Graded Brauer Groups

By C.T.C. Wall at Cambridge

This paper arose out of the observation that the definition of a Clifford algebra
as an invariant of a quadratic form is made awkward by the fact that the algebra
corresponding to the orthogonal direct sum of two quadratic forms is not simply the
tensor product of their separate Clifford algebras. In fact, as is well known, the Clifford
algebra admits a grading modulo 2, and we must consider the graded tensor product.

The object of this paper is to perform the theory of the Brauer group for graded
algebras. We first define the class of central simple graded algebras over a field %, and
then proceed to investigate their structure: we obtain a complete description. We then
show that the class is closed under graded tensor products, and that the algebras, taken
with a suitable equivalence relation, define a group, which we christen the graded Brauer
group of k. The structure of this group is determined in terms of that of the ordinary
Brauer group of k; in particular, if £ is the real field, our group is cyclic of order 8.
We then observe that taking the Clifford algebra of a quadratic form over k defines
a homomorphism of the Witt group of % to the graded Brauer group; this image tells
us essentially the determinant of the form, and an ungraded central simple algebra
(one of the two Clifford algebras). A last paragraph clears up the case when k has
characteristic 2, when a number of results are somewhat different; we obtain an
equally complete theory, and, for example, the invariants of a quadratic form now
reduce to the (ungraded) Clifford algebra and the Arf invariant.

Preliminaries

We first recall a number of standard results about ordinary (ungraded) central
simple algebras over a field k. A convenient reference for these is [3].

(A) If A is a simple algebra (with unit) of finite dimension over a field %, then:

(1) ‘A is isomorphic to a matrix algebra over a division ring, which contains & in
its centre.

(ii) The centre of A is a field. (If this is &k, A is central over k).

(iii) A has only one irreducible representation, and all representations are iso-
morphic to direct sums of it.

(B) Suppose A central simple, and B simple over k. Then:

(i) Any two imbeddings of B in A are conjugate in A. In particular,

(ii) Any automorphism of A is inner.
24*
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(i) The algebra A ®; B is simple, with the ‘same’ centre as B.

(iv) If B is the opposite algebra, 4, to A, then A ®; A is isomorphic to a matrix
ring over k.

(v) If B is a simple subalgebra of A, C its centraliser, then C is simple. The
centraliser of C' is B. If B is central then A ~ B ®, C.

Two central simple algebras are called equivalent if they are matrix rings over
isomorphic division rings. It follows from standard properties of tensor products, with
(Ai), (Biii) and (Biv), that the tensor product induces a multiplication of equivalence
classes under which they form a group, which is called the Brauer group of k.

We shall also refer to quaternion algebras. If the characteristic of k is not 2, write k*
for the multiplicative group of nonzero elements of k. The algebra (a, b) admits a basis 1,
U, V, UV, where U2 =q, V2 =05 and VU = —UV. This is always central simple;
permuting U, V and UV we find (b, a) =~ (a, b) =~ (a, —ab); also (a, b) depends only on
the classes of a and b modulo squares in £*. It is said to split if it is a matrix ring over k;
this happens, for example, if ¢ = 1. More generally we have, for the equivalence relation
above,

(a, b) ® (a, ¢) ~ (a, bc).

If & has characteristic 2, use & for the additive group, and write pxr = x -+ z2.
The algebra (a, b], where a # 0, admits a basis 1, U, V, UV, where U? = a, pV = b,
and UV U = V4 1. This is central simple, and depends only on the classes of a and b
in k*/(k*)? and k/p (k). It splits if @ = 1 or if b = 0, and we have

(ar, b] ® (ay, b] ~ (a,a,, b]
(a7 bl] ® (aa bz] ~ (d, bl + bz]

If b 4= 0, we can interchange U and VU to show

(@, b] = (ab, b].

Elementary Properties

By ‘algebra’ we shall mean a finite dimensional associative algebra A with unit
element 1 over the field k. We call A graded if it is expressed as the direct sum of two
nonzero subspaces A,® A, (where the suffices are integers modulo 2) and for each value
of i,j, A;A;= A, ;. A subspace B of A is graded if it is the direct sum of the inter-
sections B ~ A;. For example, the centre Z(4) is graded. For if zy + z, is central, and z
belongs to A, or A, then by equating components in xz, + z2, = 2,2 + 2% We see
that x commutes with z, and z,, which must then also be central.

We call the graded algebra A central if Z(A) ~ A, consists only of multiples of 1
(clearly it contains these), and simple if there are no proper graded ideals. These defi-
nitions seem to be the natural generalisations from those in the ungraded case. We shall
suppose for the rest of this paragraph that A is a central simple graded algebra; for the
first three lemmas we do not use the fact that A is central.

