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Algebraic L-Theory

IV. Polynomial Extension Rings

by A. A. RANICK], Trinity College, Cambridge

Introduction

In Chapter XII of [1] Bass defines the notion of a contracted functor, as a functor
F:(rings) — (abelian groups)
such that the sequence

0 F () L F (A L@ F (AL D EE2F (A, xS LF (4) 50

is naturally split exact for any ring A (associative with 1), where

£y A—>A[x*]  Ei:A[x*]-> A[x, x71]
are inclusions in polynomial extensions of A4, and

B:F(A[x,x™'])> LF(4)

=coker ((E+E_):F(A[x])®F(A[x™*])- F(A[x, x~']))

is the natural projection. Theorem 7.4 of Chapter XII of [1], the “Fundamental
Theorem’” of algebraic K-theory, states that

K, :(rings)— (abelian groups)
is a contracted functor such that

LK, (4) = Ko (4)

up to natural isomorphism. Here, we obtain analogous results for the groups of
algebraic L-theory considered in the previous instalments of this series ([5], [6], [7] -
we shall refer to these as Parts I, II, III respectively). In Part I we defined L-theoretic
functors

U,, V,:(rings with involution) — (abelian groups)

f.g. projective U-
f.g. free groups.

A-modules for the {V-

for n(mod4), using quadratic forms on {
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(The definitions are reviewed in §3 below, allowing this part to be read independently
of the previous parts). It was shown in Part II that

Va(A[x, x 1) =V, ()@ U, (4)

if the involution ~: 4 — 4; a>d is extended to A[x, x™!] by £=x"". The main result
of this part of the paper (Theorem 4.1) is a split exact sequence

07, (A T, (A0, (A L D ETDY, (4w, 2 ) 5T, ()0
for each n(mod4), with the involution on A extended to 4[x*'], 4[x, x~!] by x=x.
The proof depends on L-theoretic analogues (Lemmas 4.2, 4.3) of the Higman
linearization trick (quoted in Lemma 2.2) and of a result from [2] (quoted in
Lemma 2.3) on the automorphisms of A[x, x™']-modules which are linear in x.
A similar result has been obtained independently by Karoubi ([4]), using an L-
theoretic analogue of the localization sequence of Chapter IX of [1].

Adopting the terminology of [1], we can say that each

V,:(rings with involution)— (abelian groups)
is a contracted functor, with
LV, (4)=U,(4)

up to natural isomorphism. Corollary 4.4 generalizes this ‘‘Fundamental Theorem’’ of
algebraic L-theory to describe the intermediate L-groups ¥,2 (4 [x, x]), as defined in
Part III, for suitable subgroups Q<K (A[x, x™]). Corollary 4.5 identifies the
“lower L-theories’’ of Part II with the functors

L™U,: (rings with involution)— (abelian groups) (m>0)

derived from U,. (There is an obvious analogy here with the “lower K-theories” of
Chapter XII of [1],

K_,.=L"K,:(rings) — (abelian groups).)

Corollary 4.6 describes the L-groups of polynomial extensions in several variables.
The work presented here was stimulated by a course of lectures on algebraic
K-theory given by Hyman Bass at Cambridge University in the Lent Term of 1973.

§1. Contracted Functors

Let (rings) be the category of associative rings with 1, and 1-preserving ring
morphisms. Let x be an invertible indeterminate over such a ring A commuting with
every element of 4, and define 4 [x, x™ '], the ring of finite polynomials Y 1 _, x’a;
in x, x™* with coefficients ;e 4. Let A[x*'] be the subring of 4 [x, x~'] of poly-
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nomials involving only non-negative powers of x*!. Let

£y A A[x*], Ei:A[x*']-A[x,x7!], é=EFE e :A-A[x,x7 1]
be the inclusions, and define left inverses

ey A[xE] >4, e:A[x,x"']-4

for &, & by xTl>1.
A functor

F:(rings) — (abelian groups)
is contracted if the sequence

0—>F(A)—(—_i)>F (A[XDOF (A[x™ )2 F (A[x, x™ 1) S LF (4)—0

is exact for each A4, and there is given a natural right inverse
B:LF(A)- F(A[x,x™1])
for the natural projection

B:F(A[x,x~'])— LF(A)
=coker ((E+E.): F(A[x])®F(A[x'])— F(A[x, x~1])),
that is BB=1:LF(A4)— LF(A). (This is just Definition 7.1 of Chapter XII of [1]).

LEMMA 1.1. Let
F, G:(rings) — (abelian groups)

be functors, and suppose given
i) a natural left inverse

. E,:F(A[x,x™'])- F(A[x])
E,:F(A[x])- F(4[x, x™'])

such that the square

F(A[x™*])5F (A[x x7'])

- l l E.
F(4)y———F (4[¥])
commutes,

il) natural morphisms

fis:G(A)—> L,F(4)=coker(E,:F(4[x])—- F(A[x, x™']))
N+:LyF(4)—>G(A4)
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such that n .1, =1, and such that the square

L,F(A)———G(A)
4+ li-
F(A[x, x 1])~>L_F(4)

commutes, where
AL F(A)-F(A[x,x™'])

is the right inverse for the natural projection
84:F(A[x,x"'])>L,F(A)

induced by
1—E E :F(A[x,x"*])> F(A[x, x~']),

and é_,1_ are defined as 0., but with x
Then F is a contracted functor, and

B=n,6,:F(A[x,x"'])>G(4)

~1 replacing x.

induces a natural isomorphism
LF(A)=coker ((E+E_):F(A[x])®F(A[x~'])—> F(A[x, x~'])) - G(4).
Proof. The diagrams

o F(A[x]) £ L. F(A)

NN NS

F(4) F(A[x, x™') G(4)

NN AN

F(A[x"]) L F(A)
)

E-A4
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are commutative exact braids, where E_, A_, n_ are defined as E,, 4., n, but with
x~! replacing x. It follows that

(—"2 ) (E+E-)

