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Introduction 

Three decades ago differential topology went through a period of extremely 
rapid growth. Six years after Milnor’s discovery of non-equivalent smooth 
structures on a topological sphere such structures were already classified 
through the newly invented method of surgery. In the same period Smale 
showed that every manifold can be constructed by successive attachment 
of handles and provided a method to obtain the most economical descrip- 
tion. This enabled him to prove the PoincarC conjecture in higher 
dimensions, thereby demonstrating the strength of his methods. Also in the 
same period, Smale, Haefliger, and Hirsch developed the theory of imbed- 
dings and immersions, vastly extending the foundational results of Whitney. 

The methods invented in these early years subsequently gave rise to a 
large amount of research. Thus the handle constructions of Smale were 
extended by Kirby and Siebenmann to topological manifolds, and the 
method of surgery was expanded and applied successfully to a large variety 
of problems by Browder, Novikov, and Wall. 

Looking back at these developments it appears possible at present to 
single out certain main ideas and results and present them in a systematic 
and consolidated way. This is what I have attempted to do here. In a very 
broad way, the content of this book can be described as the study of the 
topological structure of smooth manifolds. As I intended this book to be 

xi 



xii INTRODUCTION 

accessible at the beginning of graduate studies, this is preceded by a 
presentation of basic concepts and tools of differential topology. 

An overview of the material follows. More precise information is in the 
introductions to the individual chapters. 

The first two chapters introduce in moderate detail the notions of smooth 
manifold, submanifold, and tangent space. Imbeddings are discussed briefly 
and isotopies at length. The presentation is complete, but it is assumed, 
implicitly, that the subject is not totally unfamiliar to the reader. A more 
leisurely treatment of the analytical topics of these two chapters can be 
found in [Bo]. 

In Chapter 111 it is shown that a neighborhood of a submanifold of a 
smooth manifold can be fibered by planes, that is, it is a vector bundle, 
and that this bundle structure is unique. This is a fundamental result and 
the basis for all that follows. 

The concept of transversality due to Thom is introduced in Chapter IV. 
This is the smooth counterpart of the notion of general position and is used 
similarly to extract from messy entanglements their essential geometric 
content. In this chapter it is applied to prove that every function can be 
approximated by one with a very regular behavior at singularities, a Morse 
function. It is also used to define intersection numbers. This geometric 
concept will in later chapters supplant the less intuitive cup product. 

The results of Chapter V are not utilized elsewhere in this book. It provides 
an introduction to the beautiful and difficult theory of foliations. 

These first four, or five, chapters constitute a general background not 
only for differential topology but also for the study of Lie groups and 
Riemannian manifolds. The analytical means employed here have their 
roots in the implicit function theorem, the theory of ordinary differential 
equations, and the Brown-Sard Theorem. Some algebraic results in the 
form adapted for the purpose and collected in the appendix are used as 
well. Very little algebraic topology enters the picture at this stage. 

Chapter VI is devoted to a description of various ways of gluing manifolds 
together: connected sum, connected sum along the boundary, attachment 
of handles, etc. The presentation avoids the usual smoothing of comers. 
There is a brief discussion of the effect of these operations on homology; 
it prepares the ground for the more precise results of the following chapters. 
The last two sections describe a way to build some highly connected 
manifolds; it is shown in Chapter VIII that all highly connected manifolds 
can be constructed in this way. 
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An important result of Chapter VI describes the situation when two 
successive attachments of handles produce no change: The second handle 
destroys the first. This is Smale’s Cancellation Lemma. 

Chapter VII begins with the proof that every manifold can be built by a 
successive attachment of handles of increasing dimension. To such a struc- 
ture there is associated a chain complex yielding the homology of the 
manifold. The chains are linear combinations of handles and the boundary 
operator is given by a matrix of intersection numbers. Of course, the same 
is true for a triangulation or a cellular decomposition, but the relation 
between the handle presentation and the homology structure of the manifold 
is very transparent geometrically. This fact is exploited here to obtain a 
simple proof of the PoincarC duality theorem and of the Morse inequalities 
providing the lower limit for the number of handles necessary to construct 
a manifold with given homology. The 3-dimensional case, at the end of the 
chapter, provides a nice illustration of basic ideas. 

Chapter VIII contains the proof of the existence of a handle presentation 
with the minimal number of handles determined by its homology groups. 
The following example should explain the importance of this idea. The 
minimal number of handles necessary to build an n-dimensional sphere is 
two: two n-discs glued along boundaries, If we succeed in proving that a 
homotopy sphere admits a presentation with the minimal number of handles 
determined by its homology, then it must admit a presentation with two 
handles. In turn, this implies that it is homeomorphic to the sphere, i.e., 
the PoincarC conjecture. 

The proof we give here follows the original idea of Smale to manipulate 
handles, not the Morse functions, and adopts the following point of view. 
The homology of the manifold is given by chain groups (generated by 
handles) and homomorphisms described by matrices of intersection num- 
bers. It is well-known how this structure can be reduced through a sequence 
of algebraic operations to the most economical form, for instance, with all 
matrices diagonal, etc. We try to find geometric operations on handles that 
are reflected by these algebraic operations on their algebraic counterparts: 
the generators of chain groups. The key to success is in the cancellation 
lemma, which, together with Whitney’s method of eliminating unnecessary 
intersections, permits the actual geometric elimination of those handles 
whose presence is algebraically superfluous. 

The use of Whitney’s method necessitates dimensional restrictions. The 
final result asserts in its simplest form the existence of the minimal presenta- 
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tion for simply connected manifolds of dimension higher than 5. This has 
a large number of consequences: the h-cobordism theorem, the Poincar6 
conjecture, and the characterization of the n-disc and of highly connected 
manifolds being among the most important. 

Chapter 1X presents a construction invented by Pontriagin that associates 
to a framed submanifold of codimension d of a manifold M a map of M 
into a d-sphere, and to a suitably defined equivalence class of such submani- 
folds the class of homotopic maps. This provides a link between homotopy 
theory and differential topology. Various operations known from homotopy 
theory can be represented by geometric constructions; as an illustration we 
utilize this method to provide proofs of some classical theorems of Hopf 
and Freudenthal. 

Next, we turn our attention to the class of manifolds that admit framings, 
that is, manifolds that can be imbedded in a Euclidean space with a trivial 
normal bundle. In the last section it is proved that homotopy spheres have 
this property. This result is crucial for the classification of differential 
structures on spheres in the next chapter. In the proof of it we must invoke, 
for the first time in this book, some deep results of Adams, Bott, and 
Hirzebruch. 

Chapter IX can be read directly after Chapter IV. 
The last chapter introduces the method of surgery. An overview of it is 

given in the introduction to the chapter and it is too involved to give here. 
The main line of argument follows the classical paper of Kervaire and 
Milnor, but is simplified through the use of the theory of handle presentation 
from Chapter VIII. This chapter closes with the classification of smooth 
structures on spheres in terms of stable homotopy groups of spheres and a 
few examples of nonstandard structures. 

The theory of imbeddings is not considered here, though the classical 
results of Whitney are quoted and used. It stands somewhat apart from the 
subjects considered here and I did not want to expand unduly what was 
to be a short book requiring minimal prerequisites. The book is somewhat 
longer than intended but the prerequisites remain limited to what is usually 
found in a first course in algebraic topology, and to elements of the theory 
of vector bundles. The theory of cohomology products is not used until the 
last chapter, and even there it could be dispensed with. 

Various shortcuts are possible in reading this book. The reader who wishes 
to proceed quickly to Smale’s theory can skip the last two sections of 
Chapters I11 and VI, as well as Chapter V. The surgery method of the last 
chapter is accessible after elements of Chapters VI and IX, provided that 
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some results of Chapter VIII are accepted on faith. The entire content of 
the book can be covered in a two-semester course. 

The specialist will find here some novel approaches to familiar subjects 
and a substantial number of new proofs. In every field of mathematics a 
period of rapid growth leaves behind much disorder: various "folk 
theorems," as well as theorems with insufficient, sometimes even incorrect, 
proofs. I hope I have filled some of those gaps. As the line between pedantry 
and precision is thin, I might have crossed it in the wrong direction. However, 
in a field where an invocation of "it is easy to see" is sometimes considered 
a method of proof, there might be merit in actually writing the details out, 
messy as they might be. 

This book originated in the course I gave for the first time at Berkeley 
in 1963 and a number of times, with a constantly changing content, at 
Rutgers and Bonn. Parts of it were written while I was a guest of the 
University of Bonn (Sonderforschungsbereich) and a member of the 
Institute for Advanced Study in Princeton. I am grateful to these institutions 
for providing me with excellent working conditions. 

I am grateful to my colleagues, G. Bredon and P. Landweber, who read 
parts of the manuscript and contributed many useful suggestions. My wife 
never failed to emerge from her habitual location in the Middle Ages to 
provide much needed moral support. 

Mrs. Louise Morse graciously provided the photograph serving as frontis- 
piece. Taken in April of 1963, it shows all principal dramatis personae of 
this book, with the exception of R. Thom. 

Notational Conventions 

A cross-reference III,3.5 is to Theorem 5 of Section 3 of Chapter 111; if the 
chapter number is omitted, it is to the chapter at hand. A reference A,3.5 
refers to the Appendix following the last chapter. 

The ring of integers is denoted by Z, n Z  stands for the subring of multiples 
of n, Z ,  = Z/nZ. 

The Euclidean n-dimensional space is denoted by R"; when Rk is viewed 
as a subspace of R", it is as the subspace of first k coordinates. The space 
of last k coordinates is denoted by Rk, R: = {x = (x, , . . . , xn) E R" 1 x, 5: 0 } ,  
0 = (0 , .  . . , 0) E R". We write D"(r)  = {x E R" Ix2 I r'}, f i " ( r )  for the 
interior of D"(r),  and S " ( r )  for its boundary; if r = 1, then it is omitted 
from the notation. 
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The inverse of a matrix M is denoted M-',  the transpose 'M. Gl(n) 
stands for the group of n x n nonsingular matrices; Gl(n) acts on R" via 
the multiplication u - A4 - TI, M E Gl(n), where we view the vector u E R" 
as an n x 1 matrix, and the multiplication is, exceptionally, denoted by a dot. 
Vn,k stands for the Stiefel manifold of k-frames in R"; this is the set of 

all n x k matrices of rank k Sometimes we employ the same symbol for 
n x k matrices with orthonormal columns; the meaning is always clear from 
the context. O( n )  stands for the group of orthogonal matrices; the inclusion 
O(n - 1) L, O(n)  is given by 

and the projection O ( n )  -* V,,k by taking the first k columns. 
We list now various groups defined in the text: 

r", the group of diffeomorphisms of S" modulo those which extend over 

A", the group of invertible smooth structures on S", VI,2. 
O", the group of homotopy spheres, VIII,S. 

P", the group of framed manifolds bounded by a homotopy sphere, X,6. 

O", the group of homotopy spheres, VII1,S. 

P ; ,  the subgroup of P" of manifolds with the boundary diffeomorphic 
to S"-', X,6. 

Rk(M"), the set of framed equivalence classes of closed framed k- 
dimensional submanifolds of M", IX,3. 

R:(M") (resp. Rk,(M")) the subset of Rk(M") consisting of these 
classes which can be represented by a framed homotopy sphere (resp. 
a framed sphere), IX,3. 

D", III,6. 

R:, the stable group Rk(Sm), rn large, IX,6.2. 

Z:, the subgroup of R: consisting of framed homotopy spheres, X,6.3. 

S:, the subgroup of R: consisting of framed spheres, IX,6.2. 
rk(S), the stable group T"+~(S"), n large, IX,6.2. 
In IX,6.2, 0: is identified with rk(S); in IX,6.3 S: is identified with the 

image of the stable Hopf-Whitehead homomorphism Jk: r k ( S O )  -* rk(S). 



Differentiable Structures 

Les 2tres de l'hyperspace sont susceptibles de definitions prkcises comme ceux 
de l'espace ordinaire, et si nous ne pouvons nous les reprksenter, nous pouvons 
les concevoir et les Btudier. 

H. PoincarC 

1 Smooth Manifolds and Maps 

A topological space is a manifold if it admits an open covering { U,} where 
each set U, is homeomorphic, via some homeomorphism h,, to an open 
subset of the Euclidean space R". A near-sighted topologist transferred from 
R" to a location in such a manifold would not notice a difference, at least 
not until he or she decided to do Calculus: A function which is differentiable 
when expressed in local coordinates relative to one U, (i.e., its composition 
with h,) need not be differentiable relative to another set of local coordin- 
ates. For that to be true the covering must satisfy an additional condition. 

(1.1) DeJinition Let M be a topological space. A chart in M consists of 
an open subset U c M and a homeomorphism h of U onto an open subset 
of R". A C' atlas on M is a collection { U,, h,} of charts such that the U, 
cover M and h,h,', the transition maps, are C' maps on h,(U, n U p ) .  

1 



2 DIFFERENTIABLE STRUCTURES 

For our purpose, which is to define differentiable functions, two different 
atlases may yield the same result. They certainly will if they are compatible, 
in the sense that their union is an atlas. This relation of compatibility is an 
equivalence relation; hence every atlas is contained in a maximal one: the 
union of all atlases compatible with it. We now continue the Definition 1.1: 

A maximal C' atlas on M is called a C' structure. A diflerential manifold 
M of class C' consists of a second countable HausdorfE space M and a 
C' structure on it. 

A C" atlas (chart, structure, . . . ) will be referred to as smooth. Throughout 
this book we will consider smooth structures exclusively. This will not 
restrict the generality for it has been proved by H. Whitney [Wi2] that every 
C' structure, r 2 1, contains a smooth structure. 

A favorite method of studying smooth manifolds consists in observing 
how they are put together from smaller pieces. The pieces are not, however, 
smooth manifolds, they are manifolds with boundary. The definition of 
manifolds with boundary parallels 1.1; the only change is that we allow the 
h, to be homeomorphisms onto open subsets of either R" or RY, where 
R," = {(x, , . . . , x,) E R" I x, 2 0). The transition maps now become maps 
of open subsets of RT ; such a map is, by definition, smooth if it is locally 
a restriction of a smooth map defined on an open subset of R". The 
definitions of maximal atlas, smooth structure, etc., remain unchanged. 

The set of those points of a smooth manifold which in a chart modeled 
on R," correspond to points of Rm-' is topologically distinguished (think 
of local homology properties); it is denoted aM and called the boundary 
of M. Clearly, it is a closed subset of M. Its complement is called the interior 
of it4 and denoted Int M. 

Now, let {U,, h,} be an atlas on M. The topological invariance of 
aM implies that h, maps U, n aM to an open subset of Rm-'. Thus 
(U,  n aM, h, 1 U, n aM) is a chart in aM. Moreover, the collection of all 
such charts is an atlas on aM. For if h,h,' is a transition map on ha( U, n V,) 
then h,h;' restricted to ha( U, n U,) n R"-' maps this set again to Rm-' 
and is smooth. Thus the boundary of an m-dimensional manifold M inherits 
from M a structure of a differential manifold without boundary and of 
dimension m - 1. 

Throughout this book, and unless explicitly stated to the contrary, the 
word manifold will mean a smooth manifold with or without boundary. If 
aM = 0, then we shall say that M is closed. 
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We will consider a few examples. Note that in order to specify a differential 
structure it is enough to describe one atlas. For instance, the standard 
di#erentiat stmctzm on R" refers to the atlas { U, h} where U = R", h = id. 

Similarly, the complex n-dimensional space C" becomes a smooth mani- 
fold via its identification with R2". 

(1.2) Let M = S", considered as the unit sphere in Rn+l.  Set UT = 

{ ( x ~ , .  . . , x,+~) E S" Ixi > o},  i = 

1,2, .  . . , n + 1, and let h:: U' + R" be given by leaving out the ith coordin- 
ate. This atlas defines the standard differential structure on S". 

There is another way to define a differential structure on S": Let a, = 

(0,. . . , 0 ,  *l) E R"+', U" = S" - {a,}  and let h,:  U' + R" be the projec- 
tion from a,,  i.e., 

U ;  = {(xl, .  . . , x"+~)  E S" Ixi  < o},  

Exercise Show that { U', h,} is an atlas compatible with the standard 
differential structure on S". 

t x2 

Figure 1.1. 



4 DIFFERENTIABLE STRUCTURES 

(1.3) The real projective n-space P" is obtained by identifying antipodal 
points in S". Let 7r: S" + P" be the identification map. Note that 7r is a 
homeomorphism on every set UT, i = 1 , .  . . , n + 1, and that their images 
cover P". Thus {7r( UT), hi7r-'} is an atlas on P". 

To introduce a smooth structure on the complex projective space CP" 
we use homogeneous coordinates. Namely, let V ,  be the set of points in 
CP" with the ith homogeneous coordinate f O .  Assigning to every point 
( z ' , .  . . , z,+~)  in & the point (zl/zi,. . . , Z , , + ~ / Z ~ )  with the ith coordinate 
omitted yields a homeomorphism hi of Vi with C". If C" is identified with 
R2", as before, then { V , ,  hi} becomes an atlas on CP". 

(1.4) If { U,, h,} is an atlas on M and { V,, g,} is an atlas on N, and at 
least one of M, N is a closed manifold, then { U, x V,, ha x g,} is an atlas 
on M x N and defines the product structure. But observe that if both M 
and N have non-empty boundaries, then this is not an atlas. 

Exercise Compute the transition maps in examples 1.2-1.4. 

(1.5) A differential structure on a manifold M induces a differential 
structure on every open subset of M. In particular, writing the entries of 
an n x k matrix in succession identifies the set of all such matrices with 
Rnk and the subset vn ,k  of n x k matrices of maximal rank with an open 
subset of Rnk. An n x k matrix of rank k can be viewed as a k-frame, that 
is, a set of k linearly independent vectors in R"; accordingly Vn,k, k 5 n, 
is called the Stiefel manifold of k-frames in R". V,," is, of course, the general 
linear group Gl(n). By the foregoing, v,,k is a differential manifold of 
dimension n k  (In II,2 we will define a differential structure on the group 
O( n) of orthogonal matrices.) 

Now, we define the smooth maps. 

(1.6) Let f: M + N where M, N are differential manifolds. 
We will say that f is smooth if there are atlases { V,, h,} on M, { V,, g,} on 
N, such that the maps g,fh;' are smooth wherever they are defined. We 
say that f is a difeornorphisrn if it is smooth and has a smooth inverse. 

Definition 

The relation of diffeomorphism is an equivalence relation between smooth 
structures. That one is needed is illustrated by the following example. Let 
h: R' + R' be a homeomorphism. Then {R', h} is an atlas on R' and the 
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smooth structures defined by two such atlases with homeomorphisms h, , h, 
are distinct unless h,h;' and h,h;' are both differentiable. 

Exercise Show that all these structures are diffeomorphic. 

Exercise Let T(h ,  p )  = {x E SA+p-l I C i s A  x? = x i > , +  x f } ,  D(h,  p )  = 
{x E sA+p-' IxiSA x: 2 xi,A x:}, where SA+p'-' is the unit sphere in RA+p. 

diffeomorphic to D A  x Sp"-'. 
Show that T(h,  p )  is diffeomorphic to S"-' x Sp-' and D(h,  p )  is 

It would have been possible to define, in an obvious way, C' diffeomorph- 
isms, r > 0. But, again, there is no restriction in generality in considering 
only smooth, i.e., C", diffeomorphisms: H. Whitney has shown that if two 
smooth manifolds are C' diffeomorphic, r > 0, then they are C" 
diffeomorphic. 

(1.7) Consider the manifold Gl(n). If A, B E Gl(n), then the entries of the 
matrix AB are polynomials in terms of entries of A and B. Thus the group 
operation in Gl(n) defines a smooth map Gl(n) x Cl(n) + Gl(n). A group 
with these properties, i.e., such that the underlying space is a smooth 
manifold and the group operation a smooth map, is called a Lie group. We 
will show in 142 that O(n)  is also a Lie group. 

Note that if G is a Lie group and go E G, then the map of G into itself 
given by g-gog is a diffeomorphism. 

(1.8) Let % = { U,, h,} be an atlas in M. We assume that an orientation 
of R" has been chosen once and for all. Then, every chart (U,, h,) deter- 
mines a local orientation in U,, i.e., a preferred generator of H " (  M, M - p )  
at every point p E U, n Int M (c$ [D,VIII,2.1]). Two such orientations in 
U, and U, are compatible if and only if the determinant of the Jacobian 
of the corresponding transition map is everywhere positive. An atlas on M 
with this property is called oriented and a maximal oriented atlas is called 
an oriented smooth structure on M. 

If { U,, h,} and { V,, g,} are oriented atlases on M and N respectively, 
then a diffeomorphism f: M + N is said to be orientation preserving if the 
Jacobians of all maps gpfh;l have positive determinant. 

If M has a non-empty boundary and % = { U,, h,} is an oriented smooth 
structure on M, then the smooth structure on aM induced by % is also 
oriented. For if p E aM n U, n U, and h,h,' = (f,, . . . ,fn), then the 
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Jacobian J of h,h,' at h : ' ( p )  has the form 

('d df";dx.), 

where J' is the Jacobian of h,h,' restricted to dM and df,/dx,, > 0. Since 
det J > 0, det J' > 0. 

Exercise 
map h,  in 1.2 is orientation preserving. 

Show that if S" is oriented as the boundary of D"+', then the 

2 Partitions of Unity 

Many constructions in differential topology are performed with the help of 
partitions of unity. For this purpose it will be useful to have a special kind 
of atlas available: 

(2.1) Definition An atlas { U,, ha} on M is said to be adequate if it is 
locally finite, h,( U,) = R" or R," and urn hL' (6")  = M. 

(A family of subsets of M is locally finite if every point of M is contained 
in an open neighborhood intersecting at most a finite number of them. 
Recall that a space M is said to be paracompact if every open covering 
admits a locally finite refinement.) 

(2.2) Theorem 
atlas { U,, hm} such that { U,} is a refinement of V. 

Let V = { V,} be a covering of M. Then there is an adequate 

In particular, it follows that a smooth manifold is paracompact. 

Proof Since M is locally compact, Hausdorff, and second countable, we 
obtain easily (cJ [Du,XI,7.2]) that there is a sequence { K i } ,  i = 1,2,. . . , 
of open subspaces of M, with compact closures, and such that gi c Ki+, 
and Ui Ki  = M. We also set KO = K - ,  = 0. 

We construct now the desired refinement in stages; the ith stage is as 
follows: Let p E Ki - Ki-, and suppose that p E V,. Let (Up,  hp) be a chart 
such that hp( Up) = R", hp( p )  = 0, and Up c (Ki+* - KiJ n V,. 

Now, zi - Ki- ,  is compact, and the sets hpl ( f im)  cover it. Hence there 
is a finite family that does the same; let U i ,  . . . , Vit be the corresponding 
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charts. Then the family % = { Ui}, i = 1 ,2 . .  . , j  = 1,2, .  . . , ki is locally 
finite: Every point of M is contained in one of the open sets Ki and each 
such set intersects-at most-only the Uj" with rn 5 i + 2. It is clear that 
% is a refinement of "y. and an adequate atlas. 0 

Now, let { V,, h,} be an adequate atlas on M. Let A be a smooth non- 
negative function on R"' which equals 1 on D"' and zero outside of D"'(2). 
Let A, = Ah, in U, and 0 outside U,; we will call the family {A,} the family 
of bump functions associated to { U,}. Let p , ( p )  = A,(p)/C, A , ( p ) .  The 
family {p,} is the partition of unity associated to { U,, ha}.  

We will apply partitions of unity to some extension and approximation 
problems on smooth manifolds. 

(2.3) Definition Let K be a subset of a smooth manifold M and f a map 
of some subset of M containing K to a smooth manifold N. We say that 
f is smooth on K if its restriction to K is locally a restriction of a smooth 
map, i.e., if for every point p E K there is an open neighborhood U of p 
in M and a smooth map F: U + N that agrees with f on U n K. 

In general, a smooth function on K need not be a restriction of a smooth 
function on M. However, this is the case if K is a closed subset: 

(2.4) Theorem 
function. Then f is a restriction of a smooth function on M. 

Let K be a closed subset of M and f:  K + R a smooth 

Proof For every point p E K let Up, Fp: Up + R be as in 2.3. Consider the 
covering of M consisting of sets Up and M - K and let { V,} be an adequate 
atlas refining it, and {pa}  an associated partition of unity. Define functions 
g, on M as follows: If V, is contained in one of the sets Up then set 
g, = p,Fp; otherwise g ,  = 0. Now let g ( p )  = 1, g m ( p ) .  For every point p 
this sum is actually finite on a neighborhood of p ;  hence g is a smooth 
function on M. If q E K ,  then g,(q) is either zero or pu,(q)Fp(q), that is, 
p,(qlf(s). Hence 

g ( q )  = C P a ( 4 1 f ( 4 )  = f ( q ) C p & )  = f ( q ) .  0 
a a 

Exercise 
is known that every paracompact space is normal [ Du,VIII,2.2].) 

Show that a smooth manifold is a normal topological space. (It 
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Now, we have an approximation theorem. 

(2.5) Theorem Let f: M + R" be a continuous map, smooth on a closed 
subset K of M, and let E > 0. Then there is a smooth map g:  M + R" that 
agrees with f on K and such that 1 f ( p )  - g( p )  I < E. 

Proof For every p E K there is a neighborhood Up and a smooth map 
f , :  Up 3 R" that agrees with f on K. Choosing Up small enough we can 
also achieve that I fp (x)  - f ( x ) l  < E for all x in Up. If p is not in K ,  then 
there is a neighborhood Up of p disjoint from K and such that I f ( p )  - 
f ( x ) l  < E for all x in Up.  Let { V,} be an adequate atlas refining {Up}  and 
{pa} an associated partition of unity. For each V, choose a Up containing 
it and define g,: M + R" by setting g, = fp if the chosen Up intersects K ; 
g, = f ( p )  otherwise. In both cases we have lg, ( x )  - f ( x ) l <  E for all x in V,. 

Now, let g = 1, pug,. As in the proof of 2.4 we see that g is a smooth 
map agreeing with f on K. We have 

Note that with a minimal change in the proof the constant E can be 
replaced by a non-negative continuous function on M. It is less trivial, but 
true, that 2.5 is valid with R" replaced by an arbitrary manifold N with 
some metric on it. This will be shown in III,2.6. 

(2.6) Corollary 
by a smooth curve. 

If M is connected, then every two points of M can be joined 

Proof There certainly is a piecewise smooth curve joining two given points. 
Now, every corner of such a curve lies in one chart and 2.5 is used to 
smooth it. 0 

3 Smooth Vector Bundles 

There are two elements in the idea of a vector bundle: the local product 
structure, and the algebraic operation in the fibers. In the case of a vector 
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bundle over a smooth manifold we have naturally the notion of a smooth 
vector bundle: one in which both of these are smooth. 

To make this precise, we establish the notation first; we assume that the 
reader is familiar with the elements of the theory of vector bundles, e.g., 

Let T: E + M be an n-dimensional vector bundle over a smooth manifold 
M and let { U,, h,} be an atlas on M such that the bundle is trivial over 
each of the sets U, . (We will sometimes say that such charts are trivializing 
for E.) Let 4, be the composition of the canonical map T-'( U,)  + U, x R" 
with the projection on R". Then (+,, h,) sends T-'( U,) homeomorphically 
onto an open subset of R" x R" (or R" x R,"); if these maps form a smooth 
atlas on E, then we say that E is a smooth vector bundle. 

There is an equivalent definition, which is more convenient to use. Let 
R" + ~ - ' ( p )  be the right inverse of 4,. If p E U, n Up, then c$sc$,,p 

is an isomorphism R" + R". Viewing it as an element of Gl(n), we obtain 
a map @a,p: U, n Up + Gl(n), @,,a(p) = 

[MS, § 2-31. 

Clearly: 

(3.1) Proposition 
are smooth. 

E is a smooth vector bundle if and only if all maps @'a,P 

Exercise Show that the dual of a smooth vector bundle is a smooth bundle, 
and that the Whitney sum of two smooth vector bundles is a smooth vector 
bundle. 

R" is endowed with an inner product, but there is no a priori reason for 
the maps + p ~ u , p  to preserve it. This means that we cannot use the maps 
+a,p to define a smooth inner product in every fiber of E. The next two 
theorems will show that this is nevertheless possible, and in essentially one 
way only. 

The structure we are going to discuss is called a Riemannian metric, 
r-metric for short. To define a smooth r-metric, take the Whitney sum F of 
the bundle E with itself, and let u: F + M be the projection of its total 
space onto M. F is again a smooth bundle; we will consider the vectors in 
F to be pairs of vectors from the same fiber of E. 

Now, a smooth r-metric on E is a smooth map F + R which on every 
fiber is a symmetric, positive definite bilinear form. 

(3.2) Theorem A smooth vector bundle T: E + M admits a smooth Rieman- 
nian metric. 
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Proof Let { Urn}, (4,) be as before; by 2.2 we can assume that { U,} is an 
adequate atlas; let {pa} be an associated partition of unity. Now, choose 
a symmetric, positive definite bilinear form a( , ) on R" and define 
( , ),: up'( U,)  + R by (v, w), = a( 4, ( v ) ,  & (w)); this is a smooth map. 
Let ( , ): F + R be given by 

(fJ, w) = c p, (4v) ) (v ,  4,. 
a 

(If a ( v )  is not in V, then (0 ,  w), is not defined, but then @ , ( T ( U ) )  = 0 as 
well, so this does not matter.) 

Now, ( , ) is certainly a smooth map; to show that it is an r-metric, notice 
that on each fiber ( , ) is a linear combination of symmetric, positive definite 
bilinear forms. Thus it is certainly symmetric and bilinear itself. Since the 
coefficients of this linear combination are non-negative and not all zero 
(their sum equals l), it is also positive definite. 0 

Let E be a vector bundle with a smooth r-metric. Fix an orthonormal 
basis b in R" and let U, be a trivializing chart. Then b, = +,,,(b) is a basis 
in the fiber over p and all of these form a smooth family of bases over 
w-'( U,). Using the Gram-Schmidt orthogonalization procedure (c$ A,4.1) 
with respect to the inner product in each fiber we can obtain a family b; 
of orthonormal bases in every fiber over U,. This in turn can be used to 
define new canonical maps 4, by the requirement that &(bb) = b. The 
maps a,,@ that we get from these are smooth and map U, n Up to the 
subgroup O(n)  of Gl(n). This means that the introduction of an r-metric 
allows the reduction of the group of the bundle to O ( n ) .  

We can now state the uniqueness theorem for r-metrics. 

(3.3) Theorem 
bundles. Then there is an isometry g :  E -+ F. 