Lemmal. A} = A,. If I is a proper ideal in Ay, I + A, 1A, = Ay and A1+ 14,=A4,.
Proof. 1f A% & A,, A} -+ A, is a proper graded ideal.
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Similaily, if 7 is an ideal in A,,  + 1A, + A,I 4+ A,I A, is closed under left and
right multiplication by A, and A,, hence is an ideal, and is clearly graded. Thus it is
improper, and if I == 0 the result follows.

Lemma 2. If J is a proper ideal in A, then the projections n;: J - A; (i = 0,1) are
isomorphisms.

Proof. J ~ A, and my(J) are ideals in A,. If these are equal, J is graded, which
contradicts simplicity. If either is the ideal, I, of A,, multiply on left and right by 4,
(using the fact that J is an ideal in A): we deduce A,1/A4, < I, so by Lemma 1, I cannot
be proper. Thus J ~n 4, = 0, 7,(J) = 4,.

Hence J~n A, =Ay(J~nA) =A3(J~nA)<A (JnA) =4,0=0, and =, (J)
contains A,m,(J) = A,. Thus the =; are both onto, and have zero kernels, as stated.

Lemma 3. Either A is stimple (as ungraded algebra) or A, is simple and A, = Ayu,
with u€Z(A) ~ A; and u? =1.

Proof. Suppose A not simple: then it has a proper ideal J, and we can apply
Lemma 2. Put u = m;7;*(1). Then J contains 1 + u and so, being an ideal, also
u(l+u) =u*+u, 2z(1 + u) =2+ zu and (1 + u) z =z + uz. Since, by Lemma 2,
an element of J is determined by either component, we have u? = 1, and for zin 4, or
Ay, zu = uz, so u is central. Then A, = A;1 = A,u?< A,u, and s0o A, = Ayu.

Finally, if I is an ideal of A,, we have

A A, = AgulAgu = Agulu = Aglut = A0 = I,

and by Lemma 4, I is improper. Thus A, is simple.
Lemma 4. Either A or A,, but not both, is a ceniral simple algebra over k (ungraded).

Proof. If A is central, by Lemma 3 it is also simple. If not, the centre Z(A) has a
nonzero component V in A,. Then V2<Z(A) ~ Ay =k. If for some v =0 in V, 0% =0,
Z{A) is not a field. Thus by (Aii) A4 is not simple, and by Lemma3 we can find u with
u? = a =+ 0in k. So such a u exists in any case and now, as above, 4, = A4,a = A u?< Au,
and so equals it. Since uis central, it follows that any z€Z(A4,) centralises all of A, solies
in k, thus A, is central. If I is an ideal of Ay, I + Ju is a graded ideal of A, hence im-
proper. So A, has no proper ideals and is simple.

Now suppose both 4 and A4, central simple. Let B the centraliser of 4, in A. By
(Bv) B is central simple, and it is clearly a graded subspace (proof as for Z(A)) B = B,& B,
and B, = k. So B is also a graded central simple algebra. By Lemma 1, B} =+ 0; suppose
then for u, v € B, that uv = 1. Then B, = B;1 = B,uv = Byv = kv is one-dimensional
and B is commutative: a contradiction.

Structure Theory

We shall denote the case when A is central simple by (+) and when 4, is so by (—).

Lemma 5. In case (—), we have A, = Agu with u central in A, u* =a =0 in k.
The centre of A coincides with the centraliser of Ay and is k + ku, and the structure of A
as graded algebra is completely determined by the structure of A, and the class of a modulo
squares in k*.

Proof. The existence of u in A, central in A, with u? = a 3 0 and hence
A, = Ayu was established in the previous lemma. Any element of A centralising 4,
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commutes also with u (since u is central) and so with A, = A,u and is thus central in 4.
Ifz 4= 0in A, is centralin A, sois zu = 0in A4,, hence this is some nonzero element, b say,
of k. Then za =zu® =bu, so z =bu/a. Thus Z(A) =k + ku.

Clearly A, and a determine the structure of A — which is just the tensor product
of Ay, and Z(A). Conversely, A determines its zero-component A,, and its centre Z(4):
the nonzero elements of Z(A) ~ A, are multiples cu (c € k*), and their squares c2a deter-
mine a class modulo squares in k*.

For the rest of this paper except the last paragraph, we shall now suppose that

the characteristic of & is not 2; we shall see that analogous results do hold in that case,
but it is somewhat inconvenient to consider the two cases together.

Lemma 6. In case (), the centraliser of A, coincides with ils centre, and is k + ku,
where u® = a = 0 in k. A, is the centraliser of u, and A, the set of y in A with uy = —yu.
The graded structure of A is completely determined by the ungraded structure and the choice
(up to a scalar multiple) of uwin A (not in k) with u® = a 0 in k.