0—F (A —F (A[x])®F (A [x ] ——F (A[x, x" 1) > G (4)~0
is an exact sequence, with

B=A4471:G(A)— F(4[x, x7'])
a natural right inverse for

B=n8.:F(A[x,x"'])> G(4).
Thus F is a contracted functor, with

LF(4)=G(4)

up to natural isomorphism. []
(The conditions of Lemma 1.1 are necessary, as well as sufficient, for a functor to
be contracted. If

F:(rings)— (abelian groups)
is a contracted functor, then

F(A[x,x 1]))=¢F(A)®E,N,F(A)®E_N_F(4)®BLF(A)
where

Ny F(A)=ker(ey:F(A[x*']) > F(A)),
and the morphisms

E,:F(A[x,x '])> F(4[x])=&,F(A)®N.F(A);

E(r)@E,(s4)®E_(s_)®B(t)—&, (r)®s+
fis:LF(A)>L,F(A)=E_N_F(A)®BLF(A); t—0@B(t)
n+:LyF(A)~ LF(A); E_(s_)®B(t)—t

satisfy the conditions of Lemma 1.1, with G=LF.)
§2. K-Theory of Polynomial Extensions

Let P(A) be the category of finitely generated (f.g.) projective left A-modules.
Write |P(A4)] for the class of objects, and Hom, (P, Q) for the additive group of



142 A.A.RANICKI
morphisms g:P— QeP(4). A ring morphism
fiA-A

induces a functor

a1 p (4. JPER(DI-fP=4'® PelP(4)]
SB(A)~>P(); {geHomA (P, Q)= 1 @geHomy (1P, 0).

Given Pe|P(4)), let
P[x*']=&,Pe|P(A[x*'])|, P,=Pe|P(A[x, x'])I.

Defining complementary A-submodules

© -1
P*=Y x'P, P =Y x'P

j=o j=—w

of P, (where x/P=x/®P) we shall identify
P*=P[x], xP =P[x"']

in the obvious way.
Let N (A4) be the category with objects pairs
(Pe[P(A4)|, veHom, (P, P) nilpotent)

and morphisms
fi(P, v)> (P, v')eN(A)

isomorphisms feHom, (P, P’) such that
vf=fveHom, (P, P').
As usual, there are defined functors
K,:(rings) - (abelian groups); A K,(P(A4))

for i=0,1. Theorem 7.4 of Chapter XII of [1], the “Fundamental Theorem’ of
algebraic K-theory, may be stated and proved as follows:

THEOREM 2.1 The functor K, is contracted, with
LK (4)=KN(4), LK, (4)=Ko(4)

up to natural isomorphism.
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Proof. Given an automorphism
[:Gx~G.eP(d[x,x™']) (Ge[P(4)])
let F=f(G)<G,, and define
(P, v)=(G™[x"NF~,x 1 )e|N(4)|
for N>0 so large that x " ¥F~ < G~. Then

E K (A[x, x™1]) > K (A[x]);
1(f:G = G)—E,1(e/:G-» G)®t((1—-v) ' (1—xv):P* >PY)

is a well-defined morphism.

LEMMA 2.2 Every element of K, (A[x]) can be represented by an automorphism
f=fot+xf1:G" > G*eP(4[x])

with f,, fyeHom, (G, G).
Proof. Given an automorphism

f=fo+xfi+x*fo+ - +x"f,eHom,,,(G*, G*) (f;eHom,(G, G),0<j<r)

we can apply the usual Higman linearization trick (first used in the proof of Theorem
15 of [3]), the identity

G E DG )

=(fo +xf1+'}+xr_lfr—1 ";"_1) GTOGt->GteGt
x r

(r—1) times, to obtain a representative automorphism for z( f)eK; (4 [x]) which is
linear in x (with r=1). [J
Given an automorphism

f=fo+xfieHom,,,(G*, G*)
let y=(fo+f,) ! fieHom, (G, G). Then
=(fo+f) 1+ (x-1)y):G* >G*
and (up to isomorphism)

(G Ix" (G ), x )=(G [x ' (1+(x=1)y) G, x")=(G, —y(1—y)"")eIN(4)|.
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It follows that

EiEx(f)=1(fo+f1:G" -GN )@t((1+y(1—y)" )"
x(1+xy(1=y)"1):G*>G*)
=1(fo+f1:G" > G )@T(1+(x~1)y:G* >G")
=1(f)ek; (4[x]).

Thus the composite
E o Es
K, (A[x])—K, (A[x, x ' D—K, (4[x])
is the identity. Similarly, it can be shown that the square

Ky (A[x")-5K, (A[x x~'])

e- l l E.
K, (A)_;‘—’Kl (A[x])
commutes.

Higman’s trick also shows that every element of K, (4[x, x~']) may be expressed
as

1=1(fo+xf1: P, > P)®T(x": Q> 0, )eK; (A[x, x7'])
for some P, Qe|P(4)|, fo, fieHom, (P, P), NeZ.
LEMMA 2.3. If yeHom, (P, P) is such that
14 (x—1) yeHomy, .-1; (P, Py)
is an isomorphism then there exist integers r, s >0 such that
y"(1—y)*=0eHom, (P, P),

and R=Kery", S=ker(1 —y)°® are complementary submodules of P, such that

y=(”" O):P=R@S—>P=R@S
0 s

with ypeHom, (R, R), 1 —yseHom, (S, §) nilpotent.
Proof. See Corollary 2.4 of [2] and pp. 232-34 of [8]. O
If f,, fieHom, (P, P) are such that

f=f0+xf16HomA[x.x"1] (Px’ Px)
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is an isomorphism, then
¢f=fo+f€Hom, (P, P)

is an isomorphism, and y=(f,+/;)"' f,eHom, (P, P) satisfies the hypothesis of
Lemma 2.3. Hence

t(f)=e(fo+f1:P>P)®1(1+(x—1) y:P,>P,)
=8t(fo+f1:P—>P)
@E (14 (x—1) yg:R[x] = R[x])
@E_t(1+(x"1=1) (1—yg):S[x" 1> S[x71])
D1 (x:8,— S)ek, (4[x, x™'])