Let f: E + F be an isomorphism between two smooth r- 

Actually, we will show that there is a smooth family F,, t E I, of isomorph- 
isms such that Fo = f ,  F, = g. We will return to this point in II,4.6. 

Proof We suppose we are given two r-metrics on the same bundle E; the 
general case clearly reduces to this. As we have just seen, given a trivializing 
neighborhood U, these metrics can be represented by two families b, b' of 
bases, each orthonormal relative to the corresponding metric. An 
automorphism of E is represented in U by a family of nonsingular matrices 
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M,, p E U, each Mp giving the coordinates in terms of b: of the transformed 
vectors of the base b,. Such an automorphism is an isomorphism if and 
only if all of the Mp are orthogonal. 

To prove the theorem, we start with the identity automorphism of E and 
suppose that in a trivializing neighborhood U it is given by matrices 
M , , p  E U. By A,4.3 we can write Mp = O,S,, where 0, is orthogonal, S, 
is symmetric positive definite, and both depend smoothly on p. Then the 
matrices 0, define an isometry B u :  E I U + E I U. 

We claim that Bu = Bv in U n V ,  that is, the isomorphism represented 
by 0, does not depend on the choice of orthonormal bases b, b'. This is 
so, for changing the bases amounts to replacing Mp by NM,K, with N, K E 
O ( n ) .  Since NM,K = ( N O , K ) ( K - ' S , K )  with NO,K E O ( n )  and K-'S,K 
symmetric positive definite, the uniqueness part of A,4.3 implies that NO,K 
is the orthogonal matrix in the representation of NM,K as a product. But 
NO& is the representation of the same isometry with respect to the new 
bases. 

We have shown that the family of isometries Bu represents a well-defined 
isometry of the bundle E. The same argument applied to matrices S, shows 
that they define an automorphism of E. 

To obtain the family F, of automorphisms consider M,( t )  = 

O,(tIn + (1 - t ) S p ) .  Since the set of positive definite symmetric matrices is 
convex, the same argument as before shows that this does define the desired 
family of automorphisms. 0 

Given a vector bundle with an r-metric ( , ), we define the length 1 0 1  of 
a vector u to be (u, t ~ ) ' ' ~  and the distance between two vectors in the same 
fiber as the length of their difference. Theorem 2.5 generalizes easily to cross 
sections of a vector bundle: 

(3.4) Theorem Let s :  M + E be a continuous section of a smooth vector 
bundle with an r-metric. Suppose that s is smooth on a closed subset K of M 
and let E > 0. Then there is a smooth section t :  M -+ E that agrees with s on 
K and such that Is(p)  - t (p) l  < E for all p in M. 

Proof By 2.5 the theorem is true if E is a trivial bundle. So choose an 
adequate atlas {U,} on M such that the bundle is trivial over every U,, 
for each a find a section t ,  over U, &-approximating s, and glue all those 
sections together using the associated partition of unity: t = C, pata.  0 
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(3.5) A Riemannian metric provides a convenient way to describe an 
operation of “shrinking” a vector bundle. Let E be a smooth positive function 
on M and E the total space of a smooth bundle over M with projection 
IT. Consider the map F :  E + E given by 

F maps smoothly the fiber over p onto an open disc in it of diameter 
~ ( p ) ;  thus F ( E )  is an open disc bundle. Since F is a diffeomorphism, the 
bundle structure on E induces a smooth vector bundle structure on F ( E ) .  
We will call this operation &-shrinking of E. 

(3.6) Recall that a bundle E is oriented if all transition maps are 
maps to the subgroup Gl+(n) of matrices with positive determinant. The 
argument given in 3.2 shows at the same time that the group of an oriented 
bundle can be reduced to S O ( n ) .  

If E is oriented and g,  E H,(R”, R“ - 0) is the canonical orientation of 
R”, then (c#Ja,,)*gn E Hn(Ep,  Ep - 0 )  is an orientation of Ep that does not 
depend on a. Thus, all fibers of an oriented bundle are canonically oriented. 

4 Tangent Space 

The notion of a tangent space to a surface is quite intuitive, but the intuition 
depends strongly on the fact that a surface is a submanifold of R3. Neverthe- 
less, it is possible to define the tangent space using only the smooth structure. 
We will do this now and show that the union of all tangent spaces forms 
a smooth vector bundle, the tangent bundle. The merit of proceeding this 
way is that the tangent bundle emerges as an invariant of the smooth 
structure. 

A vector at a point is “a direction and a magnitude.” It is possible to 
translate this idea into the context of charts: the direction at a point would 
be a suitably defined equivalence class of smooth curves. But it is easier to 
adopt an “operational” point of view: A vector at a point associates to 
every function defined in the neighborhood a number: its derivative in the 
direction of the vector. This operation has certain formal properties and 
our point of view will be to identify vectors at a point with an operation 
having these properties. 

Let p be a point of a smooth m-dimensional manifold M. 
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(4.1) Definition A tangent vector X at p is an operation which associates 
a number Xf to every smooth function f defined in a neighborhood of p, 
and satisfies the following conditions: 

(a) Iff and g agree in a neighborhood of p,  then Xf = X g ;  
(b) X ( A f +  p g )  = AXf+ p X g  for every two numbers A, p; 

( 4  X ( f g )  = ( X f M P )  + f ( p ) ( X g ) .  

The set of all tangent vectors at p will be denoted TpM, or simply Tp if 
appropriate. 

As an example, let (U,  h )  be a chart at p E Int M, where h ( q )  = 

( x , ( q ) ,  . . . , x , ( q ) )  E R", q E U. Then associating to every function f the 
partial derivative dfh-l/axi at h ( p )  we obtain a vector in Tp. It will be 
denoted a/axi or ai if there is no danger of confusion. 

For instance, if M = R, (U ,  h )  = (R, id), we get for every to E R a vector 
in T,,, which will be denoted at. 

Observe that the same construction applies if p E dM. For although fh- '  
is defined only in a neighborhood of h( p) in R? , it extends over a neighbor- 
hood in R" and the partial derivatives at h( p) do not depend on the choice 
of the extension. 

It follows immediately from (b) and (c) that iff is constant in a neighbor- 
hood of p then Xf = 0. 

Our task now will be to show that each Tp is an m-dimensional vector 
space and their union a smooth vector bundle over M. 

Clearly, with the obvious definition of multiplication and addition, Tp is 
a vector space. We will show that d l ,  . . . , a, form a basis. 

Let then f be a function defined in a chart ( U, h )  and consider g = fh-I. 
We will assume thatf(p) = 0 and that h ( p )  = 0. By A,2.1, in some neighbor- 
hood of 0 we have g = xi xigi, where gi(0) = (dgldx, )(O). (Again, this makes 
sense even when p is in dM.) Thus f ( q )  = gh(q)  = xi x i ( q ) g i ( h ( q ) ) ,  and if 
x is a vector at p, then 

(4.1.1) 

since x , ( p )  = 0 and g , ( h ( p ) )  = g, (O)  = (d fh - ' /ax i ) (0 ) .  This shows that X 
is a linear combination of d i ,  and since the a, are linearly independent 
(a , (x j )  = 6,) they form a basis. 

The assumption that f( p )  = 0 is inessential: Settingf = f - f (  p )  we have 
X f  = X f  and f'( p) = 0. Finally, if h( p )  # 0 then 4.1.1 is still valid with aif 
standing for the derivatives of f h - '  at h( p). Collecting all this, we have: 
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(4.2) Proposition Let (U,  h )  be a chart in M such that h( U )  is convex. 
Letp E U a n d X  E Tp. ThenX = x i  a, ai, wherea, = Xxiand a ,  f = afh-'/axi 
at h(p). 0 

We will call al, . . . , a, the coordinates of X with respect to the chart U. 
Suppose now that My N are two smooth manifolds, f: M + N a smooth 

map, p E M and X E T,M. We define a vector Y E Tscp,N by requiring 
that Yg = X ( g f )  for every smooth function g in a neighborhood of f ( p ) .  
It is a routine task to check that Y is, indeed, a vector at f(p) and that 
setting Y = D f X  we obtain a homomorphism O f :  T,M + Tf(,,,N. We 
want to find the coordinates of Y. Let then ( U,, h,) and ( U p ,  h,) be two 
charts, about p and f ( p )  respectively, let X ,  = ' (ay l  , .. . , a,) be an m x 1 
matrix whose coefficients are the coordinates of X rel. U,, and similarly 
Ye = ' ( P I , .  . . , Pn) .  Setting h, = (q,. . . , x m ) ,  h, = ( y l , .  . . , y n )  we have, 
by 4.1.1, 

a 
Pj = Y ( Y ~ )  = ~ ( 8 ~ 1 )  = C a i z v j ( S h i l ) ,  

I 

i.e., 

(4.2.1) Ye = J F ( f ,  p )  * X ,  (matrix multiplication), 

where JF(f,p) is the Jacobian matrix of h,fh;' at h , ( p ) .  

chart U. By 4.2 the assignment 
Let TM = UpeM TpM and let T: TM + M be given by T(T,) = p. Fix a 

X H ( P , a l , . * * , a m ) ,  

where p = T ( X )  and the a, are the coordinates of X rel. U, defines a 
one-to-one map of T-'U onto U x R". We topologize TM by requiring 
these maps to be homeomorphisms. 

If f: M + N, then we define Of: TM + TN, the diferential off, by 
Of I T,M = Of,. We have the following fundamental theorem: 

(4.3) Theorem The projection 7r gives TM the structure of a smooth vector 
bundle over M, the tangent bundle of M. Of is a bundle morphism and a 
smooth map of TM to TN. 

Proof To see that TM is a smooth vector bundle look at 4.2.1, in which 
we set M = N, f = id. Now, the map p-Jg(id,p) is a smooth map into 
Gl(rn) and it is precisely the map from 3.1, whence the smoothness 
of TM. 
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We have already noted that Of is linear on each fiber of T M ;  that it is 
smooth follows from 4.2.1 and the fact that the map p - J ; ( f ,  p )  is a smooth 
map of h,f-'(  U,) to the space of m x n matrices. 0 

The dual bundle to the tangent bundle will be denoted T*M and called 
the cotangent bundle, and its elements cotangent vectors. It is again a smooth 
bundle (cf: exercise in 3.1). We coordinatize it as follows. 

If (U,  h )  is a chart, h = ( x , ,  . . . , x , )  and q E U, then the covectors 
dxi E T:M, i = 1,. . . , m, are defined by 

d x i ( X )  = X ( x , ) ,  X E T,M. 

Since dxi(dj) = 6,, the dxi form a basis. 
The cotangent bundle is isomorphic to the tangent bundle, but non- 

canonically. A specific isomorphism is given if the tangent bundle is 
endowed with an r-metric. If this is the case, then one can associate to every 
vector X E T,M the covector Lx E TEM given by the rule 

L X ( Y )  = ( X ,  n. 
This defines a map L: TM + T*M. 

(4.4) Proposition L is a smooth isomorphism. 

Proof That L is an isomorphism on every fiber is a standard proposition 
from linear algebra. That it is smooth follows from the fact that finding 
coordinates of Lx amounts to solving a system of linear equations with the 
matrix of coefficients of rank m and with smooth entries. cl 

(4.5) A simple case of 4.2.1 is when M or N is the line R. TR is a 
1-dimensional bundle and we can take as the base at every point the vector 
at. Now, iff: M + R and X E TM, then D f ( X )  = ( X f )  at, or, simply 

(4.5.1) D f ( X )  = xf: 
In particular, iff :  R + R then Df(dt) = df /d t .  

Iff: R -+ M, then the vector Dfb(dt) will be called the vector tangent to 
the curve f at t = to .  

Let v E R" and fu: R + R" be given by fu(t) = tv. It follows from 4.2.1 
that by associating to v the vector tangent to fv at 0 one obtains an 
isomorphism R" + TOR". Its inverse will be called the exponential map and 
denoted exp. Clearly, exp associates to a vector in TOR" the vector in R" 
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with the same coordinates-assuming of course that we take as coordinates 
in TOR" those induced by the chart (R", id). 

We can define this map at every u E R": first, use the differential of the 
translation XHX - B to identify T,R" with TOR", and then set 

exp,( w) = exp( w) + u. 

This yields a smooth map of TR" to ,R", which is a diffeomorphism on 
every fiber and on the zero section. In Chapter 111 the exponential map 
will be defined for all manifolds. 

Suppose that M has a non-empty boundary and consider the differential 
of the inclusion dM L, M. At every point p E aM it is a monomorphism; 
thus the image of Tp(dM) is a well-defined (m - 1)-dimensional subspace 
of TpM. It follows from 4.2.1 that, independently of the chart chosen, 
the vectors in Tp(dM) viewed as vectors in TpM have the last coordinate 
equal 0. 

Tp(aM) divides TpM into two half-spaces; it is possible to distinguish 
between them geometrically: Let c ( t )  be a curve in M beginning at p,  i.e., 
a map c: R, + M, c(0)  = p. It is easy to see, again by 4.2.1, that the tangent 
vector to c at p has the last coordinate non-negative. This justifies saying 
that a vector in TpM points inside M if it has the last coordinate positive. 
Observe now that, for any t E R,, if c ( t )  E aM then the tangent vector to 
c at c ( t )  either points inside M or is in the tangent space to aM. 

Exercise 
exp,( T,S") is the n-dimensional plane in R"+* perpendicular to u, 

Consider S" c R"+l. If u E S", then T,S" c T,R"+l. Show that 

Exercise Show that the tangent bundle to an oriented manifold is oriented. 

Exercise Show that the tangent bundle to a Lie group is trivial. 

5 Vector Fields 

Since TM is a smooth manifold it makes sense to talk of smooth sections: 

(5.1) Definition A vectorfield on a manifold M is a smooth map X: M -f 
TM such that T X  = id. 

If X is a vector field we will write X ( p )  = X,. 
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Let (U,  h )  be a chart in M and X a vector field. Since X,  E T,M, we 
have, by 4.2, 

(5.1.1) xp = 1 a i ( p )  a i .  

Since X is smooth the functions ai must be smooth. Conversely, if X :  M + 

TM is a section and 5.1.1 holds in every chart for some smooth functions 
ai,  then, clearly, X is a vector field. This implies that if X ,  Y are vector 
fields and A, p real numbers, then AX + p Y  (defined by (AX + pY), = 

AX, + pYp) is a vector field. In the same way, one shows that i f f  is a 
smooth function on M, thenfX, defined by (fX), = f( p ) X , ,  is a vector field. 

Let E ( M )  denote the set of all vector fields on M, C " ( M )  the set of all 
smooth functions on M. We have introduced in % ( M )  the operations of 
addition and of multiplication by elements of C"( M ) .  A routine verification 
yields the following: 

I 

(5.2) Proposition %( M )  is a vector space and a module over C"( M ) .  0 

We can make E( M )  operate on C"(M):  If X E %( M )  and f E C"( M ) ,  
then we define the function Xf by (Xf), = XpJ To show that Xf is smooth, 
note that, by 5.1.1, 

in some chart (U,  h) .  The same formula shows that if A, p are numbers 
then X ( A f +  p g )  = A(Xf) + p ( X g ) ,  i.e., that X induces an automorphism 
of C"(M) considered as a vector space. 

(5.2.1) 

If we apply X to a product of functions, then by 4.l(c) we get 

X ( f g )  = ( X f  ) g  + f ( X g ) .  

It is interesting to note that 5.2.1 characterizes vector fieIds: 

(5.3) Proposition An endomorphism X of C " ( M )  satisfying 5.2.1 is a 
vector field. 

Proof Let X satisfy 5.2.1 and letf be a smooth function in a neighborhood 
of p E M. Define X,  by X,(f) = (Xf)(p). Then X ,  satisfies 4.l(b), (c), and 
to show that it satisfies (a) it is enough to show that i f f  vanishes in a 
neighborhood of p,  then X , ( f )  = 0. This follows, for there is a smooth 
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function A on M such that Af = f and A(p) = 0; hence Xp(f) = X,(Af) = 

XP(Alf(p) + A(p)X,(f) = 0. 0 

If X and Y are two vector fields, then XY denotes the endomorphism 
Y followed by X.  We define the bracket [X, Y] by the formula 

[ X ,  Y] = XY - Yx. 

A routine verification shows that [X, Y] satisfies 5.2.1; hence, 

(5.4) Corollary [X, Y] is a vectorfield. 0 

We will say more about the bracket of vector fields in Chapter V. 

smooth function f: M + R gives rise to a covector field df defined by 
A smooth section of the cotangent bundle is called a covector field. A 

d f ( X P )  = XpL xp E TpM. 

A calculation shows that, in terms of a chart (U, h), 

hence df is indeed a covector field. It is called the differential off: (This 
terminology confuses df and Of: This is traditional and not dangerous. 
Both dfp and Dfp are linear maps of TpM to a 1-dimensional vector space, 
R in the first case, Tf(p)R in the second. Moreover, if we identify T,,,)R 
with R, as in 4.5, then df and Of coincide, cf: 4.5.1.) 

If M is endowed with an r-metric and L: TM + T*M is the smooth 
isomorphism from 4.4, then L-'( d f )  is a vector field. It is denoted V f  and 
called the gradient off: For every vector Y on M we have 

Observe that if M = R", then 5.5 is the formula for the derivative in the 
direction of Y. We are not very far from Calculus yet. 

6 Differential Equations on a Smooth Manifold 

In the sequel we will often use vector fields to construct various maps. 
These constructions will be based on the existence theorem for the solutions 
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of systems of ordinary differential equations restated in the context of 
differentiable manifolds. 

In what follows X will be a fixed vector field on M and at will be the 
vector field on M x R consisting of vectors tangent to curves (p , , ,  t ) .  If E 

is a positive function on M, then we set WE = { ( p, r )  E M x R I It I < E ( p ) } .  

(6.1) Theorem 
E on M and a unique mapf:  WE + M such that 

If M is closed, then there is a continuous positive function 

(a) f ( P ,  0) = P, 

(b) %,t,at = Xf(P,t). 

Uniqueness means that if f l ,  6, W, is another set of data satisfying (a) 

If M has a boundary, then 6.1 is still valid but with some modifications. 
and (b) then f = fl in WE n W,. 

This is discussed at the end of this section. 

Proof We will interpret the conditions (a), (b) in terms of local coordinates 
in a single chart U. 

Let {Urn, h,} be an adequate atlas on M, let V, = h;'(D").  Fix a pair 
U, V and a positive number E. Then any map f: V x [ - E ,  E ]  + U is given 
in local coordinates by m functions fl(x, t ) ,  . . . , f , ( x ,  t ) ,  x E D", 111 5 E. 

Condition (a) becomes 

(a') J(x,O)=x, i = l ,  ..., m. 
The vector field at on V x [ - E ,  E ]  has coordinates (0,. . . ,O, 1). Let the 

coordinates of X be a l ( x ) ,  . . . , a,(x).  In the same coordinates, the Jacobian 
off is given by 

afi af1 afi - . . .  - 
axl ax,,, at  

. . .  

a f m  a f m  afn - . . .  - - 
8x1 ax, at 

i =  1 ,  ..., m. 
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Now, the classical existence theorem [Hu,2.5] asserts that given m smooth 
functions a , ,  . . . , a,  in R", there is a positive number E and a unique 
smooth mapf: D" x [-E, E ]  + R",f = ( f l , .  . . ,f,), satisfying (a') and (b'). 
This means that for every a! we have a positive number E, and a map 
fm: V, x [ -E , ,  E,]  + U, satisfying (a) and (b). Because of the uniqueness, 
f ,  = f p  wherever both are defined. Therefore, the theorem follows if we set 
E = 1,  am^,, where A, is the associated partition of unity. 0 

We will sometimes call a vector field on M a differential equation and 
the function f in 6.1 its solution. The curve f ( p ,  s )  is called the solution 
emanating from p.  By uniqueness [Hu,l.c], it is completely characterized 
by the condition f ( p ,  0) = p and the requirement that its tangent vectors 
are vectors from X. In particular, iff( p, s )  is defined, then f(f( p ,  s ) ,  t )  and 
f ( p ,  s + t )  are both solutions emanating from f (  p ,  s). Hence 

(6.1.1) f ( f ( p ,  s), t )  = f ( p ,  s + t ) ,  both curves defined in the same 
range of the parameter t. 

This implies that if all solutions are defined for It( < E ~ ,  where E,, is a 
positive constant, then they are defined for all values of t. Moreover, in this 
case the map fr: M + M given by fr( p )  = f( p, t )  is well-defined for all p 
and t and 6.1.1 translates to fJ =A+,.  Thus fr is a diffeomorphism with 
the inverse f-,. All this is certainly the case if M is compact. 

(6.2) Corollary Zf M is closed and compact, then a diflerential equation on 
it  admits a solution f: M x R + M. Each map f i  is a difleomorphism and 
Afr =A+,  for all s, t. 0 

The map t - f i  is a homomorphism of the additive group of reals into 
the group of diffeomorphisms of M; such a homomorphism is called a 
1-parameter group of diffeomorphisms. 

Assume now that M has a non-empty boundary. The proof of 6.1 would 
fail in that the solutions of the system (b') for x E R"-' need not lie in R,.  
This can be remedied: Observe first that if X is at the boundary of M and 
points inside, then its last coordinate a ,  is positive. But then fm(x, t )  
satisfying (a') and (b') is positive for t 2 0 and small. Similarly, if X points 
outside then the corresponding solution is in M for t 5 0. Thus, we have 
the following result: 

(6.3) Addendum 
valid with the map f defined on the set { ( p ,  t )  E M x R ( - 6 ( p )  

If d M # 0 and X is never tangent to it, then 6.1 remains 

t ~ ( p ) } ,  
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where the functions E and S satisfy the following conditions: 

( a )  E, 6 > 0 in Int M ;  
( b )  If p E a M and X,, points inside M, then E ( p )  > 0 and S ( p )  = 0; 

( c )  If p E dM and X,  points outside M, then E (  p )  = 0 and S ( p )  > 0. 

Finally, 6.1.1 remains valid and is used in the following exercise: 

Exercise 
for which a solution f ( p ,  t )  is defined is a closed subset of R. 

Show that if M is compact, p E M given, then the set of all t 

7 Collars 

As the first application of 6.1 we will prove that aM has a neighborhood 
in M diffeomorphic to aM x [0, 1) under a diffeomorphism identifying aM 
with dM x (0). Such a neighborhood is called a collar of dM. To prove its 
existence we note first that 

(7.1) there is a vector field X on M which along aM points inside M. 

For if { U,, h,} is an adequate atlas, {A,} an associated partition of unity, 
and is 
such a field. 

Now, by 6.3 there is a solution f ( p ,  t )  of the differential equation X 
defined for 0 5 t < ~ ( p )  where E is a continuous positive function on M. 
Let W, = { ( p ,  t )  E M x R+IO I t < ~ ( p ) } ;  f is thus a smooth map of WE 
to M satisfying f ( p ,  0) = p. Since X points inside along dM, the differential 
off is of maximal rank on dM x (0) .  Therefore (by the Implicit Function 
Theorem, A,l . l) ,  f is a local diffeomorphism in a neighborhood U of aM 
in WE. We now apply the following lemma. 

the last coordinate vector rel. the chart U,, then X = C, 

(7.2) Lemma I f f :  U + V is a local homeomorphism of paracompact spaces 
which is a homeomorphism on a closed subspace C c U, then f is a homeo- 
morphism on a neighborhood of C. (For a proof, see [ L, p .  971.) 

Applying this to our situation we deduce the existence of a neighborhood 
U, c U on which f is a smooth homeomorphism. But if g :  f( U,) + U ,  is 
the inverse o f f  then g is smooth: smoothness is a local property and the 
smoothness of the local inverse o f f  is assured by the Implicit Function 
Theorem. 
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There remains to check that U1 contains a neighborhood diffeomorphic 
to aM x [0, 1). But U, certainly contains a neighborhood of the form W, 
for some smooth positive function 7. The map (p, t )  e- ( p ,  t /  y(  p ) )  is then 
a diffeomorphism W, + M x [0, 1). 

Observe now that every open neighborhood of aM in M is a manifold 
itself. Thus, we have proved: 

(7.3) Theorem 
neighborhood. 0 

Every open neighborhood of aM in M contains a collar 

(7.4) Corollary Suppose that dM is compact and aM = V, v V,  where 
V,, V, are closed and disjoint subsets of M. Then there is a smooth function 
f: M + [0,1] such that f - ' ( i )  = V,, i = 0, l .  

Proof Let W = aM x [0, 1) be a collar of aM. Define g :  M + [0,1] by 
setting 

if p = (x, t )  E V, x [0,1/2], 
if p = (x, t )  E V, x [0,1/2], g ( p )  = 1 - t r 1/2 elsewhere in M. 

It follows from the compactness of aM that g is continuous. Now, a smooth 
l/Capproximation to g, agreeing with g on aM x [0,1/2], is as desired (cf: 
2.5). 0 

(If dM is not compact, then the function g in the preceding proof need 
not be continuous. For instance, let M be the upper half-plane with the 
origin removed. The boundary of M consists of two rays: V,: x, > 0, and 
Vl : x1 < 0. If the collar is given by the map (x, t ) - ( x ,  t )  then g is not 
continuous. If it is given by (x ,  t ) - ( x ,  t [XI), g is continuous.) 

Observe that the differential of the function f constructed in the proof 
of 7.4 does not vanish in a neighborhood of aM. The requirement that Of 
vanishes nowhere turns out to be very restrictive. 

(7.5) Theorem Suppose that M is compact, aM = V, u V , ,  and f: M + R 
is a smooth function such that f -I( i )  = V,, i = 0, l .  Ifthe diferential off does 
not vanish, then M is difleomorphic to V, x I. 

Proof Since f cannot have extremal values in the interior of M we must 
have f ( M )  = [0,1]. Now, assume that M is a Riemannian manifold and 
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consider the vector field X = Vf/(Vf, Vf). It is easy to see that Vf; hence 
X, is never tangent to aM. Let g ( p ,  t )  be a solution of X. Then, ( d / d t ) f g  = 

Xf = 1; hence, fg( p ,  t )  = t + a ( p). Setting t = 0 we see that a ( p) = f (  p), 
i.e., 

(*) M P ,  t )  = t +f(P).  

Now, consider the set of all t E R for which g ( p ,  t )  is defined. Since M is 
compact, it is closed. By (*) it is bounded. Since g ( p ,  t )  cannot “stop” at 
an interior point of M, (*) implies that 

(**) g (  p ,  t )  is defined for -f( p) I t I 1 - f (  p ) .  

In particular, the map G: V, x Z + M given by G( p ,  t )  = g (  p, t )  is well- 
defined and smooth. It is a diffeomorphism: Its inverse is given by 
P H M P ,  -f(P)),f(P)). 0 
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Immersions, Im beddings, 
Submanifolds 

Manifolds appeared in mathematics as submanifolds of Euclidean spaces. 
In Chapter I we have defined manifolds in an intrinsic way; here, in Section 
2, we discuss various ways to define submanifolds and in Section 3 we show 
that, indeed, every manifold can be realized as a submanifold of a Euclidean 
space. In Section 4 we introduce isotopy as an equivalence relation for 
imbeddings and show, in Section 5 ,  that for compact submanifolds isotopy 
implies a stronger relation, ambient isotopy. In the last section we review 
briefly the historical development of the notion of a differentiable manifold. 

1 Local Equivalence of Maps 

The simplest smooth maps are the linear ones and the guiding idea of the 
differential calculus is to derive information about an arbitrary smooth map 
from the behavior of a linear map, its differential. We will show that in 
some circumstances a smooth map is, in a sense, equivalent to its differential. 
The equivalence in question is local and is defined as follows. 

25 
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(1.1) Definition Let f: M + N, g:  M1 + N , ,  p E M, q E M , .  We say that 
f at p is equivalent to g at q if there are neighborhoods U of p,  V off ( p )  
and diffeomorphisms h (resp. h,) of U (resp. V) onto a neighborhood of 
q (resp. g ( q ) )  such that h,  f = gh. 

As an example, observe that a linear map L: R" + R" of rank k is 
equivalent to a composition of a projection (x, , . . . , x,) H (x, , . . . , x k )  with 
the inclusion (x,, . . . , x k )  H (x, , . . . , xk,  0, . . . , 0). 

As another example, let f: Gl(n )  + Gl(n )  be the map sending a matrix 
A to A'A. For any two matrices A, By f at A is equivalent to f at B. For if 
h:  Gl (n )  + Gl(n)  is the multiplication on the left by BA-' and h,  : Gl(n )  + 

G1( n )  is the multiplication on the left by BA-' and on the right by ' (BA-I) ,  
then h ( A )  = B and h, f = f h .  

Exercise Let S ( n )  be the set of symmetric matrices viewed as an open 
subset of Rn(n+')'Z , and let f: S ( n )  + S ( n )  be given by f ( M )  = Mk, k a a 
positive integer. Show that for every matrix M E S ( n )  there is a diagonal 
matrix D such that f at A4 is equivalent to f at D. 

Now, let f: A4 + N be a smooth map; the dimension of Of (T,M) is 
called the rank off  at p. 

(1.2) Proposition If the rank off is constant in a neighborhood of p, then 
f a t  p is equivalent to Of, at 0. In particular, i f f  is of maximal rank at p E M, 
then f is locally equivalent at p to either a standard projection or a standard 
inclusion. 

Proof By I,4.2.1 the rank off equals the rank of the Jacobian off with 
respect to some charts about p and f( p). Thus the proposition follows from 
A,1.2 and A,1.3. 0 

2 Submanifolds 

Intuitively, a submanifold M of a manifold N is a subset of N which is a 
manifold and which locally looks like R" in R", at least if both M and N 
are closed. We will show in 2.3 that this intuition justifies the following 
batch of definitions. 



2 SUBMANIFOLDS 27 

(2.1) Definition Let f: M + N be a smooth map. We say that f is an 
immersion if Of is everywhere injective, a submersion if Of is everywhere 
surjective. We say that f is an imbedding i f f  is an immersion and a 
topological imbedding. M c N is a submanifold if the inclusion map is an 
imbedding. 

Clearly, iff: M + N is an imbedding then f( M) (with the differentiable 
structure induced by f )  is a submanifold. This is not in general true iff is 
only a one-to-one immersion. An example of some interest is as follows: 
Let (Y be a real number andf, the imbedding of R in R2 as the line y = a x ;  
let T: R2 + S' x S' be the covering map (x, y )  H (exp(2~ix) ,  exp(2miy)). 
Then, the composition mfe is an immersion, which is one-to-one if a is 
irrational. But the image is then a dense subset of the torus and-with the 
topology of a subset-is not even a topological manifold. 

Exercise Suppose that M is a smooth manifold and a closed subset of a 
smooth manifold N. Show that M is a submanifold of N if and only if the 
following holds: A functionf on M is smooth if and only if it is a restriction 
to M of a smooth function on N. 

