finite extension of the rationals P or the complete local field

A
Qp. The reduced norm homomorphism

~
N:GL_ (D} = F
n

is given by linear embedding Mn(D)C: Mn(K) for some extensicn K of F
and taking the determinants of the images. Then Wang's theorem [21]

identifies

TR 1: K, (M (D)) = K (D) G F
n N

where im (K(D)) is all those elements of F which are positive at all
® places at which D is a guaternion algebra.
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n ~r
0 = D(G) » K (Z(G)) > Ky(m) » O.
A second group E(G) can be introduced which depends only on re-

duced norms. Let Mp be a maximal order in 6P(G) containing Qp{ﬁ), and

define
1.B.3: U K, (8_(G))
o C K (@

as the image of K1(Mp)' Writing

A _ “ (D.)
QP{G) = Mn i

. i
e have M = I I M (N.]
" 15 i nl
and K1(Q (G)) ,]J (F ) vhere F is the center of Dl Thus (one

could use for example Qulllen S locallzatlon sequence [}2] to show this})

1.B.4: LJP = LI_U(Fi)

the product of the units of the Fi's.

The composite maps

) K,](Zp(G)) - K,I(Mp) +Up
1.B.5:

Bp: KT(M} + KT(Mp) > LJP
then give

Definition 1.B.6: The local defect Ep{G) at p igt)p/im(ap).

A
Remark 1.B.7' If p*{G then M = Zp(G) S0 Ep(G) = 1. In any case Ep(G)

is a partial measure of the dev1atlon of Z (G) from Mp and is finite
for every finite group G.

(G} consists of a p primary part which is difficult to analyze
and a somewhat easier part of order prime to p. To obtain this second

part we can use the map

; AL
1.B.8: K1(ZP(G)/J)—> iU(Fi)/(HmQ)

A
where J 1s the Jacobson radical in Zp(G} andJui is the maximal ideal

in U(Fi).
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Returning to 1.B.5> the map,

1.B.9: 8 =_U_ B, ¢ Ky ) - ‘ ‘ E,©)

o] lc] p‘ ||

defines the quotient

1.B.10: E{G) =_1J___EP(G)/im(B).

pLG
Thus E(G) is the product of the local defects factored out by the image
of global units coming from K1(M). Its calculation is difficult but in

specific cases presents no insuperable ocbstacles.

Theorem 1.B.11: E{(G) = D{(G)
{See for example [5].)

Remark 1.B.12: When the author initiated this work he was unaware of
1.B.11 and so derived his own proof, which we present in outline from
here, as it may be easier for some people to reconstruct. Note, to begin,
that there is a k so ic[k. MTZ(G). So set L_{G) = im{Z(G))CM /| G| K8y, ana
we have the pullback diagram

1.B.13: Z(G}——»

m
g

LS( ) —_—> M /IGIkSM

Moreovez,1TS is onto so Milnor's Mayer-Vietoris sequence can be applied

obtaining
S 3 ar ~
1.B.14: K (2(G)) > K (L_(G)) @ K, ()~ K1(M/|G’](M)-§'KO(Z(G))+ K, ) =0

so im 9 s D{G}. Now let s become large and pass to limits. In the limit
we need some information about K1(M), K1(Mp). This may be supplied using
Quillen's exact sequence of a localization to show that the kernels of

the local reduced norm maps are in the image of the elements in K1(M).

§2. Swan's finiteness obstruction.

A, The definition and basic properties Il
Let T(G) < D(G) C K, (7(G))be defined as the image of — U (7
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A :
where Z;C:MP corresponds to the trivial representation. Now suppose G
is periodic of peried n. That is, there is an exact sequence

£
-~

2.A.1: 0 - 2 =+ Cn > v, + C, > Z2(G)> T 0

-2 1
where the Cj are projective Z(G) mcdules. In [_1 7]Swan defined an in-
variant Gn(G} € AI{O(Z(G))/T which is zerc if and only if G acts freely
on an n-1 dimensional complex having the homeology type of Sn_1.
fact, On(G) is the Euler class in ﬁO(Z(G})/T of 2.A.1.

2.A.2: o, (6) = [CO] - [cq] O [ |:cn_1 1.

If n is even then sequences 2.A.T may be spliced either together to
give osn(G) = soN(G). Also if HQ G is a subgrgup then by restriction
Z{(G) proiecgives become E(H) projective so rH:KO(Z(G)) > ﬁO(Z(H))
induces rH:KO(Z(G))/T - KO(Z{H))/T and

2.2.3: EH(on(G)) = o (H)
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Proof:It suffices to consider hyperelementary subgroups since _U_rH

in 2.B.2 is injective.