It is now easy to verify that
E. o+
Ki(A[x])2 K, (A[x, x ') 2 KN (4)
E+ 4+

is a direct sum system, with

A, :KN(4)- Ky (A[x, x71]); [P, vt ((1=v) ™! (x=v):P, > P,)
84: K (A[x, x )= KN(4); 1(f:G, > G )= [GHXx"F*, x]—[F*|x"F*, x]

where F=f(G)<G,, (as before) and N>0 is so large that x"F*<=G™*, (so that, in
particular,

3+7(fot+xf1:Py > P)=[S, 5 ' (1= v5)]e KN (4)).
Identifying

L.K (A)=K,N(4)
in this way, note that the morphisms

1+ KoN(A) > Ko (A); [P, V] [P]
i1+ : Ko (4) > KN (4); [P]—[P, 0]

are such that the conditions of Lemma 1.1 are satisfied. Hence
K, :(rings) - (abelian groups)

is a contracted functor, with
LK, (4)=K,(4)

up to natural isomorphism. This completes the proof of Theorem 2.1. [J
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§3. Review of the Definitions of the L-Groups

Let (rings with involution) be the category of rings 4 (as in §1) with involution
~:A—> A; a—d such that

I=1,a+b=d+b,ab=b-G, a=a forall a, beA.

As in Part I it will be assumed that f.g. free A-modules have a well-defined dimension.
Given a ring with involution 4 define a duality involution

Pe|P(A4)|—P*=Hom, (P, A), left A-action by
*: P(4) > P(4) AXP*>P*; (a, p*)(p>p*(p)-d)
feHom, (P, Q)= (f*:Q* > P*; g*—(p—q*(f (p)))),

using the natural isomorphisms
P—P**; p—(p*p*(p)) (PelP(4)])
to identify
*=1:P(4)->P(A4).
An g-hermitian product (over A) is a morphism
0:0— Q*eP(4)
such that
0*=ebeHom,(Q, 0*),
where e=+1. A + form (over A) is a pair
(QelP(4)l, peHom, (Q, 2%)),
and
0=¢+¢*cHom,(Q, 2*)
is the associated + hermitian product. An isomorphism of + forms

(£2):(Q, 0)= (2, ¢)

is an isomorphism feHom,(Q, Q') together with a morphism yeHom,(Q, 0*)
such that

f*o'f-p=xFx*eHom,(Q, 0*).
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Such an isomorphism preserves the associated + hermitian products, in that
f*(@' o) f=(pxo*)eHom,(Q, 0*).

A +form (Q, @) is non-singular if the associated + hermitian product (¢ +¢*)e
Hom, (Q, Q*) is an isomorphism. The hamiltonian + form on Pe|P(4)|,

HE(P)=(raP*, (§ o)

is non-singular. A sublagrangian of a non-singular + form (Q, ¢) is a direct summand
L of Q such that
j*@j=AF A*eHom, (L, L*)

for some AeHom, (L, L*), denoting by jeHom, (L, Q) the inclusion. It was shown
in Theorem 1.1 of Part I that if L is a sublagrangian of (Q, ¢) there is defined a
non-singular + form (L*/L, ¢) on a direct complement L*/L to L in the annihilator of

Lin (Q, ¢),
L*=ker(j*(p£o*):Q—L*),
and that there is defined an isomorphism of + forms
(£,0:(0, )= HE(L)D(L'L, §)
with f the identity on L*=L@®L*/L. A lagrangian is a sublagrangian L such that
L‘=1L,
in which case there is defined an isomorphism of + forms
(£ 0:(@. 9)» HE (L)

A + formation (over A), (Q, ¢; F, G), is a triple consisting of
i) a non-singular + form over 4, (0, 0),
ii) a lagrangian F of (Q, ¢),
iii) a sublagrangian G of (Q, ¢).
An isomorphism of + formations

(£, 1):(Q, ¢; F, G)~(Q', ¢'; F', G')
is an isomorphism of + forms

(£ 2):(Q,0)~(Q,0")
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such that f (F)=F', f (G)=G'. A stable isomorphism of + formations
[f2]:(Q2, 0; F, G)~(Q', ¢'; F', G')

is an isomorphism of + formations
(2):(Q, 9; F, G)®(H£(P); P, P*) > (Q', ¢'; F', G )®(H+(P'); P', P'*)

defined for some P, P'e|P(A4)|.

Let T< K, (4)=coker (K, (Z) - K, (A)) be a subgroup invariant under the duality
involution

*:Ky(4)> Ry (A4); [P]—[P*] (thatis, *(T)=T).

isomorphism

. . T
For n(mod4) define the abelian monoid X, (4) of {stable isomorphism

+ forms (Q, ¢)
+ formations (Q, ¢: F, G)

{%g% —[F*] lies in T< K, (4), under the direct sum @, with +=(— )i if n= {

The monoid morphisms

T.yT T (@, 0)~(H:(Q); Q. Tg,qy) 2
0 X, (A)—}X"—I(A)’{(Q,(p;F, G)H(GJ“/G, @fg ) {

are such that (87)>=0, where

Fo.p={(x (p1o*)x)|xeQ}c0®0*.

Define an equivalence relation ~ on ker(67: X, (4)— X,_(4)) by z,~z, if there
exist by, b, X1, ; (A) such that z,®0Tb, =z,®07b,e X T (4). It was shown in Theo-
rem 2.1 of Part III that the quotient monoids

Uy (A)=ker (07: X, (A)~>X,_1 (4))im (3": X;7,1 (4)~ X, (4))

of equivalence classes are abelian groups, generalizing the definitions in Part I of
U (4)=Us"“(4), ¥, (4)=U,"(4).

Theorem 2.3 of Part III established an exact sequence

s H™ (T [T) = UF (4)> UT (4)> H* (T’ T)> UL, (4)--

classes of { over A such that the projective class

2i
2i+1.

for *-invariant subgroups 7< 7T’ < K, (4), where
H"(G)={geG |g*=(-)"g}/{h+ (- )" h* | heG}

are the Tate cohomology groups (abelian, of exponent 2).
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There are analogous definitions and results for L-groups associated with sub-
groups R= K, (A)=coker(K,(Z)— K, (A)) invariant under the duality involution

*: K, (4)—= R (4); o (f:P - Q)—t(f*: Q%> P¥)

denoting by P af.g. free A-module P with a prescribed base, and by P* the dual based
A-module. ~

A based + form (Q, @) is a + form (Q, @) on a based A-module Q. The torsion of
a based +form (Q, ¢) is ~

1(p+*: Q- 0*)ek, (4) if (Q, @) is non-singular

t(g, ¢)= {061‘{1 (4) otherwise.

