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Torsion in L-groups

by Sylvain E. Cappe11] and Julius L. Shaneson]

Introduction.

Let L:(w,w) ~denote the Wall group for the homotopy equivalence problem,
m a finitely presented group and w: m > {t+ 1} a homomorphism. These groups
figure in many geometric problems, and their rank is the same as that of
other related surgery groups which have been computed in many important
.cases. Their torsion, for m finite, reflects the subtle relation between
signature and discriminant of quadratic forms, discussed below. This paper
contributes two calculations and a sample application to manifcids with finite

fundamental group.

Theorem A. The torsion of Lgk(Z ) is a vector space over Z, of

"
dimension [2(2r’2+2)/3]-[r/2]-e, e=1 if k is even and 0 if k is odd.

(In Theorem A, [x] = greatest integer in x.)

h

r-3
2k+1 ’

Theorem B. L (Z ,-) is a vector space over Z, of dimension 2

2"
r > 3, and zero for r = 1,2.

Since the rank of Lgk(Z r) is well-known (see [W1]), Thecrem A

2
completely determines this group. Taylor and Oliver, and Milgram have
obtained at Teast Theorem A independently. Their method involves use of
the computation of projective L-groups and a study of the relation of Lh
to these via an exact sequence whose third term is a cohomology group of 22

with coefficients in KO(W). In this paper, we apply some of the algebraic

]Both authors partially supported by NSF Grants.
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results obtained in the course of our study of non-linear similarity. We
use these to analyze the sequence (4.1) in [Sh] ("Rothenberg's sequence")
relating L°-groups (computed for cyclic groups in [W1]) to Lh—groups. We
believe the independence Temma we use on units in the group ring Z[Z r}
may be of independent interest. :

Here is an application of the methods and results of this paper to the
problem of providing a Poincaré Duality (PD) space with a manifold structure.
Let X be a finite complex. Then X 1is called a PD space of dimension m

if there exists a class [X] e Hm(X) such that for all i
NIXT:H(X3B) > H . (X,B)

is an isomorphism for every local coefficient system B over X. A closed
manifold is a Poincaré duality space. If X is connected, then X will be
a PD space if and only if there exists [X] e Hm(X) with N[X] an isomorphism
for the local coefficient system (i.e. the Zﬂ1X-modu1e) B = ZW]X.

Now suppose X is connected and w](X) =G s a finite group and m = 2k.
Then an invariant x(X) € R(G) 1is defined (in [W2, §13B], this invariant is
denoted o(G,X).) To define it, (compare §3) let p:G - U(n) be an irreducible
complex representation. Then t" becomes a Tocal coefficient system over X,

and the isomorphism
- *
(00XD)™ "o (38" > HE(x,6™) =, (x;€")
is easily seen to be the adjoint of a unimodular (-1)k Hermitian form g

over the complex numbers. Let

R k even
cp(X) = signature of
V=T 8 k odd
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x(X) = T o (0o,
P

the sum over irreducible representations. By a theorem of Atiyah-Bott, as
extended by Wall to the PL and topological case, if X has the homotopy of
a compact manifold, smooth, PL, or even topological, then x(X) is a
multiple of the regular representation.

A stable orientable linear, PL, or topological Euclidean space bundle
(or block bundle) & over X is called reducible if its Thom class is
spherical. If X has the homotopy type of manifold, such a bundle exists,
namely, the stable normal bundle of the manifold.

In 86, the calculations of this paper will be applied to obtain a
precise Tist of invariants for finding a manifold structure on a PD space

X with n]X =7 r One consequence is:
2

Theorem C. Let X be a connected finite complex, and suppose that X is

a PD space, of dimension 2k with ﬂ]X =7 P satisfying the following:
- T T 2

(i) x(X) is a multiple of the regular representation,

(ii) there is a reducible (PL or TOP) bundle over X.

(ii1) X has the homotopy type of the two-fold cover Y of a finite
(

complex Y with ﬂlY = er+1, and the image of [X] in Ho Y) is in
the image of the transfer (from HZk(Y))’

Then X has the homotopy type of a PL or TOP manifold (with the given

reducible bundle as normal bundle).

We Teave a smooth version to the reader. For k even, the usual

condition on the L-polynomial of the bundle is needed to kill the simply-connected

part of a surgery obstruction. For k odd, one has the usual Arf-invariant

difficulties.
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§1. A basis for H(Wh(Z ).
2
o
The group ring of Z = is the ring R = R = Z[T|T® = 1], and this
2
ring has the involution p(T) = p(T']). This involution induces one on the

Whitehead group of Z s and HO(Wh(Z r)) denotes the cohomology of Z2 with
2 2

respect to this involution; i.e. elements satisfying x = x, modulo elements

of the form x+x. When necessary for clarity, the generator T of Z "
2

. _ 2 . X
will be denoted T , and we suppose T. = (Tr+1) . A unit u(T) e R(r)’
with u(T) = u(T'I) represents an element of Ho(wh(Z r))' In this section

2
. . . (r) . . s-1
we will give some units, Um s’ 3<s<m<vr,i=1(md4), 1<i<2>,
which represent a basis of the Zz—vector space HO(Wh(Z r))'
2