T{G) Hormw

D(G) ! D{(H)
2.B,2 H
~ H -
K (2(6)) LHL X (z(®)
e j 11 py
RN
K_Ca0) — || K ()

Let N be a finitely generated torsion M module. By [1§] N has project-

ive length 1 so there is a short exact sequence

0 P, P > N> 0

1 0
with PO,P1 finitely generated projective, and
-~

y{(N) = [PO] - [P1] € K, 0

is well defined. We now have (and this is the heart of the matter)
n-1 . .

. N | i
Lemma 2.B.3: PG(Un(G)) iEO {-1}" y({Tor 7(G)

(M{G},2)).

Proof: Tensor 2.A.1 over Z{(G}) with M obtaining

£
2.B.4: 0~ C o B Mool > 20 .

n-1t . ;
The homeclogy of 2.B.4 is z TorlZ(G)(M,Z) which differs from the
0
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usual Tor group only in the part of involving 7" which is, in any case,
a P.I.D. Clearly, PG(on(G)) = I (—1)jU;j83hH, but this is given by the
Ter formula in 2.B, 3,

By results in [22], on(H} is zero except for H a 2-hyperelementary
subgroup with 2-Sylow subgroup a generalized guaternion group.

For this group write M =JL-M where the M correspond to the irre-
ducible representations of M 50 TorZ(G)(h Z) #Jl_ Tord (C)(M ' Z) .

In $3.6 we prove

Lemma 2.B.5 a. TorJ(Mi,

b. If g is not prime then Mi = Z.
c. 1If g is an odd prime then Mi = M_(( j) with O .

2z
g d
= Z{p .+p Y oor M, =72 {p )
| qJ qJ — 1 g qj
d. If g is 2 then M. = M, (¢ . ) or L where [ is the maximal
corder in the usual quate%nlon algebra over Q(p j+p ;).
2 2

Here p, 18 a primitive Rth root of unity, and (a) is well known.}
%
Now the proof of 2.B.1 follows directly since K (Z) = 0 and the

prime ideal cver p in (¢ j+p i ) is principal. The only remaining

o P
case is 2. B 5 (d), but there the results of [18] identify K (L} with

K (ﬁTp j+p )) {using Weber's theorem see e.g. [7]). This oompletes

the prdor 3% 2.B.1.

C. The value of o {(G) in D(G)/T(G)

We suppose the groups Tor Z(G)(M’Z) are known for the periodic
group G, and local solutions

A -
2.C.1: 0+ 2% ~+C op, n-1, . > e 2l g 6y 57 wo.
P p,n=1 p,n-2 Pl p p

of 2.A.1, with the C_ . free are alsc given.

r
Next, let the complex of free M-modules

2.C.2: 0 - Z M M + ..M 22 > 0
n-1 n->2

be given with homolegy the Toer(G)(M,Z). Localizing we have

A
Lemma 2.C.3: Let Np be a maximal order in a simple algebra over 7Z

Then an isomorphism classification of finite chain complexes of free

Np modules C = {C; > C, ; » ... > Cy » 0 }is given by the groups H,(C)
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and the ranks dim y¥ (Cj)'
P

Proof: This follows in the same way as the analogous theorem for free
Z-chain complexes proved using the diagonalization theorcm for .

" matrices with coefficients in Np. (See e.g.[13]’ p. 173, Theorem 17.7)
In particular, we assume 2.C.2 is a direct sum of complexes one

{(c .) = kj for

for each simple order in M, and rank MMj = rankg ) 5,1
p !

~all p ]G1. Then we have

Lemma 2.C.4: There are elements o€ || GLk (Mp) which make 2.C.5
i

te £ h i
commute for each 1 PllGl

»1 1
2.C.5:
oy 3
. ( v 3 &l 7
el | AT
plla] 1 =/  Tp.i 1-1
I
%p.1 I 9,1 (&'1) i
o. ]
c o U4 ~—Fll 4
p“G’ pyi-l p,i~1 p,i-1
and
o (G) = {o o o o7 o’ }_1
n 172 7374 e n-1

Procf: The existence of the o, is given by 2.C.3. Now let Ci(Z(G}) be
obtained ag the pullback diagram

2
Ci(Z(G)) %-uﬁ;
i
] 3
| 5
: F
in | Lo, o
|
4 , l”i
1 c - ¥
RERL M,
p Pt p,i
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Then C,(Z(G)) is projective and represented by {ai} in D(G). Moreover

the following sequence of complexes is exact

0+C*(Z(G))—(~%-'———j£-)-)'M*® _U__(cp *)ML“-M .+ 0

r Py

and passing to homology, since Oy 4 induces iscmorphisms (as Tor™

_ z2(G)

(M,2) is torsion) in positive degrees, and in O HO(C*(Z(G)) = 7 we
.have Hj(C*(Z(G)) = 0 Jj » 0 and the seguence cbtained is a periodic
resclution

Remark 2.C.6: We should be more explicit about the classes € __[}
Aut (M, ;). Note that since M, = M ®...»M we have an evident map

r L)
= p(G) ®-- - ®2,(G) M, ;. This identifies M  , with C 1 @ Moy

I ¥ ¥

C .
Prl

It is with -respedt'to this that oy is defined.