An R-isomorphism of based + forms
(£,2):(2: 0)— (2 ¢)

is an isomorphism of the underlying forms
(£, 0):(0, 0)— (2", ¢")

such that
r(f:Q—» g')eRg K, (4).

A based + formation (Q, ¢; F, G) is a + formation (Q, ¢; F, G) with bases for F, G
and G*/G. The rorsion ©(Q, ¢; F, G)eK, (A) of a based + formation is the torsion of
the isomorphism

fFOE*— GOGOG/G

in the isomorphism of + forms
(fs1):HL(F)- H£(G)®(G'/G, )

given by Theorem 1.1 of Part I. An R-isomorphism of based + formations
(£,2):(Q, 0; F.G)~(Q, 0", ', G)

is an isomorphism of the underlying + formations such that the restrictions
F>F,G- G, GG— GG
~ ~ ~ [ ——

of f have torsions in RS K, (A). A stable R-isomorphism of based + formations

[£1]:(Q, 9; F, G)~ (2, ¢ £, G)
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is an R-isomorphism

(£,2):(Q, ¢; FE, Q)®(HE(P); P, P*) > (Q', ¢'; F', G)®(H+(P'); P', P'*)
defined for some based A-modules P, P’. { Reisomorphism

stable R-isomorphism
over A with torsion in R K, (4), under the direct sum @,

For n(mod4) define the abelian monoid Y, (4) of classes
+ forms

of based {i formations

. The monoid morphisms

: e f2i
with +=(-) 1fn—{2i+1

YR (4)> YR | (A); {(g, @)~ (Hz(2); @ T'o.0) o {2;-

(2,95 F, Q)= (G/G, 9) 2i+1

are such that (9%)?=0, and the quotient monoids

VR (A)=ker (0%: YR (A)~ Y2 | (4))im (0% X, (A)= TR (A))

are abelian groups (by Theorem 3.1 of Part III) generalizing the definitions in Part I of
Vi)=Y D (4) (=U,7(4)),  Wa(4)=V,"(4).

Theorem 3.3 in Part III established an exact sequence
s H™ L (RYR) = ViR (A) > VX (4)> H" (RYR) > VE | (A)+

for *-invariant subgroups RS R' S K, (A).
A morphism of rings with involution

fiA-A

such that f(T)=T’ (for some *-invariant subgroups T<K,(4), T'cK,(4")) in-
duces abelian group morphisms

77T SUT(A): (Qa(P)H(fQ:f(P) _ 2i
S0 ()0 (A)’{(Q,co;F,G)H(fQ,ﬂp;fF,fG) ; {2i+1.

Similarly, if f(R)< R’ (for *-invariant subgroups R< X, (4), R'= K, (4')) there are
induced morphisms

FVRA)-VE(4)  (n(mod4)).
§4. L-Theory of Polynomial Extensions

Given a ring with involution 4 and an indeterminate x over 4 commuting with
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every element of A4 extend the involution on A4 to the involution

) o0 oo
A xT - Alx x 7] Y Xape Y Xg

j=-—o j=-o

on A[x, x™']. This restricts to involutions on the subrings A [x], 4[x '] of A[x, x™'].
F. g, free A[x]-modules have well-defined dimension, as do those over A[x~'],
A[x, x~']. Thus the rings with involution 4 [x*'], 4[x, x~!] satisfy the conditions
imposed on A4 in §3.

Call a functor

F:(rings with involution) — (abelian groups)
contracted if the sequence

0—F (A)-(—'iF (ANOF (AL D-ELLF (A[x, x~ 1)) S LF (4)—0

is exact for every ring with involution 4 and there is given a natural right inverse
B:LF(A4)- F(A[x, x™'])
for the natural projection

B:F(A[x,x '])—> LF(A)
=coker ((E,E_): F(A[x]®F(A[x™'])> F(A[x, x™'])).

The obvious analogue to Lemma 1.1 holds for functors
(rings with involution) — (abelian groups)
as does the following analogue of Theorem 2.1 for the L-theoretic functors of §3:
THEOREM 4.1. Each of the functors
V,:(rings with involution)— (abelian groups)  (n(mod4))
is contracted, with
LV,(4)=U,(4), L:V,(4)=U"*(4[x""])

up to natural isomorphism, where Ky(A)=8zR,(A)=Ko(A[x™]). O

The proof of Theorem 4.1 in the case n=2i will be similar to the proof of Theo-
rem 2.1. The case n=2i+ 1 will follow by an application of the results of Part Il on the
L-theory of Laurent extensions (that is, of the ring 4[x, x™'] with involution by
F=x"1).
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Recall from Part II that a modular A-base of an A[x, x™']-module Q is an A-
submodule @, of Q such that every element g of Q has a unique expression as

q= Z x@j (%EQm{j|%¢0} finite),

j=—o

so that Q=A[x, x ']® 40, up to A[x, x~*]-module isomorphism. For example the
A-modules generated by the bases of free A[x, x~']-modules are modular A4-bases.
Define a morphism

84 Vo (A[x, x - URP (4[x~1]);
(Q, (p);—»(P[x_l], [90]»1‘)5_1 [(P]—z)

by choosing a modular 4-base Q, for Q (which is a f.g. free A[x, x~']-module) and an
integer N>0 so large that

(910" (x"Qo)=x™05"  (£=(-)),
defining

P=x"05 n(p¢") ™ (x7"Q5T)elP(4)],
with [¢];eHom, (P, P*) given by
. [0])(») (v)=a;e4  (»,y'eP, jeZ)
1