To define our units, we first set, for r > 3, i = 1(mod 4)

r-1 r-1 r
(r) Py iy g r-2y 231
Upns = ( Y T Y T) - (1+277°)( Y TY). To see that Up v
sl J=O J=0 J=O sl s
is a self-conjugate unit, consider the fibered square
Yr 2"
R.——> Z[T|14T+.. 4T = 0]
(1.1) lar l a,
7 —»1/2"7
1 = -
ar(Za1T ) = Xai Then ar(Ur,r,i) 1 and also
r-1.. r-1
2 T+ 2" '+ . or-1 r-1.,. r, .
AT -1 T -1 . 2 T+ _ L2 P+ _ 127+
i) S\ T 1 | » since (T T T

if i 1is odd. An element in Rr is determined by its image under a,. and

Yy and is a unit if and only if these images are. But

r
Tl 2-1 201 4f j is odd

J
p§r)==(1;:%) is always a unit in Z[T|1+T+...+T
9 T -
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" . Ceeny - = Tk-J he R
(a "cyclotomic unit") and 05k T JHE It follows that Ur,r,i is
a self conjugate unit of Rr'
Now we define the units U: ci23<s<r, 1<ic< 23'], i = 1(mod 4).

(r-1)

Assume by induction that Ur—],s,i

has been defined, is self-conjugate, has

image 1 under a_ ;. and that

(r-1) _ <8 (r-1)
Yr-l(ur-l,s,i) =T g P,k
is a product of T§_1 and cyclotomic units, with g (k-3) = 26 (mod Zr']). Note that

= (r)y . ¢ (r-1) r-1
ar(pj,k) = ar-1(pj,k ) mod 2" 7',
Hence a (T(S 1 p(r)) =] 4 go2"] mod 2", where € =0 or 1. Hence there
rry J.k
. . . (r) . (r) =
is a unique element Ur,s,i € R, with ar(Ur,s,i) 1 and
-2 ,r-l >
2f=¢ 2" 1n
(r) y (T (T - 84 (r),
YelUp g i) = (T =T T Iegks
clearly Ur ; will be a self-conjugate unit, with the appropriate image

under Yy to continue the inductive definition.

Finally, if s <m< r write

2" .
m o Z] b,T!
s iZg im

and then let

2M_1 r-m.
L
S -

i . i
i i=0

This inductive definition was given for convenience only. An explicit

formula can be given as follows: Let as(k), k =0,1,2,... be the unique

‘sequence of zeroes and ones with

t-1)€s(t’s)

(1425~ T (142 = 1(mod 2").

S

n=3s

t
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Let
m
Ams) = Lopaesh) @ et

t=s
Let

m

w(m,s,i) = - § e(t-s)2t2-2%7%4,

t=s

Then
s-1 t
oP- . o= m 2°-1 ,r-m, e(t-s)
Um . i =T w(mass1)( 2 T 13) T ( Z T2 J)
S 3=0 t=s = j=0
"1 rem,
- Am,s)( ) 12 J)
j=0
Let T :R ;>R and TR R be ring homorphisms (preserving 1)
. _ 2 _ .
with Ir(Tr-1) = Tr and ﬂr(Tr) = Tr—]' Let Tr.Rr - Rr-]’ the transfer,
] . i = 2 =

be defined as follows: if u(Tr) €R., then u(Tr)u(-Tr) V(Tr) V(Tr-l)'
Set Tr(U(Tr)) = v(Ti). Obviously, T, carries units to units.

(1.2) Proposition. Let 3 <s <m<r. Then

Ir(Uétglg) = Uérg,i if m<org

"r(Uéfg,1) - T;f?(m-S)zr—zuér{lg,i if s <m
ﬂr(Uét%,1) =1

Tr(Uétg,i) = (Uétglz)z if m< r;

Tr(Uitz,i) 1; and

TP(U&Yg,i) ) ;f?(r_S)zr—ZU(r11), if s <.

Proof. The statement about Ir is clear, and so is that about s from

the inductive definition. To prove the 2nd & 3rd statement about Ty write



(r) _
YY‘(UY‘,S,'i) - T Ij P

as above, with 25 = ) (k-j) mod 2" again, and since i = 1(mod 4), j and

1(mod 4) also; hence & 1is even. It is not difficult to

il

will always be

show that 7 :Z[T 14T +...+T2 =1 = 01 » Z[T__,|1+T .+ 271 207 s
r'r r°"tor r-1 r-1"""" "r-1
also defined, with %ryr = Y1 Ty A quick calculation gives
~ o (r)y o (r=T), ~ (16} = 16 (r-1)
Tplos ) = o5, '3 and T.(Tp) = To_y. Hence (note pzr']+1,i 1)
)
- -s)2"
(r) e (r=s)27 (p1)
Y1 (TUpis 1) = ) o1 (T Upoy,s,i) S <7
1 s =r

From (1.1), it follows that on units Vo1 is a monomorphism (with image

those units having image =t1 1in Z/ZF—]), for r > 3, which yields the result.

Finally, the first statement concerning T, follows from the observation

2
that TrIr(X) = x".
(1.3) Theorem. The elements Uérg i 3<s<m<r, = T(mod 4), and
1 <1< 25—], represent a basis for the Zz-vector space HO(Wh(Z r))'
- - 2

Since Wh(Z r) = Ri/{tT1} and the involution on Wh(Z
2 2

trivial [B], (1.3) can be restated as follows:

r) is actually

(1.3)" The units Uérg . and the trivial units -1 and T forma

D sS,1 -

. X, X2
basis for Rr/(Rr) .