D. Wall's finiteness obstruction.

In [23, especially pp. 64—68] a finiteness obstruction fn(X) for .com-
n+1 -

plexes in a homotopy type satisfying "Dn:Hi(ﬁ) =0 i>n, H (X,B8) =0

for all abelian coefficient bundles B(n>»2)", was defined which genral-
bl

izes Swan's obstruction. It makes its values in KO{Z{HI(X)), and for

ﬂ1{X]'finite we have the result Correéponding to 2.B.3.

+

Lemma 2.D.1: )(fn(X)} = -

P (X EO (=1)F Y (H, (X,m)) .

i
{The proof is completely analogous to 2.8B.3.)

Similarly, in case p (£_(X)) = 0, analysis of the Wall obstruct-

74 (X)
ion in terms of local piecing analogous to that in 2.C. may be casried

through,

€3, Calculations of Tor”

Group.
A. Reduction to local cases.

)(PHH),Z) for H a Hyperelementary Periodic

z (H

The formal reduction
i AA i A
L - 4L 44 = M, 7
3.A.1 Tor Zp(H) ( M® b’ p) Toxr , gy (M 7} b

allows us to calculate the Tor™ locally. Thus, to begin we study the

structure of the local group rings.
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Lemma 3.A.2 Suppose p prime and (p,?) = 1, then

r.
J
2 (z/9) = 2 G_u. _H_.% (p;), where

rj = £—1ﬂfj(p) and ?j(p) is the least positive integer for which
pu(P’ = 1(5).

-~
Proof: This is standard. Indeed since (&,p) = 1 ZP(Z/R) is a maximal
% order. Also, the global maximal order is Zz (p.,) and
'3
A A
3.2.3: 2 ® 2 = 2 .
P j i=7 P 3

;{COmpare with [9, P- 39].

I

Mcre generally
Corcllary 3.A.4: Write n = pml with (2,p) = 1 then

Y.
2 (z/m) =2 (z/me _LLIP 2 (0.) (2/.m) .
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w
e
0
™~

7 (1) = 2 (z/ m [im]en
P P P
Factoring still further, we have the resgtriction map
rp: Aut(Z/n)——%Aut(Z/pn)

and applying the above argument to the first factor in 3.A.8 (Which
A

is Z_(2/ m x imA we obtain
p (2 m % g (imA))

A A
3.A.9: ZP(H-}- = Zp(Z/pm .x Trp(lm)) BN, @N.
Of course, when p = g, 3.A.8 takes the form
3.2.10 2 M) =2 )@ N
- L] L q q q @ L]
We call the wvariocus summands in 3.A.9, respectively 3.A.10, the
Y
p-blocks, respectively g-blocks of H. Further, on tenscoring with Qp
the p-blocks each become direct sums of simple algebras, and we dis-

tinguish the block containing the trivial representation (the left-
most block in 3.A.9 or 3.A.10) and write it

Bp(ﬁ}.

Proposition 3.A.10: Tor*Z(H)(Mi'Z} contains p-torsion only if

Mif1 Bp(ﬁ) £ 0

Proof: We check locally. Now Bp(ﬁ) is a direct summand of %p(ﬁ), hence

projective. Moreover, the augmentation factors as

A €
Zp(IH) PA D

Thus, a suitable resolution of the augmentation is obtained by resolv-
ing ¢| over Bp(m). Finally, tensoring this resolution with M, gives

zerc identically unless Mi N Bp(ﬁ) # 0.



140

Corollary 3.A.11: Torl - i A
Corollary 7 (H) (Mi,Z)p Tor B (h) (M, 8 ﬁp,zp) ]

This reduces tor calculaticns for these [ to those for Z/Pm xT v

V & Aut (Z/p), for which calculations are easy, or in case p = q, for

mp.

B. Calculations for Bp( H) where M is a 2~hyperelementary group
with H, generalized quaternion, p # 2.

In Milnor's notationIH = Z/m x Q(Zln, k,p ). This means Q(2ln, k, )

i-1 i
has a presentation{ x,y,z,w,vfxz = y2 ; y2 = 1, xVx T v 1, 20 = wk

_ b -1 _ =1 -1 -1 =1_-1 -1 _ -1
= v’ = 1, xX2ZVX =z v , ylwv)y =w v , yzy = Z, XWX = w and
z, W, v commute}. Moreover, in osrder that H be periodic, m, n, k, ¢
must be coprime cdd integers.