0() ()= ¥, Yaedlxnx] (a,e4),

j=-w

and writing P[x~!] for é_P=A[x"']®, Pe|P(4A[x"'])I.
The A-module isomorphism

[eto*]-1:Q0—0*

may be expressed as

[o]-1£([e]-)* 0 0
[o£e*]-1= 0 0 1):POLOL*~P*OL*@L
0 +1

(=]

where L=(p+¢*) 1 (x V08 "), L*=x"Qg =0, so that (P, [¢]-,) is a non-singular
+ form over A.
For any y, y'eP

[exo*]-2(») ()=[ete*]-1(x») ()
=[p+¢*]_i (xy—x"yy_1) (')eA4,
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where yy_,€Q, is such that
y=" x5 A (e xe") T (NI =x 1P,

Thus
(P, [o£¢*]-1)"" ([ £0*]-2))=((020*) ™" (x "Q%")/x"Q3, x)e N (4)],

and (P[x7'], [¢]-1—x""'[¢]-,) is a non-singular + form over A[x~'].
Suppose that Qy is a different modular A-base of Q. Let M>0 be so large that

M . M .
Qs Y x'Qy, Qo= Z x'Qp.
="M i==M
Then N'=N+ M is so large that
(9£0™) (x" 06 )sx""05"",
and
P'=x"0y n(px0™) " (xV05*) (definition)
=x"(x"05" N Q5 )®P®x " (p+0™) ' (@57 nxTMQFT).
Now
L=(x"(x"Qy" n Q) [x 1P [x']
is a sublagrangian of (P'[x'], [¢]-1—x"'[@]-,) with L*/L=P[x~'], so that
(P'[x7 ') [@]-1—x""[0]-2)=(P[x" '] [¢]-1 —x"" [0]-,)®H+ (L)
=(P[x"'L [9]-1—x " [¢]-2)e UFF“ (4 [x~"]).

Thus the choice of N and Q, is immaterial to the definition of 4.
Finally, suppose that

(Q, 9)=E. (Qq, @o)€ Vai(A[x, x™'])

for some (Qq, ¥o)€V,;(4[x]). Then we can choose N=0, and
3. (Q,9)=0eUZ* (A[x"]).

Hence the morphism
04 Vau(ALx, x7]) > U@ (A[x7'])

is well-defined, and such that the composite

Var(A[x]) =5 ¥y (A [x, x 7]~ US@ (4 [x71])
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is zero. Before going on to show that this sequence is in fact split exact, we need an
L-theoretic analogue of Lemma 2.2 (the Higman linearization trick):

LEMMA 4.2. Every element of US™ (A[x]) (resp. Vyi(A[x, x71])) can be
represented by a linear + form, (Q%, @o+x¢,) over A[x] (resp. (Q, @o+x¢p,) over

A[x, x~1]) where ¢4, p,€Hom 4,(Q, 0*).
Proof. Given (Q*, p)e U™ (4[x]), let

N
¢=j§,oxj¢j Hom,,, (Q+, Q*+) ((PjeﬂomA (@, 0%)),

and suppose N> 1. Now

1 00 0 —x""'py O
< —x 1 0) <o 0 o)
+xV 1oy 0 1/, 0 0 0
o—xNpy —x""loy x
:(Q%, 0)®H. (QT)~ | QT®Q T ®0Q*", 0 0 1>>
0

is an isomorphism of +forms over A[x], so that
(@7, 0)=(Q%, 9)e UF“(4[x])
with Q' =0® 0@ Q* such that

N-1

¢'=Y x‘pjeHom,,,(Q'*, Q™) (¢;eHom,(Q, Q™).

Iterating this procedure (N—1) times we obtain a representative for
(0%, 9)e US™ (4[x]) with N=1.

The same method works for elements (Q,, ¢)eV,;(4[x, x™']) provided we can
assume that

(p£o*) (@7)=0*".
Choosing N >0 so large that

(pLo*) (x"Q™)sx™"Q*",
note that

(", 0):(Qxs 9" =x""0) > (Qs> @)
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as an isomorphism of + forms over 4[x, x~'], so that
Qs ¢)=(Qx @) V2 (A[x, x71]),
and that
('te™)(@N)=0*". O
The morphism
4,:U5W (A[x7') > Va(A[x, x71]);
(Q[x7'], @) (2 x9)®Ee_ (Q[x™'], —0)OH 1 (—Q,)
is clearly well-defined, with —Qe|P(4)| such that Q® — Q is f.g. free.
The composite
UL (4 [x™1]) =25 Vi (A [x, x~1])— UKD (4[x71])
is the identity: by Lemma 4.2 it is sufficient to consider 5,4, (Q[x~'], ¢) with
p=@o+x"'¢_jeHomy,-4(Q[x7'], * [x™'1) (9o, ¢ -1 €Hom,(Q, 0%)),
and
0.4,(Q [x_l]’ (P0+x_1‘P-1)
=3+ (0 X0+ ¢ -1)®(Qx — (Po+¢-1))®H: (— Q)
=((@" " (x(Pot@0)+ (010X ) (")) [x7'],
[xpo+@-1]-1=x" ' [xpo+¢-1]-2)
=((14+x7) 7' (x7'Q), [xpo+ -1 ]-1—x" ' [xpo+¢_1]-2)

where y=(0o+08)~! (p_, £ ¢*,)eHom,(Q, Q) is nilpotent. Now
(145797 = 3 (=) 57 eHom,gen(@Lx ] Q[x),
i=
so that

[xo+@-1]; (1437197 (71) (L+x719) 71 (x71)
_Jod») ()

155

. -1 )
(-1 90y —¥*®0) (¥) () 'ff‘{_z (3, ¥'€Q),

and
Q-1 — 0oy —7*Po=—0_1+xFx*eHom,(Q, 0*%),
where y=¢_, —y*¢p,eHom,(Q, 0*). Thus

8,4, (Q[x™'1, @o+x"to_1)=(Q[x7], 0o +x " (0-1— (xF1*)))
=(Q[x™"], po+x"'0_1)e U™ (4[x"])
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and
844, =1:UFD(A[x™1]) » USF(A[x71]).