Proof. Since we have excluded the characteristic 2 case, we consider the involution T’
of A defined by: Tx ==z for x € A,, and Ty = —y for y € A,. This is clearly a non-
trivial automorphism, and so, by (Bii), is inner; let u be the element of A, determined
up to a scalar multiple, such that 7" is the inner automorphism by u. Since this leaves u
fixed, u € A,; and by the definition of 7, A, is the centraliser of u, and A, the set of
y with ™ 'yu = —y.

Now T is an involution, so u? induces the trivial automorphism of A, so is central.
But u is regular, so u? =+ 0, and is thus a nonzero element a of k. A, is the centraliser
of u, or equivalently, of & + ku. If a is not a perfect square in k, this is a field, hence
by (Bv) equal to the centraliser of A,; being contained in A4,, it is also the centre of A,.
(We shall give the proof for the case when a is a perfect square later). The last sentence
of the lemma clearly follows from the preceding one (even if a is a square).

To obtain further insight into the structure of graded central simple algebras, we
need to use the structure theorem (Ai) for ordinary central simple algebras. We first
consider case (+). The central simple algebra A is of the form M, (D), D a division ring.
Let R be an irreducible A-module (e. g. a minimal right ideal). The centraliser of A in the

ring of linear transformations of R is the anti-isomorph D of D. We have u in A4,, with
u? = a =+ 0 in k, determining the structure. As u € 4,, u commutes with D, and A, is
the centraliser of u (or of k[u]) in A, i. e. of D® k[u] in the endomorphism ring of R.
We have thus to study the ring E = D ® k[u].

First suppose a not a square in %, and so k[u] a field. Then since D is central simple
over k, by (Biii), E is simple, with centre k[u]. Thus E is of the form M,(F), F a division
algebra of centre k[u]. Now if D has degree d over f, E has degree 2d, and an ir-
reducible E-module has dimension 2d/r. But it is also a D-module, so 2d/r is a multiple
of d, and r is 1 or 2.

The case r = 2 occurs if and only if a vector space — say D — of dimension 1 over
D admits an E-module structure, i. e. if and only if £[u] can be imbedded in the centraliser
D of D. If such an imbedding, &, exists, it is (by (Bi)) unique up to conjugates in D,
and if F is its centraliser (in D) we have E ~ M,(F). This, as remarked above, is simple,

and by (Aiil) R is a direct sum of » minimal right ideals. Thus we can choose a D-basis
with respect to which u is represented by a scalar matrix with diagonal elements 4 (u),
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and A, =~ M,(F). In this case, the graded structure of A is determined by (n, D, a),
where n is a positive integer, D a division ring with centre k, a an element of k*, deter-
mined up to multiplication by nonzero squares, such that the quadratic extension k[u]
of & (where u? = a) can be imbedded in D.

Next consider the case r = 1: here E is a division ring. Then R is a vector space,
of dimension m, say, over E_J, and n = 2m. Its centraliser A, is isomorphic to M., (E).
If we choose an E-basis for R, we see that in the isomorphism A ~ M,, (D), u can be

represented by the matrix with diagonal blocks <2 (1)) The graded structure of A

is determined by (n, D, @) where now n is even and D, a are as belore, bul k[u] cannot
be imbedded in D.

Finally we must consider the case when a is a square in &; by multiplying u by a

suitable element of & we may suppose a = 1. Then k[u] =~k @ k: in fact, g (1 & u) are

orthogonal idempotents, and each generates a summand. Hence /£ ~ D@ D is no longer
simple, but remains semi-simple. For suitable p, ¢, R is isomorphic to the [-module
which is the direct sum of p copies of the first summand D and ¢ of the second. We can
take a matrix representation A ~ M,, (D) in which u corresponds to the scalar matrix
with p (4 1)’s and then ¢ (— 1)’s down the diagonal. Hence A, >~ M,(D) x M,(D) and
the unsettled case of Lemma 6 now follows, by an explicit calculation. The graded
structure of A is determined by the unordered pair (p, q) of positive integers and the
central division ring D.

In case (—), we can write A, =~ M, (D) and describe the ungraded structure of A,
with the same cases arising, depending whether k[u] can be imbedded or not in D: in
fact A ~ M,,(F), M,(E), M,(D)® M,(D) in the three cases, since, in general,
A = M,(E).

We briefly summarise our results in

Theorem 1. In case (—), the structure of A is determined by the triple of invariants
(n, D, a), n a positive integer, D a central division ring over k, and a a class in k* modulo
squares.

In case (), the same is in general true, provided (i) if the field k[u] (where u® = a)
cannot be imbedded in D, then n is even, (ii) if a = 1, we need also an unordered pair (p, q)
of positive integers, p + q = n.

Remark. The difficulty in case (i) can be avoided, and some discussion shortened,

if we impose an extra axiom that A, contains a regular element. We have avoided this,
as it is unnecessary, and makes only this trivial difference to the class of algebras

considered.