2,(z/ph if p/m

The block B_( H) =
p A Qf .
zp(z/p b TZ/Z) if p +m.

The first case is well understood so we concentrate on the second case.
A

Faw v - P, . P - . . A = v . ~ - - il . . -
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r.{ =
i gl
-1 X 3
P
3.B.3 ¢ 1
Lht) =
r]( )
1 0
Similarly
At
: B (H) —>» 2

Ty b B ) P
is given by r+(g) =1, r (t) = 2 1. These representations define act-
ions of Z/pi x %/2 on M (% (L, .)) or % , and we have

T 2 P ] P
p
2 .
. (Z2/p) i even

5 )

Lemma 3.B.4: Hi] (2/ o M2(Z (A j})) =
P P 0 i odd

Moreover the action of t on the groups above is via t(x) = (—1]1/2x.

Proof: Take the usual resoclution of Z(Z/ R) with one copy of Z(Z/ 2) in
p P
2 p£—1

each degree,62i+1 = g;1,82i = T+g+g + ... +g =Eg.

Then, tensor with M2(Zp(h j)] over rj and we have

¢
ol

99541 " | P24

This means

=1 1 a, —a+b(A-2)
(¢} = o =

-1 A=1 c, —c+d{r-2)

92141

and the cokernel is Z/p x Z/p since A- 2 is a uniformizing parameter

A
for Z2_(A).
p

01 {0 0)
Representing generators can be chosen as ; P
0 0/ \0 1

o 1
and A= A(t) = A( )fixes thegse generators mod im(321+1).
1t 0
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Next note that the periodicity is given by capping with a generator

f H2(Z A ) ~ A, {rj) A
e o /pg,zp =2/, U, p. 115]. Thenenn . (z/ My (2,00 50D
P P
(r.) 2
= B3 z/ ;M2(Zp(k j)))' t{a A B) = £(o) N t(B8) and t(e) = -1(e),
i pﬁ P
so 3.B.4, follows.
. A (z/9)% 1 = 0(4)
. . 7 , ) =
Corollary: 3.B.5: Tor Bp“H’ {MZ( p(kéi)) P) 0 otherwise.

Proof: In the Hochschild-Serre spectral sequence

r.) :
P/l uy @ 0 )
p

E. = Hi{Z/2, H

ik k

which collapses to Eé « Since p # 2. But

2 | 3 A . _
Eo,k Hk(Z/p , MZ(ZP{A j)})/lm (t-1)

1%

and im(t-1) 0, k = 0(4) but im(t-1) = im(-2) if k = 2(4) so 3.B.5b.
follows.

Similarly, for r = we have

.S
Z i =20
3.8.6: (a) Tor' AR
Corollary 3.B.6: a or B ) ‘Zpr Zp = X
P 7/p i =3(4)
0 otherwise.
L . _
or ' = .
BP(H) PP " Lo otherwise .

Remark 3.B.7: Exactly the same chain of ideas works to calculate the

Tor's in the case of Z/pL1 X Tz/qs where qs | (p-1). Here

s
1 SN
" (inv) Z
3.B.8: M_ = .J_LM S(zp(ppj) v )a_LL o

1
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the latter terms corresponding to embeddings Z/qs C—#-(%p); taking the

generator to the wvarions qs‘th roots of unity.

C. The situation at 2 and the completion of the proof of 2.B.5

A a 2 2 - -
BzﬂH) = 22(H2} = Zz(fx,y|x =y~ , xyx = v '}
and we have

Lemma 3.C.7: The maximal order of Bz(m) is

(a) _U_Mz(zch ol ek,

iz922 29 23
if i > 2
b)) & 22{4), where @is the maximal order %2(03)®%2(p3)ﬂ, TT2
= -2, and wx = ¥(A)m for ke€2(p3) where ¥ is the Galois automorphism
of 32{03).

(This follows from the results of[11]. However, for i > 2 the explicit
representations are given easily. In particular the faithful represent-

ation (i=j) is given by

0 1 1 C-2X
3.C.2: g - r t »

-1 Ao ¢ -1

2
where C 1s a root of
2
3.C.3: C™ - x ,C+2 = 0.
ot

Indeed 3.C.3 splits inside ﬁz{R i) for i » 2 since its discriminant
2

da=22-8z2%04n

and is thus a square. The remaining representations are given by the
same formulae as 3.B.3.)
This completes the proof of 2.B.5 since the only representations

which restrict non-trivially at both 2 and at least one other prime
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are the 4 copies of 2.