It is therefore sufficient to prove that V,;(A[x, x~']) is generated by the images of
Ey:Vyi(A[x]) - Vau(A[x, x71]), 44 UR@ (A[x7']) > V2:(4[x, x7']) for the
exactness of

Vai (A[X])—> Vo (A [x, x ™ ])— UKD (4 [x71]).

We shall do this using the following L-theoretic analogue of Lemma 2.3:

LEMMA 4.3. Let (Q,, ¢) be a non-singular + form over A[x, x™ ] such that
¢=p+(x—1)veHomyq, ,-1;(Q. Q%) (1, veHom,(Q,Q*)).
Then (Q,, @) is isomorphic to the sum
(Res pr+ (x—1) va)® (S, ps+(x—1) vs)
of non-singular + forms over A[x, x™'] such that
(R[x], pr+(x—1) vg)
is a non-singular + form over A[x], and
(S[x711, 7! (us + (x—1) vs))

is a non-singular + form over A[x™'].
Proof. The invertibility of

[ i- (P* = (#i#*)"‘ (X -1 ) (Vi V*) € HomA[x, x—1] (Qx’ Q:)
implies that

e(pto*)=ptp*eHom,(Q, 0*)
(”i”*)—l ((Pi'(P*): 1+ (x" 1) yEHomA[x,x‘ll (Qx’ Qx)

are isomorphisms, where

y=(ntp*)"! (v£v*)eHom,(Q, Q).
Hence, by Lemma 2.3,

y=(7k 0);Q=R@S—>Q=R(—BS
0 s

with yzeHom, (R, R), 1 —yseHom, (S, ) nilpotent.
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Adding on some F hermitian products of type yF y*€Hom, (Q, 0*) to u and v
if necessary, it may be assumed that u(R) (S)=0, v(R) (S)=0. Let

N=(“R ”Rs):R@SaR*®S*, v=(”“ ”‘“):R@S-»R*@S*
0 Us 0 Vs

so that

Hxiﬂ; Hrs ) <?R 0> (VRiV: VRrs > * *
= :R®S > R*®S™.
( i#;s Hsiﬂg 0 s i";s Vsiv*s

Working as in the calculation of § .4, above,

8+ (Qw 0)=((Q" (00" 1 (@*") [x '] [0]-1—x""[¢]-2)
=((1+(x=1)y5) " () [x '], [us+ (x—=1) vs]- s —x " [us+ (x—1) vs]-2)
=(S[x7"], x 7" (us+(x—1) v5)) e US® (A [x7]).

Thus ¢_5, (Qx, ¢)=(S, us) is a non-singular + form over 4, and hence so is (S, vs),
because

(vs+vs)=(ustus) yseHom, (S, S*)
and yse Hom, (S, S) is an isomorphism (being unipotent). Let
g=+(vs+vs) ! vise Hom, (R, S)

' _ *
ﬂ/=(/‘R—#R g Us8 0):R@S-—+R*(—DS*

0 Hs
r_ _ *
VI=(VR_vR g Vsg 0>:R@S—>R*®S*.
0 Vs
Now

(f X)=(<; (1)>’ ((ﬂs+(x(11) vs) & g))

(2 9)=(R®S,, +(x—=1) v) > (s )= (Re®S;, 4+ (x—1) V')
is an isomorphism of + forms over 4[x, x~1]. It follows that
f*(9'£9™) f=(pt9*)eHomyy, -11(Qx CF)

and as f'is defined over 4

f*(w£pu*) f=(utu*)eHom, (Q, 0%)
[V £v*) f=(v+v*)eHom,(Q, Q*).
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Defining
r_ ’ rk\y—1 *
v’=(u’i#’*)"(v’iv’*):(“'("'*i““o) (rtv) 3):1{@5—)1(@5,
S
we have that

== DG ) e )l )
= = = :R®S— RDS.
V=R (g 1/J\0O ys/\—-g 1 8YR—Ys& Vs @S- RS

Hence
yr=yr€ Hom, (R, R)

is nilpotent, and (R[x], ug+(x—1) vz) is a non-singular + form over A[x]. This
completes the proof of Lemma 4.3. []

Given (Q,,9)eV,;(4[x,x"']) it may be assumed, by Lemma 4.2, that
@=p+(x—1) veHom,, ,-1; (@, OF) (1, veHom, (Q, 0*)). Applying the decom-
position of Lemma 4.3,

(o (P)= (Rx’ Br+(x— 1) vR)@(Sx’ ps+(x—1) vs

= {(Rx’ Mg+ (x_ 1) VR)@(Sx: ﬂs)}@{(sx’ Hs+ (x_ 1) VS)
@ (Sx’ - I‘S)®H:t ('_ Sx)}
=E, ((R[x], up+(x—1) va)®(S[x], 1s))
®4., (STx~11, ¥ (us-+ (x—1) vs))e Vi (ALx, D).

As pointed out above, this suffices to prove the exactness of
E+ 3+ -
Vai(A[X])— Vo (A [x, x" ) — U5® (4[x71]).
Define next a morphism

Ey: V(A% x7']) = Vo (A[x]) 5
(2o @)= ((p£0*) ' (x™7Q* ) A x™V0**) [x], [@lo—x ([¢]:)
S((x"2" n(pxe*) ™ (x"Q* ")) [x], [¢]-1~[¢]-2)
for N, N; >0 so large that

(ox0*) (Q)-‘Ej z x'o*

= —

with Qe|P(4)| f.g. free. The verification tﬁat E, is well-defined is by analogy with
that for .. Moreover, if

(Qx’ (P)= (Rxs HUgr + (x"' 1) VR)®(SX’ ﬂs+ (x_ 1) VS)
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(as in Lemma 4.3), then
E. (Qx ¢)=(R[x], ur+(x—1) ve)®(S[x], us)e V2 (4[x]),
so that the composites
US® (ALx D)5 Vas(A 5 x ™) — Va(A[x])
Vas (LK) = Vi (ALx, ™) Vi (4 [x])

are 0, 1 respectively. Thus
E+ b+
Vau(A[x]) =2 Vo (A[x, x7']) = U@ (A[x"'])
E+ a4+
defines a direct sum system, and we can identify

Lo Vy(A)=UR@ (4[x™1]).