To prove these results, we first recall that

dimy, HO(Wh(zZ ) = 21y,
r
2 2
Since there are exactly 2r']-r units Um s.i° 3<s<m<r, 1= 1(mod 4),
1<i< 25'1, it suffices to check the independent of these units. The

O
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obvious inductive argument, together with Prop. 1.2 (the Statements concerning

(r)
Um,m,i’

m.), shows that it suffices to prove that the units

r 3<m<or,

1<ic< 2m—], i = 1(mod 4) are independent modulo squares and trivial units.

This will follow easily from the independence lTemma of the next section.

§2. The independence lemma.

(2.1) Suppose there exist units v e Z[Z r]X and u e Z[Z . ]]X and
2 T 2" T

integers 8., i = 1(mod 4), 1 < i < 21 and %, so that
S 2

)= sThuve,

(2.1.1) 1 (uér%’1

-i b
Then di = 0O(mod 2) for all 1.

In (2.1.1), u 1is identified with its image under the inclusion

Zr‘-m

1.1 I (recall T_=(T.)) ). The proof of (1.3) or (1.3)"' is

rr-1""""m m r
completed with (2.1) and decreasing induction on m.

To prove (2.1), assume (2.1.1) is satisfied and apply the composite
mM._q---Tp» Projecting R. to Ry, and then map to R,8Z, = ZZ[T]|T$ = 0].
Under this map, it follows from (1.2) that the left side of (2.1.1) maps to 1.
Clearly Z[Z m—1] will map to 22, and so the unit u maps to 1 also.

2

If v maps to a+bT], then v2 maps to (a+b)1e 22 also. Hence & must

2

be even. Absorbing the sign into u and TQ/ into v, we may therefore

replace (2.1.1) with

S
2.2) 1N )T =Wl
-‘ b 3

Next, we wish to reduce to the case m = r. Suppose m< r, and let

Tr)

p:Rr > Rr be the involution (T
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o] 2,T') = 204)1a1Tf
i i

Then p has the fixed point set R (=1 (R_4)). Hence, if p is

r'r-1
applied to (2.1.1), the same equation is obtained, except that v 1is replaced
by o(v). Hence
(v/e(v))? = 1.
X
But the torsion of Z[ZZr] consists entirely of the trivial
units {71} ([B], see also [M], [W2]). So

2!‘-1
v/ie(v) = £1 or =T .

r
Now map to R#:EZ = Zz[T|T2 0l. In this ring, v and p(v)

r-1
2 # 1 even

become equal, i.e. v/p(v) map§ to 1, where as T
mod 2. Thus v/p(v) = %#1; di.e. v = %p(v). Hence either v or

Tv s in Z[er_]]x, as  p(T) = -1, so p(Tv) ==To(v). Replacing
v with Tv if necessary, we therefore obtain an equation of the form
(2.11), but with r replaced by (r-1). (In fact, for the case

v = -p(v), 1in this equation in Z[er_]], £ = 1. It follows from

the argument preceding 2.2 that p(v) = -v could not occur,)

Next we wish to derive from (2.2) an equation of the form of

(5.1) of [CS1, §5]. First apply v Y. to both sides of (2.1);

we then obtain, with gq = 2r-2’
. 6 . 6 o
T2 T (229 Ly,
(2.3) M|l —=1 LA
i L TT - T - 1

the product is over i with 1 < i< 2q and i = 1(mod 4). This
is just an equation of the form of (5.1) of [CS1], with minor
notational changes.

For a odd, let
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fo:{0,1,...2"-1Y » (0,1} = 2/21

be defined by f.(x) = 1 if the least non-negative residue of

a(

is between 1 and 2r-1’ and fa(x) = 0 otherwise. In §5 of [CS1] it is
shown that (2.3) implies the vanishing of a certain cohomology class

X € H1(R¢) = H](ZZ,Ri), with respect to the involution p defined above.

From §7 of [CS1], it follows that the vanishing of this class implies the
following equation of functions to Z/2Z (see also the last equation in

nd

the 2 complete paragraph on page 341 of [CS1]):

g 8:fs + (; 8:)F + (2/2)(f]+f2q+]) = 0.
In this case, & = 2(} §;). Again, all sums are over i with 1 <1< 2"
i

and i = 1(mod 4). Hence we obtain

(2.8) (] 8;8) + (] 8)Fpq41 =0 (a=2"2).
1 1

However, 2" is a tempered number ([CS2], see also [CS1,3,4]). Hence

ax mod 2T

all relations among the functions fa are consequences of the "obvious" ones:

2q+ta = 11 % Toqu-

fo+f
a
It follows that if 8 #Z O(mod 2), for 1 < i < 2q, (2.4) would have a term
involving f2q+i as well; since the sum is over i between 1 and 2q,

this does not occur. Hence 61 = O(mod 2) for 1 < 1i < 2q, and (2.4)

O(mod 2) also

HI

becomes 6](f]+f2q+1) = 0. This obviously implies 8
(as f](l) + f2q+](1) = 1). This completes the proof of (2.1).
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§3. Signatures and determinants.