The Graded Brauer Group

Let A, B be two graded algebras over k, and C their graded tensor product. We
remind the reader that as vector space, C is the same as the usual A ® B, but whereas
A ® 1 usually commutes with 1 ® B, we have, in the graded product,

(1 ® bf) (a; ® 1) = (——1)”. (ai ® 1-) (1 ® bf) for ag € A.(, b; € B’.
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Theorem 2. If A, B are graded central simple, then so is C.

Proof. We first observe that the centraliser of A, ® B, is the graded tensor product
of the centralisers (in A, B) of 4, and B,. For if {b;} is a base of B, the element
2 (a; ® by) of C centralises A, ® 1 if and only if the a; centralise 4,: then if {a;} is a base
of the centraliser of 4,in 4, X («;® 8;) centralises 1® B, if and only if the ; centralise B,,.

Now the centraliser of 4, admits the base (1, u) where u € 4, in case (—) (Lemma 5)
and u € 4, in case (4) (Lemma 6), and u? = a = 0 in either case. Let v, b be the corres-
ponding elements of B. Hence the centraliser of 4, ® B, in C has base (1, u, v, uv).
But Cy = 4,® By + A, ® B;; we next assert that the centraliser of C, has base (1, uv).
We leave verification that uv does centralise C, to the reader. Conversely, suppose (for
o, B, v, 0 €k) that « + fu + yv 4+ duv centralises C,.

If A and B have type (—), then u, v are in 4,, B; and vu = —uv, so
uv(oe 4+ pu+ yv+ duv) = (a— pu—ypv + duv) uv.
Since uv is regular, the two terms in brackets are equal; as the characteristic is
not 2, fu+ yv =0.
If A has type (4), and B has type (—), then for any y in 4,,

yv(e + Bu+ yv 4 duv) = (e —pfu—yv 4 duv) yo.

As the right hand side equals (« + fu + yv 4 duv) yv, 2(Bu + yv) yv = 0 whence,
as v is regular, (fu + pv) y = 0. This holds for all y in A4,, so (fu + yv) 4, =0, and
Bu+ yv€(Bu+ yv) 4y = (Bu+ yv) AT =0.

If A and B both have type (), for y € A, and y’ € B, we have

yy' (x+ fu—+ yv + duv) = (a — fu—yv -+ duv) yy',

and so, as above, we deduce (fu + yv) A; B, = 0 and thence fu + yv = 0.

The centraliser of C, does, then, have base {1, uv}. Now if uv € Cy, i.e. A and B
have the same type, then uv is not central in C. For when the type of A and B is (+),
we have yuiv = —uyv = —uvy for any yin A, ® 1; and when it is (—), uuv=—uvu.
Thus in all cases, C is central.

Now suppose I a proper graded ideal in C. Then I, = I ~ C, is an ideal in C,,
and is proper (otherwize I would contain 1). Hence if Iy, = I, ~ (4, ® B,) and I, is
the projection of I, onto A, ® B,, ignoring the component in 4, ® B,, I, and Ij, are
ideals in A, ® B,.

But A, ® B,, as (ungraded) tensor product of the algebras with known structure
A, and B, is semi-simple; in fact a sum of 1, 2 or 4 isomorphic simple ideals. We can
detect cases by looking at the centre of A, ® B, whose base consists of those of (1, u, v, uv)
which lie in A, ® B,. For example, if u € A,and u% = 1, and v € B, or v € By with v2 & 1,

we have 2 simple ideals, with idempotents é—(l + u). Since uy = —yu for y € 4, in

this case any ideal J with A, JA; < J is improper. If u and v are both in the zero
component, and an ideal J, with A, JA,< J, B, JB, < J, contains a 4 fu + yv + duv
then it also contains

Aj(a+ Bu+ yv+ duv) A, = (« — fu + yv— duv) A3,
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and hence « + yv and fu + duv; similarly we see that it must contain «, fu, yv and
duv separately, and so, unless all of these are zero, will contain 1.

Now the ideals I, and I, defined above must, I being an ideal in C, have the
properties A,JA, < J, B,JB,<J. By the preceding paragraph, they are improper.
Since I, does not contain 1, it is therefore zero. But Ij, is not zero (otherwise,  meets
A, ® B, and hence — since A? = A, B} = B, — meets 4, ® B, in a nonzero element,
contradicting what we have just proved), so is the whole of 4, ® B,. We thus now have
essentially the same situation as in Lemmas 2, 3 and so there is a w in A, ® B;, central
in Cy, with w? = 1, and 7, the set of z 4 zw, z€ A, ® B,. Since w is a nonzero element
of the centraliser of 4, ® B, we must have A and B of type (—), and w = Auv for some
nonzero A. But now I contains 1 4 w and so also

u(l+w)u=u(l+ Auv)u=(1— Auv) u?

and hence 1 — w so, finally 1 and [ is improper, a contradiction.