D. Calculations for B2UH)

A minimal resolution of 1 can be found on page 253 of [2). Tt is

periodic and has the form

. 3 a3
a 3 2 a £
- Z(Hz)e _—> Z{IHZ}C QZ(IHz)c'—-—*Z(IHz)b D Z(le)b'-—‘]—PZ(H2)a -~ 72

where
33 (e) = (y-1lec - (yx-1)c'
3,(c’)= (yx+1)b + (y-1)b"
3.D.1
5,(c) = (1+y+y2+...+y2+...+y2i_1-1)b — (x+1)Db!

aq(b‘)= {(x~1)a
31(b) = {y-1}a.

We can use 3.D.1 to calculate Tor groups explicitly in this case. The
only ones we need are for the group of corder 8 where the results are

given by the tabkle.

9
Tor0 Torl Tor~ Tor
s Zz Z/2 +Z2/2 10 Z/8
3.D.2:
zZ Z/2 Z/2 z/2 8]
-+
s z/2 | z/2 Z/2 10
z {z/2 | z/2 - Lz/2]0
% F
2 F4 4 F4 o

§4. Evaluating the Swan obstruction for the groups Q(4p,q,1), p,q odd
primes.

In this section we calculate the Swan obstruction for some of the
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groups Q(4p,g,1}. We begin in 4,7, with partial calculations of the

local defects. The method is to do it separately for each p-block and
the maximal orders asscociated with it. As the methods and the results

are rather technical they are summarized in Table 4.A.171. Using 4.A.11
the reader can skip to 4.B. where the Swan obstruction is calculated

for these groups. Finally, in 4.C we give examples of specific calculat-
ions chosen mainly to illustrate the types of complexities encountered.
In particular, these examples imply all the results mentioned in the

introduction.

A. The local defects.

The p-blocks have the form

4.A.1: {a} Cl(z/p) x TZ/Z X 2/2

(b) L(Z/p) x TZ/2

here C = 2, 2 _(p) or (4 (p )2 and t2 1, while L = 2
ere = - e} an = -1, while =
v p’ “p g p g p !
(7 ~1 (Z(p )
M, p(pq+pq ) or M, (pq ).
The second case occurs in C and L if pv = -i1(g) for some v, and the

third case occurs otherwise.

Lemma 4.A.2: The non p~primary part of the local defect of a block of
type 4.A.1. is

F_(p +
p'PgtPg )
in cases 2 and 3 in C or L and F in the first case.
P
i
Proof: Let R be the maximal order for 4.A.1 in Qp12>( ). Then R contains

N = C@@T Z2/2 x TZ/Z or L(Z/2) as a direct summand, and
R=N®M

where M is the maximal order in @ & Clp ) x ,2/2 x Z/2 or 6 % Lip_}
P P T P p
bre TZ/Z.

Let J be the Jacobson radical of the block B, then
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B|J ~ N/J

and hence the local defect C away from (p) for B is obtained from the

diagram
4.A.3: I DX L N L L A
pzo ,Q;oi

WA AYI

Thus, factoring out by imB/J simply identifies N/J with its image
under Py 0 2¢ 1 in M/J. Finally, observe that any element in cne of
the Jacobson radicals is p-adic so contributes only p-torsion to the
local defect.

At 2 the situation is slightly more involved.

There are 3 types of blocks.

(a) Cp;q *p By
(b) CP X H2
(c) 2, ()
A
Here C is 2 or 4 «copies of Zz(pp,pq) and C_ 1s one or two copies
F.
of Z_{p_}).

Lemma 4.A.5: The local defect for the block Ez(ﬁz) is %/2 and the

generator corresponds to €3> at the trivial representation {hence is

in the image of T).
(This may be directly obtained from the calculations of [6], [8].)

Lemma 4.A.6: The 2 primary part of the local defect for a block of

type 4.A.4 {a) is zero.

Proof: A block of type 4.A.4 (a) has a maximal order M, (o) @ M4(m

N —_
Zz{p pPoLP 1) or

‘ (.1
where U is one of Z {p_,p ), Z,(p_+p
2 2

-1
p ,pq),
~ -1

Zz(ppq+ppq }. The two idempotents for these representations are
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1 2 1 2 A
- -1) = e , = + 1) = e . Suppose C = (Z,{ , YY, and take
7 ¥ -7y + PP P.,q 2 Fpr Py
@ = {(a,0), then
1+ 2a 0 0 0
' 1+23 0 O
2¢e _ o+ 1+ 0 ’ I
0 o 1 90
0 0 0 i
which has the image (N{1 + 2a},1). But since the 4 possible extensions

M
of Z2 which feorm the centerse are all unramified, the units of the center

A
are all obtained as norms of units in Z2(pp,pq} and 4.A.6 follows. A
A
similar argument holds in case C = (Zz(ppfp ))4.

Finally we evaluate the local defect for 4.a.4(b).