Let G be a finite group and let p be an irreducible complex
representation, 0:G>U(n). Let o = (H,p,u) be a (—1)k Hermitian
unimodu]ar] (quadratic) form over Z[G], H a (stably) free Z[G]-module,
representing an element [a] 1in Lgk(G). Let G = O ®Z[G] ", a
(-1)k-Hermitian form over the éomp]ex numbers, where €" has a Z[G]-module

structure via p. Then let

g k even

cp(a) = signature of
A ag k odd

Let R(G) denote the complex representation ring of G; then a well-defined

homomorphism (the multisignature)

is defined by

x([al) =) Gp(a)p,
o

where the sum is over irreducible representations. Let

h

Ails, (G) - L2k(G)

s
2k
be the natural map, L;k(G) the obstruction group for the surgery problem to

obtain a simple homotopy equivalence. According to [W1], the following holds:

1Throughout this paper "unimodular" is used to mean that the adjoint
Ad ¢:H - H* dis an isomorphism.
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(3.1) Theorem. Let G be cyclic. Then the composite x\ has the image

{4(p+(-1)kED]p € R(G)}, is a monomorphism if k is even, and has kernel

isomorphic to 22 for k odd (detected by the Arf invariant).

Now assume G is abelian (so that an irreducible representation is
T-dimensional). Let (H,¢,u) = a be as above. Then, upon choice of a

basis for H,

det o ¢ Z[G]*

is defined; a change of basis will multiply det a by a unit of the form

XX.

(3.2) Proposition. Let G be abelian. Suppose a iﬁ_g_(—])k—Hermitian

unimodular form over Z[G] of rank 2r. Let p be an irreducible represen-

1l

O(mod 4) if and only if

tation of G. Then cp(u) = 0(mod 2), and op(a)
1)) et ) > 0.

Remark. Since o is irreducible, p:G ~ = €, and extends to a homomorphism
Z[G] -~ €, also denoted p. Since a is (—1)k—Herm1t1an and H has even
rank, (det a)” = det a. Hence p(det a) is real. Since p(xx) = p(x)po(x)” > 0,

the sign of p(det a) is unaffected by a change of basis.

This result is nothing more than a simple consequence of an old formula
for computing the signature of a Hermitian form over C; see e.g. [J]. Given
a Hermitian form over C, one can find a basis so that the (determinants of)
the sequence of principle minors, ordered by size starting with zero, contains

no successive zeroes. By convention, the determinant of the 0x0 minor is 1.

The signature of the form is then given as P-C, where P 1is the number of
permanences of sign and C the number of changes in the signs sequence of

the principal minors. The sign of a zero is chosen arbitrarily.
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",

ex(i) s i),

n representing [M]. Since An 1is a simple equivalence, it follows that

F(X) = t(h)+r(h)"; i.e. A(X) is trivial in HO(Wh(ZZr)).

To prove the converse, suppose & is reducible. Then, by the well-

known transversality arguments, there is a degree one normal map

b
\)M—->£
(.
Me— X
into X, with surgery obstruction o(f,b) € Lgk(Z r)' Further, the
2
following formulas hold:
x(o(f,b)) = x(M) - x(X) and
d(o(f,b)) = A(X) (see (4.1)).

These can be proven by standard arguments of surgery theory.

Let p denote the regular representation. Then the first equation

and (ii) imply that

x(o(f,b)) = qp,

where q is an integer. On the other hand, if k is even the coefficient
of the trivial representation in x(o(f,b)) ds just the difference of the
signatures I(M)-I(X) = 8t; hence q = 8t. Hence we may replace M by

its connected sum with |t| copies of a P.L. manifold of signature

8t/|t|, to ki1l x(o(f,b)). If k is odd, since x(o(f,b)) = -x(a(f,b))",

q = 0 automatically. Hence we may assume x(o(f,b)) = 0.
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Now apply this to « ®Z[G]E =op or VTT'am as above. Then P+C = 2r.

Hence op(a) is also even. For k even, the sign of the largest principal

minor is just that of p(det @), and for k odd it is (-1)"p(det a) = det (V/-T am).

If the sign of the largest minor is positive, then C must be even. Hence
P-C = P+C-2C = 2r-2C will be divisible by 4 if and only if r is even.
Similarly, if the last sign is negative, P-C will be divisible by 4 if
and only if r dis odd. The result follows.

A result similar to (3.1) for cyclic groups of odd order (and sTightly
misstated) is stated in [W2] and was used there in the classification of

fake Tens spaces (see also [BPW]).

(3.3) Proposition. For 3<s<m<r, 1 <1< 25'], i = 1(mod 4), there

jé_g.(—1)k—Hermitian unimodular form uérg i representing an element of
h .
LZk(Z r)’ with
2 r-1
2 Ss(m+1"5) (Y‘)
detfo o 4) =T Un,s,i’

with respect to a suitable basis. (T =T ).

Notes: 1. In particular,

det(a  .) = 2"y
m,m,i m,m,i
2. For k even, it follows that rank(o .) = 0(mod 4), applying

m,S , 1
3.2 to the trivial representation. Recall that a unimodular even form over

Z has signature = 0(8).