We now wish to define a graded Brauer group; for this we must first collect our
algebras in equivalence classes. In fact we define the type of a graded central simple
algebra as the ordered triple (e, a, D) of invariants, where ¢ = -+ in the two cases of
Lemma 4, D is the central division ring over k, and a the element of k*/(k*)2 described
in Theorem 1. We shall prove that the type of the graded tensor product of two graded
central simple algebras depends only on their types, and that the types, under the multi-
plication so defined, form a group. We need first to reformulate our structure theory.

We write {a} for the algebra of rank 2, with zero component generated by 1, and
other component generated by u, with u? =al.

Lemma 7. If A has tnvariants (—, n, a, D) then
A =~ M,(D)®{a} ~M,(k)®D ®{a}.
If A has invariants (+, 2m, a, D) and (if a = 1) we have p = q, then
A =~M,(D)® {1} @ {—a}.

Convention. An ungraded algebra may be regarded as graded, but with vanishing
nonzero component; all tensor products are graded tensor products.

Proof. Tt follows directly from Lemma 5 that, in case (—), 4 >~ 4,® {a}, and
(n, D) determine A, =~ M,(D).

In case (+) we represent u by the diagonal block matrix of (2 é), this is cer-

tainly permissible when E is a division ring, and our argument showed that it is also

10

permissible otherwise, if n is even and a 4 1. In the case a =1, observe that (O 1)
is equivalent to ((1) _(1) , 50 taking u in this form is equivalent to assuming p = gq.

Now we take r with diagonal blocks since ru = —ur, then r€ A,. Since

O .
0 1)
1, u,r and ur form a basis for the 2 X 2 matrices, which define a simple subalgebra, with
centraliser M, (D), A is (by (Bv)) the tensor product of these subalgebras. Now take
s = ur, then sr = —rs, s? = —a, and so r generates {1}, s generates {—a}, and the
algebra of 1, u, r and s is the graded tensor product of these. The result follows.

Journal fiir Mathematik. Bd. 213. Heft 3/4 25
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Theorem 3. The type of the graded tensor product of two graded central simple algebras
depends only on those of the algebras. Multiplication of types is given by the formulae

1 (+,a,D)® (+,a, D) =(+,ad',D® D’ ® (a, a))
(2) (+,a1 D)®(_a a'” D’) :(—’ aa'1D®D’®(a,—a’))
(3) (—_7 a, D) ® (—7 ala Dl) = (+v haa’> DeD ® (d7 al))'

With the product, the types form a group.

Proof. We shall first establish formulae (1)—(3) in most cases, and then deduce
the remaining cases, and the other clauses of the theorem. We have used the notation
(a, a’) for the quaternion algebra defined by a and a’; it may be defined as {a} ® {a’}
regarded as an ungraded algebra.

The proof of Theorem 2 shows that if u, u’ are the canonically defined elements of
the centralisers of the zero component in the two algebras, then u ® u’ fulfils the same
role for their tensor product. The multiplication rules for the symbol 4 and the invariant a
follow at once. Rule (3) now follows from Lemma 7 and the calculation

De{deoD o} =DeD o)
~D®D ®ad)

as ungraded algebra, since clearly the matrix ring does not change matters.

Next we consider {a,} ® {a,} ® {a5}. Let u,, u,, u; be the basic elements in the
1-component of the three factors; then for the product, the centraliser of the 0-component
is generated by u, ® u, ® u,, with square —a, a,a;, in the 1-component. Also, the 0-com-
ponent of the product is the quaternion algebra whose basis consists of the elements
u; ® u; of square —a,a;. Hence we get

(4) {a} ® {az} ® {a,) = {—a,05a;5} ® (—a,a,, —a,a;).

Now if we assume that the algebras in case (+) which appear are such that Lemma 7
applies, we can deduce (2) and (1) by:

Deo{l}e{—a}eD' ®{a} =D oD ®{aad}® (a, —a)
and
Deo{l}o{—aeD o{l}®{—ad} =D ®D @ {1} ® {—aa} ® (a, a’).

It follows that (2) and (1) are valid in general; we may remove the restriction that
n = 2m merely by noticing that taking tensor products with an ungraded M,(k) does
not alter type, so that if this multiplication makes formulae (1) and (2) true, they must
have been true already. To avoid the restriction p = q we argue similarly that if 4,
stands for M, (k) graded with A, ~ M, (k) ® M (k), then 4, acts as unit on types
and 4, ® A, =A4,,, ,.,- Now again, taking tensor products with A4, of the two
sides of an equation (1) or (2) makes it true, hence (as this operation does not affect type)
it is true anyway.