Lemma 4.A.7: The 2 primary part of the defect for 4.A.4(b) is

» -1 +
(ZZ(DP +p o )/m} . The generators come from the representation

2
Cp xTZ/2 {(t” = 1), and are representced by units of the form 1 + 2v.

The relation with the maximal representation in the block is, in case

-2 )
€= 2yl

T+ (g +_Hy {1~ 1) ey 1 + 2(a + a)
A 2
and in case c = Z_{p ),
2 p
T+ (o + i B) (1 -~ 1)ye—>1 + 2(a +1).

Remark 4.A.8: The non-triviality of the local defect in this case is
crucial to the calculations, as without it it would be routine to evalu-
ate the Swan cobstruction. Thus the reader is advised to check the proof

of 4.A.7 most carefully.

Proof: The maximal ordex for 4.aA.4{b) 1is

+ -—
4.2.9: M2(o‘) ® Mz(h') ® Mz(b')
h - c Z.(p ), Vo= 2.« 1
n, ase = ’ = +
whe in ¢ p 5 pp 5 Dp P
.79"_-,‘4 -1
22(D4p O4p)
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A 2 fal
while if c =7 (£ -2z _(p).
p p

Also
_ -1
CP XT(Hz)/J = M2(Z/2(Dp + Op 1) or M2(Z/2(pp)).

Thus
c xH =M (F) @M (F)[(y-1),2] @n (0 Clo-17,4, 2(y-11] ®
P T 2 2 2 ’ o ’ r
writing it in filtered form. 1
o
The 2 primary component of SL2(F) =( = W and since we are
0 1

only interested in 2 torsion it suffices to analyze the image of

e 2 (iv)
Tr Bly-1) + 81 + 8 (y=-1)" + 81t r2(y-1) A A
il
‘ _ 1 2 1,..2 :
Next, using the idempotents > (v -17, E(y -1} we find that
4.8.10 @/ , x 6/ , % O/ )
m m m

surjects only the 2 primary defect. Then we use in turn each of the
5 remaining gencrators (y-1),2, etc., to obtain alltthe relations in
4,2.10 and complete the proof of 4.a.7.

We summarize the results of §4.a in the following table
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4.A.11: TABLE
Block Defect Representations
- + » i -~ T -
z (2/p ¥, 2/2) Z/p 27, 7, e G 1))+
2 (e np2l” Z/p 27, 2, w2 o
> o ranF . ++ —+ -1,.+
Zg(Z;"q ><T.d/h) Z/q z , Z (Z(oq-i-oq ))
7 (zlq x 2727 z/q 27T, 27T, v (2(e 400y
. 2 q q
8, (2 (ot ) (21p ,212) F (o +07T) M, (2o +o- N7 M (2o +pT 1))
P q g 2 qq 2 q q
-1 -1
M, (Z(p_+0_",0 +C
) 4( (Dp Py »PqtFy 3)
M, (2% (o +o- ) (Z/ax 2R) F (p 40 1) , My (2o +o )"
27 p p T q P P p
M (Z(D +u ))
1 -1
M, (Z(p to_ ", ¢ +p )
. -1 L OTO, s 0g¥0g D)
+ i S
Zz(np) o F (o +o )xF (n +op yo, Mz(é(.oerop 3
1. .=
M. (Z{p +o W
2( (op . 1) >
a ) -1+ -1+
22(_..6.) g F, (o +’a )>*F (o +oq ) MZ(Z(C|q+oq ))
el -
MLCZ(D 4+ Y)Y W
M, (Z (e te 0T ¥
Z, (8,) z/2 A A
~ - ._l
z T/p) T (o 40 i W
ﬁp(pc;)( 4 .y p{fq0q q r,q
7 Z/3) »_H o +o W W
o 0,2 (273) s, . o ptPp P 2.4
En(p ,pq) v H 0 M, (Z{o *o-_l, { +o_1))
2P T8 p q g
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Remark 4.A.12: Wris the maximal order in

Q(Qr} XT‘H82
£t =-1

and WP a is the maximal order in

i2}
Q(ppq} *r

B The Swan Obstruction.

Let us gconsider ®(12,5,1). The local defects may be presented in

an array as follows

4.B.1: z/3 = _E(BB(H ) 2/2 = E(B, (H)) Z/5 = E(B(H))
Z/3 = E(B, (H)) z/5 = E(BS(E)_)
7]2 = E(BZ(Zz(QB)(H 2))
. ) )
F oo 2/ = E(Z,(2.) (B,))
Fy 7/5
i/3(y2= -1) i/S(t2 = -1)
ig(yz = -1) 7/5e% = -1y

The last 2 rows correspond to the blocks of type 4.a.4(b) and 4.2a.4(a)
respectively, which at odd primes are obtained from the blocks of type

2
4.A.1(b}) with ¥ = -1 or 4.A.1(a) respectively.