(3.4) Lemma. Let x e Rﬁ, with x =Xx and a(x) =1 for k odd. Then

there is a (-1)k symmetric unimodular form g with

2r-1
det B=x or T X,

with respect to a suitable choice of basis.
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Proof: According to [W1, § ], there is a short exact sequence

A d
S h
(3.5) 0~ L2k(22r)~——> LZK(ZZP) ——€>Wh(22r)®22 - 0.
0f course, Wh(Z r)®ZZ = HO(Wh(Z r)). There is well known surjective

2 2
determinant map (actually an isomorphism in this case [B])

Wh(Z ) - Rﬁ/{tTi} > 1,

2‘”)

and that the composition of the map induced on H0 with the appropriate

map of the above exact sequence is a surjective homomorphism

h i —
d:LZk(ZZr) > Ri/{iT yyly € Ri},

with dla] = [det a].

The determinant of a form can be multiplied by yy merely by changing
basis (even by multiplying a single basis element by y). Hence there exists
a form B with det(g) = iTix, with respect to a suitable choice of basis.
Further, det B = (det B) , since B is Hermitian or skew-Hermitian of even
rank. (To compute the rank, pass all the way to Z/2Z, to obtain a symmetric
unimodular form with Xex = 0. Such a form always has even rank.) Hence
7! = T'i, thus =0 or 2™1. So det B =+x or T2 x,

If k 1is even and the minus sign appears, just replace B by its

orthogonal sum with a kernel; i.e. with « = (k,p,u), where ¢ has the matrix

0 1
1 0
with respect to some basis. Clearly this will change the sign.

Suppose k 1is odd. Then B8 @R Z will be a unimodular skew form over
r

the integers. It is well-known that such a form is a sum of kernels; in

this case a kernel will have matrix (~? ;). Hence det(R ®RrZ) = +7,
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It follows that under the augmentation a :R > 17, ar(dét’é) = +1. Hence,

since ar(x) = 1, the minus sign 1is impossible.

Proof of 3.3. First apply (3.4), but with r replaced by r+1, to obtain a

(-1)k-Herm1tian unimodular form B over Rr+1 with (for a suitable basis)

_ o{r+1) 2" (r+1)
det 8= Unirs,i O Trlme,s,ie
The map m  1:R 4 >R = Z[er] provides an Rr+]-modu1e structure on R,

and it is not hard to see that

det(B © R)=m_,,(det B).
Rr+1 r r+1
. 2"
Let %ns,i " R ®R Rr' Since ﬂr(Tr+]) =1, that % s has the

r+1
desired determinant now follows from (1.2).

§4. The image of the multisignature (Proof of Theorem A).

Let R2k(G), a Z2 vector space, be the quotient of the group elements
2(0+(-1)%5), o € R(6), by those of the form 4(p+(-1)X5). Then by (3.1),

(3.2) and the exact sequence (3.5), there is a diagram]

(r)
2 ) =T (o1 e REZ L))
5(r)
(4.1) a(r) u(r)
xé“)
HO(Wh(er)) -3 R2k(zzr) .

TRecall X(@) = (-1)%(a).
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Here X(r) is the multisignature, d(r) the determinant map d above

with HO(Wh(Z ) identified with RY/5T'y?)y € R'}; recall that
2
y =Ty some j, if yeRX [BIMW2, s14]). Let oM = o{r(r) o (r)y(r),

(4.2) Theorem. The elements o(r)(

T<ic< 25’], i =1(mod 4), and s < 2m-r, form a basis (over Z,) for

am,s,i) (see 3.3), with 3<s <m<r,

the image of o(r).
(4.3) Corollary. Dim, (Im o)y - [2/3(2" 1-1)3-[(r-1)/2].
2

The corollary follows by just computing the number of indices m,s,i

with s < 2m-r. It can be restated as follows (see 4.1):

(4.4) Corollary. Dimzz(x(")(Lgk(zzr))/x(”)x(LZk(zzr))) =

= [2/3(2"1-1)J-[(r-1)/2].

Recall ) = A(r) from (3.1). In view of (3.1), (3.5), and the fact

that dim HO(Wh(z ) = 2" 1_r, it follows easily that for k even

2

dim Tor‘sion(Lh (z )) = (ZP']-r) - dim(Im x/Im x\),
2k of

and one more than this for k odd.

Clearly the right side is just
[2/3(2"242]-[r/2]-1

which implies Theorem A.
The rest of this section is devoted to the proof of (4.2). Let tr

be the representation of Z . to C determined by
2

_2rife’
tr(Tr) = e .
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of
(t.)) Ry (Z )+ R, (Z 1)
r 2 of 2 of 1
with () O(r) = G(r—])(ﬂ ) , etc.
r'y r’ s
Let w(r) CR,(Z ) be the span of the elements o(r)(a )
m,S 2 2Y‘ M,S,1 i

1<i<2%, 4= 1(nod 4).

(Y')(

(Note: We write o ) for o r applied to the equivalence class

o .
r,r,i

of it, and similarly for x, X,, etc..)

-1
_ .2

Proof. From (3.3), det(“r,r,i) =T Ur,r,i' By (1.2),

2Y‘-] zr-]
Tr(T Ur,r,i) = wr(T Ur,r,i) = 1. Hence (Wr),g(ar,r,i) =

r-1 r -
= O( )(Wr)*(ar,r,i) = Xé )Wr(dEt ur,r,i) = XE;;(]) = 0. Similarly,
(Tr),g(ar,r,i) = 0. Hence Wr’r_c:ker(wr)| f\ker(rr)'.