We intend now to characterize on subsets of a manifold N which can 
be given the structure of a submanifold. In the case of manifolds with 
boundary we will consider only submanifolds imbedded in a particularly 
nice way. 

It will be convenient here to write R" for the subspace of the last m 
coordinates in R"; let Ry = R: n R" = {(x,, . . . , x,) E 

R" Ixl, .  . . , xfl-,,, = 0, x, 2 0). 

(2.2) 
N and: 

Definition A submanifold M c N is neat if it is a closed subset of 

(a) M n a N  = aM;  
(b) At every point p E aM there is a chart (U ,  h )  in N, h: U + R:, such 

that h-'R," = U n M. 

Condition (b) means, intuitively, that dM meets dN like R," meets R"-'. 
Observe also that the only neat submanifolds of a closed manifold are 
closed manifolds imbedded as closed subsets. 
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Figure 11.1 

(2.3) Theorem A closed subset M c N can be given a structure of a neat 
m-dimensional submanifold ifand only if at every point p of M there is a chart 
(U, h )  in N satisfying either of the following two conditions: 

( a )  I f p  E Int N, then h-'R" = U n M ;  i f p  E dN n M, then h-'R: = 

( b )  there is a submersion u: U + R"-", which is also a submersion on 

This structure on M is unique up to a difeomorphism. 

U n M. 

U n dN, such that o-'(O) = U n M. 

Proof If M c N is a neat submanifold, then by 1.2 the inclusion map is 
locally equivalent to the standard inclusion R" L, R"; this yields at every 
interior point of M a chart satisfying condition (a); the existence of such 
a chart at the boundary points is a part of the definition. 

Assume now that (a) holds at a point p E Int M and let m: R" + R"-" 
be the standard projection of R" onto R"-". Then r h  is a submersion and 

m = 2 , n = 3  

Figure 112 
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h- 'r - ' (O)  = h-'(R") = U n M. If p E aN, then h maps U n dN diffeo- 
morphically into R"-'; hence r h  is a submersion on U n aN, i.e., (b) holds 
at p. 

Suppose that (b) holds at p and let p E M n aN. Then h sends U n aN 
to R"-'; hence ah-' and ah-'IR"-' are both submersions. By 1.2 there is 
a diffeomorphism f :  (R", R;) + (R", R:) such that a h - ' f  is a standard 
projection. Let g = f ' h .  Then g (  U )  c R:, ag- ' (R,")  = 0 and ga- ' (O)  c 
R". Thus (U, g )  is a chart and, since ga- ' (O)  = g (  U n M )  c R: n R" = 

R,", ~ ~ ' ( 0 )  c h-'(R"). The reverse inclusion is obvious; hence U n M = 

h-'(R,"), i-e., (a) holds. If p E Int M, then the proof is similar but simpler. 
Assume that (a) is satisfied at every point of M. We will show that M 

can be given a structure of a manifold. Cover M by charts ( U,, h,) satisfying 
(a) and set V, = U, n M, g ,  = h, I V,; we claim that { V,, g, }  yields an 
atlas on M. 

Suppose that V, n V, = U, n U, n Int M # 0. Then hahi': 
hp(Urr n U,) + R" is a smooth map and g,gi' is its restriction to 
W = h,( V, n V,) c Rm. Since hi ' (  W) c M, gag;'( W )  = hahi'( W) = R", 
i.e., gag;' is a smooth map of an open subset of R" into R". If p E dM, 
then the same argument works with R" replaced by R,". Thus M is a 
differentiable manifold. 

There remains to show that it is a submanifold, i.e., that the inclusion 
M c N, which is certainly a topological imbedding, is an immersion. But 
with V,, U, as defined, the inclusion V, L, U, is locally equivalent either 
to the inclusion R" c R" or R," c R". 

To prove the uniqueness, let % = { U,, ha},  "Ir = { V,, g,} be two smooth 
structures on M, both giving it the structure of a submanifold. Suppose that 
0 # U, n V, c U n Int M, where (U, h )  is a chart in N as in (a). Since M 
is a submanifold, hgi'  is a smooth map of maximal rank. By (a), 
hgp'(g,( V,)) c h( U n M) c R". Thus hgp' is a smooth map of an open 
subset of R" into R" of rank m. By the Implicit Function Theorem (A,l . l )  
its inverse, gph-'lR", is smooth too. This implies that g&,' = g,h-'hh,' 
is smooth, i.e., the atlases %, "Ir are compatible. A similar argument works 
at the boundary points. 

We apply 2.3 to study inverse images of points under a smooth map. 

(2.4) DeJnition Let f :  M + N be a smooth map. We say that q E N is 
a regular value of f if Of is surjective at every point p ~ f - ' ( q )  and 
Of( T ( a M )  is surjective at every p E f l ( q )  n aM. 
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(2.5) Corollary 
of M. 

I f q  is a regular value off; then f -'( q )  is a neat submanifold 

Proof Note that if Of is surjective at p, then it is surjective-hence f is a 
submersion-in a neighborhood of p. Hence the corollary follows from 
2.3(b). 0 

2 As an example, consider a map f: R" + R given by (xl, . . . , x,) x i  x i  . 
Then every r # 0 is a regular value; in particular, we get a submanifold 
structure on S"-' = f -'( 1). This is still the standard structure: The construc- 
tion in 41.2 did, in fact, represent S"-' as a submanifold (just consider 
( h * ) - ' ) ;  thus the uniqueness part of 2.3 applies. 

We can generalize this procedure to the tangent bundle of a manifold 
M, endowed with a Riemannian metric ( , ), and the function f: TM + 

R, f ( u )  = ( u ,  u). If v = x i  ui ai in local coordinates, then f ( u )  = a,uiui 
for some symmetric positive definite matrix (au) .  Thus every r # 0 is a 
regular value of f :  The manifold f-'(l) is called the tangent unit sphere 
bundle of M. 

The following corollary is more general than 2.5. We assume for simplicity 
that aM = 0. 

(2.6) Corollary Let f: M + N be smooth and assume that, for some q E N, 
f i s  of constant rank on a neighborhood off-'(4). Then f - ' (q)  isa submanifold 
of M. 

Proof Let p E f-'( q )  and assume that the rank off is k. By 1.2 there is a 
chart ( U, h)  about p in M and a chart ( V ,  g )  about q in N such that gfh-' 
is the standard projection R" + Rk followed by the inclusion Rk L, R". In 
particular, gf seen as a map into Rk is a submersion and the corollary 
follows from 2.3(b). 0 

As an example, consider the map f: GI( n )  + G1( n )  sending the matrix A 
to A'A. We have shown in 1.2 that for any two matrices A, B,f at A is 
equivalent to f at B. Thus f is of constant rank on Cl(n). Since f - ' (I , )  = 

O ( n ) ,  we obtain a smooth structure on O(n)  as a submanifold of C l ( n ) .  
Now, the multiplication in O( n )  is the restriction to O( n )  of the multiplica- 
tion in Gl(n) .  We have already noted that the latter is smooth. Since O(n) 
is a smooth submanifold and the restriction of a smooth map to a smooth 
submanifold is smooth, it is a Lie group (cf: 1,1.7). 



2 SUBMANIFOLDS 31 

Exercise Let F: G1( n) + R"("+')'' be given by F ( M )  = 

( f i l , .  . .,fin,A2,.. . ,Afl,. . . ,fnn) where for a given matrix M the matrix 
(Aj)  = M'M. Show that F(1,)  is a regular value of F. 

Exercise 
a submanifold of R"". 

Show that the set of rn x n matrices with orthonormal rows is 

(2.7) As another example of the application of 2.5 consider a map 
f: (M,  a M )  + ( N ,  8 N )  where M and N are both compact, connected, and 
of the same dimension n. If q E Int N is a regular value off then f - l ( q )  
is a compact 0-dimensional submanifold of Int M, that is, a finite set of 
points p ,  , p z ,  . . . , P k ,  and the map f is a local diffeomorphism in a neighbor- 
hood of each pi. Suppose that M and N are oriented, and let y M ,  y N  be 
corresponding generators of H,(M,  8M), Hn( N, 3 N ) .  Then 

f * Y M  = dYN, 

and the integer d is called the degree of j 
The degree o f f  can be calculated from the behavior of f  at points pi. 

For if yi is the induced local orientation at pi, i = 1,2, . . . , k, and y is the 
induced local orientation at q, thenf, yi = diy, where di = f 1. An elementary 
argument, left as an exercise, shows that 

(2.7.1) d = E d i .  
i 

The interest and the importance of this stems from the Brown-Sard 
Theorem (A,3.1): The regular values always exist. 

(2.8) If M c N is a neat submanifold, p E dM, and U is a chart as in 
2.2(b), then TpM c TpN is represented by the subspace of the last rn 
coordinates and TPaN by the space of the first n - 1 coordinates. Thus 

(2.8.1) TpM and Tpa N are in general position, 

which condition is independent of the choice of the chart U. 
In fact, this condition is equivalent to 2.2(b). To see this we prove first that 

(2.8.2) if M c N is a neat submanifold, then there is a collar of aN in N 
such that its restriction to aM is a collar of 3M in M. 

This is proved in the same way as 1,7.3 except that to construct the vector 
field X in I,7.1 pointing inside N one first constructs on M a vector field 
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pointing inside M along the boundary. By 2.8.1 it points inside N as well; 
thus it can be extended over N to yield X. 

Now let p E dM. There is then a diffeomorphism g of (R"-l, Rm- l )  onto 
a neighborhood V of p in dN such that g(Rm-') = V n dM. By 2.8.2 there 
is a diffeomorphism f of V x R, onto a neighborhood U of p in M such 
that f((  V n d M )  x R,) = U n M. Let h(x ,  t), x E R"-', t E R,, be given 
byh(x,t) =f(g(x) , i ) . I fxER?,thenx= ( x ' , t ) , x ' ~ R " - ' c R " - ~ , t ~ R + ,  
thus g(x') E V n dM, and h(x', t )  =f(g(x'), t)  E U n M. This shows that 
p has neighborhoods satisfying 2.2(b). 

3 lrnbeddings in R" 

Most manifolds we have considered up to now were submanifolds of a 
Euclidean space. The question arises whether this is true in general, that 
is, whether every smooth manifold can be imbedded in some Euclidean 
space. This was answered affirmatively by H. Whitney in [Wi2]. We prove 
here only a weak form of Whitney's theorem. 

(3.1) Theorem A compact smooth manifold can be imbedded in a Euclidean 
space. 

Proof If M is compact, it has a finite adequate atlas { Ui, hi } ,  i = 1, . . . , k. 
Let pl, . . . , pk be an associated family of bump functions (I,2.2). Define 
maps qbi : M + R" by 4i = pihi and let h: M + R", n = k( m + l ) ,  be given 
by 

h ( P )  = ( q b l b ) ,  . . . , 4 k ( P ) ,  P , ( P ) ,  9 * * 3 PCLkb)) 

E R" x .  * * x R" x R x - * x R. 

We will show that h is an imbedding. Let p E M and let i be so chosen 
that p i ( p )  = 1. If h ( p )  = h ( q ) ,  then also p i ( q )  = 1; hence h , ( p )  = h i ( q ) .  
Since the hi are homeomorphisms this implies that p = q. Since M is 
compact, h is a topological imbedding. To see that it is of maximal rank, 
note that the Jacobian matrix at p in the coordinate system Q contains a 
unit m x m matrix. 0 

The dimension of the imbedding space is absurdly high: For the projective 
space P", with the differentiable structure given by rn charts as in 1,1.3, 
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this theorem yields an imbedding in Rm(m+l)  . In fact, Whitney’s theorem 
[Wi2, Theorem 51 asserts the following: 

(3.2) Theorem Let f :  M + N be a smooth map which is an imbedding on 
a closed subset C c M ;  let E be a continuous positive function on M. If 
dim M 2 2 dim N + 1,thenthereisanimbedding g :  M + N .+approximating 
f and such that f I C = gl C. 

The results of Whitney were greatly generalized by A. Haefliger, cf: [ H l l .  

4 lsotopies 

We introduce now a notion of equivalence for imbeddings. Naturally 
enough, we want two imbeddings to be equivalent if one can be deformed 
to the other through imbeddings. The most convenient form of stating this 
precisely is as follows. 

(4.1) Definition Let g :  M + N be two imbeddings. An isotopy between 
f and g is a smooth map F: M x R -f N such that 

(a) F(x,  0 )  = f ( x ) ,  F(x ,  1)  = A x ) ;  
(b) F, = F 1 M x ( t )  is an imbedding for 0 5 t 5 1. 

The assumption that F(x ,  t )  is defined for all t is for technical con- 
venience; its actual behavior for t < 0 and t > 1 is of no importance: We 
can always assume that F(x ,  t )  = f ( x )  for t 5 0 and = g ( x )  for 1 2 1. For 
let p ( t )  be a smooth non-decreasing function such that p ( t )  = 0 for t 5 0 
and = 1 for t 2 1. Then F(x ,  p ( t ) )  is an isotopy that is constantly f ( x )  for 
t I 1 and g ( x )  for t 2 1. 

Isotopy is an equivalence relation: To see that it is transitive suppose 
that F is an isotopy between f and g and that G is an isotopy between g 
and h. Let p , ,  pz be diffeomorphisms of R onto itself such that p,  maps 
the segment [0,1/3] onto [0,1] and p2 does the same to the segment [2/3,1]. 
Assume also that F is constantly g for t 2 1 and G is constantly g for t 5 0. 
Then an isotopy between f and h is given by 

F(x,  p l ( t ) )  
G ( x ,  p z ( t ) )  

if t 5 1/2; 
if t 2 1/2. 

H ( x ,  t )  = 
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Every isotopy F ( x ,  t) induces a level preserving imbedding M x R + 

N x R. The converse is also true: 

(4.2) Lemma 
G(x, t) = ( F ( x ,  t), t). Then F is a n  isotopy. 

Let G: M x R + N x R be a levelpreserving imbedding, i.e., 

Proof Let U, be a chart in M and V, be a chart in N. Then the Jacobian 
of G with respect to charts U, x R, V, x R is the matrix 

(o,J!F'o r) .  
where F, = FI M x ( t )  and JZF, is its Jacobian with respect to U,, V,. 
Since the Jacobian of G is of rank m + 1, the rank of JiF,  must be m. The 
inverse of F, on the image is constructed by lifting it to the level t and 
applying G-'. 0 

Assume now M to be a closed manifold. By I,6.2 a vector field on M 
admitting a global solution induces an isotopy of the identity map of M: 
its solution. This connection between vector fields and isotopies is best 
described in terms of vector fields on M x R. First, define the t-coordinate 
of a vector on M x R to be its image under the differential of the projection 
T: M x R + R. Certainly, if G: M x R + M x R is a level preserving imbed- 
ding, then DG(dt) is a vector on M x R with the t-coordinate at. The next 
lemma asserts the converse. 

(4.3) Lemma If X is a vectorfield on M x R with the t-coordinate a t  and 
admitting a global solution, then X induces a n  isotopy of the identity map of M. 

Proof Let H :  (A4 x R) x R + M x R be the global solution and let 
G(p, t)  = H ( p ,  0, t). Since H is a solution, H((p,  x), 0) = (p, x), which 
implies 

(*) G(p,  0) = (P, 0). 

Now, we will show that 

(**) G is level preserving. 

Write H = (H, , H z )  where Hz is a composition of H with the projection 
T of M x R on R. Thus DHz(at) = D T ( X )  = at, which implies d H , / d t  = 
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d t / d t  = 1. Consequently H2( (p, x), t)  = t + p (p, x) and 

Comparing this with (*) we see that p ( p ,  0) = 0, which proves (**). 
Now, consider the map L: M x R + ( M  x R) x R that sends the point 

(P, t>  to ( H ( ( P ,  t ) ,  - l ) ,  t ) .  We have 

It follows that L (followed by an obvious projection) is an inverse of G, 
i.e., G is a diffeomorphism. By 4.2 this concludes the proof of the 
lemma. 0 

We will consider a few examples. 

(4.4) Let M E G1( n )  and consider the linear diffeomorphism f M  : R" + R", 
given byfM(u) = Ma u. Assume that det(M) > 0 and let M (  t )  be a smooth 
path in Gl(n) such that M ( 0 )  = M, M(1) = I, .  Then F(u,  t)  = M ( t )  z1 

defines an isotopy of fM to the identity map. If det(M) < 0, then an 
analogous construction yields an isotopy of fM to the map that reverses the 
first coordinate and preserves the rest. 

(4.5) Now letf: R" += R",f = (f', . . . , f " ) ,  be a diffeomorphism satisfying 
f ( 0 )  = 0. ByA,2.1 we can writef'(x) = C i  a{(x)x,. Let F(x, t )  = (l/t)f(tx). 
Since (l/t)f'(tx) = x i  a{(tx)x,, F is a smooth map for all t. For t # 0 it 
clearly is a diffeomorphism; to see what it is for t = 0 note that a{(O) = 

(8J/8xi)(0). Thus, F(x,O) = ( J f )  x is a linear map given by the Jacobian 
off at 0. It follows that f is isotopic to the linear map given by its Jacobian 
matrix at 0. As we noticed in 4.4, this last map is in turn isotopic either to 
the identity map or to an elementary orientation reversing map. 

(4.6) An example of an isotopy is provided in the proof of Theorem L3.3: 
What we have actually shown there is that every isomorphism between two 
Riemannian bundles is isotopic to an isometry. 

Exercise 
isotopic to the identity map. 

Show that every orientation preserving diffeomorphism of S' is 

An analogous theorem is not true for spheres of dimension 2 6 .  
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(4.7) A general theorem concerning isotopies was proved by H. Whitney 
[Wi2, Theorem 61: 

Theorem 
manifold M "'. If n 2 2m + 2, then f and g are isotopic. 

Let f; g: M" + N" be two homotopic imbeddings of a compact 

5 Ambient lsotopies 

Two imbeddings f, g: M + N might well be isotopic without the comple- 
ments N - f ( M ) ,  N - g( M )  being homeomorphic. (For instance, the com- 
plement in R2 of a circle with a point removed is not homeomorphic to the 
complement of the open segment (0 , l )  = R' c R2.) It is even possible for 
this to happen when both f ( M ) ,  g ( M )  are closed subsets of N (see 5.2). 
This is the rationale for a stronger notion of equivalence of imbeddings, 
that of an ambient isotopy. 

(5.1) Definition Let f; g :  M + N be two imbeddings. An ambient isotopy 
betweenfand g is an isotopy F: N x R + N such that F (  p, 0) = p, F ( f ;  1) = 

g- 

We have just seen that two isotopic imbeddings of M need not be ambient 
isotopic. It is a consequence of our next theorem, the Isotopy Extension 
Theorem, that they are ambient isotopic if M is compact and N closed. 
This was proved first by R. Thom [T4]; a stronger version is due to R. Palais 
[Pa21 and, independently, to J. Cerf [Cl]. 

(5.2) Theorem Let f :  A4 + N imbed M in a closed manifold N; let K c M 
be a compact subset and G: M x R + N x R an isotopy o f f :  Then there is 
an isotopy H: N x R + N x R of the identity map of Nsuch that H ( f ( x ) ,  t)  = 

G(x, t) for x E K ,  t E [0,1]. 

Proof The construction of G will be based on Lemma 4.3. 
First, consider the vector field X = DG(dt). It is defined on G ( M  x R) 

and, since G ( M  x R) is a smooth submanifold of N x R, it is locally 
extendable. Now, B = G(K x [0,1]) is compact, hence a closed subset of 
N x R. By I,3.4 XI B extends over N x R to a vector field Y. Clearly, we 
can assume that Y vanishes outside of some neighborhood U of B with 
compact closure. Finally, define a vector field Z by Z = ( Y - t-coordinate 
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of Y) + at. Clearly 

(*) the t-coordinate of 2 equals at. 

Since Y I B = XI B, the t-coordinate of Y 1 B is at;  thus 

(**) Z I B  = XIB.  

It remains to be shown that 

(***I 2 admits a global solution. 

Let V be an open set with compact closure containing Cl( U ) .  Then there 
is a constant E such that all solutions originating in V are defined for It[ < E. 

On the other hand, solutions originating outside V are-until they reach 
U-simply curves (x,, t + to ) .  Since Cl( U )  is compact, there is a positive 
constant 6 such that they are all defined at least for It[ < 6. This implies 
(***), cf: I,6.2. 

By (*) and (***), Lemma 4.3 applies and yields an isotopy H of the 
identity map of N. Consider a solution curve C of X which at t = 0 passes 
through ( f ( x o ) ,  0), i.e., the curve G(x,, t). Because of (**), for 0 I t 5 1, C 
is also a solution of 2, i.e., the curve H ( f ( x , ) ,  2). Thus H ( f ( x ) ,  t )  = G(x, t )  
for (x, t)  E K x [0 ,  11. 0 

Note that the isotopy H is stationary outside of a compact set. 
If aN # 0 but the isotopy G moves K in the interior of N, then the 

theorem remains valid: Apply 5.2 to the interior of N and note that since 
H is stationary outside of a compact subset of Int N it can be extended 
over N by requiring it to be stationary on N. 

The assumption that K is compact is essential and cannot be replaced 
by requiring f ( M )  to be closed in N and K closed in M. 

Exercise 
with a knot”: 

Consider an imbedding R + R3 where the image is “the line 

. . . -PJL . . . . 

(a) Show that this imbedding is isotopic to the standard imbedding R c R3 
but not ambient isotopic to it. (Hint: a consideration of one point compac- 
tification of R3 shows that the complement of the “knotted line” is homeo- 
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morphic to the complement of the trefoil knot.) (b) Trace the proof of 5.2 
in this case. What goes wrong? 

(5.3) Corollary 
F, of the identity map of M such that Fl( p )  = q. 

If M is connected and p ,  q E M, then there is an isotopy 

Proof By I,2.6 there is a smooth path joining p and q. Since such a path 
can be considered an isotopy of the inclusion of p in M, the corollary 
follows from 5.2. 0 

(5.4) Corollary 
extends to an imbedding of D”+l. 

I f f :  S” + S” is an imbedding and n 2 2m + 2, then f 

Proof f is homotopic to the standard imbedding; hence by 4.7 it is isotopic 
to it. Since the isotopy is ambient and the standard imbedding extends to 
an imbedding of D”, so also does f :  

Of course, 5.4 is true with S“ replaced by any manifold with vanishing 
rn-dimensional homotopy group. 

6 Historical Remarks 

Differentiable manifolds entered mathematics as curves in the plane and 
surfaces in R3. Leaving aside the theory of curves, which had its own 
peculiarities, it is interesting to trace the developments that culminated in 
the notion of a differentiable manifold. 

A salient point is that at the early stage there was no perceived need to 
define a surface. The surface was.a geometric object which simply was there; 
the task of a mathematician was to find an analytical way to deal with it, 
to describe it. Thus Euler in [El,pp.324-3251, discusses how a surface 
determines its equation, which will “express its nature.” His method suggests 
that he wants the surface to be locally a graph, but he does allow the 
possibility that the z coordinate is not uniquely determined by x and y.  He 
also recognizes that the representation is local; the surfaces that consist of 
patches, each given by a different equation, are called “discontinuas seu 
irregulares.” This 1748 book seems to be the first place where a notion of 
a general surface appears. Somewhat later, in 1771, Euler gives a definition 
of a surface using a parametric representation. This would correspond to 
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our notion of an imbedding of R2 in R3, but for the fact that no regularity 
conditions are explicitly stated [ E2]. 

Toward the end of the 18th century G. Monge uses an equation 
F(x ,  y, z) = 0 to represent a surface (and two such equations to represent 
a curve). This was again a local representation only, but nothing more 
general was needed. The research was centered either on local properties 
of surfaces or on algebraic surfaces, generally quadrics, given, indeed, by 
one equation. 

This point of view did not change until Poincart. For instance, Gauss, 
in his fundamental paper of 1832 ([GI), distinguishes two ways of defining 
a surface: The first way is by an equation W(x,  y, z) = 0; the second by a 
system of equations x = f ( p ,  q), y = g ( p ,  q ) ,  z = h ( p ,  q). Again, no more 
than one local coordinate patch is considered and no regularity conditions 
are explicitly stated though they are implicitly assumed as it is clear from 
subsequent computations. 

Up to the time of B. Riemann manifolds thus appear only as curves or 
surfaces in R3. While Riemann is generally credited with the idea of an 
abstract n-dimensional manifold, what actually appears in [R] is what we 
would call one chart with a metric given by a linear element ds2. There is 
no general definition of a manifold (Riemann seems to consider this a 
philosophical problem), but an important step has been taken in that his 
objects are n-dimensional and not necessarily submanifolds of anything else. 

The “modern” definition of a differentiable manifold appears for the first 
time in the 1895 paper of H. PoincarC [Pl]. Manifolds are still submanifolds 
of R“, but all necessary elements are present: The definition is by overlapping 
charts and the condition on the rank of the Jacobian is stated explicitly. 
(Strictly speaking, what he defines we would call a 1-1 immersed submani- 
fold of R”.) 

PoincarC also considers inverse images of regular values (“premibre 
definition”), and shows that they are manifolds (i.e., our 2.5) ,  but that not 
every submanifold can be defined in such a way. 

Manifolds and homeomorphisms considered by Poincart were always 
smooth. As a matter of fact, he always requested analyticity, but when 
constructing examples (e.g., of what is now called a Poincart sphere, [P3]) 
he never verified that they were smooth manifolds, or submanifolds of 
Euclidean space. Actually, he did not need smoothness but only triangula- 
tion and provided in [P2] an incomplete proof of the possibility of triangula- 
tion of a smooth manifold. (Poincare’s pioneering work is discussed in 
detail in [Di].) 
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PoincarC also considered manifolds constructed by identifications on 
faces of 3-dimensional cells and gave a criterion for such an identification 
to lead to a manifold. 

During the next 30 years the concept of a topological and triangulated 
manifold was formulated with necessary precision, but until the 1930s 
smooth manifolds were still considered in reference to some imbedding 
(e.g., H. Hopf [Hol]). The first intrinsic definition of a manifold-that is, 
not as a submanifold of anything else-appeared, in a rather awkward form 
as a set of axioms, in the work of 0. Veblen and J. H. C. Whitehead ([VW]) 
in 1931. In the present form, it can be found in the book of P. Alexandroff 
and H. Hopf [AH] and in the papers of H. Whitney [Wi2] and J. W. 
Alexander [A]. In his paper Whitney showed that smooth manifolds can 
always be imbedded in a Euclidean space, hence that the intrinsic definition 
was not more general than one given by PoincarC. 

The question of relations between smooth and triangulated or topological 
manifolds was posed by Alexander [A]. After expressing confidence that 
the triangulation of smooth manifolds is only a question of “honest toil,” 
Alexander asked about triangulability of topological manifolds and about 
the validity of the so-called Hauptvermutung for manifolds. At about the 
same time, Alexandroff and Hopf asked whether every triangulated manifold 
carries a smooth structure. Thus the questions were clearly posed but, with 
the exception of the “honest toil” performed by S. S. Cairns in 1934 [Ca], 
the answers were slow in coming. 

The first answer came in 1959 when M. Kervaire gave an example of a 
combinatorial manifold that is not smoothable [ K2]. The triangulability of 
topological manifolds had to wait until 1969 when L. Siebenmann provided 
a counterexample [ Si]. Thus the three classes of manifolds-topological, 
triangulated, smooth-are all distinct. 

There remained the question of the Hauptvermutung. For smooth mani- 
folds J. H. c. Whitehead, improving on the work of Cairns, showed in 1940 
that if two smooth manifolds are diffeomorphic, then their C’ triangulations 
are indeed combinatorially equivalent [Wh3]. The assumption of 
diffeomorphism cannot be weakened: In 1969, L. Siebenmann gave 
examples of smooth 5-dimensional manifolds homeomorphic but with non- 
equivalent combinatorial triangulations. The examples are not difficult to 
construct but the proof that they possess desired properties requires deep 
investigation into the structure of topological manifolds. The appropriate 
machinery, due to R. Kirby and L. Siebenmann, is described in [KS]. 
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Normal Bundle, Tubular 
Neighborhoods 

A curve in R3 is contained in a nice, tube-like neighborhood. In Section 2 
we will show that submanifolds of a smooth manifold always possess similar 
neighborhoods called, by analogy, tubular neighborhoods. 

Tubular neighborhoods are not unique, but any two are related by an 
isotopy of the entire manifold; this is the content of the Tubular Neighbor- 
hood Theorem, proved in Section 3. A special case of it is used in Section 
6 to define the group r" of diffeomorphisms of S"-' modulo those which 
extend over D". 

In Section 4 we discuss tubular neighborhoods of neat submanifolds and 
of submanifolds of the boundary, and in Section 5 the special case of tubular 
neighborhoods of inverse images of regular values. 

1 Exponential Map 

Consider the total space E of a smooth vector bundle i$ with base N, a 
smooth manifold, and projection T. We identify N with the zero section 
of E and note that every open neighborhood U of N in E contains a 

41 
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neighborhood that is a total space of a bundle: We can shrink E to a subset 
of U. We want to show that in quite general situations submanifolds possess 
such bundle neighborhoods. For this reason we begin with a closer examin- 
ation of the special case of the zero section N of the bundle E. 

We will look first at the tangent bundleTN as a subbundle of TNE, the 
restriction of TE to N. Since TIN = id, Da is surjective on TNE and 
T,E = Ker(Da) 0 TN. If Ep is the fiber of E at p, then its tangent space 
at 0 is contained in Ker(D,.rr), thus, for dimensional reasons, must equal 
it. This justifies the name for Ker( Da): the bundle tangent to fibers. This 
bundle is actually isomorphic to 6. To see this recall that the exponential 
map TOR" + R" was defined in I,4.5 in an invariant way and was equivariant 
with respect to linear maps of R". Thus, we can define a map 
expKer: Ker(Da) -+ E by requiring it to be on each fiber the exponential 
map Ker,(Da) = TOEp + Ep. Collecting all this, we have: 

(1.1) Proposition TNE = Ker(Da) @ TN; Ker(DT) --. 5; its Jibers are 
tangent spaces tofibers of 6. 0 

Exercise 
bundle, then TNE is a trivial bundle. 

Show that if N is an odd dimensional sphere and E its tangent 

To progress further we have to generalize the notion of the exponential 
map TOR" + R" to a map of the tangent bundle of an arbitrary manifold 
N to N. In the restricted situation of I,4.5 the exponential mapped a vector 
u in TOR" to a vector in the line tangent at 0 to v. The generalization will 
consist in replacing the line in R" tangent at 0 to u by a curve yu in N 
tangent to u. The appropriate curve is the geodesic, which means that the 
construction requires a choice of Riemannian metric on N. Once this choice 
is made, and assuming N to be closed manifold, we have the following 
fundamental theorem: 

(1.2) Theorem 
of U x I to N, (u,  t ) ~  y u ( t ) ,  such that: 

There is a neighborhood U of N in TN and a smooth map 

(a) yu(0) = a ( v )  and the tangent vector of -yu at 0 is v ;  

(b) rsu(t> = ru(st), v E TN, s, t E 1. 