This proves (1)—(3), and the first statement of the theorem. Now multiplication is
clearly associative; we have just produced a unit (+, 1, k), and we check explicitly
(using (Biv)) that (4, a, D ® (a, a)) acts as inverse to (+, a, D) and (—, —a, D) to
(—, a, D) (recall that the algebra (@, —a) = (a. 1) splits!), whence we have a group.
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Thus, even in the separably closed case, the group so defined — which we call the
graded Brauer group — has order 2. Next let k be arbitrary, and compute the powers of
x = (—, 1, k); we obtain, writing Q for (—1, —1),

ot =(—, 1, k) 2% = (+, —1, k)
2 = (—, —1, Q) = (+, 1, Q)

x5 = (—‘—, 1, Q) ab = (+7 _"1) Q)
a7 = (—, —1, k) a8 =(+, 1, k) = 1.

Thus if Q = (—1, —1) does not split (and so in particular, —1 is a non-square) we have
a cyclic subgroup of order 8. In particular if % is the real field (or any real closed field),
=41 are the only possibilities for @, and & and Q the only choices for D. So in this case
the graded Brauer group is cyclic of order 8. This result (under various guises) has bheen
known for a long time, and has emerged particularly clearly from work of R. Bott.

If we consider only algebras of case (+), we obtain a subgroup of index 2 in the
graded Brauer group, which we may call the little graded Brauer group. The product
here is given by the simple formula (1). This admits a cohomological interpretation,
similar to that of the ordinary Brauer group. In fact, write H* for k*/(k*)2, the multi-
plicative group of &k modulo squares, and H?2 for the usual Brauer group. Let us use
additive notation for each of these. The quaternion algebras (e, a’) give a symmetric
bilinear pairing of H! with itself to H2 Now if we write 1 + a + D to represent (formally)
(+, @, D) and interpret products aa’ by the pairing above, aD, Da and DD’ as zero,
then formal multiplication yields the correct formula (1)

A+ed+D)d+a +D)=14(e+a)+ (D4 aa’" + D)

(recall that we replaced multiplicative by additive notation).

Let ks be the separable closure of k, G the Galois group of k,/k. Then the ordinary
Brauer group is isomorphic to H%(G; k¥) and k*/(k*)? can be identified with H'(G; Z,).
The cup product gives a pairing of this with itself to /I*(G; Z,) and the mapping Z, > k}
with image 41 induces an inclusion of H*(G; Z,) in H*(G; k¥); by a result of Delzant,
the pairing of H*(G; Z,) into H?(G; k}) coincides with the one used above. This gives the
interpretation sought.

Application to Quadratic Forms

A quadratic form on a vector space V is (for us) a homogeneous quadratic mapping ¢

of V to k whose induced bilinear map b (where b(z, y) = ¢(z + y) — q(x) — ¢(y)) in-
duces an isomorphism of V with its dual. If the characteristic of & is not 2, then b deter-
mines ¢, for b(x, z) =2q(x). By a well known theorem, V admits an orthogonal basis

{es} for gq.
The Clifford algebra C(g) is the quotient of the tensor algebra of V by the ideal

generated by relators z ® z — ¢(«) (note this contains + ® y + y ® z —b(z, y)). Since
these relators are homogeneous for the grading modulo 2, C(g) inherits this grading from

the symmetric algebra. Hence C(g) is a graded algebra.

Theorem 4. C(q) ts graded central simple. If (V, q) is the orthogonal direct sum of

(Vi, q1) and (V,, qz) then C(q) = C(q) ® C(g2)-
25%
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Proof. Since for z, € V,, x, € V, we have b(z,, x,) =0, in C(q), 2, ® 2, + 2,® 2, =0.
Now C(q,), C(g,) may clearly be regarded as subalgebras of C(a); it follows from the
remark above that the commutation rule between them is as usual. Hence we have
a homomorphism of C(¢;) ® C(g,) to C(g). This is onto since V generates C(q) (as
algebra); that it is 1 — 1 follows since each relator for C(g) has the form, for z, €V,

(T + ) @ (2 + 22) —q(2, 4 15) = (xl ® 931—‘](9”1)) (2, @2+ 1,@2,) + (xz ® xz_’I(xz))y

so is zero in C(q;) ® C(q,).

This proves the second part of the theorem. The first part follows, on observing
that (V,¢) is an orthogonal direct sum of the subspaces (ke;, ¢;); that C(g:) = {a;} if
g(e:) == a;, so is graded central simple, and by applying Theorem 3.

Observe that C(g) falls under case (—) if the dimension, n, of V is odd; under
case (+) if n is even. This follows by induction. The invariant

1 1
a=(—1)2"""" M a = (—1)2""“ P27 det b,

again by induction. These results are due to Witt [4].

It follows that the invariants of the graded algebra C(¢) tell us precisely the follow-
ing: the dimension of V, the determinant of b, and the structure of a central simple
algebra C or C,. These are, of course, all standard invariants of g¢.