However, ker(ﬂr) N ker(rr) is precisely the elements of the form
! !

i ' _
Loovite (v € 22/8), vy = v

and vy, =Y Hence this
i odd o' Pl
Zz—vector space has dimension 2r-3, r>3 (and 0, r=1 or 2) therefore
it suffices to prove that the elements G(ar . 1o) are linearly independent.

This will be done using (3.2).

Let ¢ = tr(T), and let
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] 2" _
Then R(er) = Z[trltr = 1]. Let

(Ir)*:Lgk(zzr—l) > L2 ),

4h h
() Lo (2 ) > Ly (2

)

(r,) sLpy (2 ) > 13, (2

)
2Y’

2r-1

be the indicated induced maps. (Ir) and (wr) are just induced by the
* *

maps Ir and T. On group rings, and (Tr) is by just the transfer map
*

of surgery theory. The maps Ir, . and Ty also induce maps between the

quotients HO(Wh(Z r)) = Rﬁ/{iT1y2} and R§_1/{1Tl_]y2}, and the obvious

2
diagrams involving all these maps and d commute.

(4.5) Proposition. Let x e Lgk(er_]) and y e Lgk(er). Assume that
2Y‘-]_-| .
(r-1) _ i
o (x) = g Yit(r—l) and
sy = 2r§] Sith v (yis6. € 22/87)
Y § 1 (r) Yy )

Then the following hold:

214 v,
@51 o) ) - ) vy (tle2 )
2r-1_1 _
(4.5.2) g(r‘l)((wr) y) = ] Syto s and
* 0
2" .
(4.5.3) G(r_1)((Tr)*Y) = % (51+52r_1+i)t2r_])'

These formulas follow from similar formulas for X» whose proofs we

Teave to the reader. These formulas obviously provide maps
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Y
t
=
1%}
e
O
]

Clearly the denominator is a positive real number. Let Oij be the

).

- i (r)
coefficient of tY in o (“r,r,i

Now ck_gnk = (V-T)z, where z 4s real and z > 0 if and only if the

least positive residue of k mod 2" s less than 2r-1_ Hence, for

21 <3 <2, § = 1(mod 4),

£55 <0 if and only if fj(i) = 1.

Hence, by (3.2), o;5 = 2f;(i) (mod 4) for 2" < j <27, and in fact

J

S G VS O
ooy pq) = § 26D (I 2 )

the sum over 2r'1_5 i<2", 3= 1(mod 4).

(4.7) Lemna ([cS2]). The matrix ((i)), 1< i,5 < 2", 12 = 1(nod 4),

is non-singular over Z,.

This lemma clearly implies the independence of the elements o(a

and this completes the proof.

(4.8) Proposition. ker(ﬂr)lrﬁ Image(Ir)lc: wr,r.

Proof. It is obvious that (Tr) (Ir) = 0. Hence
— L

(ker wr)'(\ Im(Ir)' C (ker ﬁr)! N (ker Tr)! = wr,r’ by 4.6.

(4.9) Proposition. For k,t >0 and 2k+t < r-3,
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k
(r)
wr-k—t,r-Zk-tC:QZ

Proof. By induction on k. Suppose k = 0. Then we must show that

(r)
O(am,m,i) € wr’r for m< r. But
-1
(r) _ L (r) _ ey 27 ()
9 (am,m,i) T X2 (det 0°m,m,1') m X2 (T Um,m,i)

r', m,m, i
(r),.(r)
So o (onm’m,1) € Im(Ir)|
Since (Tzr_]U(r) .) =1, a similar argument implies that o(a ) € ker(m.)
r m,m,i ? m,m,i rl

and then the case k =0 follows from (4.8).

Suppose k > 0. We claim that

il s
(4.10) (m) <w;f3) =
' 0 s =m
r-1
In fact, 1t s <m, (m) (@) ) = (m) 64707 i) ) -
r-1 -2
_ Xér—1)(ﬂr(T2 euét3’1)) _ Xér—])(Tzr es(m-s)Uér{zg,i) _

nggl)(det aéfizg’i) = o(r‘])(aér;lg,i), and similarly one gets 0 if m = s,

Similarly, one shows that for m< r, s <m,

@.1) oriie = (o) 052,

Hence

(r) - )
() Ot roket) = (Tpq) 022000t (r-2)-2het)

!

where h = k-1. By induction,



(r-2) (-2
Wir2)-hot, (r-2)-2h-t CeZO Wi )

But, as we have just seen (with h=e and t = 0),

(r-2) _ (r)
(Ir-l),(w(r-Z)-e,(r-Z)-Ze) - (ﬂr),(Wr—(e+1),r-2(e+1))'
Hence
(m) (") Y Gl e
Ty o r-k-t,r-2k-t r r-9,r-287°> "=
(4.12) wlr) CIZ( ulr) + ker(m )
) r-k-t,r-2k-t = ¢ “r-g,r-2¢ Tp .
. (r) - (r-1) ..
For 1 <1, wr-ﬁ,r—Zz = (Ir),<wr-z,r—22)’ and similarly
wir&-t,r—Zk;tC:I“mge(Ir) . Hence these all lie in ker(rr) , as (Tr)'(Ir) = 0.