The proof of this theorem consists in showing that the curves yu are 
solutions of a certain system of second order differential equations. By an 
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appropriate modification of the differential equations involved this can be 
deduced from I,6.1. We will not give the details here. They can be found, 
e.g., in [Ml]. 

With suitable assumptions about the Riemannian metric 1.2 is valid for 
manifolds with boundary as well. 

We can now define the exponential map in a general context. 

(1.3) 
(If N is compact, then one can take U = TN.) 

Definition exp: U + N is defined by exp(u) = ~ " ( 1 )  (see Fig. II1,l). 

Consider now the differential of exp restricted to the zero section of T N ;  
this is a map TNTN + TN. By 1.1 

(1.3.1) T,TN = Ker(D.rr) 0 TN. 

The following lemma describes the behavior of D exp on each summand: 

(1.4) Lemma D exp I Ker(D.rr) = expKer, D exp 1 TN = id. 

Proof Fix a vector v in TpN and let L be the line in TpN that is the set 
of all multiples of R By 1.2(b) exp(sv) = ~"(s); hence exp maps L onto the 
geodesic yv. Therefore D exp maps the vector in To( TpN)  tangent to L to 
the vector tangent to 'y" at p, that is, the vector v by l.Z(a). Since To( TpN)  
is the fiber of Ker(D.rr), this is precisely the description of expKerI Ker(D.rr). 

Since exp is the identity map on the zero section (= N )  of TN, so also 
is its differential on the tangent bundle to the zero section. 

P- 
Figure 111.1. 

Y 
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2 Normal Bundle and Tubular Neighborhoods 

Suppose that a manifold M (with or without boundary) is a submanifold 
of a manifold N. In the search for a fiber bundle which is a neighborhood 
of M the first object to find is an appropriate bundle structure. The answer 
is suggested by 1.1. 

(2.1) The normal bundle of M in N, denoted vM, is the quotient 
bundle T M N /  TM. I f f :  M + N is an imbedding, then the normal bundle 
tof ,  vf, is defined by uj = f * v ( f M ) .  

Definition 

(It is possible to modify this definition so as to obtain the normal bundle 
to an immersion. For iff: M + N is an immersion, then there is a natural 
monomorphism g :  TM + f *( T N )  such that the diagram 

TM Z TN 

f *( T N )  
g I  1 

is commutative. Then g (  T M )  is a subbundle off *( T N )  and we define the 
normal bundle to the immersion f as the quotient f*( T N ) / g (  TM).) 

Exercise Show that the normal bundle to S" c R"+' is trivial. 

Exercise Show that if M is a submanifold of N and N a submanifold 
of W, then uwM = uNM 0 uWN I M. ( uwM = the normal bundle of M in 
w.) 

The definition of the normal bundle does not involve a Riemannian 
structure on N or M. However, we want to represent UM as a subbundle 
of TMN and for this we will need the Riemannian structure. Therefore we 
will assume again that N has a Riemannian metric and represent vM as 
the complementary bundle to TM in TMN. VM is an ( n  - m)-dimensional 
vector bundle, thus an n-dimensional manifold. We will show that it is the 
desired fibration of a neighborhood of M. For this purpose we assume that 
aN = 0, so that exp is defined on a neighborhood of the zero section vo of 
uM and maps it into M. 

(2.2) Theorem 
is a neighborhood of uo on which exp is an imbedding. 

Suppose that M is a closed subset of N, a N = 0. Then there 
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Proof First, we will show that exp I v is of maximal rank on v,. Fix p E M 
and consider TpN. We have 

(*I TPN = v, 0 T,M, 

where v, is the fiber of v at p .  Also, by 1.3.1, 

(**I 
where Ker, DT is the tangent space to TpN (see Fig. 111,2). 

TpTN = Ker, DT 0 T,N, 

Now, consider Tpv. Since v is a subbundle of TMN, Tpv c T,TN. By 1.1 

(***) 

where Ker, is the tangent space to v,. Thus Ker, DT, is contained in 
the first factor of the direct sum in (**> and T,M in the second factor. It 
follows from 1.4 that D expl Tpv maps Ker, DT”, the first factor in (***), 
isomorphically onto vp, the first factor in (*), and is an identity on T,M, 
the second factors in both. Thus, it is an isomorphism. 

Since exp 1 v is of maximal rank on v,, it is of maximal rank in a 
neighborhood U of v,,, i.e., it is an immersion on U. It is a homeomorphism- 
the identity map-on v,,. Since M is a closed subset of N, I,7.2 applies and 
implies that exp is a homeomorphism on a neighborhood V of M. Thus it 
is an imbedding on U n V .  

Tpv = Ker, DT, 0 T,M, rTT, = T I  u, 

0 

two summands of TpTN me; 

- 
Figure 1112. 
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(2.3) Corollary Suppose that f :  M + N imbeds M a s  a closed subset of N. 
Then f extends to an imbedding 7 of vf in N. If aM = 0, then f ( v f )  is an 
open neighborhood o f f (  M )  in N. 

Proof By 2.2 there is a neighborhood U of M in vf and an extension of 
f to an imbeddingy of U. Now, if g:  vf +. vf is a diffeomorphism which 
shrinks vf so that g(  vf ) c U ( cf: 1,3.5), then? = f g  is the desired imbedding. 
If M is a closed manifold, so also is vf and, by the Invariance of Domain, 
f(v,-) is an open subset of N containing f ( M ) .  

We now define tubular neighborhoods. As before, M is assumed to be 
a submanifold of N, dim M = m, dim N = n. 

(2.4) Definition A subset of N which has the structure of a 
( n  - m)-dimensional vector bundle over M with M as the zero section is 
called a tubular neighborhood of M. A subset of N which has the structure 
of an ( n  - m)-disc bundle over M with M as the zero section is called a 
closed tubular neighborhood of M. 

It follows from 2.3 that if M is a closed subset of N and dN = 0, then 
M possesses a tubular neighborhood with the vector bundle structure that 
of the normal bundle. We will show in 3.1 that this is the only vector bundle 
structure possible in a tubular neighborhood. 

We do not require that a tubular neighborhood be an open neighborhood. 
However, if M has no boundary, then its tubular neighborhood is a submani- 
fold of N of the same dimension as N and without boundary. Hence it is 
an open neighborhood of M. If the boundary of M is not empty, then its 
tubular neighborhood is not an open subset of N. 

If the boundary of N is not empty and touches the interior of M, then 
M does not have a tubular neighborhood in N. A satisfactory theory 
in this case is obtained for neat submanifolds of N. We will do this in 
Section 4. 

Let F be a tubular neighborhood with a Riemannian structure, and let 
E be a smooth positive function on M. Then the set of all vectors 0 in F 
such that the length of o is I E (  p) if u E Fp is a closed tubular neighborhood 
of M. Its interior is an open disc bundle and it is also the result of an 
&-shrinking of F (cf: I,3.5). 

The converse also holds: A closed tubular neighborhood of a compact 
submanifold M, which is a closed neighborhood of M in N, can always be 
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realized as a closed disc subbundle of a tubular neighborhood of M. For 
if E is such a neighborhood, then we first reparametrize its interior to make 
it a vector bundle and then consider the unit disc subbundle E'. E' can be 
expanded by an isotopy to cover E and since it is compact this isotopy can 
be extended to an isotopy of N. The resulting isotopy will expand the 
interior of E to a tubular neighborhood of M containing E as a closed 
disc subbundle. 

Exercise 
has a tubular neighborhood, then it has one contained in U. 

Show that if U is an open neighborhood of M in N and M 

The very fact of the existence of tubular neighborhoods allows an easy 
proof of the following theorem stating, roughly, that in the realm of the 
homotopy theory of smooth manifolds, continuous maps can always be 
replaced by smooth ones. 

(2.5) Theorem 
on N. Assume that aN is compact. Then: 

Let M and N be smooth manifolds, and d ( p ,  q )  a metric 

( a )  There is a continuous positive function 6 on N such that $f; g :  M + N 
are two continuous maps and d ( f ( p ) ,  g ( p ) )  < 6 (  f ( p ) ) ,  then f is homotopic 

to g ;  
( b )  Iff: M + N is a continuous map smooth on a closed subset K c M 

and E is a continuous positive function on N,  then there is a smooth map 
g :  M + N such that f = g on K and d (  f ( p ) ,  g ( p ) )  < & ( f ( p ) ) .  

Proof Assume first that aN = 0 and that N is a closed submanifold of 
R"'. Since the metric on N induced from R" and the metric d (  p ,  q )  induce 
the same topology, the theorem will follow if we prove it with d ( p ,  q )  
interpreted as the former. 

To prove (a) let F be a tubular neighborhood of N in R" andf; g :  M + N 
two continuous maps. Since F is an open neighborhood of N one shows 
easily, using partitions of unity, that there is a continuous function S on N 
such that if p, q E N and Ip - q1 < 6 ( p ) ,  then the straight line segment pq 
is in F. Thus if I f ( p )  - g ( p ) )  < 6 (  f ( p ) ) ,  then f and g are homotopic as 
maps into E Composing this homotopy with the bundle projection T: F + N 
shows they are homotopic as maps into N. 

To prove (b) note first that there is a tubular neighborhood F of N in 
R"' such that d ( p ,  ~ ( p ) )  < ~ ( 7 r ( p ) ) / 2  in the metric on R". Now, I,2.5 
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applied to the map f viewed as a map to R" yields a smooth map g': M + F 
such that d ( f ( p ) ,  g ' ( p ) )  -= ~ ( f ( p ) ) / 2 .  Then g = rg'  is as desired. 

If N has a non-empty boundary, then shrink N to N' c Int N and note 
that the tubular neighborhood of Int N is an open neighborhood of N'. 
Therefore one can proceed as before. 

Finally, N can always be assumed to be a closed submanifold of R" for 
some m. We have shown this in II,3.1 for a compact N; for the general 
case see [Wi2]. 0 

(2.6) Corollary 
maps), then they are smoothly homotopic. 

Iff, g :  M += N are smooth and homotopic (as  continuous 
0 

Exercise Show that if two smooth vector bundles over M are (con- 
tinuously) isomorphic, then they are smoothly isomorphic. 

We close this section with a remark concerning the behavior of a normal 
bundle during an isotopy. Suppose then that F: M x R + N is an isotopy 
of an imbedding J: 

(2.7) Proposition 
v, to M x { t }  is the normal bundle to the imbedding F, = FI M x {c}. 

There is a bundle Y ouer M x R such that its restriction 

Proof Let rM: M x R + R, rN: N x R + R be the projections, and let 

R) I M x { t }  is the tangent bundle to M x { t } .  If G :  M x R + N x R is the 
level preserving imbedding associated to F, then DG( Th( M x R)) is a 
subbundle of Th(N x R) and Y = G*( Th( N x R)/DG( T,(M x R))) is as 
desired. (The bundle Th( N X R)/DG(  Th(M X R)) is the horizontal normal 
bundle of the submanifold G ( M  x R).) 

Th(M X R) = Ker D r M ,  Th(N X R) = Ker DTN. Observe that Th(M X 

0 

Observe that vo = vf and that, as for every bundle over a product with 
R, Y = r*vo where r: M x R + M x (0) is the projection. Therefore Y = 

T* vf, which implies the following corollary: 

(2.8) Corollary Iff, g :  M + N are two isotopic imbeddings, then vf = 

vg. 0 

Of course, similar results hold for the normal bundle to an immersion 
with isotopy replaced by homotopy through immersions. 
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3 Uniqueness of Tubular Neighborhoods 

The uniqueness of vector bundle structure of tubular neighborhoods is a 
consequence of the following theorem. 

(3.1) Theorem Let M be a closed submanifold of N and Fo c N the total 
space of a k-dimensional vector bundle with M a s  the base. Let F' be a tubular 
neighborhood of M. Then there is an isotopy G, of the inclusion Fo c N such 
that G , ( p )  = p for p E M and G1 is a linear map Fo + F' of rank k on each 
jiber. 

Proof We will say that U c M is a trivializing chart for a bundle F if U 
is a chart in M and the restriction F,  is trivial. 

We will show first that Fo can be &-shrunk to a bundle E o  with the 
following property: 

(*) For every p E M there is a neighborhood U in M and a trivializing 
chart V for F' such that E L  c FL.  

To see that this is so, let V be a trivializing chart for F' and let p E V. 
Since FL is an open neighborhood of p, there are a number E~ and a 
neighborhood U of p in M such that all &,-discs in the fibers of Fo over 
U are contained in F: .  We can assume that such sets U form a locally 
finite covering { V,} of M with corresponding functions E,. Using the 
associated partition of unity we can construct a smooth positive function 
E on M with the property that for every p E M, E (  p) < E, for some a. Then 
the &-shrinking of Fo results in a bundle E o  with property (*). 

Clearly, the shrinking map is isotopic to the inclusion Fo + N. Thus, to 
conclude the proof, it is enough to construct an isotopy of the inclusion 
L :  E o  L, F' to a linear non-degenerate map E o  + F'. We do it as follows: 

For t # 0, we define the desired isotopy G, by 

1 

t 
G , (u)  = - ~ ( t v ) .  

To define G, for t = 0, note first that if U, V are as in (*) then the inclusion 
L :  E L  c F L  is given in local coordinates by a map 

where f ( x ,  0) = x, g(x,  0) = 0. 
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Writing g = ( g ,  , . . . , g,,-,,,), we have, by A,2.1, 

dgi 
gi(x,  y )  = c a;-(., y )y i ,  where aj(x,  0) = - (x ,  O ) ,  

i aYj 

i = 1,. . . , n - m, j = 1,. . . , k. Therefore, 

= ( f ( x ,  t ~ ) ,  C .f<x, ty)yj, . . * 9 C ~ j n - ~ ( ~ ,  ty)yj) ,  
i j 

which is smooth and well-defined for all t. 
Now, Go maps the fiber of E o  at x into the fiber of F' at x by a linear 

map given by the matrix J = ( Q ~ ( x ,  0)). To calculate the rank of J we observe 
that the Jacobian J (  L )  is of rank m + k and that along M, i.e., for y = 0, 

Thus .I must be of rank k, which shows that Go is as desired. 0 

Theorem 3.1 applies to the case where M is a closed manifold and Fo, F' 
are two tubular neighborhoods of M in N. We obtain: 

(3.2) Corollary Every two tubular neighborhoods of a closed submanifold 
are isomorphic. 

There is also a version of 3.1 that applies to collars. To see this, let 
M = dN and let Fo, F' be two collars of M. We view Fo, F' as diffeomorph- 
isms of M x R, into N. 

(3.3) Theorem Fo is isotopic to F' by an isotopy rhot is stationary on M. 

Proof Since multiplication by non-negative numbers is allowed in R, , the 
proof of 3.1 goes without change and yields an isotopy G , ( p ,  s ) ,  (p, s )  E 
M x R, , t E I, such that GI = F', Go( p,  s )  = Fo( p,  a (  p ) s )  for some smooth 
positive function a ( p )  on M. This last map is clearly isotopic to F'. 

Simple examples show that one cannot in general require the isotopy in 
3.1 to be ambient. Even in the case when both Fo and F' are tubular 
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neighborhoods of the same manifold M, an additional restriction is 
necessary. 

(3.4) Defnition A tubular neighborhood is called proper if it is obtained 
by &-shrinking of another tubular neighborhood, which sends fibers onto 
fibers. 

It is easy to see that the interior of a closed tubular neighborhood of M 
is a proper tubular neighborhood and that every proper tubular neighbor- 
hood is the interior of a closed tubular neighborhood. 

A tubular neighborhood is a neighborhood with a definite vector bundle 
structure on it. Accordingly, it may fail to be proper in two ways: as a set, 
and as a bundle. For instance, R" is a tubular neighborhood of the origin 
0 that no bundle structure could make proper. On the other hand, the strip 
1x1 < n-/2 in R2 is a proper tubular neighborhood of the line x = 0 when 
fibered by segments y = const, but not a proper one when fibered by curves 
y = tan x + const. 

For proper tubular neighborhoods of compact submanifolds we have the 
Tubular Neighborhood Theorem: 

(3.5) Theorem r f  M is compact and closed and if Fo, F' are either proper 
or closed tubular neighborhoods of M in N, then there is an isotopy H,  of the 
identity map of N that keeps M fixed and such that H1 I Fo is an isometry 
Fo + F, . 

Proof Assume first that Fo, F' are proper tubular neighborhoods obtained 
by shrinking tubular neighborhoods Eo,  E' to the unit disc bundles. By 3.1 
there is an isotopy HI of the inclusion E o  c N to an isomorphism E o  +. E '. 
By II,4.6 there is an isotopy G, of the isomorphism HI to an isometry G ,  . 
Let K be H followed by G. By II,5.2, K restricted to the unit disc bundle 
of ED extends to an isotopy of the identity map of N. 

If Fo and F' are closed tubular neighborhoods, then they are unit disc 
bundles of proper tubular neighborhoods Eo, E' ,  and the theorem follows 
from the case already considered. 

A similar argument, left to the reader, shows that the isotopy in 3.3 can 
be assumed to be ambient-provided that dN is compact and the collars 
proper in the obvious sense. This result is known as uniqueness of the collars. 
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The following corollary, due to R. Palais [Pal], is known as the Disc 
Theorem. 

(3.6) Corollary Let f, g be two imbeddings of the closed disc D k  in the 
interior of a connected manvold N". If k = n, then assume that f and g are 
either both orientation preserving or both orientation reversing (i.e., are 
equioriented). Then f is ambient isotopic to g. 

Iff = g on a disc D" c Dk,  then this isotopy may be assumed to be 
stationary on D". 

The same is true i f f  and g are imbeddings of the open disc, provided that 
both extend to imbeddings of Rk in N. 

Proof As in the proof of 3.5 we prove this for imbeddings of the open 
disc; the other case follows from this. 

By II,5.3 there is an isotopy H, of the identity map of N such that 
H I (  f ( 0 ) )  = g(0).  But then, if k = n, H , ( f ( D ) )  and g ( D )  are both proper 
tubular neighborhoods of g(0)  and the corollary follows from 3.5 and II,4.5. 
If k < n andf, g extend to imbeddings of Rk, then they extend to imbeddings 
of R" (take tubular neighborhoods) and the corollary follows from the case 
k = n .  0 

For future reference we list here another version of the Disc Theorem. 
The inductive proof is left as an exercise. 

(3.7) Corollary. Let mDk be the disjoint union of m copies of the closed 
disc D k  andJ; g two imbeddings of mDk in a connected manifold N". Ifk = n 
then we assume that f and g are equioriented. Then f is isotopic to g. 0 

Exercise Suppose that f, g:  M" + S", m < n, are two imbeddings of a 
compact manifold M" and that Hf = g for some orientation preserving 
diffeomorphism H: S" + S". Show that f and g are isotopic. (Hint: f (M) 
is contained in an imbedded disc.) 

4 Submanifolds of the Boundary 

In 2.3, we showed that submanifolds situated in the interior of a given 
manifold N possess tubular neighborhoods. Now, we will show that the 
same holds for neat submanifolds of a manifold with boundary. 
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Let N be a manifold with boundary and let u be a subbundle of TdNN 
spanned by a vector field X pointing inside N. Then TaNN = T aN 0 v. 
Now, if M = N is a neat submanifold, then, by II,2.8, we can assume that, 
along M, X points inside M. Then TaMM = T aM 0 u and we have a 
natural identification 

TaMN/ TdMM = T a N /  T aM 

of bundles restricted to dM. In other words, we can identify the normal 
bundle of M restricted to aM with the normal bundle of aM in aN. This 
explains and justifies the following definition. 

(4.1) Definition Let F be a tubular neighborhood of a neat submanifold 
M of the manifold N. We say that F is neat if F n dN is a tubular 
neighborhood of aM in aN. This implies that F is an open subset of N. 

(4.2) Theorem 
neighborhood. 

If M is a neat submanifold of N,  then it has a neat tubular 

Proof According to I,7.5, aN has a product neighborhood aN x R, in 
N. Therefore there is a Riemannian metric on N that is a product metric 
in this neighborhood. This implies that, if VMlaN is identified with the 
normal bundle of aM in aN, then the geodesics corresponding to normal 
vectors of aM and issued at points of aN will stay in aN. Therefore the 
construction employed in the proof of 2.2, unchanged, will yield a neat 
tubular neighborhood of M in N. 0 

The Tubular Neighborhood Theorem remains valid for neat proper neigh- 
borhoods of compact submanifolds. The proof is left as an exercise. 

We will extend now the definition of tubular neighborhoods so as to 
apply to submanifolds of the boundary. They do not possess tubular neigh- 
borhoods in the sense of 2.4. However, they have “half-tube” neighbor- 
hoods. For instance, if M = aN, then it is reasonable to consider a collar 
of M in N as its tubular neighborhood. The normal bundle of M in N is 
trivial, i.e., it can be identified with M x R, and a collar is an imbedding 
of M x R,. In this context, the Uniqueness of Collars Theorem from the 
last section plays the role of 3.5. 

Now, if M is a submanifold of B = aN, then its normal bundle in N is 
the Whitney sum of the normal bundle uBM of M in B and of the normal 
bundle of B in N, which is trivial. Its total space is then v B M  x R. We 
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define now the tubular neighborhood of M in N to be an imbedding of 
vEM x R, in N extending an imbedding of vBM in B as a tubular neighbor- 
hood of M in B. Clearly, if M has a tubular neighborhood in B then such 
an imbedding can always be constructed using the collar of B. 

Definition 3.4 of proper tubular neighborhood remains unchanged. The 
Tubular Neighborhood Theorem is still valid; the isotopies are compositions 
of the isotopies of vEM and of the isotopies of the collar. 

As an example, and for use later, we construct a tubular neighborhood 
of a section of a sphere bundle in the bundle itself and in the associated 
unit disc bundle. 

Let 5 be a Riemannian vector bundle over M with total space E. The set 
S of vectors of length one in E forms a fiber bundle over M, the unit sphere 
bundle. Let s: M + S be a section. Then, s is a nonvanishing section of 6 
and spans a trivial line bundle 17. Let q1 be the complementary bundle with 
total space E Then v1 0 7 = 5. We will show that v1 is isomorphic to the 
normal bundle to s ( M )  in S. To see this it is enough by 3.2 to imbed the 
total space F of v1 as a tubular neighborhood of s. Such an imbedding 
can be constructed by wrapping each fiber F, on the corresponding fiber 
of S by the projection from -s(x). That is, we define p: F + S by 

14.3) 

for u E F, (c$ 1,1.2). 
Then p is a diffeomorphism onto S - ( - s ( M ) )  and p I M = s, as required. 
If we compose p with an &-shrinking of F we obtain a proper tubular 

neighborhood of s ( M ) .  Note that for E = 1 the corresponding tubular 
neighborhood consists of “one-half” of S, that is, its intersection with every 
sphere S, is that hemisphere of S, which contains s(x). 

The set D of vectors of length 11 in E is the unit disc bundle. It is a 
manifold with boundary, aD = S. To find a tubular neighborhood of s in 
D we have to extend 4.3 to an imbedding of F x R, in D. This is done 
conveniently by setting 

(4.4) 
2 1 - u2 - t2  

P ( S  2 )  = u2 + (1 + t ) 2  0 + u2 + (1 + t ) 2  4x1  

for (v ,  t)  E F, x R,. 

D with the antipodal section -s( M) deleted. 
Again, this is not a proper neighborhood: It consists of the entire bundle 

The geometric meaning of 4.4 is explained in VI,3.3. 
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5 Inverse Image of a Regular Value 

Let M be a closed manifold, f:  M -+ N a smooth map, and p a regular 
value o f j  Then V = f - ' ( p )  is a submanifold of M and TV c Ker D j  Since 
Of is surjective, dim Ker Of = dim M - dim N = dim V ;  hence Tv = 

KerDJ: Thus Of induces a map u V =  T , M / T V +  TpN, which is an 
isomorphism on each fiber. This means that uV = (Df)*TpN is a trivial 
bundle, and tubular neighborhoods of V are product neighborhoods. In 
general, the map f restricted to such a tubular neighborhood cannot be 
identified with a projection. However, if V is compact, then it admits tubular 
neighborhoods with this property. 

(5.1) 
N and an imbedding j :  V x U + M such that the diagram 

Proposition If V is compact, then there is a neighborhood U of p in 

V 

commutes. 

Proof Let W be a chart about p and let V x R" c M be a tubular neighbor- 
hood of V ;  we identify W with R" and assume that f (  V x R") c W. To 
prove the proposition it is enough to show that: 

(*) There is a neighborhood U of p such that for every q E V the map 
f restricted to U, =f-'( U )  n (4) x R" is a diffeomorphism of U, 
onto U. 

For if this is the case and g,: U + U, is the inverse of f l  U, then the 
imbedding j: V x U + M given by j ( q ,  v )  = g,(u)  satisfies f i (q ,  v )  = 

Toprove(*),considerthemaph: V x R " +  V x R " ,  h (q ,u )  = ( q , f ( q , v ) ) .  
For a given q this map is of maximal rank at ( q , O ) ;  hence there exists a 
neighborhood V, of q and W, of p such that h I V, x W, is a diffeomorphism 
onto h( V, x W,) (see Fig. 111,3). This implies that f restricted to { r }  x W, 
is a diffeomorphism onto f (  W,)  for all r in V,. Since V is compact there 
isafinitefamily V, x W , ,  . . . , vk x wk such that V = ui v. Let u' c ni W, 
be an open neighborhood of p and let U c U' be another neighborhood 
satisfying f-'( U )  = V x U';  that such U can be found follows from the 

f g , ( v )  = 21- 
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V 
I 
1 1 :  

f - ' (u ) . .  

f I  I ' - V = r ' ( p )  
I I 
I I 

P 

Figure 111.3. 

compactness of V and I1,2.3. Since fI{q} x U' is a diffeomorphism and 
f-'( U )  A { q }  x R" = { q }  x U', U satisfies (*). 

Exercise Assume that M is closed, connected, and compact, and that N 
is connected. Show that if there is a submersionf: M + N, then N is closed, 
f( M) = N, and M is a fiber bundle over N with the projection J: (This is 
due to C. Ehresmann [Eh].) 

6 The Groupr"' 

Let M be an oriented manifold, possibly with boundary. The set Diff M of 
orientation preserving diffeomorphisms of M onto itself is a group under 
the operation of composition. It is a very large group, non-abelian except 
in trivial cases. We shall use 3.6 to study a certain quotient of Diff Sm-' of 
special importance. 
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Let Diffo S"-' consist of those diffeomorphisms of Smp' which are isotopic 
to identity. Since isotopies can be composed, this is a subgroup. 

(6.1) Lemma Diffo Sm-' contains the commutator subgroup of Diff Sm-' .  

Proof Let f and g be two orientation preserving diffeomorphisms of S"-'. 
It follows from 3.6 that there are diffeomorphisms f+ and g -  isotopic to, 
respectively, f and g, and such that f+ is an identity on the northern 
hemisphere of S"-' and g- on the southern hemisphere. Now, the commu- 
tator off and g is isotopic to the commutator off+ and g - .  Since f+ and 
g -  commute, the latter is the identity map of S"-'. 0 

Consider now those diffeomorphisms of S"-' that can be extended over 
D", i.e., the image of Diff D" under the restriction homomorphism 
a: Diff D" + Diff Sm-'.  Since Diffo Smp' c a Diff D", 6.1 implies that both 
are normal subgroups of Diff S"-' with abelian quotient. Letting I'" = 

Diff S"-'/a Diff D", we have: 

(6.2) Proposition 
those which extend over D" is an abelian group. 

7'he group r" of the dzfleomorphisms of Sm-' modulo 
0 

We will show in VIII,5.6 that, for m > 4, r" is in a 1-1 correspondence 
with the set of distinct differentiable structures on the sphere S". For m 5 4 
the groups r" vanish: That r2 = 0 was the subject of the exercise in II,4.6; 
that r3 = 0 is due to Smale [Sml] and Munkres [Mull. Finally, Cerf proved 
that r4 = 0. The proof occupies 132 pages [C2]. 

7 Remarks 

The idea of a normal vector is as old as differential geometry itself, but the 
notion of a tubular neighborhood of a submanifold as a neighborhood 
fibered by normal planes emerged much later in the work of H. Whitney, 
[Will and [Wi2, Section 281. [Will is perhaps the earliest paper considering 
fiber bundles; the normal sphere bundle is one of the examples considered 
there. 

A combinatorial analogue of tubular neighborhoods was introduced in 
1938 by J. H. C. Whitehead. In [Wh2] he defined a regular neighborhood 
of a subcomplex K of a combinatorial manifold as a submanifold which 
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contracts geometrically into K, and proved that different regular neighbor- 
hoods of the same subcomplex are combinatorially equivalent. In turn, a 
differential analogue of this is, of course, the Tubular Neighborhood 
Theorem. It was proved in 1961 by J. Milnor in his course at Princeton 
University and by C. T. C. Wall in a seminar at Cambridge. 

This interplay of ideas between differential and combinatorial topology 
can be seen also in other places. For instance, the old notion of general 
position was used in topology for similar purposes as the notion of transver- 
sality introduced much more recently into differential topology by Thom. 



Tra nsversa I ity 

The notion of transversality is a smooth equivalent of the notion of general 
position. For instance, two submanifolds M"' and V' of N", n I m + r, are 
transversal if their intersection looks locally like the intersection in R" of 
the subspace of the first m coordinates with the subspace of the last r 
coordinates. This geometric idea is properly expressed as transversality of 
maps and defined in terms of their differentials. This is done in Section 1. 

The ability of deform maps to a transversal position is one of the most 
powerful techniques of differential topology. A general theorem in this 
direction is given here in 2.1; it will be in constant use in subsequent chapters. 

In Sections 3 and 4 we apply transversality to establish foundations of 
Morse theory of critical points of differentiable functions. In Section 5 we 
use it to define intersection numbers. 

1 Transversal Maps and Manifolds 

(1.1) Definition Let f: M + N, g :  V + N be two smooth maps. We say 
that f is transversal to g , f  A g, if wheneverf(p) = g ( q ) ,  then Of( T,M) + 
Dg(T,V) = T,(,)N. 