We can also verify by induction that the invariant D is of the form
L1y (n— 1 1) (n—2) (n—3) (n—
JT (@, a) {(IT (1, a0 (=1, — O DETROT0TE,

Various methods have been used in the past to derive invariants satisfying simpler

n 2n
relations. Witt [4] takes as his invariants those of the Clifford algebra of X ¢,27 — X 7.
1 n+1

This leads to an invariant

a=1IIa,
D :1<I (ai7 a]') H(*—17 ai) = H (ah ai)v
1<j [} =y

and the multiplication formula for a direct sum is given by formula (1) in all cases. This
simplification has advantages; it also has the disadvantage that the class of C(¢) in the
graded Brauer group (which certainly seems more natural) just vanishes for Witt kernels,
and so defines a homomorphism of the Witt group. This is not case for the modified
invariants above. Delzant (unpublished) has defined Stiefel classes, of which the first
two run as follows: associate the quadratic form ¢; with (4, a;, k) in the little graded
Brauer group, and direct sums with products. This leads to a = 1} a; as above, and

D = II (a;, a;). This normalisation has the same disadvantages as discussed above;
i<t

the compensating advantage in this case is that higher Stiefel classes are also obtained.
Both these other normalisations give zero invariants to the form z2? and generally to
2 22, rather than to Witt kernels.

Modifications in Characteristic 2

At a number of points above, we have used the hypothesis that the characteristic
of k is not 2. We now verify that most of our results remain valid, after suitable changes,
under the opposite assumption. The first and main difficulty is that the proof of Lemma 6
breaks down as T becomes trivial. We consider case (4).



Wall, Graded Brauer groups 197

Lemma 8. (i) A, is semi-simple.
(il) Ay is a sum of 1 or 2 simple ideals.

Proof. (i) Let R be the radical of A,. Then for some N, RY = 0. Hence
(A,RA)Y < A,R¥A, = 0.

Thus A, RA, is a nilpotent ideal, hence contained in R. By Lemma 1, R is improper;
since A, has unit, R = 0.

(il) By (i), we can write 4, =.2n' B; as a sum of simple ideals. Now A, is a 2-sided

=1
Ay-module, hence a module over & B; ® B;, so is a direct sum of modules C; over B; ® B,.
Now B, is an ideal in A,; by Lemma 1, A, = A, B; + B;4,. But B;Cj; =0 for i ==,
B;C;; = Cy, and similarly for multiplying on the right. Hence

%‘ Cyp =A;, =A,B;+ BiA, =2 Cj + %' Cir,
s j

80 Cjzp =0 unless k =i or j =i. Now if n = 3, taking inturn i =1, 1 =2, i =3 we
deduce that each C;, = 0, so 4; = 0, a contradiction. Hence n < 2 — and moreover, if
n=2 A, =Cy,+ Cy.

Lemma 9. The centre of Ay has degree 2 over k.

Proof. We established in Lemma 8 that if 4 is central simple over %, and is graded,
then A,is a sum of 1 or 2 simple ideals. Now if K is any (ungraded) extension of k, then
A ® K is central simple over K. We deduce that A, ® K is still a sum of 1 or 2 simple
ideals. Its centre, which is Z(4,) ® K, is therefore a sum of 1 or 2 fields. We also observe
that since, by Lemma 4, A4, is not central simple, the degree of Z(4,) over k is not 1.

Now let A, be simple. Z(A,) is a field L of finite degree n over k. L is a separable
extension of k, for otherwise let [ be the separable closure of £ in L. Then L ® L is the
centre of A, ® L, hence is a direct sum of fields, and so is the quotient algebra L ®; L.
But if z € L is inseparable over I, z ® 1 + 1 ® z is nilpotent in L ®; L: a contradiction.
Hence L is separable, and if K is a normal extension of &k containing L, L admits n
distinct k-isomorphisms into K. These induce r distinct homomorphisms L @ K - K,
with comaximal kernels, and we deduce easily that L @ K is the sum of n copies of K.
But this is a sum of at most 2 fields, hence n < 2 and so n = 2.

The argument when A, is a sum of two simple ideals runs the same way; taking
Ly, L, as the centres of the two ideals, we must have K ® L, + K ® L, the sum of 2
fields for any K, and deduce that each L; has degree 1.

Lemma 10. Z(A4,) is generated by an element u, with u® + u = a€k. A, is the set
of zin A with xu = ux. A, is the set of y in A with y(1 + u) = uy.