Remark 4.B.2: Lemmas 4.2.2 and 4.A.5 together imply that im T is precise-

ly the first row of 4.B.1, and we have

Lemma 4.8.3 : The units in row 2 of 4.B.1 may be identified with the

corresponding units in row 1 on factoring out by globkal units.

Preocf: Take the global representation

-1 - .
M2(Z(05 + p.")) . Its units go to the generators of %2/5 in row 2,
- o]

. 9 . .
to some elements in F4 x (2/2) and to F9. But the corresponding units
-1, .+ .

of M2(Z(p5 TP })  hit F5 on row one and are identified with the Lmages
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-1
of Mz(z(p5 TPy }3 in rows 3 and 4. The same argument works for

-1
MZ(Z(D3 t Py )

Thus, since the Swan cobstruction is in DQ@H)/T, we may ignore the
first two rows in 4.B.1. But these rows contain all the information from
the 4 copies of Z. Now, by 2.B.5, the only remaining Mi which give
torsion give it only for 2,3, or 5 separately.

We now describe the Swan obstruction. Choose periodic resclutions

2f BBGH), BSUH), B2GH;
A
Zp > A\ = ﬁ2 - ﬂz > A = Zp and otherwise, on the higher blocks the re-

sclution locally are

, which can all be chosen of the form

id id
B=——— B B — 3B
& 4 @

B =——>» B

Now, the complex of maximal order is

(1-1) S b
(2) 2 s 5P B
& (-1 &
4.B.4 2 2 -1
2-{p_+p.") 0
) 1,y _ A e-—( o P
\b) Mz (Z(Dp + OP )) = s = 0 1
and ;
A —dd A—B
@ ) G
A—dd A

4,B.5 . * %

*
* *
-1 _
2-p_- I_ - 1
fs “TP3704
-1
e
£4=0y
R |
2=pg=py
2 )
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o -1_ -1 -1,3
Addltlonally,p3+p3 = -1 and on oy 2 = -1 so 2 Pg=Pe =—P, (p5 1)/(p5
Al t 1 1 4 2+ -2 t zZ{ ) x z/2|‘t2 = -1 h

s, a eve . p5 1p5 a p20 T = as norm

-1
2 o+ 1p5 - 1p5

which 1is congruent to 2 mod the maximal ideal over 5.

-2 2 -2
At level 5 note that pg + p5 is the image of 2~ + yz {in the

notation of 3.B} which, at the maximal representation goes to

2 -2
8] 0 ) 0
> 5
-2
0 2
=2 2
~Ps5 0 Pg 0
2 -2
0 "‘QS 0 OS
. ) , -2 2 -1
and the determinant of this is (p_. + 05 1= 2 + DS + p5
At level 3 and in the 2 local part
yi -2 0
-2 -
o5+ 05 ° P57 P , >
2 -2 ? -2 2
z' + yz -2 2 -0
; 2 -2 .
and so using (p5 + 1p5 ) we change the obstruction to
* * *
% *
-1
-3
-2 + Ps + Pq
1
1
1 1
-1,2

-1} .
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Actually, the procedure cutlined above 1s general and we have

Theorem 4.B.6: I Ep ® Eq @ E2 the lift of the Swan obstruction (04)

for P(4g,p,1) can be chosen to be

% * *

& &

-1 : -1
im(~2 + p+p ) im(-2+p_ +p )
im( Pt Py ; Py 5

1
1
1 1
-1,2 -1,2
+ +p_ ) .
(oq Py ) (op b
C. Examples.
Proposition 4.C.1: The Swan obstruction O4(E} for H = 9§(12,13,1) is
ZEXO.
Proof: In Z(plB) the ideal (3) splits as (3} = Pl P2 PB P4 and these
are interchanged in pairs by coenjugation. Hence the image of ~2+013+QI;
at the 2 primes over (3) in Z{pl3 + p;;) are respectively

~1 2 -2
B T T R B S P

_1 3

hut Z(p13 + p13)/P1 = k27 and we have
3 9
- -1 "0, .—1
N(L + p,+ pil) = © P13 ) [ P13 "1 =1
P13" P13 B\ \ 3 /9 ’
13 i3
h 1+ Tty in F d similarly f 1+p? -2
ence Pq3 pP,3 is a sqguare in 57 and similarly for p13+p13
3 th
Again 3 = -3(13) so -3 is a square but not a 4 power mod (13).

Note in particular that 2 is a primitive generator mod (13) and
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-1.10 _ . -1.2

+ = - — -
(p13 013) 3(p13 1) Now use the unit (p13 +0 13) at
M_(Z( v ooy Since it is square it leaves (1 + p . + p.o) ual
2 9 Py T Pygt ) a 84 P13 7 Pyg’) eque

_ -1.-2

to a square and sets -3 = 1. The only remaining obstruction is (013+01;}
at level 5. But this 1s a square in each F27.