59 
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Note that this condition is equivalent to the requirement that the compo- 
sition 

be surjective. 
Obviously, if dim M + dim V < dim N, then f A g is possible only if 

f ( M )  and g(  V )  are disjoint. 
The notation f A g will be replaced by f A V whenever V is a submani- 

fold and g an identity map. The meaning of M A V is also clear. 
In certain situations the second map in 1.2 is a differential of a map; 

hence the composition is also a differential. This is the case when V is a 
fibre of a smooth fibre bundle N with projection T. Then, i f f  maps a 
manifold M into N, the differential of .rf is precisely the composition in 
1.2. This differential is surjective if and only if the point T( V )  is a regular 
value of .-- Thus we have: 

(1.3) Proposition Let f: M + N, where N is a smooth fiber bundle with 

projection T, and let Fq be a fiber over a point q. Then f A Fq i f  and only if 
q is regular value of .-$ 0 

Viewing the product W x V as a bundle over W, we obtain from this 
and the Brown-Sard Theorem (A,3.1) the following: 

(1.3.1) Corollary 
such thatf  A W x (9). 

Iff: M + W x V, then there is a dense set ofpoints q E V 
0 

As another corollary we have a characterization of cross sections: 

(1.3.2) Corollary Let N be a smoothfiber bundle over M. A submanifold 
V c N is a cross section of the bundle if and only if V intersects every fiber 
Fq transversely in 5 single point s ( q ) .  

Proof The necessity is clear. To prove that the condition is sufficient we 
have to show that the map s: M + N is smooth. To do this, we first note 
that s is the inverse of .- 1 V and that, by 1.3, D(T\ V): T,,,,V + T,M is 
surjective. Since dim V = dim M, D( T I V )  is an isomorphism. Now, it fol- 
lows from the Implicit Function Theorem (A,l.l) that the inverse of T I  V 
is smooth. 
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For example, if V is the image of the imbedding R + R2 given by 
t H ( t3 ,  t ) ,  then V is a smooth submanifold of RZ and a continuous section 
of RZ considered as a trivial line bundle over the x axis. But it is not a 
smooth section: It is not transversal to the y axis. 

The notion of transversality generalizes that of a regular value: Iff: M + 

N and q E N, then q is a regular value o f f  if and only i f f  A {q} and 
( f l d M )  A (4). Replacing q by a closed submanifold V, we obtain the 
following generalization of 11,1.7: 

(1.4) Proposition 
submanifold of M. Moreover, uW = f *uV. 

Iff A Vand ( f l d M )  A V,  then W = f - ' (  V )  is a neat 

Proof Let p E W and q = f (  p). By II,2.3(b) there is in N a neighborhood 
U of q and a map h: U + R' such that U n V = h-'(O). Moreover, we can 
identify Dh at q with T,N + T,N/ TqV. Now, f -'( U) is an open neighbor- 
hood of p, f-'( U) n W = f-'h-'(O), and both Dhf and D ( h f l d M )  are 
surjective by the assumption. By II,2.3(b) again, W is a submanifold of M. 

Note that codim,( W) = codim,( V ) .  
Let now d be the dimension of the kernel of the composite map 

Df 7r 

TwM - TvN - uV = TvN/ W. 

Since n- 0 Df is surjective, m - d 2 codim V, i.e., d I m - codim V = 

dim W. On the other hand, TW c Ker( T 0 Of); thus d 2 dim W. It follows 
that d = dim W ;  hence Ker( n- 0 Of) = TW. Therefore f :  W + V induces a 
bundle map TwMI TW = uW + VV = TvN/ TV 0 

A very nice application of 1.4 is a simple proof, due to M. Hirsch, of 
Brouwer's Fixed Point Theorem. 

(1.5) Theorem There is no (continuous) retraction D" + d o " .  

Proof Observe first that it is enough to prove that there is no smooth 
retraction. For if r: D" + dD" is a continuous retraction, then there is a 
smooth 1/2-approximation r' to r that is also the identity map on d o "  (cf: 
III,2.5). This is not yet a retraction, but since the origin is not in r ' (D")  we 
can compose r' with the projection from the origin to obtain a smooth 
retraction. 

Suppose now that r: D" + dD" is a smooth retraction, let p E dD" be a 
regular value of r, and let L be the connected component of r-'( p) containing 
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p. Since r - ' (p)  is a neat submanifold, L is an arc with endpoints p and 
q,p # q and q E dD". This implies p = r ( q )  = q, a contradiction. 0 

The notion of transversality already appeared, in disguise, in the definition 
of neat submanifolds: II,2.8.1 means nothing else but that M 'A dN. 
Moreover, as we have seen, this condition characterizes neat submanifolds. 

The following theorem, which for simplicity is stated for closed manifolds 
only, provides the expected geometric justification of the definition of 
transversality . 

(1.6) Theorem Let M" and V' be closed transversal submanifolds of N" 
and let p E M n V. If n 5 m + r, then there is in N a chart U about p in 
which U n M is represented by the space of thefirst m coordinates and U n V 
is represented by the space of the last r coordinates. 

Proof We will prove this in the special case dim N = m + r. By II,2.3(a) 
there is a chart U in N about p such that U n M corresponds to the space 
of the first m coordinates. We will simply identify this chart with R" X R'. 
The part of V lying in it can then be represented by an image of R' under 
an imbedding f: R' + R" x R', where f ( y )  = (a ( y ) ,  p( y ) )  and f (0) = 0 = p. 
The transversality assumption means that the Jacobian of p is of rank r at 
0. Now, consider the map g :  R" x R' + R" x R' given by 

g ( x , y )  = (x + d Y ) , P ( Y ) ) ,  x E R",Y E R'. 

Note that g at 0 is of rank m + r; hence it is  a chart if restricted to a suitably 
small neighborhood U of 0 in R" x Rr. Since g(0, y )  = f( y ) ,  g (x ,  0 )  = (x, 0), 
it is precisely the chart we were looking for. 

Another proof of this can be based on III,3.1. This method is particularly 
suitable to the general case. The details are left to the reader. 

(1.7) Corollary Let M", V;, V: be submanifolds of N", n = m + r. Sup 
pose that V, , V2 intersect M in the same point p and that this intersection is 
transversal. Then there is an isotopy of N that keeps M fixed and brings V, 
to coincide with V, in a neighborhood of p. 

Proof By 1.6 there is a chart U = R" x R' in N about p that intersects 
M in R" x 0 and V, in 0 x R' (see Fig. IV,l). A sufficiently small chart 
U, = R' about p in V2 is represented in U as an imbedded R' transversal 
to R" x 0 and intersecting it in the origin. 
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Figure IV.1 

Now, we use III,3.1 to “straighten” U, by an isotopy so that it becomes 
a linear subspace of R” x R‘ still transversal to R” x 0. An obvious isotopy 
brings it then to coincide with 0 x R’. These isotopies restricted to the unit 
disc D‘ in U2 and set to be stationary on M extend by II,5.2 to an isotopy 
of N that sends D‘ c V2 to V,. 0 

2 Transversality Theorem 

The concept of transversality derives its strength from the theorem of Thom 
asserting that i f f :  M + N and V is a submanifold of N, then f can be 
approximated by maps transversal on V. We will obtain the theorem of 
Thom as a consequence of the following fundamental theorem: 

(2.1) Theorem 
be a smooth map. Then there is a section s:  V + E such that f A s. 

Let 5 be a vector bundle otter V and let f: M -+ E = E ( 6 )  
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Before proving 2.1 we will consider the following situation: We are given 
a fiber bundle l with projection T and base E, and maps f: M + E, g ,  : V + 

E ( 5 ) .  This yields a diagram 

f i  

M1 = E ( f * l )  - E ( 5 )  V ,  

(2.2) mll lm/ 
M - E  

where M1, T, are, respectively, the total space and the projection of the 
induced bundle f * 5 ,  fl is the natural map, and g = Tgl . We have: 

(2.3) Proposition Iffl A g,,  thenf A g. 

Proof Suppose that f ( p )  = g ( q ) .  We have to show that Df( T,M) + 

Note first that there is a point p ,  in M1 such that f , ( p , )  = gl(q) and 
DgUqV) = T,(,,E. 

T,( p , )  = p .  The assumption f, A g, means that 

Now apply DT to both sides of this and note that DT, DT, are both 
surjective. Thus, by commutativity, 

Proof of 2.1 Assume first that 6 is trivial, i.e., E = V x Rk. Then 1.3.1 
yields a (dense set of points) q in Rk such that f A V x (4). Of course, 
each such V x { q }  can be interpreted as a section of 6, which proves 2.1 
for a trivial bundle e. 

In the general case there is a bundle r) such that 5 = 5 0  r) is trivial, c$ 
[Bd, 11.14.21. There is a natural projection T of E ( 5 )  onto E, which is a 
projection of a vector bundle. Thus we have the left part of diagram 2.2. 
Since 5 is trivial, there is a section g, transverse to f i .  This completes the 
diagram 2.2 and we can apply 2.3 to deduce that g A f: It remains to be 
shown that g is a section of 6. This follows from the fact that g, is a section 
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and the obvious commutativity of the diagram 

E 

where all maps are projections of vector bundles. 0 

(2.4) Let V b e  a compact submanifold of N, U an open neighbor- 
hood of V in N and f: M -+ N a smooth map. Then there is an isotopy h, of 
N that is identity outside of U and such that f A-, h,( V ) .  

Corollary 

Proof First, we find a tubular neighborhood of V contained in U and a 
section s of it transverse to f :  By IIJ.2, the obvious isotopy of V to s( V )  
extends to an isotopy of N, which is the identity outside the tubular 
neighborhood. This completes the proof. 0 

Compactness can be replaced by the requirement that V be a closed 
subset of N; instead of applying II,5.2 one constructs the isotopy ad hoc. 

(2.5) 
homotopy h, of g such that h, = g and h, A-, f :  

Corollary Let f: M + N, g:  V -+ N be two maps. Then there is a 

Proof Consider the diagram 

fl 81 

M x V - N x V - V. 

where the vertical maps are projections on the first factor, g, is the graph 
of g, i.e., g l (u )  = ( g f u ) ,  u ) ,  and fl(x, u )  = ( f ( x ) ,  u) .  Then, V, = g,( V )  is a 
submanifold of N x V and by 2.1 there is a section s: V, + N x V of its 
tubular neighborhood transverse to f i .  Observe now that fl A sg, and let 
H, be an isotopy of g , (  V) to sgl( V). Then df, = h, is  a homotopy of g to 
a map h, ,  which by 2.3 is transverse to f :  0 
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3 Morse Functions 

Suppose now that we are given a real valued function f: M + R. If, at a 
point p E M, Of is non-degenerate, then, as we know, f at p is equivalent 
to a projection: non-degenerate in this case means the same as being of 
maximal rank. If Of is degenerate at p, i.e., p is a critical point, then the 
local behavior off at p can be quite complicated. A fundamental idea due 
to M. Morse was to single out a class of functions with a particularly nice 
behavior at critical points and to show that they form a dense set, “Nice 
behavior” means that at critical points they behave like-i.e., are equivalent 
to-one of the quadratic functions C 6,xf at 0, Si = *l. In particular, the 
list of possibilities is-up to equivalence-finite. 

As usual, we prefer an invariant definition and the easiest way is to work 
in the cotangent space. Recall that, given f: M -+ R, df: M + T*M is the 
section of the cotangent bundle given at p E M by df ( X )  = X ( f ) ,  X E T,M. 

(3.1) Definition We say that p E M is critical if df = 0 at p, i.e., if df 
intersects the zero section Mo of the cotangent bundle above p. We say that 
p is a non-degenerate critical point if this intersection is transversal. A 
function f which has only nondegenerate critical points, that is, such that 
df A M,, is called a Morse function. 

It follows immediately from 1.5 that: 

(3.2) Lemma Critical points of a Morse function are isolated. 

We will delay for a moment the investigation of the local behavior of 
Morse functions and begin by showing that there are, indeed, a lot of them. 

(3.3) Lemma Let M be a submanifold of Rk and let f: M + R. There is a 
dense set of linear functions L: Rk + R such that f - L restricted to M is a 
Morse function. 

Proof We will build a diagram of spaces and maps in the following way: 
Begin with the cotangent bundle of Rk restricted to M, i.e., T*Rk 1 M. This 
is also a bundle over T*M with the projection T. Then the map df:  M + 

T*M yields the induced bundle with total space E and all this forms the 
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commutative square on the left in the diagram: 

d L ( M  
E -L T * R ~  I M - M. 

To get the triangle on the right, note that T*Rk I M is a trivial bundle, hence 
by 1.3.1 there is a dense set of constant sections M x {q} that are transverse 
to g. A constant section is a differential of a linear map L: Rk + R. Thus 
to complete the diagram we choose as L a linear map such that dL 1 M A g 
and observe that rrodL(M = d ( L ( M ) .  

Now, 2.3 implies that df A d ( L (  M ) ,  i.e., that d (  f - LI M) is transversal 
to the zero section. 0 

(3.4) Theorem 
g :  M + R such that If - gl < E. 

Given f: M + R and E > 0, there is a Morse function 

Proof Consider M as a submanifold of the unit ball in an Rk and take as 
L in 3.3 a linear function such that ILl < E in the ball. 0 

Now, let M be a manifold with compact boundary and suppose that 
aM = V, v V, where the vi are disjoint and compact. 

(3.5) Theorem There is a Morse function f: M + Z such that: 

( a )  f has no critical points in a neighborhood of a M ;  
( b )  f - ' ( i )  = v,, i = 0,1. 

Proof Let aM x [0, 1) = M be a collar of aM. By I,7.4 there is a smooth 
function g :  M + I with the following properties: 

g(x, t )  = t 

g(x,  t )  = 1 - t 

for (x ,  t )  E V,, x [0 ,  +], 

for (x, t )  E V, x [o,;], 

1/4 < g ( x )  < 3/4 elsewhere. 

Then g has properties (a) and (b) but is not necessarily Morse. To obtain 
a Morse function we assume that M is a submanifold of the unit ball in 
an Rk and consider the function f = g + pL,  where p: M + I is smooth, 



68 TRANSVERSALITY 

equals 0 in aM x [0,1/4] and equals 1 in M - aM x [0, $1, and L is a still 
to be chosen linear map of Rk. 

Clearly, f satisfies (a) and, if (L(  < 1/4 in M, then it satisfies (b) as well. 
Assume that some Riemannian metric is given in T*M. 
Since Id(pL)I 5 ldp( ILI + pldLl we see that by taking L “small” we can 

make Id(pL)( as small as we want in the compact set aM x [0,1/2]. In 
particular, since ldgl is bounded away from 0 in this set, we can achieve that 

Id(g + &)I 2 ldgl - I d W ) I  > 0 in aM x [O ,  1/21, 

i.e., that f has no critical points there. Then, if L is such that g + L is Morse 
in M, the same is true off = g + pL.  0 

It is sometimes convenient to require that the function f in 3.5 has the 
following additional property: 

(3.5) (c) f takes distinct values at  distinct critical points. 

This is easily achieved as follows: If x is a critical point off then, by 
3.2, there is a pair of neighborhoods U, V of x such that C1( U) c V, Cl( V) 
is compact, and x is the only critical point off in V. Let p: M + I equal 
1 in U and 0 outside of V. Then, for small c, f + cp has the same critical 
points as f, but the critical value at x is changed by c. The argument is 
similar, but simpler, to that used in the proof of 3.5 and is left as an exercise. 

4 Neighborhood of a Critical Point 

There remains to investigate the behavior of a Morse function in a neighbor- 
hood of a critical point. 

Suppose that p is a critical point off: A4 .+ R and choose a local chart 
at p .  The Hessian off at p is the matrix of second derivatives off at p .  It 
depends on the choice of the local chart. However: 

(4.1) Lemma 
only if the Hessian off at p is of maximal rank 

Let p be a critical point off: Then p is non-degenerate if and 

Proof A choice of a chart in a neighborhood U of p also gives a trivializ- 
ation of the cotangent bundle restricted to U, that is, a projection 
4: T*M U + T,*M. p is non-degenerate if and only if 0 E T,*M is a regular 
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value of 4 d f ,  i.e., if the differential of this map at p is surjective. In the 
chosen local coordinate system this means that the Jacobian of 4 df is to 
be of maximal rank. However, the map 4 df simply assigns to every point 
the coordinates of df at this point; thus its Jacobian is the Hessian of f  at 
P. 0 

(4.2) Proposition Suppose that p is a non-degenerate critical point off: 
Then in some system of local coordinates at p, f is given by f ( p )  + 1 &x:, 
6; = +l.  

Proof Letf be a real valued function defined in a neighborhood of 0 E R". 
Suppose that the Hessian o f f  at 0 is of maximal rank and that f(0) = 0. 
We have to show that there is a diffeomorphism h of a neighborhood of 0 
such that 

f h ( x 1 ,  x 2 , .  . . , x, )  = 1 x:  - c x : .  
i c k  i > k  

This will be done in two steps. In the first we show that 

where the h, are some functions of x and h, = hji. Thus f looks like a 
symmetric bilinear form-but with variable coefficients-which suggests 
that we should try to adapt one of usual procedures of diagonalization of 
such forms to our situation. This works, and that is the second step of the 
proof. Now the details. 

Since f has a critical point at 0 we have, by A,2.2, 

f ( x )  = 1 hi(x)xi ,  
I 

where hi(0) = (df/dx,)(O> = 0. We can apply the same lemma once more to 
hi to get hi = C j  h,xj. Now, setting h, = i ( h ,  + hji) we finally obtain (*). 

The diagonalization off is now done inductively. Suppose that in some 
chart f is already in the form 

f ( x )  = * x ;  + . . ' + x ; - ]  + 1 h,XiXj, 
i , j r k  

Through a linear change of coordinates we can achieve that hkk(0) # 0; 
hence hkk(X) f 0 in a certain neighborhood U of 0. Consider the transforma- 
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tion F: U + R" given by 

yi = xi for i # k, 

The Jacobian of F at 0 does not vanish: Its determinant equals I h k k ( O ) ( ' / ' .  

Therefore F is a diffeomorphism in a neighborhood V c U of 0 in R". Since 

YiYj, 
i s  k 

this concludes the inductive step. 0 

The number of minus signs in this local representation off at a critical 
non-degenerate point p does not depend on the choice of chart; it is called 
the index of p. To see this let t = f( p) and let M, = { q  E M (f(q) 5 t}. 
Suppose that in some local chart f is given by - x i r k  xf + xf and let 
T = {x E R" lCi>k x: 5 x i s k  x;}. Then T is a cone on Sk-' x D"-& with the 
vertex at 0; hence H,. T, T - 0) = H,(Rk, Rk - 0). By an obvious excision 
argument H,(M,, M, - p )  = H,( T, T - 0), which shows that k can be read 
from the local homology properties. 

5 Intersection Numbers 

Using the notion of transversality, we will define here intersection numbers. 
Let V, M" be compact closed transversal submanifolds of N"+' and 

let v n kf = {pl, . . . , p k } .  It follows from 1.7 that there is a tubular neigh- 
borhood F of M such that fibers Fpi of F at pi  are open neighborhoods of 
the p i  in V. Therefore, if both V and the normal bundle of M are oriented, 
we can compare the induced local orientation at every point pi; we set 
&(pi) = +1 if the orientation of Fp, agrees with the orientation of V; 
otherwise & ( p i )  = -1, cf: I,3.6. Finally, let 

I 

this is the intersection number of V and M. 
To explain the significance of this number recall that if E is the total 

space of an oriented r-dimensional bundle over a connected manifold M 
then for every fiber Ep the inclusion j :  Ep L, E induces an isomorphism 
Hr(Ep, Ep - 0) + Hr(E, E - Ed.  
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(This is a special case of the so-called Thom isomorphism, c$ [Sp, p. 2591. 
It can be proved directly by noticing that it is true for a trivial bundle and 
then using the Mayer-Vietoris theorem.) 

For the case under consideration this means that the orientation of the 
normal bundle to a connected manifold M produces a well-defined gen- 
erator of H,(F, F - M), hence also of Hr(N, N - M); we denote the latter 

Now, if yi E Hr( V ,  V - pi) is a local orientation of V at pi, then the 
Y M *  

inclusion ( V ,  V - p i )  L, ( N ,  N - M )  sends yi to & ( p i ) y M .  Therefore 

(5.1) j * y v  = [ V : M l y M ,  

where yv E Hr( V )  is the orientation of V and j ,  the composition H,( V )  + 

H,( V, V - ui p i )  + H,(N,  N - M ) .  Since j ,  can also be expressed as the 
composition H,( V )  + Hr( N )  + H,( N, N - M), this shows that the inter- 
section number does not depend on the isotopy class of the imbedding 
V c N. Therefore it follows from 2.4 and 5.1 that we do  not have to assume 
the transversality to define it. 

To define the intersection number of two oriented submanifolds V, M of 
an oriented manifold N we have to agree how these data determine the 
orientation of the normal bundle to M. We accept the convention that at 
every point p E M the orientation of M followed by the orientation of the 
fiber of its tubular neighborhood agrees with the given orientation of N at 
p. With this convention in force [ V: MI can be computed directly by noticing 
that, at every point p E V n M, ~ ( p )  = +1 if the orientation of M at p 
followed by the orientation of V at p agrees with the orientation of N at 
p.  (This makes sense by 1.6.) It follows that 

( 5 4  [ V :  MI = (-l)"[M: V ] .  

We will now derive a formula expressing the intersection number of two 
cross sections of a k-disc bundle over S k  in terms of the characteristic 
element of the bundle. For this we first establish a lemma expressing the 
degree of a map as an intersection number. 

Let f: ( M ,  d M )  + ( N ,  8 N )  be a smooth map of oriented compact con- 
nected manifolds of the same dimension k The degree off is then defined 
as the integer d, satisfying 

f * Y M  = dffiv, 

where YM, yN are respective orientations, i.e., generators of Hk( M, d M )  
and H k ( N ,  8 N ) .  Let g:  M + M x N be the graph ofJ; r :  M x N + N the 
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projection, and Mp = M x { p } ,  p E Int N. Consider the diagram 
J* 

Hk(M, akf) Hk(g(M),  g ( a M ) )  __* Hk(M x N, M x N - k f p )  .I= \Im* == 

Hk(M a N )  - Hk(N, N - P I -  

We have, by 5.1, j*g,  yM = [ g ( M ) :  M P ] ~ ,  where y is the generator sent by 
m* to the local orientation of N at p and vMp is oriented by y. Since the 
diagram is commutative, we have: 

(5.3) Lemma d, = [ g ( M ) : M , ] .  0 

The sign in in this formula remains unchanged if we view g ( M )  and Mp 
as oriented by the projection on M, and M x N with the product orientation. 
The geometric content is particularly clear if p is chosen to be a regular 
value off (see Fig. IV,2). 

Let now S, and S,  be two cross sections of a k-disc bundle over S k  with 
characteristic element a E mk-I(SO( k)). 

(5.4) Proposition [ S , :  S,] = &(a). 

Here 4 is the projection of the bundle SO(k)/SO(k - 1) = Sk-' and we 
have identified q - l ( S k - ' )  with Z; c$ A,5 for all relevant notions. 

M 
d,= -1 = [ g ( M ) : M , J  

with vMp oriented as 
the arrow indicates 

Figure IV2 
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Proof Let D, D, , D2 be three copies of the k-disc Dk. Then the bundle in 
question is obtained from the disjoint union D, x D u D2 x D by identify- 
ing d D, x D with d D2 x D via the map (x, y ) H (x, a (x)  - y ). We can assume 
using appropriate isotopies that the section S1 is the zero section of the 
bundle and that S2 over D2 is the constant cross section (x, e), where e is 
the first basis vector of Rk. This means that over D, the section S2 is the 
graph of a map s: ( D l ,  dD,) + (0, dD)  such that sldD, is given by 
x H a ( x )  * e, i.e., s ldD, = +a. 

Now, all intersections of S ,  and S2 are over D,: thus 5.3 yields d, = 
[ S ,  : S,] .  Since d, = dslaD, = d,, = +*(a), 5.4 follows. 0 

In particular, letting S be the zero section we obtain 

(5.4.1) [ S :  S] = +*(a). 

Exercise Consider a smooth map f: S k  x Sk + Sk. Let S1 = Sk x { a } ,  
S2 = { a }  x S k , f ;  =flS,, and let di be the degree off;, i = 1,2. 

Show that d ,  = [ f - ' ( b ) :  S21, b E Sk. 
The pair ( d ,  , d2) is called the bidegree of J: 

6 Historical Remarks 

The concept of transversality has its roots in the notion of general position 
studied extensively in the piecewise linear context. It was introduced into 
differential topology by R. Thom in 1954 in [T2]. It was Proposition 1.4 
that by associating manifolds to maps allowed Thom to construct the 
cobordism theory. Theorem 2.1 is stated in that paper as an approximation 
theorem. A far-reaching generalization of it, needed in the study of sin- 
gularities of differentiable maps, was found by Thom in [T3]. 

The notion of critical and critical non-degenerate point, appears for the 
first time in a seminal paper of M. Morse in 1925 [Moll. This paper contains 
4.2 (with the same proof as here) but not the approximation theorem 3.4, 
which appeared only in 1934 in [Mo~] .  

One of the important directions of research generated by 4.2 is the theory 
of singularities of smooth maps. The problem is, gross0 rnodo, to describe 
a class of maps that have singularities from a given list only, and which 
form a dense subset. This program has been carried out by H. Whitney in 
the case of maps R2 + R2 [Wi5]; the general case was studied by Thom in 
~ 3 1 .  
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Morse functions were initially utilized to establish certain relations 
between the number of critical points of various types and the homology 
of manifold. (We prove these relations-Morse inequalities-in Chapter 
VII.) The underlying idea was to investigate the change in the topological 
character of manifolds M, as f passes through a critical value. This idea, 
which can be traced back to Poincari [ P3, §2], led eventually to the handle 
presentation of a manifold, which we will study in Chapters VII and VIII. 



V 

Foliations 

A subbundle of the tangent bundle of a manifold M can be thought of as 
a field of hyperplanes. Some such fields arise naturally in a geometric 
context. For instance, a projection T: M + N of a fiber bundle gives rise 
to field of planes tangent to fibers, i.e., the field Ker DT. In this chapter we 
investigate relations between subbundles of the tangent bundle and algebraic 
structures derived from the fact that the set % ( M )  of vector fields on M is 
a vector space, even a Lie algebra, as well as a module over the ring of 
smooth functions on M. Thus, in Section 1, the module structure is utilized 
to show that subbundles of the tangent bundle are in one to one correspon- 
dence with a certain class of submodules. In Section 2 we introduce the 
concept of foliation. It generalizes that of a fibration and, like it, gives rise 
to a subbundle of the tangent bundle. The subbundles obtained in this 
way are characterized in terms of the Lie algebra structure on 2 ( M )  in 
Section 3. In Section 4 we prove the most prominent geometric property of 
foliations, the existence of leaves. A few examples are collected in the 
last section. 

This chapter contains only a very elementary introduction to a beautiful 
geometric subject. An extensive treatment can be found in the book of C. 
Godbillon [Go]. 

75 
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1 d-Fields 

Recall that the set % ( M )  of vector fields on a manifold M is a module 
over the ring C"(M) of smooth functions on M (cf: I,5.2). 

(1.1) Definition A family {X"} of vector fields is locullyfinite if every 
p E M has a neighborhood in which almost all fields X" vanish. A sub- 
module V of %( M )  is complete if for every locally finite family X" of vector 
fields in V their sum X" is in V. (Almost all = all but a finite number.) 

If M is non-compact, then the module V of vector fields that have the 
property that each vanishes outside of a compact set is not complete. For 
let X be a vector field not in V and let {A,} be a partition of unity associated 
to an adequate atlas. Then the family {A,X} is locally finite and each field 
A,X is in V, but C, A,X = X E V .  

Exercise If M is compact, then every submodule of X ( M )  is complete. 

If V is a subspace of Z ( M )  and p E M, then we denote by V, the set of 
vectors of T,M that belong to fields from K Clearly, V, is a subspace of 
TpM. We say that V is of dimension d if, for all p E M, V, is of dimension 
d. (This is not the same as the dimension of V as a vector space. The last 
one is infinite in all cases of interest here.) 

We are now ready to state the main theorem of this section. For brevity, 
we call a d-dimensional smooth subbundle of TM a d-jeld. If E is a d-field, 
then V ( E )  denotes the set of all vector fields that lie in E. 

(1.2) Theorem Let E be a d-field on M. Then V ( E )  is a d-dimensional 
complete submodule of %( M ) ,  and this construction establishes a one-to-one 
correspondence between d-jelds on M and complete d-dimensional submodules 

of wo 
Proof It is trivial that V ( E )  is a submodule; to show that it is complete 
suppose that {Xa} is a locally finite family of vector fields from V ( E )  and 
let X = 1, X". Then X, = 1, X,", and the sum on the right is a sum of a 
finite number of vectors in E,, hence also a vector in E,. Thus X,  E Ep,  
i.e., X E V ( E ) .  

To show that V ( E )  is of dimension d it is enough to show that V ( E ) ,  = 
E,. Clearly, V, c E,. The reverse inclusion will follow if we show that 
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through every vector e E Ep passes a vector field that lies in E. To see this, 
let X', . . . , Xd be vector fields on M such that X', . . . , Xd span E, at all 
points q in a neighborhood U of p. Then e = C i  pix; for some pi. Let A 
be a smooth function on M which equals 1 at p and vanishes outside of a 
compact subset of U. Set 

xq A ( q )  C p i x ; ;  
I 

this defines a vector field in V ( E )  and such that X ,  = e. 
Now let V be a d-dimensional submodule and let E (  V) = U p s M  V,. We 

claim that E (  V) is a d-field. For let X I ,  . . . , Xd be vector fields in V such 
that X i , .  . . , X," span 5. Then there exists a neighborhood U of p such 
that X i ,  . . . , X :  are linearly independent at all q E U, Therefore they span 
V, for all q E U. This gives smooth local product structure in E (  V) showing 
that E (  V) is a d-field. 

Now, beginning with a d-field E and forming successively V(E) and 
E ( V ( E ) ) ,  we have E( V ( E ) )  = UpeM V ( E ) ,  = UpaM Ep = E, i.e., the map 
E H V( E) has a left inverse. To show that it has a right inverse we have to 
show that V ( E (  V)) = V .  Certainly V (  E (  V)) 2 V.  To establish the reverse 
inclusion we have to show that if a vector field X satisfies X ,  E V, for all 
p E M, then X is in V .  

We have just seen that there is a covering {Up} of M and, for every a, d 
vector fields X1*O,. . . , X"" in U, that span V, for every q E U,. Therefore, 
in U,, X ,  = x i  pi (q)Xk",  where the pi are smooth functions in U,. We can 
assume that { U"} is an-adequate covering. Let {+"} be an associated partition 
of unity, and consider the vector field X" defined on M by 

Then X" is a vector field in V and it vanishes outside of U,. Thus the 
family { X , }  is locally finite and, since V is complete, C, X" is in V .  But 
1 , X "  =x. 0 

Exercise 
over C"M) by m vector fields if and only if TM is a trivial bundle. 