Proof. First suppose A, simple. Then Z(A4,) is a separable extension of degree 2,
hence generated by z satisfying 22 + pz 4+ ¢ =0 (p #=0). We can write u = z/p;
since Z (A,) is a field, u? + u + 0. Since u is in the centre of 4y, u™'zu = z for z in A,;
in fact A, is the centraliser of u by (Bv) and has half the dimension of A over k. Now 4,
is a module over 4,® A, which admits just two homomorphisms to the matrix ring
Ay ®ppu Ao, corresponding to the two imbeddings of k[u] in the centre of 4,. By the
dimension condition, 4, is an irreducible module over one of these rings (it is too small
for anything else), and the fact that A, does not centralise # determines which. Hence
wly(1 + u) =y for y € A;, and the characterisation of A, follows.
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If A, is not simple, take u as the unit element in the first summand; then if v is
the unit in the second, u 4 v =1 and uv = 0. We have A, = B, ® By, A, = C;, ® Cy,
and clearly u acts as left unit on B,, C,,, left zero on B,, C,,, right unit on B,, C,,,
and right zero on B,, C,,; similarly for v». The characterisations of A, and A, follow.

Corollary. The choice of u, with u® 4 u € k, determines the grading of A.

We now have an acceptable substitute for Lemma 6, and can complete the structure
theory as before. Define p(k) as the additive group of elements of k& of the form
a® + a(a € k); then a quadratic extension k[u] determines u? 4 u € k up to adding an
element of (k). The structure theory, without essential change, now gives

Theorem 1'. In case (+), in characteristic 2, the structure of A is determined in
general by (n, D, a): n a positive integer, D a central division ring over k, a a class in k
modulo (k). However (i) if the field k[u] (where u® 4+ u = a) cannot be imbedded in D,
then n is even, (ii) if @ = 0, so that k[u] = ku ® k(1 4+ u), we need also an unordered pair
(p, q) of positive integers, p + q = n.

The formulation of the structure theory in Lemma 7 breaks down, however:

. 01 01
although matrices (a 1) and (1 1

and r is indecomposable as a tensor product in case (+). In fact Theorem 2 breaks down,
for in characteristic 2 the graded tensor product coincides with the usual one, and its
centre is the tensor product of theirs. So the tensor product of two algebras in case (—)
is not central. However, the tensor product of two algebras in case (4) is another; this
follows from (Biii). We now have

) may now be taken for u and r, the algebra of u

Theorem 3'. In characteristic 2, multiplication of types is given by
(+,a, D) ® (+, 0’y D) = (+,a + ¢, D ® D).
Proof. For the algebras themselves, we have simply
M,Dye M, (D')y=M,,(D®D.

Now let u, u’ be canonical elements in the centres of A;, A;. Then the centre of A;® A
has basis {1, u, uw’, uu’}. We must find which of these centralise 4, ® A{. Now by
Lemma 10, for y € A, y' € A7,

yy'{e+putyu +oun}={a+plu+1)+y@+1)+o@+1) @ +1)}yy,
and if for all y, y’ this equals {« + fu + yu’' + duu'} yy', then
{B4+y+outw +1)}4,4; =0,

whence 8+ y 4+ d(u+u + 1) =0 and so f =y, 6 = 0. Hence {1, u + u'} is a base
of the centre of (4 ® 4’)y, and since p(u + u') = p(u) + p(u’), the result follows.

Thus in characteristic 2, only the little graded Brauer group can be defined, and
this splits as a direct product.

We now turn to quadratic forms, and use the same notation as before. Since b is
skew-symmetric and bilinear, we can choose a base {e;, fi} of V such that b vanishes
on all pairs of basis elements except b(ey, f;) = 1. The second part of Theorem 4 remains
valid in our case, so we see that we need only study 2-dimensional V. If then, V has
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base {e, f} with ¢q(e) = a, q(f) = a’, b(e,f) =1, then C(q) has base {1, e, f, ef} with
e2=a,f*=a,ef + fe =1. We choose v = ef — the usual element of the centraliser
of Ag — and pv =efef +ef =effe = aa’. Also e 've =fe = v + 1. We have the
central simple algebra (e, aa’].

Hence for any (nonsingular) quadratic form ¢, the algebra C(g) is central simple,
(this is the proof given by Arf [1]), and if {e;, f;} is a canonical basis, our invariant a is
1_2 q(es) ¢(f;) (mod g (k)), which is precisely the Arf invariant of ¢. This description of it

is due to Kneser [2].

References

[1] C. Arf, Untersuchungen iiber quadratische Formen in Korpern der Charakteristik 2, Crelles Journal 183
{1941), 148—167.

[2] M. Kneser, Bestimmung des Zentrums der Cliffordschen Algebren einer quadratischen Form iiber einem
Korper der Charakteristik 2. Crelles Journal 193 (1954), 123—125.

[8] J.-P. Serre, Applications algébriques de la cohomologie des groupes. Theorie des algébres simples, Seminaire
H. Cartan, Paris, 1950/51, exposés 6—7.

[4] E. Witt, Theorie der quadratischen Formen in beliebigen Korpern, Crelles Journal 176 (1937), 31—44.

Eingegangen 5. Juni 1963



	Graded Brauer Groups.  