Hence, an odd multiple of G3GH) is trivial. But there is an ortho-
gonal, free representation of Q(Zla,b,c) in 0{(8B}) (see e.g. [22]),
hence 203(m) = 0 and 4.C.1 follows.

In marked contrast to 4.C.1! we have

Proposition 4.C.2: The Swan obstruction GB(H) for the group ©(12,5,1)

is non-zecro.

Proof: We begin by noting that all global representations at levels 4
2
) XTZ/Z% =-1,

and Sare guaternionic ate . This is evident for Q(p4p

and proved in [11] for the faithful representation. Hence, the global
units which occur for them must be positive at all infinite places.

The centers in question are

~ -1 ~ -1 _ -1
Ky = 0oy * gy By = ®lpy + Pyg)y Ky = @lpg + pg0)
3
VK= 2 x 2/2, U(Kz) =27 x 2/2, 9 (Ky) =2 x 2/2.
Lemma 4.C.3: a. The generating unit of VU (Kl} is positive at all in-

-1
finite places, and N(p3 + 103 }) is an odd power of this generator.
2
b. The positive elements of W (Kz) are generated by WU (K2) .

-y,

NCos * 105

2
¢. The positive elements of tJ(KB) are IJ(KB) ;

Proof: Consider the units of ¢{p ) as compared with those in the max-
- Il

imal real subfield Q(pn oL ). By the Dirichlet unit theorem the ranks

of the torsion free parts are equal, and H. Hasse [7] has proved index

(torsion free part U(Q(pn + 9;1))) in (torsion free part \J (Q(pnl))

is 2 if n is ceomposite, and one if n is a prime power. In particular,

for n = 4p the extra unit v has the preperty v o= iv. Hence, pp + ipp

represents this extra unit. Cleaxly, its norm is positive, and evidently,

a non~sguare. This proves (a).



Tc show (b) we check the signs of the quotients pp + lppl/p; +

1p;j = Aj' These are invariant under conjugation, so¢ contained in the
real subfield, and we easily check that the signs are independent for
a suitable subclass of them. Thus, the Aj and N{v} generate \j(K2J up
to odd index, so (b) follows.

L z1+/F

(c) is similar, but easier. 05 + p; = 5 has norm -1. Hence,

the signs of its infinite embeddings are (+,-).

We now return to the proof of 4.C.2. Look at the level 4 and 5 part

Z
of 4.B.6. An clement Aj changes

-1 -2 1. -2 "™ 4
(pg + P ) ko {pg + 0 ) (A) .
But in F9 {p5 + p; ) has order 8 since taking norms gives
po—1
-1 - -1 5 _
4.C.4; N{p5 + 95 } o= N Pe b -1 = i
5
; . -1.,-2 -1.2
Thus, the only possible element for removing (p. + 05 )] is (p5 + 05 )
]
in \J(KB)' But at 5 this is 4 =-1(5) and these are no remaining glebal
units to convert this -1 to a 1. 4.C.2. follows.

For @(12,5,1) the Swan cbstrugtion was non-zero in level 5. Our

next example shows the obstruction can also be non-trivial in level 3.

Proposition 4.C.5: The Swan obstructiaon OB(H) for ¢(12,7,1) is non-

ZRTro.

A A
Proof: Referring to 4.B.6&, and noting that Q3(p7) has degree & over Q3,

we apply a calculation analogous to 4.C.4 to show that an odd multiple

of OB(H) is represented by

* *
-1 1
4.C.6¢ 1
1
1 3
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-1
We must, as before, study units, this time for K4 = Q(p? o 7 )
-1
and K5 = Q(p28 + 028)' We have
Lemma 4.C.7: a. The units of K4 dre generated up to odd order by
+ -1 3 N -3 1
O»? p? r 07 D7 ¥ .
L . ) 2 -1
b. The positive units in K. are generated by.(L’(K5) ), N(p?+1p7 })

{a) i5 well known, see e.g. [3], and (b) follows as in 4.C.3.

Now, we cannot use -1 to cancel the -1 in 4.,C.6, as we casily
-1

check. Moreover, the effect of N{p7 + e ] at E2 has already been not-
ed, and the remaining positive units of KS' being sguares, have no effect.
-1 3 -
Hence, the only remaining candidates are D + 0o 1 Py + 973 . However,
a calculation analogous to 4.C.4 shows
-1 3 -3
4 = + = 1
N(p7 o ) N(p7 P ]

from F2? to F3 and 4.C.5 follows.
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but these appear to be very difficult problems.

Stanford University
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