Let m = dim M. Show that % ( M )  is generated (as a module 

Exercise Let M be the Mobius band viewed as a bundle over the circle. 
The bundle tangent to fibers (cJ II1,l) is a 1-field such that the corresponding 
1-dimensional submodule of % ( M )  is not generated by a vector field. 
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2 Foliations 

A submersion M ”  + I’dmpd gives rise to a d-field on M, but to have a 
d-field it is not necessary for the submersion to be defined globally: it is 
enough to have a “field” of local submersions satisfying a natural compati- 
bility condition. This suggests the notion of an atlas of submersions: 

(2.1) Definition An atlas of submersions of codimension d on M consists 
of a covering { U,} of M and a family {f,} of submersions f a :  U, + RmPd 
of rank rn - d satisfying the following compatibility condition: If 
p E U, n U,, then there is a diffeomorphism (into) h: U + RmVd of a 
neighborhood U of f,(p) such that fB = hf, in a neighborhood of p .  

Two atlases are compatible if their union is an atlas. As it was in the case 
of differential structures, every atlas of submersions determines uniquely a 
maximal atlas: the union of atlases that contain it. We now conclude 
definition 2.1 : 

A maximal atlas of submersions of codimension d is called a foliation of 
codimension d, or, simply, a d-foliation. 

To every d-foliation 9 on M we can associate a d-field E ( 9 )  as follows: 
If p E V, n Up, then the compatibility relation guarantees that Ker Dpf, = 
Ker Dpfp. Therefore in every tangent space T,M there is a well-defined 
d-dimensional subspace Ep. Let E ( 9 )  = UpeM Ep. 

(2.2) Theorem E (  9) is a d-field. Moreover, i f E (  9,) = E (  S2), then 9, = 

9 2 .  

Proof Let { U,, f a }  be an atlas of submersions for 9, and let p E U,. By 
II,1.2 there is a system of local coordinates x, , . . . , x, in a neighborhood 
U of p such that f a ( x l , .  . . ,x,) = (x,,. . . , x , - d ) .  Then, at all points of 
U, Ker Df, is spanned by dm--d+l , ,  . . , a,. This shows that E ( 9 )  is a d-field. 

The second part of the theorem is a consequence of the following: 

(2.3) Lemma Let U be an open subset of R”’ and let f; g: U +. Rmpd be 
two submersions such that Ker Df = Ker Dg. Givenp E U, there is a neighbor- 
hood W of f (p)  and a difleomorphism (into) h: W + Rm-d such that hf = g 
in a neighborhood of p. 
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Proof Let P: R"' + RmPd be the standard projection. We have shown that 
f ( x l ,  . . . , x, )  = r ( x l , .  . . , x,) = ( x l , .  . . , x,-d) in a system of local coor- 
dinates x l , .  . . , x ,  in a neighborhood U of p.  Since Ker Dg = Ker D f  and 
Ker Df is spanned by dm-d+l, .  . . ,a,,, in U, we have Dg(am-d+j) = 0, j = 
1 , .  . . , d. This means that g I U does not depend on the last d coordinates 
X,,-d+l, .  . . , x,; that is, it factors as g = hP, where h is defined in a 
neighborhood P( U )  of 0 E R"-d. It is easily seen that the rank of h is 
m - d ;  hence, by the Implicit Function Theorem (cf: A,l.l), there is a 
neighborhood W of 0 such that h I W is a diffeomorphism W + h( W ) .  Now, 
h f = h v = g i n  U n f - ' W .  

Another useful consequence of 2.3 is the following: 

(2.4) Corollary Let E be a d-field on M and suppose that there is a covering 
{ U,} of M a n d  submersions f a :  U, + RmPd such that Ker Dq f a  = Eq, q E U,. 
Then { U,, f a }  is an atlas of submersions. 

Proof By 2.3, the f, satisfy compatibility relations. 0 

A d-field E such that E = E (9) for some foliation 9 is called completely 
integrable. Corollary 2.4 asserts that this is a local property of d-fields; we 
will study it in the next section. An important example of completely 
integrable fields is given by the following: 

(2.5) Proposition Every line field is completely integrable. 

Proof By 2.4, it is enough to consider a neighborhood of a point p E M 
in which the line field is spanned by a nonvanishing vector field. Assume 
then that X is a nonvanishing vector field in a neighborhood U of 0 E R"' 
with Xo = a,; it follows from I,6.1. that there is a neighborhood W of 0 
and a map f: W x ( - E ,  E )  + U, where E is a positive number, such that 
f ( p ,  0) = p and D f ( a t )  = X. 

Consider now the manifold V' = ( W n Rm-') x ( -E ,  E ) ;  let h = f 1 V' and 
let P: V ' +  R"-' be the natural projection. Then Dhodi = di for i = 

1,. . . , rn - 1 and Dho a t  = X,, that is, h is of maximal rank at 0. It follows 
that there is a neighborhood V of 0 in V' on which h is a diffeomorphism. 
Hence Ph-l: h( V) + Rm-' is a submersion such that the kernel of its 
differential is generated by X. 0 
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Observe that in the course of this proof we established that: 

(2.6) If X is a nonvanishing vector field in a neighborhood U of 0 E R", 
then there is a neighborhood V c U and a difeomorphism h: V + U such 
that Dh(d,)  = X .  

3 Frobenius Theorem 

Not every d-field is completely integrable. To characterize those which are, 
we need the notion of the bracket [ X ,  Y ]  of vector fields defined in I,5 by 
the equation 

[ X ,  Y ]  = X Y  - Yx. 

As an example, observe that in TR" we have [a,, a,] = 0 by the well-known 
theorem of elementary Calculus. 

The following proposition is verified by routine calculation. 

(3.1) Proposition 

( a )  [ X ,  Y ]  is linear in each factor and skew-symmetric: 

[ X ,  YI = -[ Y,  X I ;  
( b )  [ [ X ,  Y l ,  Z l  + [[ Y,  ZI,  XI + "2, X I ,  Y 1 =  0; 
(c) [fX, gY1 = f d X ,  YI + f X ( g )  y - g Y ( f ) X .  0 

A vector space with an operation [ , ] satisfying (a) and (b) is called a 
Lie algebra. Property (c) shows that it makes sense to speak of submodules 
of Z ( M )  that are also Lie algebras, that is, are closed under the bracket 
operation. 

Exercise Show that a 1-dimensional submodule of % ( M )  is a Lie algebra. 

Submodules that are Lie algebras arise naturally in the context of foli- 
ations. For suppose that X and Y are two vector fields on M annihilated 
by a map f: M + N (i.e., ( O f ) X  = 0 = (Of) Y ) .  Then ( D f ) [ X ,  Y ]  = 0, for 
((Of)[X, Y ] ) g  = X (  Y ( g f ) )  - Y ( X ( g f ) )  = 0 for every smooth function g 
on N. This implies that if E is a completely integrable d-field on M and 
X, Y lie in E (i.e., X ,  Y E V ( E ) ) ,  then [ X ,  Y ]  E V ( E ) .  In other words, 
V ( E )  is a Lie algebra. It turns out that this property characterizes completely 
integrable fields. This is content of the following theorem of Frobenius: 
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(3.2) Theorem 
and only if V ( E )  is a subalgebra o f Z ( M ) .  

Let E be a d-jeld on M. Then E is completely integrable if 

Proof We have just seen that the condition is necessary. Moreover, it 
follows from 2.5 and the preceding exercise that the theorem is true for 
d = 1. We will therefore assume it to be true for (d - 1)-dimensional fields, 
d 2 2, and prove that a d -dimensional field E such that V( E) is a Lie 
algebra is completely integrable. 

Let U be a chart in M and let X I , .  . . , X d  be d vector fields in U such 
that X t ,  . . . , X :  span Eq at every q E U. We view U as a neighborhood 
of 0 in R" and assume that 

m 

x'=al ,  ~ ' = C a ; a ,  f o r i r 2 .  

The legitimacy of the first assumption follows from 2.6; to ensure the second 
we may have to replace X ' ,  i 2 2, by X '  - X ' ( x , )  a, ,  i.e., to subtract the 
projection on X'  = a,. 

Let S = { ( x , ,  . . . , x,) E U l x ,  = 0) andlet Y2,  . . . , Y d  be the vector fields 
X 2 ,  . . . , X d  restricted to S. By (*) they are linearly independent and tangent 
to S; hence they span a (d - 1)-field Es on S. Since [a,, a,] = 0, it follows 
from 3.l(c) that [ Y', V], i,j > 1, is a linear combination of Y2,  . . . , Yd,  
i.e., V ( E s )  is a Lie algebra. We now apply the inductive assumption and 
deduce that there is a submersion f: S' + RmPd, where S' is a neighborhood 
of 0 in S, such that Ker Of = Es. We will complete the proof of the theorem 
by showing thatfr: r - ' (S ' )  + Rm-d is the submersion we have been looking 
for, that is, that Ker Dfr = E, r ( x l , .  . . , x,) = (0,  x, ,  . . . , x,).  

Certainly, fr is a submersion and ( D f r ) X '  = 0. Let f =  

1 x 2  
(*) 

(fl, ' t f m - d ) , f ;  = f ; ( X Z ,  f * 9 Then 

( 0 f r ) X l  = (xtf,, .  . . , x l f m - d ) .  

To show that X %  = 0, we note first that X'f; = 0 for all j; thus X ' X X  = 
d X ' x X  - x'x'd = [ X I ,  X ' ] A  = z:=l c,kx% = X k = 2  CgkXkJ;. 

Letting X %  = p;,  p: = p ; ( x , ,  . . . , x,),  this can be rewritten as 

d a 
- p p j = E c i k P f ,  i = 2  ,..., d , j = l ,  ..., m - d .  

(**) ax, k = 2  

For a fixed index j and a point q = ( x 2 , .  . . , x,) E S' the system (**) 
becomes a homogeneous system of d - 1 differential equations for d - 1 
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functions pf(xl, q )  of the variable xi. The initial condition at x1 = 0 is 

P;(o, q )  = X Z  
= Y'A 

at q E S' 

= 0, 

By the Uniqueness Theorem for solutions of such a system, q )  = 0 
for all xl, that is, Xx = 0 for all i,j. This shows that E c Ker Dfr. Since 
f.r is a submersion, E = Ker Dfm for dimensional reasons. 

since Y' E Ker Df: 

0 

Collecting together 1.2, 2.2, and 3.2 we obtain the following: 

(3.3) Corollary There is a one-to-one correspondence between the set of 
d-foliations on M, the set of completely integrable d-jields, and the set of 
d-dimensional complete submodules of %( M )  that are also subalgebras. 0 

Frobenius's theorem, 3.2, is local in character and the condition for 
complete integrability is not topological. It is reasonable to ask the following 
global question: Given a subbundle E of TM, does there exist an isomorphic 
subbundle that is completely integrable? R. Bott has given a necessary 
condition for this to be true in terms of characteristic classes of E. An 
exposition of these results is in [Bl]. This book also contains a clear 
presentation of A. Haefliger's theory of classifying spaces for foliations. 

4 Leaves of a Foliation 

In the last section we developed the local theory of foliations. An important 
global concept is that of a leaf. It generalizes the notion of fiber of a fiber 
bundle: A fiber bundle is a union of fibers; a foliated space is a union of 
leaves. 

(4.1) Let 9 be a foliation on M. An integral mangold of 9 is 
a pair (N, f )  where N is a manifold andf: N + M is a one-to-one immersion 
such that ( O f )  T,N = E f ( q ) ( 9 ) .  

Definition 

A leaf of 9 is a maximal connected integral manifold: that is, an integral 
manifold (N, f )  is a leaf if N is connected and whenever a connected 
integral manifold ( N1 , A )  intersects it, there is a one-to-one immersion 
g:  N1 + N such that fg  =f,. 
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If a foliation is a fibration, then every submanifold of a fiber is an integral 
manifold. Another example of an integral manifold is provided by the slice 
of a foliation. This is defined in two steps. Let (U, n-) be a chart in an atlas 
of submersions defining the foliation 9; we write this simply as (U, n-) E 9. 
A slice of U is a connected subset L of U of the form L = n--'n-(q), where 
q E U. A slice of 9 is a slice of U for some (U,  f )  E 9. By II,2.3 a slice is 
a submanifold of M, hence ( L ,  i ) ,  i the inclusion map, is an integral 
manifold. 

(4.2) Lemma Let L be a slice of U. Then: 

( a )  r f  ( N ,  f )  is a connected integral manifold of 9, f ( N )  c U, and f (  N )  n 

( b )  If ( V ,  u) E 9, then there is at most a countable number of slices of V 
L f 0,  then f ( N )  = L; 

intersecting L. 

Proof Observe first that since 0.-f = 0, n-f is locally constant on N. Hence 
f ' ( L  n f ( N ) )  is open in N, which implies (a). It also implies that the 
intersection of two slices of 5 is an open subset of both. It follows from 
(a) that if two slices of V intersect, then they are equal. Hence if L' and 
L" are two distinct slices of V intersecting L, then L n L' and L n L" are 
disjoint open subsets of L. Since L is a manifold, every family of disjoint 
open subsets of L is at most countable. 0 

Our main theorem asserts that a foliated manifold is a union of leaves. 

(4.3) Theorem Let 9 be a foliation of M. Then every point of M lies in a lea$ 

Proof Let p E M. We will say that a point q E M is %-related to p if there 
is a finite set of slices L,, . . . , L, such that p E L 1 ,  q E 4, and L, n L,+, # 0 
for i = 1,. . . , k - 1. Such a set of slices will be called a chain. 

We have defined an equivalence relation among the points of M. Let LfP 
be the set of points $-related to p .  ,fe, is a union of slices and we topologize 
it by taking as the base all open subsets of slices contained in 2Zp. (This 
topology differs in general from the topology of ZP as a subset of M. They 
agree if Lfp is compact.) 

Clearly, d;p, is a connected Hausdorff space. We will show that it has a 
countable base. 

First, notice that there is a countable atlas of submersions % = { U,, T,} 
in 9 such that every set K 1 n - ( q ) ,  q E U,, is connected, hence a slice. It is 
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easy to see that if p and q are $-related, then they are %-related using only 
chains of slices from Q. Therefore if L is a slice from Q containing p ,  then 
the last elements of all possible chains from Q which begin with L will 
cover Yp. It follows from 4.2(b) that there is at most a countable number 
of k-element chains from % with fixed first k - 1 elements. Hence the 
number of chains from Q beginning with L is at most countable. Since 
each slice has a countable base, this proves that Yp has a countable base. 

As the next step we observe that smooth structures on two intersecting 
slices are compatible; this also follows from II,2.3. Since 6p, is covered by 
slices, it inherits a smooth structure in which slices are open subsets and 
smooth submanifolds. This, in turn, implies that the inclusion i: Yp L, M 
is a one-to-one immersion. Thus we conclude that (Zp ,  i )  is an integral 
manifold. 

To show that Yp is a leaf, let ( N , f )  be a connected integral manifold 
containing p .  Let Q = { U,, rm} be an atlas of submersions as before. If 
q E f (  N), then there is a family V, , . . . , v k  of open connected subsets of 
N such that v n v+, # 0, i = 1, . . . , k - 1, p E f( Vl)7 q E f( Vk), and each 
set f( V,) is contained in a chart Q from Q. Since ( V,,fl K) is a connected 
integral manifold, there is by 4.2( a) a slice L, of Ui containing f( K). Then 
L, ,  . . . , Lk form a chain of slices, which means that q E Zp. This shows 
that f ( N )  c 9,. 

Both f and i are one-to-one immersions; hence there is a one-to-one map 
g: N -+ Zp such that ig = f: Locally, the topology of Yp is that of a subset 
of M; hence g is continuous. This implies that it is an immersion. 0 

A leaf ( N , f )  through a given point is unique up to a composition off  
with a diffeomorphism N + N. For if (N, ,f,) and ( Nz7f2) are two intersect- 
ing leaves, then there are one-to-one immersions h: N ,  + N2,  g: Nz + Nl 
such thathh = fl andf,g = fz. Hencefzhg = fz andf,gh = fl , which implies 
that h and g are both diffeomorphisms. 

5 Examples 

In general, it is a very hard problem to decide whether a given manifold 
admits a d-foliation. We give a few examples here. 

(5.1) By 2.5 a nowhere vanishing vector field on M gives rise to a 1- 
foliation; it follows that every compact manifold with vanishing Euler- 
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PoincarC characteristic admits a 1-foliation with leaves diffeomorphic either 
to S' or to R'. 

The leaves of a foliation induced by a vector field are solution curves of 
the corresponding differential equation; the compact leaves correspond to 
periodic solutions. However, it is possible that all leaves of a 1-foliation of 
a compact manifold are non-compact. For example, letf: R2 + R' , f (x ,  y )  = 
x - a y ,  and let .rr:R2+ S ' x  S' be the covering map ~ ( x , y )  = 

(x mod 1, y mod 1). Since Ker Of is invariant under translations of R2,f 
induces an atlas of immersions on S' x S'. The corresponding foliation has 
all leaves compact if a is rational. If a is irrational, then every leaf is 
non-compact and dense in S' x S'. 

Exercise 
compact leaves present. 

Construct a 1-foliation of S' x S' with both compact and non- 

(5.2) There is no fibration of S3 by 2-dimensional manifolds, but there are 
2-foliations. We describe an example due to G. Reeb. 

We begin by foliating 8' x R by surfaces z = c + 1/(1 - x2 - y'); the 
corresponding 2-field is the field of tangent planes. Since this foliation is 
invariant under translations along R, it induces a foliation of 8' x S' (see 
Fig. V,l). 

Now, S3  can be obtained by identifying two copies of 0' x S' along the 
boundaries. The foliation of S3 is obtained by foliating the interior of each 
copy of D2 x S' in the way just described and adding one more leaf the 
common boundary S' x S'. This becomes the only compact leaf of the 
resulting foliation, all other leaves are diffeomorphic to R2. 

Another identification of boundaries of two copies of D2 x S' results in 
S 2  x S' and a foliation of it with one compact leaf. 

(5.3) Let U be an open subset of R". We will show here that the well-known 
set of conditions for the existence of a map f: U + R with a given gradient 
is a consequence of the Frobenius theorem, 3.2. For this purpose we will 
first find a sufficient condition for integrability of an (rn - 1)-field in CJ. 

Let 2 = ( P 1 , .  . . , P,) be a nowhere vanishing vector field in U and E 
the ( m  - 1)-field of planes orthogonal to Z By 3.2, E is completely integrable 
if the bracket of two vector fields X, Y in E is again in E. Let X = 

x i  ai d i ,  Y = ci Pi d i ;  X and Y are in E if and only if 

CCYiPi = 0 = c p i p i .  
I I 
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Figure V.1. 

FOLIATIONS 

It follows that die = ajP,, i, j = 1 , .  . , , m, is a sufficient condition for E to 
be completely integrable. 
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We return now to the problem of finding f: U + R with the given gradient 
(PI , .  . . , P,). Let 2 = (PI, .  . . , P,, 1) be a vector field in U x R and E the 
m-field of planes orthogonal to Z. Suppose that E is completely integrable, 
and let L be the leaf through (x, t )  E U x R of the foliation determined by 
E. The projection U x R + U is a local diffeomorphism on L; hence there 
is a neighborhood V of x in U and a function f: V + R such that L is the 
graph of j This implies that the vector field N normal to L, N = 

(13,f,. . . ,emf, I) ,  is parallel to Z. But if N = AZ, then A = 1; hence N = 2, 
i.e., d i  f = Pi, i = 1 , .  . . , m. Thus the complete integrability of E is sufficient 
for the existence off with V f = ( P ,  , . . . , P,). Since the Pi do not depend 
on the coordinate t, the sufficient condition for complete integrability is, 
again, sip, = ajPi, i, j = 1,. . . , m. 

The reader might observe that while this is undoubtedly the most compli- 
cated proof of a rather elementary theorem, it can be generalized to give 
conditions for the existence of a map R" + R" with an a priori given 
differential. 

Exercise 
(Hint: The projection U x R + U restricted to L is a covering map.) 

Show that if U is simply connected, then f is defined in U. 
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Operations on Manifolds 

In this chapter we describe various operations on manifolds: connected 
sum, attachment of handles, and surgery. All of these are special cases of 
a general construction, joining of two manifolds along a submanifold, 
presented in Sections 4 and 5.  However, since all important features are 
already present in the special cases of connected sum and connected sum 
along the boundary, we discuss these two cases first in Sections 1 and 3, 
respectively. 

The general construction is specialized to attaching of handles in Section 
6. We are particularly interested in the question when the attachment of 
two handles of consecutive dimensions results in no change to the manifold, 
that is when the second handle “destroys” the first. The main result in this 
direction, Smale’s Cancellation Lemma, is proved in Section 7. The proof 
is based on an elementary but far-reaching theorem concerning attachment 
of disc bundles along a cross section in the boundary. 

In Section 8 we look at handle attachment from a different point of view, 
more convenient for homology calculations. Section 9 introduces the oper- 
ation of surgery, and in Section 10 we calculate some related homological 
results. In Section 11 we define handlebodies and investigate their structure. 
Some important examples are constructed in Section 12 using the plumbing 
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construction. The results of the last two sections will not be used until 
Chapter VIII. 

1 Connected Sum 

Connected sum is the operation of “joining two manifolds by a tube.” 
Given two connected m-dimensional manifolds M,,  M,, let hi: R“ + 

Mi, i = 1,2, be two imbeddings. If both manifolds are oriented, then we 
assume that h, preserves the orientation and h, reverses it. 

Let a: (0,~) + (0,~) be an arbitrary orientation reversing diffeomorph- 
ism. We define a,,,: R“ - 0 + R“ - 0 by 

The connected sum MI # M 2 ( h l ,  h,, a) is the space obtained from the 
(disjoint) union of MI - h,(O) and M2 - h2(0) by identifying h,(u)  with 
h,(a,,,(u)) (see Fig. V1,l). 

Recall that if A, B are two spaces and f maps a subset of A to B, then 
A u, B stand as for the identification space obtained from the disjoint union 
A u B by identifying x with f ( x )  ([Du,Vl]). With this notation 

MI # M,(h , ,  h2, a) = (MI - h,(O)) U, (M2 - h2(0)), g = h2amh;’. 

In general we will not specify h, , h2,  a. This is justified by the following: 

(1.1) Theorem M I  # M ,  is a smooth manifold, connected i f  m > 1 and 
oriented i f  both M ,  , M ,  are oriented. It does not depend-up to difleomorph- 
ism-on the choice of a and of the imbeddings hi. 

Proof It follows immediately from the Invariance of Domain that: 

(*) The projections Mi - hi(0) + MI # M 2 ,  i = 1,2,  are open maps. 

This implies that M1 # M2 is second countable. We have to show that it 
is a Hausdorll space. (This is not immediate: The identification of h,(x, t )  
with h2(x, t)  yields in general a non-Hausdorfl manifold!) In view of (*) 
this reduces to showing that if x E M I  - hl (0 )  and y E M2 - h2(0) have 
distinct images in MI # M,,  then they have neighborhoods with disjoint 
images. The verification is a routine case-by-case checking. 
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Figure VI.1 

Now, the fact that g2amh;' is a (orientation preserving) diffeomorphism 
together with (*) implies that the smooth structures on M ,  - h,(O) and 
M2 - h2(0) are compatible, hence yield a (oriented) smooth structure on 
M ,  # M2.  (This is the unique structure for which projections in (*) are 
diffeomorphisms.) 

We show now that M ,  # M2 does not depend on the choice of the 
imbeddings h, , h2. 

Choose to ,  t ,  so that 0 < to < tl < 1, and let Rm(to, 1, )  = 

{ u  E R" 1 to < ( 0 1  < 1,). Note that am(Rm(lo ,  1 , ) )  = R " ( a ( t , ) ,  ( ~ ( 1 ~ ) ) .  Now, 
remove from h,(Rm) the closed disc of radius to and from h2(R") the closed 
disc of radius a( t l ) ,  and glue h,(R"(t, ,  1 , ) )  to h2(R"(a(t , ) ,  a ( to) )  via the 
diffeomorphism h,a,h;'. This yields a manifold M = M ( h , ,  h2 ,  a). 
Clearly: 

(**I M ( h , ,  h2 ,  a)  is diffeomorphic to M, # M2(h, ,  h2 ,  a) .  

Notice now that M depends only on h2a,h;' restricted to h,(R"(t, ,  t , ) ) .  

Thus if p1 shrinks R" to an open disc D"(u) with u > t ,  and is the identity 
in R"(t,), and p2 is defined similarly, then M ( h , P , ,  h2&, a )  = 

M (  h,  , h2 ,  a )  = M1 # M 2 .  But hipi imbeds R" as a proper tubular neighbor- 
hood of hipi (0) .  This means that we can always assume that hi(R") is a 
proper tubular neighborhood of h,(O), i = 1,2. 

This, in turn, easily implies that: 

(***) M1 # M2( h,  , h 2 ,  a)  does not depend on the choice of h ,  , h, . 

For suppose that h' and h, both imbed R" as a proper tubular neighbor- 
hood of 0. Then III,3.5 yields a diffeomorphism g :  M ,  + MI such that 
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gh, = h', and the map G defined by 
if x E MI - h,(O), 
if x E M2 - h2(0), { :(x) 

is a diffeomorphism of MI # M2(h', hZ,  a) onto MI # Mz(hl, h2, a). 
Moreover, in the oriented case G is orientation preserving. 

It remains to be seen that the choice of ty is immaterial. For this, suppose 
that p is another orientation reversing diffeornorphism of the ray (0,oo) 
onto itself. There is then a diffeomorphism g of (0,m) that is the identity 
near 0 and 00, and such that a = pg in some segment ( t o ,  t l )  (cJ: III,3.6). 
Thus, there is a diffeomorphism g ,  of R" onto itself such that a, = pmgm 
in R"(to, tl),  Now, 

G(x) = 

MI # W(h19  h2, a) = Mz(hlgrn, h2, a )  (by (***I) 
= M(hlgrn, h2, a) 

= M ( h , h , , P )  

(by (**)I 

since both manifolds are obtained by the same identification: In 
h,(R"(to,  2,)) we have h2am(h,gm)-'  = h2Pmh;l. 

The strength of 1.1 is in allowing us to use arbitrary-not necessarily 
proper-imbeddings to construct connected sums. This is exploited in the 
following situation: Let h,: R" + R" be the identity map and let h2: R" + 

S" be an imbedding equivariant rel. the action of O(m + 1) on S" which 
keeps h2(0)  fixed, thus effectively the action of O(m). Then O(m) acts on 
R" # S". 

(1.2) Proposition There is a difeornorphism R" # S" + R" that is 
equivariant with respect to this action, and an identity outside of a compact set. 

Proof Let a ,  = ( 0 , .  . . ,0, *l) E S" c R"+' and let p*: R" + S" be the 
projection from a* (i.e., the inverse of the projection h, from 1,1.2). Then, 
p ,  is a diffeomorphism onto S,  - {a,}  and p -  reverses the orientation. Let 
h, : R" + R" be the identity map, let h2 = p - ,  and a( t )  = 1/ t. 

Now, the diffeomorphism h of R" # Sm(hl ,  h2,  a) onto R" is defined 
to be the identity map in R" - h,(O) and p i '  in S" - {a+}.  This works 
because pIIp+ = am. 0 

The geometric idea of the connected sum as two manifolds joined by a 
tube is visible in the following construction. 
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Figure V1.2 

' 

hi: R" + RY, i = 0, 1, be imbeddings of R" as interior of the unit disc. 
Let R,", R? be two copies of R" but with opposite orientations and let 

(1.3) Proposition mere is an imbedding h of R" # R"(h,, hZ, a) in R" x 
[-1,1] that imbeds h,(R" - 0 )  u h2(R" - 0) as "a tube" in R" x [-1,1] 
and such that h ( x )  = (x, (-1)') elsewhere in RY (see Fig. VI,2). 

Proof If m = 1, then one starts with the imbedding of R,!, # R: as the 
hyperbola 3x2 - y 2  = 1 and then brings it into the desired shape by sending 
each point ( x , y )  on the hyperbola to ( x , y / g ( x ) ) ,  where g is a smooth 
positive function equal to (3x2 - 1)1'2 for x2 2 1 and s f i  elsewhere. Rota- 
tion of this imbedding around the y axis produces the desired imbedding 
for rn > 1. 0 

Observe now that if R" # (-R") is so imbedded in R" x [-1,1], then 
it bounds a manifold that has R" with the interior of a disc deleted as a 
deformation retract. The deformation simply moves points on "vertical" 
lines. This has the following consequence, which we will use in Chapter 
VIII. Let M be an oriented manifold, h: R" + M an imbedding. The 
connected sum M # (-M) can now be imbedded in M x [ - 1,1] by imbed- 
ding h(R") # h(R") in h(R") x [-1,1] as in 1.3, and the rest in the obvious 
way. The resulting manifold will bound a manifold that has M with the 
interior of a disc deleted as a deformation retract. 
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Figure Vl,3 

In particular, if X is a homotopy sphere, then I: with the interior of a 
disc deleted is a contractible manifold. Therefore: 

(1.4) Corollary If X is a homotopy sphere, then Z # (-Z) bounds a con- 
tractible manifold (see Fig. VI,3). 

Exercise 
connected manifold W, then M # N imbeds in W. 

i 

If M and N are disjoint submanifolds of codimension > 1  of a 

2 # and Homotopy Spheres 

To calculate the homology of MI # M2 one applies the Mayer-Vietoris 
sequence to the pair (A,, A2), where A, is the image in MI # M2 of 
Mi - h,(O), i = 1,2. Since A, n A2 has the homotopy type of Sm-' we obtain 
immediately that H i ( M ,  # M2) = H i ( M , )  0 Hi(M2)  for 0 < i < m, at least 
when both MI, M2 are closed and oriented. 

Analogously, the Seifert-Van Kampen theorem applied to the same pair 
shows that, for m 2 3, .rrl(Ml # M2)  = .rrl(Ml) x a , (M2) .  Taken together, 
this yields: 

(2.1) Proposition 
if and only if both are homotopy spheres. 

The connected sum of two manifolds is a homotopy sphere 
0 

(Actually, an additional argument is needed in the case m = 2.) 
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Exercise 
manifolds. 

Calculate ml( M ,  # M,) when MI, M2 are 2-dimensional closed 

(2.2) Theorem The set of connected, oriented, and closed m-dimensional 
manifolds is, under the operation of connected sum, an associative and commu- 
tatiue monoid with identity. 