! ! !
Therefore in (4.12), (ker ﬂr) can be replaced by (ker wr) N (ker Tr) .
! ! !

which equals wﬁ”& by (4.6). This completes the proof of (4.9).

)

Proof of 4.2. By the previous proposition (4.9), the elements c(am S

3<s<m<r,1<ic< 25'], i = 1(mod 4), and s < 2m-r generate the

image of o. (To see this, note that if m = r-k-t, s = m-2k-t, then
s = 2m-r+t.) Therefore it will suffice to prove their linear independence.
For r = 3, this is a consequence of (4.6). We argue by induction on r.

As in the proof of (4.9), (compare (4.10) and (4.11)), we have

(4.13) (m) o(aérg 1.) =< o(uﬁr{]g .) if m=r,s<m

) c(@ér"z) ) if m<or,s <m.

It is obvious that (Ir ]) is a monomorphism. It then follows easily from
o

the inductive hypothesis, (4.6), and (4.13) that the elements O(Qéri i) with
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egither m=s=r or s<m<r and s <2mr (=2(m-1)-(r-2)) are

linearly independent.

On the other hand

0 if r=m=s or m<r
(r) .
(Tr)lo(am,s,i) B
0(u£f{12,1) if m=r and s<m
-1
(r) . (r) 2" e (r) -
For example, for s < r, (Tr)'o(ar,s,1) = (TF)I(XZ (T Ur,s,i)) =
-1 r-2
_ _(r-1) 2" e (r) _ (r-1) 12" %eg(r=s),(r-1)
- X2 ( r(T Ur,s,1)) X2 (Tr—1 Ur—],s,i)
= xér ])(det a(r}]i 1) = c(uirilg 1.), and the other cases are argued

similarly, using (1.2).

So the elements o(a(r) ) with m=s=r orwith s<m<r and

m,S i
s < 2m-r map to O under (Tr) , whereas the elements o(a$r3 1.), m<or,
' 9 9
map to the elements c(aﬁr;]g 1.), which, since s < (r-1) = 2(r-1)-(r-1),

are linearly independent by induction. This accounts for all the elements

c(aérg 1.) with s < 2m-r and so completes the proof.

§5. Proof of Theorem B.

Consider the exact sequence [Sh, 4.1]

S h 1
La (2 pom) > Loy (Zpsm) > H(WR(Z L)) >
2 2 2
S A h
> L4k(22Y"—) e L4k(ZZY"—)'

However, in this case the cohomology H1(wh(Z r)) is taken with respect to
2

the involution induced by
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on the level of the group ring R, = VAN r]'
2

According to [W1], L3, ..(Z .,-) = 0. Also from [W1], it follows that
4k+1 of

is a monomorphism, since sz(Z -) can be detected by multisignatures

Y.’
2
and Arf invariants, whose definition extends to sz(Z r) as well. Hence
2
Lz -y = Wh(z )
2k+1 r’ ’

2 2"
the homology taken with respect to the above-mentioned involution. For
r = 1,2, Wh(Z r) = 0, so assume r > 3.
5 Z

Let S ={ue Ri]u =u and a (u) = 1}. Then there is a short

exact sequence
1

} - Sr > Wh(er) > 0.

Y‘—.
1+ {1,710

To see this, just recall again [B] (compare [W2, §14]) that

Wh(Z r) = R?/{iT1} and the involution on Wh(Z r) induced by ~ is trivial.
2 2
Hence every element of Wh(Z r) is represented by u € Ri

with a (u) =1 and
» r

— i
u==+*Tu,

some 1i. Since a(u) = a(u) = 1, the sign is positive. Project to Z[ZZJ;
in this ring the involution ~ maps to the identity. It follows that

i=2j. Clearly T ¢ Sr and represents the same element of Wh(Z r)’
2
Hence the map from Sr is surjective, and the kernel is easily identified.
Passing to cohomology, we obtain a long exact sequence

r-1
H(s,) > Koun(z ) » 11,72

1
2 b > HI(s,) >
r-1
> H (Wh(zZ )-8 )
2
> K 2(

S.) > H*(Wh(Z ).

2
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As above, every element of Wh(Z r) has a representative u € Ri with
_ 2
u = u; hence

Hence an element of HO(Wh(ZZr)) will be represented by a unit u with
u(T) = Tju(-T). Pass to Z,8R 5 this equation then implies T - 1; i.e.
u(T) = u(-T). Hence u represents an element of HO(SP), and so the map
from HO(Sr) to HO(Wh(er)) is surjective, and similarly for H as
H2 = Ho for cohomology of 22. Hence

(5.1) B (Zp0m) = W (s )70,

By definition, H](Sr) consists of elements u of Sr with
u(T) = u(—T)'], modulo those of the form v(T)v(—T)_], for some v e Sr‘

But u(T) = u(~T)'] if and only if Tr(U(T)) = u(T)u(-T) = 1. Hence the
inclusion K = (ker Tr) f\Sr,c:Sr induces a surjective map

K/KE = 0 (K) » H](Sr).

Now suppose u € Rr and u2

Hence, since the torsion of Ri, consists entirely of trivial units,

r-1
u(Mu(-T) = 21 or T2 . Hence

2

¢ = £ T%(T)u(-T)"]

, €=0 or ZP—].