Similarly, replacing x with x~?, there is defined a direct sum system
E- s
Va(Alx™ ' D& Vo (4w x ] & U (A[x]),
E- 4-

allowing the identification
L_Vy(4)=U“ (4[x]).

The proof of Lemma 4.2 shows that every element (Q[x~'], ¢)eV,;(4[x!]) has
a representative with

¢=(Po+x_1‘l’—1 €Hom,,-1, (Q[x—l]’ o* [x_l]) (@0, 91 €Hom,(Q, O*)).
The composite
V(AL D)= Vo (4 [ 3™ D)= Vo (A[x])
sends such a representative to
E.E_(Q[x7'], ¢)=(((ex9*)™! (x@*7)n Q") [x], [¢]o—[e]s)
O((x@™ n(pto*)™! (x71'0*) [x], [e]l-1—-[¢]-2)

=(Q[x1] 00)® (0L o*)™ " (Q*®x~10*) [x], [¢]-:
~[e]-2)eV.u(4[x, x—l])-

The A-module isomorphism

080 - (p+0*) ™ (Q*Dx7'Q%);
(0, V)~ (010*) 7 ((Po£05) 3, x 7 (9o 05)+@-1£0% 1)) ¥+ (90 £ 93)Y))
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defines an isomorphism of + forms over A4

o0, (7t _) N (0ot (@0@x7'0). [0 ~[0]-,)

Therefore

ELE_(Q[x7'], @o+x719-1)=(Q[x], 9o+ - )®(Q[x]®Q[x], 9D —¢y)
=(Q[X], (Po+(P—1)
=§+8— (Q[x—l]a q00+x'1(p_1)e V2i(A [X]),
and the square
Var (A [x D)= Vs (ALx, x7])
e—l &+ lE+
V3i(A)— V5 (A[x])
commutes. Similarly, we can verify that the square

US™ (A[x™']) 5 Uy (4)
a.] lii-
Va(A[x x™ ) —5— UR (A [x])
commutes, where

Nt Ug?“) (4 [x“]) - Uj(4), #+:Uy(4)- Ufiuu) (4 [x; 1])
are the morphisms induced by
ne:AxT]>4; Y xHaja,,  Ep:d->A[XTY]
ji=0
respectively (so that 5.7, =1). For
6.4, (Q[x7'] o=0o+x"10_y)
=6— ((Qx’ x(p)@(Qx’ - (‘Po +(P— 1))@H:t (_ Qx))
=((x7'Q" n(ex0™) (")) [x], [x¢]-1—x[x¢]o)
=((x7'Q) [x], [x¢]-1)=(2[x], ®0)
=714 (Q[x™'], 9)e U (4 [x]).
The conditions of Lemma 1.1 are now satisfied, and so
V,;: (rings with involution) — (abelian groups)
is a contracted functor, with

LV (A)= Uf?m (4 [’ﬁ 1]) s LV (4)=U;(4)
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(up to natural isomorphisms), and the diagram
o-E

& Eia. Kot o
Vai(A[x]) Uz (A[x])

\\//\\ //\\//

/VZz(A) VZt(A[x X 1]) UZl(A)
VZ,(A[x" g USe(4[x™1])
AN ‘%_—/7/

incorporates two commutative exact braids.
Let SocK, (A[x,x™']) be the infinite cyclic subgroup generated by B([4])
=1(x:4,— A,), and define

Wy (ALx, x =V (A[x, x™'])  (n(mod4)).
Working as for V,, (4 [x, x~1]), it is possible to define morphisms to fit into a diagram

6-E,

/A/\/\

Wau(A[x]) A VEO(A[x])

NN AN

W2i(4) Wo(Alx, x~']) Vai(4)

LN O

Wai(A[x~ 1]) Vi (A[x~ 1])

E-44

(with E,E, =1 etc.) incorporating two commutative exact braids. For example,
84 Wi (A[x, x™'1) = VED (A[x1]); (Qo @) (B[x '], [0]-1—x 7 [0]-2)
Ey:Wyu(A[x, x71]) > Wy (A[x]) 5

(Qx 0)— (P1[x]), [e]o—x[0])D(P [x], [@]-1—[w]-2)
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for any A-base P of P=x"Q™ n(p+o*)™! (x"¥Q**) (which is free for sufficiently
large N>0, as 7(Q,, ¢)eS, and [P]=Br(Q,, p)=0eK, (4)) with
Pi=(pt¢*)™' (x"0*)D (0L o*)! (P¥)
the corresponding 4-base of P;=(p+¢*)™! (X¥*1Q* )~ x"NQ*, for N so large that
2N+1

(exo™M) (@<= X N x'Q*.

Also, let
AV (ALx']) > WA x X7 D5 (QLx '], 9) > (Qx %0) ©(Q, —22-0)
where Q= (e- (p£0*))™" (Q*).

leen an invertible indeterminate z over A commuting with every element of 4
define A4, as A[z,z~'] but with involution by Z=z"'. Similarly, define 4 [x*!],,
A[x, x"‘],, and identify

A[x*1],=4,[x*'], A[x,x'],=A4,[x x"'].
Let So= K, (4,) be the infinite cyclic subgroup generated by 7(z: 4,— 4,) and define

W (4,)=V3"(4,)
T (A[x=1])= V3% (4 [x*1],)
W(A[x, —-1]) V!(Z)Soee(x)So(A[x x—1])

for n(mod4). By analogy with W,;(4[x, x™']), ﬁ’z (A [x, x~1], fits into a diagram
incorporating two commutative exact braids (where 4,=A4[z,z7'], with z=z"1),

O/A T /L/———%

E+

N PN N
0 / \[ /{' r\,{\u;\ / \

3+E-
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We can now apply the decompositions

Wai(4,)=8(2) Wy (A)®B(2) V-, (4)
Wai (A[x].)=E(2) Wy (A[x])@®B(2) V3i—1 (A[X])
Wor (4% x™11.) =5 (2) oy (A% x  DOB(2) Varos (ALx, x7])
Vi (A[x].)=2(2) Vi (A)@B(2) U5 (4)
V2i(4;:)=2(2) V2i (A)® B (2) Usi-4 (4)
given by Theorem 1.1 of Part II (and extended to the intermediate L-groups in Part