Proof We have to show that: 

(a) M ,  # M2 = M2 # M,;  
(b) (MI # M2) # M3 = MI # (M2 # Md; 
(c) M # S "  =M. 

To verify (a), let h: R" -+ R" be the reflection in the first coordinate and 
suppose that MI # M2 is constructed using imbeddings h, , h2. To construct 
M2 # MI we can use the imbeddings hih, i = 1,2. A diffeomorphism 
MI # M2 + M2 # M ,  is then constructed by requiring it to be the identity 
on MI - hl(0) and M2 - h2(0). 

The proof of (b) is left to the reader. 
Finally, (c) is an immediate consequence of 1.2. 0 

Of course, 2.2 holds without assuming the manifolds are oriented. 
The structure of these monoids is not known beyond m = 2. For m = 2 

it is known that, up to a diffeomorphism, a given topological 2-manifold 
can carry only one smooth structure. The topological classification of 
2-manifolds implies then the following: 

(2.3) Theorem The monoid of 2 -dimensional closed, compact connected 
manifolds is generated by the torus T and the projective plane P with the 
relation 3P = T # P. The monoid of oriented 2-manifolds is isomorphic to 
the monoid of natural numbers. 

Consider now the monoid of oriented compact connected closed 
m-dimensional manifolds. The subset A" of invertible elements is a group. 
It follows from 2.1 that elements of A" are homotopy spheres. In fact, a 
stronger assertion is true: Elements of A" are topological spheres. This is 
a consequence of the following: 

(2.4) Proposition 
phic to S". 

If M # N is homeomorphic to S", then M is homeomor- 
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Proof Let D c  M be an imbedded m-disc, S its boundary and D' the 
closure of its complement. We regard M # N as constructed using an 
imbedding of R" in the interior of D. Let h: M # N + S" be a diffeomorph- 
ism. By a theorem of B. Mazur ([Mall, [Bd, IV, 19.111) the closure of each 
component of h ( S )  is homeomorphic to an m-disc. Therefore D' is homeo- 
morphic to an m-disc, and M is a union of two (topological) m-discs with 
identified boundaries, hence is homeomorphic to S". 0 

Another proof, due to J. Stallings, is based on the possibility of defining 
an infinite connected sum M I  # M2 # M3 # - . - that is associative and 
satisfies 

S" # S" # S" # * * = R". 

Assuming this verified, we have 

R" = 5'" # S" # S" # * - . = ( M #  N )  # ( M  # N )  # ( M #  N )  # * * *  

= M # ( N  # M )  # ( N  # M )  * * * 

= M # S" # S" # S" # * * = M # R". 

All that remains now is a simple exercise: 

Exercise Show that if M # R" is diffeomorphic to R", then M is homeo- 
morphic to S". 

Note that this proof yields a weaker theorem: we have to assume that 
M # N is diffeomorphic to S". 

By 2.4 the group A" can be construed as the group of invertible differential 
structures on the topological m-dimensional sphere. In VII1,S we shall show 
that for m 2 5 all differential structures on spheres are invertible. (This is 
also true for rn < 5 but our methods do not apply.) In fact, we shall prove 
a much stronger result: For m 2 5 ,  A" coincides with the submonoid of all 
homotopy spheres. Whether this last statement is true for m = 3 is not 
known. 

Exercise Let D be a closed m-disc in M" and p the involution on aD 
interchanging the antipodal points. The space P is obtained from M - Int D 
by identifying every pair x, p(x)  to a point. Show that P = M # P". 
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3 Boundary Connected Sum 

Next in order we consider the operation of boundary connected sum. In 
this case two manifolds with boundary are joined along a disc in the 
boundary. This is done as follows. 

Let MI, M2 be two connected m-dimensional manifolds with connected 
boundaries, let hi: Rm-' + aMi, i = 1,2, be two imbeddings and let 6: R$ .+ 

Mi be imbeddings extending the hi where R," = {x E R" I x, 2 0). As before, 
we assume that if M , ,  M2 are both oriented, then h, preserves orientation 
and h2 reverses it. 

The boundary connected sum of M ,  and M 2 ,  denoted MI # b  M 2 ,  is the 
space obtained from the (disjoint) union of M ,  - h,(O) and M2 - h2(0) by 
identifying h;( u )  with h;( a,( u ) ) .  

(3.1) Theorem M ,  # b  M2 is a smooth connected manifold, oriented if both 
MI, M2 are Oriented. It does not depend-up to dzffeomorphism-on the choice 
of (Y and of the imbeddings hi. Moreover, 

d(M1 # b  M 2 )  = dM, # aM,. 

Proof The proof is a word-for-word repetition of the proof of 1.1. The last 
part follows from the fact that the construction of MI #b M2 restricted to 
the boundary is precisely that used to construct the connected sum. 

Theorem 2.2 can be restated in the context of boundary connected sum. 
Corresponding to 2.2(c), we have 

This follows immediately from the following analogue of 1.2: 

(3.3) Proposition 
is the identity outside of a compact set. 

There is a diffeomorphism RT+' #b D"+' + Rq" that 

Proof As h, and h; we take the identity maps. As h2 we take the projection 
R" + S" -a- from a_, i.e., for u E R", 

(2u, 1 - u 2 )  

u 2 +  1 
E R" x R = R"+' h2(u) = 
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Figure V1.4 

The extension h; to R" x R, is now defined by 

(2u,  1 - u' - t ' )  

u' + (1 + t)' (u,  t )  E R" x R+. ' K'(V, t )  = 

(If L, is the ray beginning at a- through u E R", then 6' sends L, n R,"+', 
which is a ray beginning at u, onto the segment [h2(u) ,  L). See Fig. VI,4.) 

Now, RT+' # b  Dm+l is obtained by identifying u E RT+' - 0 with 
~ z ( a , + , ( u ) ) ,  where a ( t )  = l/t. 

We define the diffeomorphism h: RY+' #b Dmfl + ,,"+I to be the identity 
map on R,"+' - (0) and the map 

(2u, 1 - v2 - t') 
u' + (1 - t)' (u,  t )  - 

on Dm+' - {a+}. 0 

The geometric argument in this proof is "one-half" of that in 1.2: Let 
S, = S" n R,"+' and consider that part of R" # S" where x, 20. This is 
easily seen to be R," #b S, .  (The case m = 2 is shown in Fig. VI,5.) Since 
the diffeomorphism h maps it onto R," , and S ,  is diffeomorphic to D", 3.3 
follows. 

Exercise Show that Ml #b M2 has the homotopy type of M ,  v M 2 .  
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" le f t  half"  = R2+#,S+ = R 2 + # , D 2  

Figure V1.5 

4 Joining Manifolds along Submanifolds 

Both operations-connected sum and boundary connected sum-consist in 
joining two manifolds by means of a diffeomorphism of tubular neighbor- 
hoods of points. Viewing a point as a submanifold it is natural to generalize 
this to an operation of joining two manifolds along tubular neighborhoods 
of submanifolds. We again distinguish two cases according to whether we 
join manifolds along submanifolds of the interior or along submanifolds 
of the boundary. 

Suppose we are given two (n  + k)-dimensional manifolds M ,  , M2 and a 
k-dimensional Riemannian vector bundle over an n-dimensional closed, 
compact manifold N with total space E. Its zero section will be identified 
with N. If a: (0,OO) + (0, a) is an orientation reversing difEeomorphism, 
we define aE:  E - N +  E - N by 

Now, if h, , h, are two imbeddings of E in the interiors of M I ,  M , ,  
respectively, then a new manifold M ( h , ,  h,) is obtained by identifying 
o E h l ( E  - N) with h2aEh;*(v). That it is a manifold and that the operation 
does not depend on a is verified exactly as in 1.1. Observe that h , ( E )  is 
necessarily a tubular neighborhood of h , ( N ) ,  i = 1,2. 

We will refer to this operation as pasting of two manifolds along submani- 
folds. It is a generalization of connected sum: It is the connected sum when 
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N is a single point (except that we do not specify orientations). If Nl and 
N2 are given diffeomorphic submanifolds of Ml and M2 with isomorphic 
tubular neighborhoods, then it is possible to paste MI and M z  along them. 

An important special case is that in which N is the standard n-sphere 
S" in S", that is, we paste a manifold M and S" along an imbedded 
n-sphere S c M and S" c S". (S must have a trivial normal bundle.) The 
operation is then called a surgery, or a spherical rnodijcation, on the sphere 
S. We will return to this in Section 8. 

There is no difficulty in extending the operation of pasting two manifolds 
along a submanifold to the case where N is a manifold with boundary: We 
require that hi IN be neat imbeddings and that h i ( E )  be neat tubular 
neighborhoods of hi (N) ,  i = 1,2. In particular, if L1 and L2 are neatly 
imbedded arcs in MI, M2 respectively, then their normal bundles are cer- 
tainly trivial and it is possible to paste MI and M2 along 15, and L2.  

Exercise Let MI, M2 be two k-sphere bundles over closed manifolds 
N ,  , N2 respectively. Choose fibers S ,  in MI, Sz in Mz.  Then the manifold 
resulting from pasting M1 and Mz along S , ,  S, is a k-sphere bundle over 
Nl# N2.  

5 Joining Manifolds along Submanifolds of the Boundary 

The last operation we shall consider here is the operation of joining two 
manifolds along imbedded submanifolds in the boundary. This will general- 
ize the boundary connected sum. 

Suppose we are given two (n + k + 1)-dimensional manifolds Ml , M2 
and a k-dimensional vector bundle 6 over an n-dimensional closed compact 
manifold N. Suppose that h,  , h2 are two imbeddings of its total space E in 
aM, , aM2, respectively, and that 6,, h; are extensions of h, , h2 as tubular 
neighborhoods of h, (N) ,  h2 (N)  in MI, Mz.  That is, K1 and h; imbed 
"one-half" of the (k + 1)-dimensional bundle 6 0  E ~ ,  cf: II1,4. Now, if we 
let E' be its total space, then a new manifold is obtained by identifying 
u E h;(E' - N) with h;a&;*(u). 

We will refer to this manifold as MI, M2 joined along submanifolds in 
the boundary and denote it M ( h l ,  h2).  

The operation depends on the choice of imbeddings h, , hZ, but not on 
the choice of extensions h; , h;; this is reflected in the notation. (As before, 
it is enough to show this for proper tubular neighborhoods. In this case it 
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is a version of the Uniqueness of Collars Theorem and it follows from 
III,3.1 by an argument analogous to that used to prove III,3.3.) The depen- 
dence on h l ,  h, is given by the following: 

(5.1) Proposition Let M = M ( h , ,  h2), M' = M ( h ; ,  h i ) ,  where hi IN = 

hit N, i = 1,2. Then there is an automorphism g of E such that M ' =  
W h l g ,  h2). 

In other words, what can be achieved by modifying both imbeddings can 
also be achieved by modifying only one, by composing it with an automorph- 
ism of E. This follows from III,3.1 and the fact that aE commutes with 
automorphisms of E. Details are left as an exercise. 

A special case of this operation is when N = aM, , h,  is the identity map 
and h,: dM1 + dM2 a diffeomorphism. Given collars dM, x R, c MI, aM, x 
R, c M,,  we obtain a new manifold by identifying (x, t )  with (x, l / t ) .  
However, it is more convenient to view this new manifold as MI uh2 M2,  
because this manifold contains M,, M2 as subsets. There is an obvious 
homeomorphism between the two that we use to give M ,  uh2 M2 a smooth 
structure. 

An example of this is the double of M: in this case M ,  and M2 are two 
copies of M and h is the identity map on their boundaries. 

In the case of oriented manifolds appropriate conditions on the orientabil- 
ity have to be added. For instance, to obtain the double as an oriented 
manifold we take M2 to be MI with the opposite orientation. 

We now consider an important special case. Let h:  dD" + aD" be an 
orientation preserving diffeomorphism and let Z ( h )  = D" u h  (-D"). We 
leave as an exercise the proof of the following lemma. 

(5.2) Lemma Z ( h )  is difleomorphic to S" ifand only i f h  extends over D". 
Moreover, Z(hg)  = Z ( h )  # Z ( g ) .  0 

In other words, there is a monomorphism from the group r" to A"' ( c j  
III,6.2). In VIII,S we will show that for m 2 5 it is surjective. 

Exercise Let g :  D" + M be an imbedding, h: aD" +. aD" a diffeomorph- 
ism, and let the manifold M' be obtained from M by removing the interior 
of g(D") and then gluing it back using gh, i.e., M' = 

( M  - Int(g(D"))) ugh D". Show that M' is diffeomorphic to M # Z ( h ) .  
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The operation of joining two manifolds along submanifolds in the boun- 
dary generalizes the connected sum along the boundary. There is a corres- 
ponding generalization of 3.2, in which the disc D”’ is replaced by a disc 
bundle, and it is of importance. 

We consider M ( h , ,  h,) obtained by joining M, with M,,  where M2 is a 
closed disc bundle over a manifold N. Moreover we assume that they are 
joined along a section in the boundary, that is, that h2( N maps N to dM, 
as a cross section of the bundle. 

(5.3) Proposition 
MI. 

Under these assumptions M( h, , h,) is difeomorphic to 

Proof The proof is a straightforward generalization of the proof of 3.3. 
Let s: N + M2 be the section in question, -q the 1-dimensional subbundle 
generated by s and 7’ its orthogonal complement, all as in III,4. We take 
as the tubular neighborhood h2 of s ( N )  in aM, the map p in 111,4.3, i.e., 
the map 

2 1 - v2 
V H -  V+-  

1 + v 2  1 + v 2 s ( x )  

where v is in the fiber of -ql over x. 

in 111,4.4, by 
The extension of h, to a tubular neighborhood of s in M2 is defined, as 

1 - v2  - t2  

v 2  + (1 + 1 ) 2  
s(x), (v ,  t )  E R”’ x R,. 

2 
V +  &(V? t ,  = v2 + (1 - t)’ 

Now, with 6, an arbitrary tubular neighborhood in M, of h,l N, the 
diffeomorphism h: M ( h , ,  h,) + M ,  is defined to be the identity on MI - 
h , ( N )  and h;g on M2 - s ( N ) ,  where 

This proves 5.3 with arbitrary h, , and h, chosen as in the preceding. But 
by 5.1 this is the general case. 0 

As we have already said, 3.2 is a special case of this proposition. Another 
special case is the diffeomorphism M u h  (aM X I) + M, where h is 
arbitrary. 



6 ATTACHING HANDLES 103 

6 Attaching Handles 

A particularly important case of the operation of joining two manifolds 
along a submanifold is that in which one of them is a disc and they are 
joined along a sphere. For this case, we will establish a special notation. 

Let m = A + p. If x E R" = RA x R,, we write x = (xA, x,), i.e., X, E 

R",x, E Rp stand for projections of x. With this notation S'-' = 

{x E D" I x ,  = 0, xt  = 1). Let 1 > E 5 0, T ( E )  = {x E D" lxt > E } ,  and let 
a: T ( E )  - S"-' + T ( E )  - S"-' be given by 

We view T(  E )  as a tubular neighborhood of SAP' in D" with the projection 
(xA, x,) H xA/lx,+l;throughmostofthischapterwehave E = Oandabbreviate 
T(0)  = T. 

Note that (Y is the composition of the diffeomorphism D" - SA-' + 
fiA x Dp given by 

2 1 / 2  
(6.1.1) (xA,  xp) (xA,  x ~ / ( l  - x A )  ) 

with the involution on ( f iA  - 0) x D': 

(6.1.2) 

followed by the inverse of 6.1.1. 

contain s"-'. 
It follows easily that a preserves those great A-spheres in aDm which 

We insert here a technical lemma. 
Let x E S'. The great A-sphere in Sm-' that contains SAP' and x is divided 

into two hemispheres by S"-'. Let K(x) stand for the hemisphere that 
contains x and let K c K ( x )  be a A-disc centered on x; if x = (0, x",, then 
for some to ,  

K = {(xAYx,) E S"-'Ix, = fxt, t o <  f i 1). 

Applying 6.1 we see that 
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/ 

ii 
Figure V1.6 

This implies (see Fig. VI,6): 

(6.2) Lemma a ( K  - { x }  u SAP') = K ( x )  n T(  t:) is a smooth manifold, 
a subbundle of T ( t &  and a collar of S"-' in K ( x ) .  Its boundary consists of 
S"-' and a(aK). 0 

We now define the operation of attaching handles. 
Let h: SA-' + aM"' be an imbedding, and let h: T + M"' be an extension 

of h and a tubular neighborhood of h ( SAP') in M"'. Then the manifold MI 
obtained from M"' - h(SA-' )  and D"' - S"-' by identifying x E T - S"-' 
with & ( x )  will be referred to as M with the handle attached along h(S"-')  
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and denoted, symbolically, M, = M u H A ;  h(SA-')  will be called the attach- 
ing sphere. 

We will identify M" - h(S"-')  and D" - S"-' with their images in 
M LJ H A .  In particular, D" - S"-' (as a subset of MI) will be called the 
handle, the p-disc D' = D" n R' the belt disc, and its boundary S'-' the 
belt sphere. 

Observe that if M is oriented and 6 reverses orientation, then M u H A  
admits an orientation agreeing with the orientation of M and with the 
orientation of the handle derived from the standard orientation of D". 

Attaching a 0-handle to M means taking a disjoint union of M with D". 
The following exercise describes attaching a 1-handle. 

Exercise Let M ,  , M2 be two connected manifolds with boundary and let 
xi E dMi, i = 1,2. Let M be MI u M2 with a 1-handle attached along the 
0-sphere {x,, x2}. Then M = M, #b M 2 .  

We now study the effects of attaching a handle to a disc. 

(6.3) Proposition Zf M is obtained by attaching a A-handle to D" along 
Sh-', then M is a p-disc bundle B over a manifold Z homeomorphic to the 
sphere SA. 

Proof Let D1, D2 be two copies of the disc D". The subscript will identify 
to which disc we refer: e.g., T, will be the tubular neighborhood of St-' 
in D,. 

The construction of M begins with a given diffeomorphism h of a tubular 
neighborhood TI(&) n dD, of St-' onto a tubular neighborhood of S2-l in 
dD2. This is extended to a diffeomorphism of T , ( E )  onto a tubular 
neighborhood of Si-' in D2; then x is identified with &(x). To obtain a 
representation of M as a disc bundle, we note that by III,3.5 we can assume 
that for some ~ E T ~ - , ( O ( ~ ) )  

(6.3.1) 

We can now take E = 1 and as 6 the radial extension 

of h followed by an automorphism given by y. Thus if we identify DF - St-' 
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with &' x D', i = 1,2, via the diffeomorphism 6.1.1, then M is diffeomor- 
phic to B = (6; x D') u - (6; x 0') with the identification 

This identification commutes with the projection (x", x,) + x,, hence the 
result is a disc bundle over the manifold B = D: u- D;, X, - 
h(xA/ /xAl) ( l  - x,) , the zero section of the bundle, cf. [S, 0 181. Since H is 
diffeomorphic to B(h)  (4 5.2), it is homeomorphic to a sphere. 

2 1/2 

0 

The boundary of E is a ( p  - 1)-sphere bundle fibered by images in aB 
of the spheres {x,} x aD', X, E 6:, i = 1,2. Th,e sphere S$-' bounds the 
disc K, (a+)  in aD, . The interior of Kl(a+)  intersects transversely the fibers 
{x,} x aD', thus its image K,B in aJ3 intersects transversely the fibers of 
aB. Of course, the same is true for the sphere Sip', the disc Int &(a+) and 
its image K Z B .  We note this for future reference: 

(6.4) The difeomorphism M + B sends the discs Int K l (a+)  and Int &(a+) 
onto discs that intersect transversely the fibers of the fibration dJ3 -* H (i.e., 
are partial sections). 

(6.5) Corollary If M is obtained from D" by attaching a A-handle along 
h(S"'), where h: S"' + aD" is an imbedding extending to an imbedding of 
DA, then M is a p-disc bundle over S". 

Proof By 111,3.6, h is isotopic to the identity map S"-'+ 
S"-'caD". 0 

The condition on h is certainly satisfied if A = 1 and m > 1. Since the 
only orientable disc bundle over the circle is the product bundle we obtain: 

(6.6) Corollary If D" u H' is orientable, then it is difeomorphic to S' x 
Dm-'. 0 

7 Cancellation Lemma 

We will show in the next chapter that every closed manifold can be built 
by starting with a disc and consecutively attaching handles. It will then be 
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important to recognize situations in which different sequences of attach- 
ments produce the same result. We present in this section two results of 
this type. The first one concerns the order in which handles are attached. 

(7.1) Proposition 
obtained byfirst attaching HA and then H”. 

If MI = (M u H”) u H A  and A 5 p, then M can be 

Proof Let ZAP’ = d(M u H”),  X”-’ c dM be the attaching spheres of 
handles HA, H” respectively. The assumption A I p implies that dim Z”-’ + 
dim(be1t sphere of H”) = A - 1 + m - p - 1 < m - 1 = dim a( M u H”).  
Thus by IV,2.4 there is an isotopy of a(M u H”)-hence of M u H”-that 
pushes ZAP’ off the belt sphere of H”. But any subset of d(M u H”) which 
is disjoint from the belt sphere is in dM - X”-’. In particular, after the 
isotopy Z“-’ is in dM and is disjoint from Z”-’. Now handles HA and H” 
can be attached in any order. 0 

The second, deeper, result describes the situation when one handle cancels 
another, that is, when an attachment of two handles of consecutive 
dimensions to M produces no change in M. It will turn out that this happens 
when the attaching sphere of the second handle intersects the belt sphere 
of the first handle transversely in one point, and we begin by studying this 
condition. 

(7.2) Lemma Let M = M ,  u H ”  and suppose that there is in aM a sub  
manifold N intersecting the belt sphere SP-’ transversely in one point. Then 
the attaching sphere B of HA bounds in dM1 a manifold N’  that is difeomorphic 
to N with the interior of a disc removed. 

Proof Let x = N n S”-’ and let K ( x )  be as in 6.2. Since K ( x )  4 S”-’, 
there is by IV,1.7 an isotopy of dM that brings N to coincide with K ( x )  
in a neighborhood of x and does not move the belt sphere. This is extended 
over M, using the collar of dM, in the usual way. Thus we can assume that 
N coincides with K ( x )  along a small disc K centered at x (see Fig. VI,7). 
(If a proper tubular neighborhood in M ,  was used to construct M, then 
one can assume that K = K ( x ) ,  as it is easy to see.) 

Remove the interior of K from N: what remains is a manifold N ,  in 
dM,. Its boundary, a A-sphere, equals h a ( d K ) ,  where h is the attaching 
map. Now, applying h to the configuration in 6.2, we see that hcu(dK) is 
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Figure V1.7 

one of two components of the boundary of the manifold h ( a ( K  - {x}) u 
S"-'), diffeomorphic to S"' x I. The other component of the boundary is 
the attaching sphere X = h(S"-') .  Thus 

N' = N ,  u h ( a ( K  - {x}) u S"-') 

is a manifold with boundary Z and diffeomorphic to N ,  . 

a subbundle of h( T): it equals h ( a ( K  - {x}) u SA-'), CJ: 6.2. 
Observe that Int N' is diffeomorphic to N - {x} and that N' n h( T )  is 

(7.3) Theorem Let M = MI v H A  and suppose that there is a A-sphere S 
in aM that intersects the belt sphere of the handle transversely in one point x. 
Then there is a difleomorphism of M onto MI #b B, where B is a disc bundle 
over a sphere, which maps S onto a section of this bundle. 

Proof Let N' be as in 7.2. Then N' is diffeomorphic to a closed disc, 
Int N ' =  S - {x}, and H A  is attached along dN'.  By 3.2 there is a 
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D" u 

Figure V1.8 

diffeomorphism MI + MI #,, D"; by III,3.6 we may request it to map N' 
onto any preassigned disc in the boundary of D"; we choose K ( a + )  as the 
image. 

In this way we represented M as M ,  # b  (D" u H A )  where H A  is attached 
to D" along the boundary of K ( a + ) ,  that is, along SAP' (see Fig. VI,8). By 
6.3, D" u H A  is diffeomorphic to a disc bundle B. 

In this representation of M,  S = Int N' u {x} = Int K ( a + )  u {x}. To see 
that the diffeomorphism M + B maps S onto a section, first note that by 
6.4 it maps K ( a + )  onto a partial section. The only other intersection of S 
with fibers of B is the point x, and this intersection is transversal by 
assumption. Thus the image of S is a cross section by IV,1.3.2. 0 

The following theorem is the basic tool in the simplification of handle 
decompositions. It is sometimes referred to as the Cancellation Lemma and 
is due to S. Smale [Sm3]. 
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(7.4) Theorem Suppose that M = (MI u H A )  u HA+', where the attaching 
sphere of HA+' intersects the belt sphere of H A  transversely in one point. Then 
M is difeomorphic to MI.  

Proof We take the attaching sphere of HA+' as the sphere S in 7.3. Then, 
for some disc bundle B over a sphere, 

M = ( M , # ~ B ) u  H"+' = M' # b ( ~  H*+') = M ,  # b  D" = M, ,  

by successive application of 7.3, 5.3, and 3.2. 0 

Exercise Show that P" = D"' u H' u H 2  - - * u H". (Hint: Show that 
P" = B u H", where B is a disc bundle over Pm-'; try the cases m 5 3 first.) 

8 Combinatorial Attachment 

The definition we have given of attaching handles presents a disadvantage 
in that M is not a subset of M u H A .  This is inconvenient in homology 
computations. This problem would not occur if we defined M u H A  as 
M u h  (D* x 0") where h: aDA x D" + aM is a diffeomorphism. This oper- 
ation will be called the combinatorial attaching of a handle. It is often used 
to define handle attachment but it has a serious disadvantage in that it does 
not immediately yield a differentiable manifold. To obtain a smooth mani- 
fold one has to employ an additional procedure called straightening the 
comers. We will presently show that both definitions yield homeomorphic 
manifolds. 

Assume that M u H A  is constructed using the imbedding h. Identify D" 
with D A  x D" under a homeomorphism that sends aDA x D" to the part 
of the boundary of D" where x :  1;. Let h' be h restricted to the same 
part of the boundary. 

(8.1) Proposition M uh, D" is homeomorphic to M u H A  under a home@ 
morphism that is the identity on the belt disc and on the boundary of M u ,,, D"'. 

Proof Let C = { ( X ~ , X ~ ) E D " I X : S ~ }  and T , = { ( X , , X , ) E  D"'Ix:?f}. 
Then a interchanges C - D" and Tl - SA-' and is the identity on 
C n Tl. Hence the identification space M u H A  is identical with 
( M  - h(T1)) u h ,  c, h, = h l C  n TI. 
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Now expand C to cover the disc D”; use the homeomorphism 

g(xA7 = ( x A ( 2 ( 1  - x2,))”*7 x f i )  

if x‘, 5 and the identity elsewhere in C. Similarly, expand M - h( TI) to 
cover M using the homeomorphism hgh-’ on h( T) and the identity else- 
where. This yields a homeomorphism 

where g’ = (h’gh-’)(hg-’) = h’,  and proves the first part of the proposition. 
The second part follows from the fact that g 1 Dfi  and g1 C n aD” are 
identity maps. 0 

Since M u H A  is a smooth manifold, 8.1 can be viewed as providing a 
smoothing procedure for M u h ( D” x D’”). Still another representation of 
M u H A  as M u h  (D” x DW) can be obtained by shrinking C to 0”(1/2) X 

Dfi(11/2). In either representation M u h  D” contains M u h  D*. The subset 
of M u h  D“ corresponding to D” is called the core ofthe handle (see Fig. 
VI,9). Clearly: 

(8.2) Lemma M u h  D” is a sfrong deformation retract o f M  u h  D“. 0 

Figure Vl.9 
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This implies easily: 

(8.3) Proposition 
ifA > i and injective i fA  > i + 1. 

The homomorphism .rr,(M) + r i ( M  u HA) is surjective 

Proof By 8.2 we have to examine the inclusion of M into M with a A-cell 
attached. But a map of S' into M u h  D" can be assumed to miss an interior 
point of D" if A > i and the same is true for a map of an ( i  + 1)-disc if 
A > i + l .  0 

9 Surgery 

Surgery on a (A - 1)-sphere S in a manifold M" is a special case of pasting: 
We paste M and S" along S and SAP-'. The resulting manifold will be 
denoted , y ( M , S ) .  With the notation of Section 6 it can be described as 
follows. Let T' = {x E S" lx: > 0); we view T' as a tubular neighborhood 
of S"-' in S". Let h: T '+  M be a diffeomorphism, h(S"-') = S, Then 
X ( M ,  S )  = ( M  - S )  u h a  (S" - s"-'), where a is as in 6.1. 

Note that the operation of attaching a A-handle along S becomes, when 
restricted to the boundaries, precisely surgery on S. This can be conveniently 
stated as follows. Consider h as an imbedding of T' in M x (1) c M x I 
and attach a A-handle to M x I along S. Let W = (M x I )  u H A ;  W is 
called the trace of the surgery. 

(9.1) Proposition 
of M x (0) andX(M x {l}, S ) .  

If M is a closed manifold, then the boundary of Wconsists 
0 

We will refer to M x (0) and x ( M  x {l}, S) as the left- (resp. right-) hand 
boundaries of W and denote them d- W (resp. a, W). Observe that if we 
represent W as (M x I )  u h  (D" x D"), as in 8.1, then the transversal disc 
D, is represented by 0 x D" and the core disc D, by D" x 0, p = 
dim W - A = m - A + 1. Now, 0 x D" u D" x aD" is a strong deformation 
retract of D" x D'. This implies immediately: 

(9.2) Lemma a+ W = ,y(M x {l}, S) with the transversal disc D, attached 
along the belt sphere is a strong deformation retract of W. 0 
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An argument analogous to that of 8.3 yields: 

(9.3) Proposition 
m - A + 1 and injective i f i  < m - A. 

The homomorphism ri(a+ W )  + ri W is surjective if i < 

10 Homology and Intersections in a Handle 

We will now prove some results concerning the effect of handle attachment 
on the homology of M. 

The notation is that of 8.1, i.e., we represent W as (M x I) u h  (0, x D,) 
with the transversal disc Dt of dimension m - A + 1 and the core disc 0, 
of dimension A. The boundary of 0, is the attaching sphere S and the 
boundary of 0, is the belt sphere S,.  

(10.1) Lemma (a) The inclusions Dc c W and Dl c W induce 
isomorphisms 

H*(D,, d o c )  + H*( w M x I ) ,  

H*(Dt, a m  + H*( w a+ W ) .  

(b) The image of a: HA( W, M x I )  + HA-,(M x I) is the subgroup [S] 
generated by the fundamental class of S. 