By application of 2. it is clear that the sign must be positive. Hence
the previous map induces a surjective map
2 r-1
w:K/(Rﬁ) NK-~ H](Sr)/{1,T2
The next step is to apply (1.3)' and (1.2). Since the torsion of Ri

consists entirely of the trivial units, it follows from (1.3)' that the units

¢ K. Then Tr<U2) = 1. So u(M2u(-1)? = 1.
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(r)
Um,s,i
they are linearly independent. From (1.2) it then follows that VMK has

generate a free (abelian) subgroup V of Ri of rank Zr'1—r, i.e.

the basis (as a free abelian group) {U(r) [1 <1< 2r-1, i = 1(mod 4)}.

r,r,i
It then follows by (1.3)' that these units represent a basis for the image of K in
R)Y(,/(R);)2 as a Zz-vector space. Since K/K r\(Rﬁ)Zc: Rﬁ/(R?)Z, it finally

has as a basis the elements represented the
r-3

follows that K/K M (R¥)?
r"], and in particular, has dimension 2

(r)
elements Ur,r,i’

Now suppose w(x) is trivial. Let x be represented by a product

1 f.i < 2

I (Ur r 1) 1’

.' 9 £
with 8. =0 or 1,1 <1i<2™ 1. Then

8 €
T (Upp,i) ' = THWM/UCD),
e=0 or 2™, Let v(T) = u(T)u(-T) = T.(u(T)); v(T) R._1 (= L.(R._1)) CR...
Then
T 0 = e
el T /u(-T))"v(T).

i
Hence by (2.1), 8; = 0 for all i; i.e. x s trivial. Hence w is an

isomorphism. By (5.1), this proves Theorem B.

Finally here is an exercise for the reader:

h
Prove that Tor(LZk(Z r")) = Tor(Lgk(Z )).

2 21
§6. Smoothing Poincaré Complexes

Let X be a connected Poincare Duality space of dimension 2k, with

n]X = 6. Let £ e CZk(X) be a cycle representing [X]. Let C.(X;Z[G])
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be the chain complex C*(i) of the universal covering spgéé;”éﬁdﬁ1ét
C*(X3Z[G]) be the corresponding co-chain complex (just the usual co-chains

~

of X if G is finite). Then
NE:C*(X52[6]) ~ Cy _ (X5Z[6])

is a chain equivalence which, up to chain homotopy, depends only upon X.
The cells of X determine preferred bases of these chain and co-chain
complexes. Hence NE has a torsion in Wh(G) which depends only on X.
Denote this element A(X). Then 7A(X) = A(X) , and so A(X) represents
an element A(X) € HO(Wh(G)).

Now suppose G =Z .. Then, by (1.3), A(X) has a unique representative
2
of the form

$ .
m,s,i
) T,

. m,S ,i

T (U
S,1

m,

T(mod 4), 1< i <25, and

i

where the product is over 3 <s <m< r, i

6m,s,1 =0 or 1. Let

(6.1) Theorem. The connected Poincaré duality space X of dimension 2k > 6

with W]X =17 v has the homotopy type of a PL (or TOP) manifold if and only if
wiun ) 2L e 20 21 20

all of the following hold:

(i) there is a reducible PL (or TOP) bundle over X;

(i) x(X) is a multiple of the regular representation;

s-1

(ii1) A s 1.(X) =0 for 3<s<m<vr,iz=T(mod4),1<i<2>,

and s > 2m-r.

Proof. Necessity of (i) and (ii) has already been explained. For (iii),

if M is a manifold and h:M -~ X a homotopy equivalence, then one considers

the diagram



It follows from (4.2) (see also (4.1)) that A (X) =0 for

M,S i

s< 2m-r. Hence, by (iii), A (X) =0 for all m,s,i; i.e. A(X) is

m,s ,i

trivial. Hence by (3.5), o(f,b) actually is in the image of L;k(z r)'
2

Hence, by (3.1), if k is even o(f,b) = 0. If k 1is odd, o(f,b) can
be killed by replacing M with its connected sum with a Kervaire manifold.
So a normal map (f,b) with o(f,b) = 0 is obtained, hence (f,b) is

normally cobordant to a homotopy equivalence, which completes the proof.

Proof of Theorem C. Let X be as in Theorem C, and let h:X - ? be a

homotopy equivalence. Let [Y] e H2k(Y), with transfer h,[X] e H2k(?).
Then h induces a homotopy equivalence heX > ?, and it is not hard to
check that h,([X]1n z) = h*([Y] N h,z). It follows that

Y)

ALYTH' (V) + Hyp

-3

is an isomorphism for all 1, and hence Y 1is a Poincaré Duality space.

Hence the invariant A(Y) € Ho(wh(Z r+])) is defined. It is not
2
hard to see that
Tr+]A(Y) = A(X),
here Tt] denotes the map induced on HO by the transfer. By (1.3)
A(Y) = H(U(r+1))km,s,1’
- m,S,i :
(r+1) An,s i .
Hence A(X) = HTr+](Um . 1.) 22> Note that squares of self-conjugate
units are trivial in HO(Wh(Z r))' Hence it follows from 1.2 that
2 .
Am,s,i(x) =0 for m# r. In particular, Am,s,i(x) =0 for s > 2m-r,

3<s <m<r. Hence Theorem (6.1) applies to conclude that X has the

homotopy type of a manifold.
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