III). The above diagram splits naturally (via &(z), B(z)) into two similar ones:
the diagram for W,;(4[x, x"']) and the diagram

EqA-

o‘/-_/”_x*Vz,(A[x])/:"/_E§A ’f:"ﬁ’(A[x])/—L/—§A
\\;(A/\V(A[x /\\//

Vai-1(A[x™']) §?“1’(A[x"’])

0
v \_\_—j v

where

E :Vy 1 (Alx, x—l])__f’_)’szZi(A[x x_l] )"—’sz(A[x] )"“—’Vzi 1 (A[x])

841 Varo1 (A%, x™ 7)o Wy (A [x, x~ 1)
s VEIAD (A [x71],) — U (A [x71])

U (4 [x1]) s VR4 (4 [x1],)
—-—»V?’z,(A[x, x7 1], )i(ﬂ’Vz: 1(A[x, x71])

(and similarly for E_, 6_, 4_). Thus the conditions of Lemma 1.1 are also satisfied
in the odd-dimensional case, and

V,i-1:(rings with involution) — (abelian groups)
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is a contracted functor, with identifications
LyVaioy (A)=USD(A[xF1]),  LVy-y (4)=Uy-y(4).

This completes the proof of Theorem 4.1 []
The groups

Nily (4)=ker (e+: K; (4[x*']) > K, (4))
are such that

Ky (A[x*'])=E.K, (4)®Nily (4)
K (A[x, x"1))=éK, (A)®E Nil, (4)®E_Nil_ (4)®BK,(4),

fitting into direct sum systems

6+E4 ns
Nily (4) 2 KoN(4)= Ko (4)
E A nx

(by Theorem 2.1).
Given *-invariant subgroups S < Nil (4), define

N V3* (A)=ker (e4: Vi K @O5= (4 [x*']) > V,(4))  (n(mod 4))
L [NLV(4) N VN (4)
writing {NiW"(A) for {NiV.f“ (4)

COROLLARY 4.4. Given *-invariant subgroups
RcK,(4), S.cNily(4), T<k,(4)
there are direct sum decompositions
VRO (A[x*1])=E. V" ()N Vo> (4)
Up* T (A[x*'])=2:Uy (A)ON ¥, (4)
V2(A[x, x ) =eVR(A)@E.N VS (A)®E_N_V,5- ()@ BU; (4)
Sfor n(mod4), where
Q=iROE.S,®E_S_®BT<K,(A[x,x™*])
=&K, (A)®E Nil, (4)®E_Nil_ (4)®BK,(4)

with T< K, (A) the preimage of T under the natural projection Ky (A4)— K, (A).
Proof. The forgetful map

V(A1) - U T (A[x*1])
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fits into the exact sequence of Theorem 2.3 of Part III, which splits, via &,, ¢, into
two exact sequences

- 0 - N.V,(4) » N.V,(4) - 0 -

J t o !
= H @ T) > V(AL ]) » Up T (A1 ]) » B (6.T) -
B flos 2 fl s Bl Bl e

- H"YT) > V(1) - U4 - HY(T) -.

Hence N, V,(A4)=V,(A[x*"']) is mapped isomorphically to ker (g4 : U&*T (4A[x*'])
— UT(A4)) and so (up to isomorphism)

U T (A[x*'])=2.U; (A)®ON .V, (4).
In particular,

URS (A[x*1]) =8, U, (A) DN 1V, (),
Vo(ADxE]) =54V, (DN LV, (4).

It now follows from Theorem 4.1 that
Va(A[x, x7'])=8V,(A)®E N, V,(A)®E_N_V,(A)®BU,(A).

The expressions for V2*R®S+ (4[x*1]), ¥2¢(A4[x, x~']) may be deduced from those
for V, (A [x*']), ¥, (A[x, x~']), working as for U2*T (4 [x*!]) above. (In particular,
for R=0, S, =0, S_=0, T=0 we have

0=S,=Kk, (A[x, x~'])
and

Wn(A [xil])= é:t Wn(A)GBNi Wn (A)9
W, (A[x, x )= W, (A@E, N, W,(A)@E_N_W,(4)®BV,(4).) O

In §4 of Part II there were defined lower L-theories, functors
L{™: (rings with involution) — (abelian groups)

for m<0, n(mod4) by
L (4) = ket (e: L0 (A,)» L0 (4))

with L{” (4)= U, (4). By convention, L{" (4)=V,(A4).

COROLLARY 4.5. The lower L-theories L™ coincide (up to natural isomorphism)
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with the functors LV,, L*V,,... derived from V,, with
LP(A)=L""V,(4) (m<0, n(mod4)).
Proof. By Theorem 4.1,
LV, (4)=U,(4)=L (4).

Assume inductively that
LP(A)=L"""V,(4) (n(mod4))

for 0=p>m, for some m< — 1. Then

L (A)=ker (e: LIV (4,) » LD (4))
=ker(e:L™"V,41(4;) > L™"V,+1(4))
=L (ker (e:L™™ V41 (4,) > LT 'V,14 (4))
=L (ker (e: L7V,” (4.) » LYV (4)))
=LLT* Y (4)
=LL™"V,(4)=L'""V,(4)

giving the induction step. []
Given a functor

F: (rings with involution) — (abelian groups)
define
NiF(A)=ker(es:F(A[x*']) > F(4)).
(By Corollary 4.4, the previous definitions of NV, (A4), Ny W, (A) agree with this, up

to natural isomorphism).
By analogy with the first part of Corollary 7.6 of Chapter XII of [1] we have

COROLLARY 4.6. Let xy, x3,..., X, be independent commuting indeterminates
over A, with %,=x; (1<j<p). Then

L™ (A%, X2 X,])=(1ON,)? L™ (4)
P (Alxg, 7Y %2, %7400 %5 %, )= (1ON, ®N_@®L)” LI (4)

up to natural isomorphism, for m<1, n(mod4),p>1. O
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