Proof Part (a) follows from 8.2 and 9.2. Part (b) follows from the 
commutative diagram 

i- T 
We will now study intersection numbers of submanifolds of W. For this 

we need a convention concerning orientations, and we assume the following. 

(10.2)If W and D, are oriented, then D, is oriented so that [D,:  D,] = 1. 

In other words, the orientation of D, followed by the orientation of D, 
agrees with the orientation of W. 



114 OPERATIONS ON MANIFOLDS 

We denote the orientation of D,, i.e., the chosen generator of HA( D,, all ,) ,  
by g,, and the orientation of 0, by g,; the same letter will be used to denote 
the corresponding generators of HA( W, M x I) and Hm-,+,( W, a+ W). 

Suppose that there are given in the interior of W manifolds V, and 
V, representing homology classes g, E HA( W ) ,  g, E H,,-,+,( W) and 
let i, : HA( W )  + HA( W, M x I ) ,  j, : H,,-A+,( W )  + H,,-A+I( W, a+ W) be 
induced by inclusions. Then i*(gl) = 7,gc and j*(g2) = 7,g1, where 71 = 
[ V, : Dt], by IV,5.1. 

(10.3) Proposition [ V, : V,] = T~ T ~ .  

Proof Consider the following diagram, in which all maps are induced by 
inclusion: 

k, 
Hm-A+l (  w) - Hm-A+l( w, w - v l )  

J*/  T'* 
= 

Hm-A+l( Wa+W)----* Hm-A+l(DI, a Q ) .  

By IV,5.1, Z*(g,) = [Dt  : VJg and k,(g,) = [ V,: VJg, where g is an appropri- 
ately chosen generator of Hm-,+,( W, W - V,). By commutativity 

[V2: Vl lg  = k J g 2 )  = 4&(g2) = 724Agt) = 4Q:  Vllg, 

whence [ V, : V2]g = 7,7,g, which proves 10.3. 0 

In particular, it follows from 10.3 that if V represents a generator of 
HA( W, M x I), i.e., if [ V:  Dt] = + l ,  then 

(10.4) j&2) = *[ V2 : Vlg,. 

One more simple relation will be needed in the future. Let S, be an 
oriented A-sphere in a+ W representing the class g, in HA( W); we want to 
identify its image i*(g,) in HA( W, M x I). Let S &  be obtained by pushing 
S, into the interior of W (using the collar of a+W). Then i*(g,) = 
[ S & :  D,]g,. But if S, = aD, is the belt sphere oriented as the boundary of 
D,, then [ S &  : D,] = [S, : S,] and we get 

(10.5) i*(ga) = [ S ,  : S p l g c .  

This relation holds without assuming W oriented; it is enough to orient 
0,. This will yield g, and a generator ga of HA(J+ W, J+ W - S,),  i.e., an 
orientation of the normal bundle to S,. 
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11 (m, k)-Handlebodies, m > 2k 

A manifold obtained by attaching g k-handles to the disc D" is said to be 
an (m, k)-handlebody of genus g. To describe the structure of handlebodies 
we need the notion of a link. Let gDk stand for a disjoint union of g copies 
of Dk. A link is an embedding h of the boundary a(gDk) in S-'. A link 
is trivial if h extends to an imbedding of gDk. For instance, if k = 1 and 
m > 2, then every link is trivial. If an (m, k)-handlebody M is given by 
specified attaching maps then the restrictions of these maps to the attaching 
spheres determine a link, which we will call the presentation link Observe 
that spheres of a presentation link have trivial normal bundles. 

(11.1) 
connected sum of g ( m - k)-disc bundles over Sk. 

Lemma If the presentation link is trivial, then M is a boundary 

Proof Let h be the presentation link. Then h = (h,, . . . , h g ) ,  where each 
hi is an imbedding of dDk in dD" extending to an imbedding h; of Dk. 
Represent D" as a connected sum along the boundary of g copies 
D , , .  . . , Dg of D". By III,3.7 we can assume that h;. sends D k  to Di, and 
the lemma follows now from 6.5. 0 

(11.2) 
connected sum of (m - k)-disc bundles over Sk. 

Proposition Ifm 2 2k + 1, then an (m, k)-handlebody isa boundary 

Proof We have to show that the presentation link of (k - 1)-spheres in 
Sm-' is trivial. If rn 2 2k + 2, then by II,3.2 each imbedding extends to an 
imbedding of a k-disc. We may assume that these discs are transversal; 
since 2k < dim Sm-' they are then disjoint. 

If m = 2k + 1, then we have a link of (k - 1)-spheres in SZk. A theorem 
of Whitney quoted in II,4.7 asserts that each imbedding still extends to an 
imbedding of a k-disc and a transversality argument shows that we can 
assume this disc to be disjoint from all other spheres. To show that we can 
assume these discs to be disjoint from each other we proceed by induction. 
The inductive step is as follows. Suppose that we have in S Z k  g imbedded 
k-discs disjoint from each other and from an imbedded (k - 1)-sphere S. 
Now, remove these discs from SZk.  By 111,3.7, the resulting manifold is 
diffeomorphic to SZk with g points removed; hence, by the same theorem 
of Whitney, S bounds a disc in it. 0 
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The only property of a o "  = s"-' that was used in proving 11.2 is that 
it is ( k  - 1)-connected. Hence we have the following proposition, of which 
11.2 is a special case. 

(11.3) Proposition Suppose that W is obtained by attaching g k-handles to 
M x I along M x (1 ) .  If M is (k - 1)-connected and dim M 2 2k, then 
W = ( M  x I )  #b T, where T is a boundary connected sum of g disc bundles 
over sk. 

(11.4) Corollary 
g. Then: 

Assume rn > 2 and let Bg be a (m,  1)-handlebody of genus 

( a )  Bg is a connected sum along the boundary of g disc bundles; 

( c )  Genus and orientability form a complete set of diffeornorphism 
( b )  Bg #b Bg' = Bg+g'; 

invariants. 

Proof (a) follows from 11.2 and (b) follows from (a). 
To prove (c) observe first that the presentation links of two (m,  1 ) -  

handlebodies of the same genus are isotopic. By 6.6, this implies (c) for 

Dragging one leg of H, along the 
marked path will untwist H, 

Figure V1,lO 
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orientable handlebodies; in the non-orientable case one has to show that 
attaching two non-orientable handles is equivalent to attaching one orient- 
able and one non-orientable handle. This is left as an exercise (drag one 
leg of a non-orientable handle across another non-orientable handle; see 
Fig. V1,lO). 0 

We will now calculate homology of handlebodies and their boundaries. 

(11.5) Let B be a n  (m, k)-handlebody of genus g. Then B has 
the homotopy type of a wedge of g k-spheres and its boundary is n-connected, 
where n = min(k - 1, m - k - 2). 

Proposition 

Proof By definition, B is obtained by attaching g k-handles to D" along 
g disjoint (k - 1)-spheres S,, , . . , S,  c D". Let S = UiSi. By 8.2, D" with 
g disjoint k-discs attached along S is a strong deformation retract of B. 
Following this deformation by a deformation of D" to a point results in a 
wedge of g k-spheres. 

The second statement is just a juxtaposition of 8.3 and 9.3. 0 

Observe that if m 2 2k + 1, then aB is (k - 1)-connected. 

(11.6) Proposition Let B be an (m, k)-handlebody of genus g. If m > 
2k + 1, then Hk(aB) is free abelian of rankg. If m = 2k + 1 > 2, then Hk(aB)  
is free of rank 2g. 

Proof Let D stand for the union of all transversal (m - k)-discs of handles 
in B. We consider the part of the exact homology sequence of the pair 
(aB u D,dB): 

' * * + Hk+l(aB u D )  + Hk+l(aB u 0, dB) -+ Hk(dB) 

+ Hk(aB U D )  + Hk(dB V D, aB) + ~ . . 

By 9.2 aB u D is a strong deformation retract of B with an interior point 
removed; hence Hi(dB u D) = H i ( B )  for i < m - 1. By 11.5 H k ( B )  = gZ 
and is zero in all other positive dimensions. By excision H,,-k(dB u 
0, aB)  = H,,_k(D, a l l )  = gZ and is zero in all other dimensions. Inserting 
these values in the exact sequence we obtain: 

0 + gZ + H,(dB) + gZ + 0 

O+O+&(dB)+gZ+O if m > 2 k + 1 .  0 

if m = 2k + 1 > 3; 
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Exercise Calculate the homology of the boundary of a (3,l)-handlebody. 

It follows from 11.6 that two (m, k)-handlebodies with homeomorphic 
boundaries have the same genus if m > 2k and that the boundary of such 
a handlebody is not a homotopy sphere unless g = 0. Both statements are 
definitely false if m = 2k. Removal of the interior of a disc from S k  x Sk  
leaves a (2k, k)-handlebody of genus 2 and a sphere as the boundary. This 
case is studied in the next section. 

12 (2k. k)-Handlebodies; Plumbing 

An imbedding hi in the presentation link of a ( 2 s  k)-handlebody B need 
not extend to an imbedding of a k-disc in However, according to a 
theorem of Whitney [Wi3], it does extend to an imbedding of a disc in DZk 
if k > 2. This disc together with the core of the handle forms a k-dimensional 
sphere smoothly imbedded in the interior of B (8.1 is helpful in visualizing 
the situation here). In this way we obtain g imbedded spheres Z, , . . . , Z,, 
which are oriented by the choice of orientations of cores of handles and 
are called presentation spheres. By 10.1 (a) their fundamental classes yield 
a base for &(B). (We could obtain the same result by starting with the 
base for Hk (B) given by handles and then using the Hurewicz and Whitney 
theorems to realize it by imbedded spheres.) From now on we assume k > 2. 

Now, the homology of H,(B,dB)  has as a basis the transversal (belt) 
discs of handles b,  , . . . , b,. Let 0 E Hk(B)  be represented by an imbedded 
oriented manifold V and let j , :  H k ( B )  -+ Hk(B, aB)  be induced by the 
inclusion. The following lemma is a consequence of 10.4. 

In other words, with the choice of bases are described, j ,  is given by the 
matrix 3 = ( [ X i  : Xj]), i, j = 1, . . . , g, which we will call the intersection 
matrix of the presentation. It is symmetric or skew-symmetric according to 
whether k is even or odd (see Fig. V1,ll). 

Consider now the exact homology sequence of the pair (B, dB).  Since 
the homology groups of B and of (B, dB)  vanish in all dimensions other 
than k, it follows that d B  is (k -2)-connected and Hk-l(dB) = 

Cokerj,, Hk(dB) == Kerj, . Thus we obtain the following proposition. 



12 (2k. k)-HANDLEBODIES; PLUMBING 119 

Figure VI.11 

(12.2) Proposition dB is a homotopy sphere i f  and only i f  the intersection 
matrix 3 is unimodular. 0 

Another consequence of 10.4 is that [Xi : Z j ]  depends only on the relative 
position of the corresponding attaching spheres. That is, if Si and 4 are 
two attaching spheres, i # j ,  si the fundamental class of Si, and cj a generator 
of Hk(SZk-' - Sj )  = Z, then 

(12.3) k*(s1) = *[Zi:Zj]cj, 

where k:  Si L, S2k-' - Sj is the inclusion. The sign depends on the various 
choices of orientations. We leave the proof as an exercise. (Those familiar 
with the definition of linking numbers, e.g., [ST, 9 771, will notice that this 
means that [Xi : Zj] for i Z j is the linking number of Si and Sj . )  

12.3 provides an interpretation of the off-diagonal elements in 3. The 
diagonal elements of 3 are determined by the normal bundles of presentation 
spheres, as we will presently see. 

Let +*: T ~ - ~ ( S O ( ~ ) )  + r k - , ( S k - ' )  be the homomorphism induced by the 
projection in the fibration SO( k ) / S O ( k  - 1) = Skp' and let Z be an imbed- 
ded k-sphere in a 2k-dimensional manifold B, not necessarily a handlebody. 
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Then we have, by IV,5.4.1, 

(12.4) P : Z I  = +*(a), 

where a is the characteristic element of the normal bundle of 2,  and we 
have identified ? r k - l ( S k - ' )  with the group of integers. 

Let S ,  , . . . , S,  be g (k - 1)-dimensional disjoint spheres with trivial nor- 
mal bundles in aD2k and let al, . . . , ag be g elements of Tk- l (SO(k) ) .  

(12.5) Proposition There is a handlebody B such that the Si are the attaching 
spheres and the ai are the characteristic elements of the normal bundles of 
presentation spheres. 

Proof The sphere Si bounds a disc in D2k and the tubular neighborhood 
of the corresponding presentation sphere is obtained by attaching a handle 
to the tubular neighborhood of this disc in D2k; by 6.3.2 the attaching map 
can always be chosen so that the resulting disc bundle has ai as characteristic 
element. 0 

A theorem of S. Smale [Sm4,4.1] asserts that off-diagonal elements of 
every g x g symmetric or skew-symmetric matrix can be realized as linking 
numbers of a unique-up to isotopy-system of g ( k  - 1)-dimensional 
disjoint spheres with trivial normal bundles in D2k. This implies uniqueness 
in 12.5. We will not use it. Instead, we will construct explicitly a few examples 
with interesting properties. 

Let r k  be the characteristic element of the tangent bundle to the k-sphere. 
Then (p*(q) = 0 if k is odd and =2 if k is even; see A,5 for all necessary 
information about ?rkk-l(so( k)). 

The first example is obtained by taking as S, and S, the intersections of 
with, respectively, the subspace of the first k coordinates and the 

subspace of the last k coordinates. We let a,  and a, be both equal T k .  If k 
is odd the resulting handlebody K ( 2 k )  has the intersection matrix 

(-; 3. 
This is unimodular; thus a K ( 2 k )  is a homotopy sphere. It is called the 
Kervaire sphere. If k = 1,3,7, then it is diffeomorphic to SZk-';  this follows 
from the fact that the tangent bundle to S k  is trivial in this case; hence 
K ( 2 k )  is diffeomorphic to S k  x Sk with a disc removed. The proof of this 
is left as an exercise. 
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If k # 1 ,3 ,7 ,  then the situation is quite different: Kervaire proved that 
dK(10) is not diffeomorphic to S9 [K2]. In fact, according to W. Browder 
[Br2], d K ( 2 k )  is not diffeomorphic to S2k-1 unless k = 2’ - 1, and it is 
diffeomorphic if k = 15. We say more about this in X,6. 

Our construction can be generalized. We begin with g elements a l ,  . . . , ag 
of T ~ - ~ ( S O ( ~ ) )  and g points “weighted” by a l , .  . . , ag. Parametrize Dzk 
as Dk x Dk and attach a k-handle, another Dk x Dk, by the map 

(4 Y )  (x, a1(x) * Y ) ,  x E dDk, Y E Dk 

The result is a disc bundle over Sk with characteristic element a1 and zero 
section X1. Retain the parameterization in the handle and attach to it another 
k-handle along the boundary of the belt disc 0 x Dk using the map 

(x, Y )  ( a z ( Y )  - x, Y ) ) ,  x E Dk, Y E dDk. 

At the same time join the point weighted by a, to the point weighted by 
a*. Note that the first handle with the second handle attached to it is again 
a disc bundle with characteristic element az and the zero section I;, = (belt 
disc) u (core of the handle). Clearly [I;, : Z2] = *1. 

1 
Figure V1.12 



122 OPERATIONS ON MANIFOLDS 

This attachment of handles is continued, but we have to decide to which 
handle, first or second, the third handle is to be attached. Once the choice 
is made, we attach it to the boundary of a belt disc of the chosen handle 
using a,, and join the third point to the first or second according to the 
choice. This creates the new sphere X, with intersection numbers either 
[X, : &] = *l or [I;, : XI] = +l .  The result is a handlebody, for we attached 
a k-handle to the boundary of a handlebody. 

The end result of this construction is a (2k, k)-handlebody with presenta- 
tion spheres XI,. . . , X,, each with the normal bundle mi, and a weighted 
graph that completely describes it (see Fig. VI,12). An obvious induction 
argument shows that this graph is contractible: It is a tree. 

To the Kervaire manifold K(4n + 2) there corresponds the graph with 
vertices weighted by T ~ , , + ~ .  To the graph 

with all vertices weighted by T~,, there corresponds a 4n-dimensional 
handlebody M(4n) with the intersection matrix 

rs = 

0 

0 

0 

0 2 1 1 
Since rs is unimodular, dM(4n) is a homotopy sphere. A calculation shows 
that the quadratic form over the reals with the matrix rS has signature 8. 
We will show in IX,8 that dM(4n) is not diffeomorphic to S4"-' for n = 2,3. 

This construction we just described is called plumbing of disc bundles. 
Each step in it results in augmenting the intersection matrix by a column 
with the following property: 

(*) All elements above the diagonal are zero with the exception of one 
that equals *l. 
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Of course, the elements on the diagonal are determined by 12.4, and the 
elements below the diagonal by the symmetry or skew-symmetry of the 
matrix. It is clear that all matrices in which columns satisfy (*) can be 
obtained. There is a modification of plumbing due to W. Browder that yields 
all matrices with even elements on the diagonal [Brl,V]. This follows also 
from the just quoted theorem of Smale, but Browder’s construction is 
explicit. For another description of plumbing see [ Hr]. 
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VII 

Handle Presentation Theorem 

The handle presentation theorem of Milnor and Wallace asserts that every 
manifold can be constructed by successive attachment of handles. We state 
it here in terms of elementary cobordisms. This and related notions are 
introduced in Section 1; the theorem itself is proved in Section 2. 

In Section 3 we show how to calculate the homology of a manifold from 
its handle presentation; this is applied in Section 4 to deduce the Morse 
inequalities. In Section 5 we discuss handle presentations of oriented mani- 
folds and derive a version of the PoincarC duality theorem for manifolds 
with boundary. In Section 6 we show how to obtain a handle presentation 
with a minimal number of 0-handles. A classical application to 3-manifolds 
(Heegaard diagram) follows in Section 7. 

The handle presentation theorem is the starting point of the proof of the 
h-cobordism theorem presented in the next chapter. 

1 Elementary Cobordisms 

An ordered triple of manifolds %' = { V,, W, V,} is called a cobordism if 
a W = V, u V,  and V,, V, are disjoint open subsets of a W. We will often 
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write Vo = a- W, V, = a+ W and call Vo (resp. V,) the left-hand (resp. right- 
hand) boundary of W. Throughout this chapter we will consider only 
cobordisms with W compact. 

The simplest example of a cobordism is the trivial cobordism 
{ M x {0} ,  M x I, M x { 1)) where M is a compact closed manifold. We 
have encountered another example of a cobordism in VI,9.1: { M  x {0}, 
M X 1 u H A ,  x ( M  x {l}, S)}. This will be called an elementary cobordism 
of index A; it is the result of attaching a A-handle to the right-hand boundary 
of M x I. 

It will be convenient to view a trivial cobordism as an elementary cobord- 
ism of index -1. 

Suppose we are given two cobordisms V = { V,, W, Vl}, V’ = 

{ Vb, W ,  V;} and a diffeomorphism h:  V, + Vk. As in VI,5 we can join W 
and W’ using h; let W, = W Uh W’. Then a W, = V, u V; and { Vo, W,, V:} 
is a cobordism, which will be denoted % u V’. Again, this is a symbolic 
notation in that it does not show the diffeomorphism h on which the result 
depends. However, if V‘ is a trivial cobordism then the result does not 
depend on h: by Q5.3 we then have % u V’ = %. 

The fundamental role played by elementary cobordisms is explained by 
the following theorem due to Smale and Wallace. Since elementary cobord- 
isms amount to attaching a handle it will be called the Handle Presentation 
Theorem. 

(1.1) Theorem Let V be a cobordism. Then V = Vl u V2 u * u Vk, 
where the Vi are elementary cobordisms. Moreover, one can assume that i < j 
implies A ( i )  5 A ( j ) ,  where A ( i )  denotes the index of Vi. 

The proof will be given following the proof of 2.2 in the next section. 

(1.2) Corollary Let V = { V,, W, V, }  be a cobordism. Then there exists a 
sequence of manifolds V, x I = W-, c W, c W, c - - . c W,,, = Wsuch that 
Wi is obtained from Wi-,  by attaching a number of i-handles to its right-hand 
boundary. 

Proof Represent V as in 1.1. Let Wi be the union of all cobordisms of 
index 5 i in this presentation. Then W,,, is obtained from Wi by attaching 
in succession a certain number of ( i  + 1)- handles. Since they are all of the 
same index they can all be attached “at the same time,” i.e., Wi+, can be 
obtained from Wi by attaching a certain number of ( i  + 1)-handles to its 
right-hand boundary (cf: V1,7.1). 0 
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The sequence { Wi} of manifolds will be called the presentation of %, the 

In the future it will be sometimes convenient to represent Wi as 
manifold Wi its ith level. 

Wi-’ u (a+w,-l x I u H :  u H :  u * * . u H i ) .  

2 Handle Presentation Theorem 

The handle presentation in 1.1 will be shown to be a simple consequence 
of the existence of a Morse function. The link between cobordisms and the 
theory of Morse functions is provided by 2.1 and 2.2. 

Let A4 be a compact manifold with or without boundary and let f: A4 += R 
be a smooth function. We set Ma = f -‘(-a, a ] ,  Ma,b = f - ’ [ a ,  b ] .  If a and 
b are regular values o f f ,  a < b, and Ma,b n aM = 0, then, by II,2.5, Ma,b 

is a manifold with boundary f - ’ ( a )  u f - ’ ( b ) .  In particular, we have a 
cobordism %? = { f -‘(a), Ma,b, f-’( b ) } .  

(2.1) Proposition I f f  has no critical points in then % is a trivial 
cobordism. 

Proof This is just a restatement of I,7.5, 

(2.2) Proposition 
A, then % is an elementary cobordism of index A. 

I f f  has exactly one criticalpoint in Ma,b and it  is of index 

Proof Let p be the critical point o f f  in Ma,b; we assume f ( p )  = 0. By 
IV,4.2 there is a chart U at p ,  which we will simply identify with R” = 

R” x Rp, such that p = 0 and f ( x )  = - x ,  + x ,  in some neighborhood U, 
say x2 < 100, of 0.  ( x “ ,  x, are projections of x into RAY R”.) 

Let E > 0 be such that a < - E ,  E < b. Then f has no critical points in 
either Ma,-s or Me,b. By 2.1 these two are trivial cobordisms, and to prove 
2.2 we have to show that 

2 2  

(2.2.1) M, is diffeomorphic to M-, with a A-handle attached. 

This will be done in two steps. The “difference” between ME and M-,  
is a large manifold extending beyond U. In the first step we will use an 
argument due to J. Milnor [Ml]  to find another manifold contained in and 
diffeomorphic to Me, but such that the difference between it and M-, is 
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contained in U. This will enable us in the second step to use the coordinate 
system in U to construct the required diffeomorphism explicitly. 

(2.2.2) + ( O )  > E, + ( t )  = 0 fort L 2 ~ ,  -1 < d'( t )  5 0. 

We will need a non-negative function +( t)  such that 

This is easy to construct. Given 4, we set 

- +(x i  + 2x2,) for x in V, 
elsewhere. 

F(x)  = 

We now prove that 

(2.2.3) M, is diffeomorphic to F-'(-m, -&I. 
To see this, note first that Me = F-'(-m, E]. For, clearly, M, c F-'( -a, E]. 

On the other hand, if x E F-'(-m, E]  and +(xt + 2x2,) > 0, then x t  + 2x2 < 
2 ~ ;  hence f ( x )  = -xt  + x i  I ;xi + x', < E, i.e., x E Me.  

Now a simple computation shows that V F  = 0 if and only if Vf = 0, that 
is, that F has the same critical points as f; Since F ( p )  < -E, F has no 
critical points in F-~[-E, E]; thus, by 2.1, F-'(-m, E]  is diffeomorphic to 
F-'(-m, -E]. This proves 2.2.3. 

Figure VII.1 
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We have accomplished the first step: The difference between M-, and 
F-’(-oo, - E ]  is contained in U. Before we tackle the second step we need 
a computation. 

(2.2.4) Let q E RA. The intersection of F-’(-oo, - E ]  with the pplane 
X, = q is diffeomorphic to a disc of radius r ( q )  > 0. The function 
r ( q )  is smooth and if q’ > 2.5, then r ( q )  = ( q 2  - E ) ” ’ .  (See 
Fig. VI1,l.) 

The intersection in question consists of points x = (x,, x,) satisfying 

(*> xA = 4, -q2  + x’, - d(q’ + 2 x 3  5 --E. 

With t = q’ + 2x: this becomes 
t 3 
2 2 ’  

+ ( t )  1-+ E - - q 2  

which, since + ( t )  - t / 2  is monotone decreasing, is satisfied for all t 5 to, 
where + ( t o )  = t0/2 + E - (3/2)q2. This is the same as saying that (*) is 
satisfied by all points x, such that x: I ;(to - 4’). Now, by 2.2.2, + ( t )  - 
+ ( O )  > - 2 ;  hence 

5 

2 
t,/2 + E - - q2 = +( to) > + ( O )  - to > E - t o ,  

i.e., to > q2. This proves 2.2.4 with r ( q )  = (f( to - q’))1’2. Since to is a smooth 
function of q, r ( q )  is smooth. 

The proof of 2.2 will now be concluded by showing that 

(2.2.5) F-’(-oo, - E ]  is diffeomorphic to M-, with a A-handle attached. 

This A-handle is attached to M-, along the ( A  - 1)-sphere S = {x, = 0, 
x’, = E }  as in VI,6.1; the attaching map is the diffeomorphism 

of the tubular neighborhood T (  E )  = {x E D” 1 x i  > E }  of SA-’ onto a tubular 
neighborhood T‘ = {x E M-, I x’, < 2 ~ )  of S in M-, . 

Thus M-, u H A  is ( M P E  - S) u-. ( D ”  - S”- ’ ) ,  with the identification 

( (”: - 1”)”’) 
(2-2.6) (x,, x,) - ha(x,, x,) = 6 xA, X, 

1 -x’, 9 

where a is as in VI,6.1. 
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Now the diffeomorphism g :  M-, u H A  + F-'(-w, - E ]  is given by: 

By 2.2.4 u and T are both smooth, and since uha = T, g is a well-defined 
smooth map; its inverse is easily calculated, showing that g is a 
diff eomorphism. 

To compute the image of g, note first that the intersection of M-, - S 
with a plane X, = q is a disc of radius ( q 2  - E)"*  and that u maps this disc 
onto the intersection of F-'(-m, - E ]  with X, = q. Hence u(M-,  - S) = 

F-'(-m, - E ]  n {(x,, X,)~X; > E } .  

Similarly, T maps the intersection of D" - S"' with the plane X, = q 
onto the intersection of F-'(-w,  - E ]  with X, = f i  q. Thus 7(Dm - 
SA-') = F-'(-w,  - E ]  n {(x,, x,) Ix: < 2.5) and, finally, g(M-,  u H A )  = 
u ( M - ,  - S )  u ~(0"' - S"-') = F-'(-m, -&I. 0 

We can prove 1.1 now. If {V,,, W, V,} is a cobordism, then, by IV,3.5, 
there is a Morse function on W taking the value 0 on V,, 1 on V, , and 
having distinct critical values. Thus the first part of 1.1 follows from 2.2 
and the second part from VI,7.1. 

We have shown that a Morse function on a cobordism yields a presen- 
tation. Conversely, to every presentation there corresponds a Morse function 
that yields it. To see this, it is enough to show that for every elementary 
cobordism of index A there is a Morse function constant on the boundary 
and with only one critical point of index A. We will show this by adapting 
the construction used in the proof of 2.2. 

Let W =  V x [ - 2 ~ ,  - E ]  and suppose that a handle H A  is attached to a, W 
along a sphere 8. Let T be a tubular neighborhood of B in W. Let d be a 
diffeomorphism of T onto the tubular neighborhood T'= 
{x E M-, Ix: < 2.5) of S in M-,; d can be chosen so thatfd(x, 1 )  = t, where 
f ( x , ,  x,) = -x: + x:, (x, t )  E W .  

We will identify T with T'; we thus can view the handle H A  as attached 
to W along T' and our task is to extend the function (x, t )  H t over the 
handle. 

Now, if H A  is attached via the identification 2.2.6, then the extension, 
and the desired function with only one critical point of index A, is simply 
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given by setting 

i fq  = ( x , t )  E W -  T, 
if q E D” - S”-’ ,  G ( q )  = { k’ where g is given by 2.2.7 

In the general case HA is attached by an identification that is a 
composition of 2.2.6 with a rotation in the p-coordinate. Since F is invariant 
under such a rotation, the preceding formula for G works in the general 
case as well. 

It follows from this argument that if there is given a presentation 9’ of 
a cobordism {Vo, W, Vl}, then B is derived from some Morse function f 
on W In this case the function -f yields a presentation of the cobordism 
{ V, , W, Vo}, called the dual presentation. 

(2.3) Proposition To every presentation 9’ there corresponds a dual 
presentation 9 such that the A-handles of B are the ( m  - A)-handles of 9, 
and such that the attaching sphere of a A-handle of B is the belt sphere of the 
corresponding ( m  - A)-handle of 9 and vice versa. 

Proof With the same assumptions as in 2.2, let %’ be the cobordism 
{ f -’( b) ,  Ma,b, f - I (  a ) } .  Consideration of the function -f + a + b shows that 
%’ is an elementary cobordism of index m - A, and that the attaching sphere 
of %’ is the belt sphere of % and vice versa. 0 

This procedure is sometimes called “turning the cobordism upside down.” 
There is a good reason (cJ 5.1 following)-besides brevity-to use the word 
dual instead. 

3 Homology Data of a Cobordism 

The presentation of a cobordism { V,, W, Vl}, as in 1.2, allows us to read 
homology properties of Win  a much simpler and more geometric way than 
a triangulation does. This is so because this filtration is cellular ([D,VI.l]) 
and the composition of homomorphisms 

has a very simple geometric interpretation in terms of intersection numbers. 
This can be described precisely as follows. 
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Figure V11.2 
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Let %? = { Vo, W, V,}  be a cobordism and B its presentation as in 1.2. Fix 
an orientation for the core of every A-handle H t ,  A = 0,. . . , m, i = 

1, . . . , c,. This will induce an orientation of the normal bundle to the belt 
sphere pYpA-’ and, via the attaching map, of the attaching sphere a;-’ 
(see Fig. VII,2). Thus all intersection numbers [a:-’ : p,”-^] are now defined 
as in VI,10.5. For a given A, 1 5 A 5 m, we will arrange these in a (c,-,) x C, 
matrix n, in which rows are indexed by (A - 1)-handles, columns by 
A-handles and [ ( ~ : - ‘ : p , ” - ~ ]  stands at the intersection of the ith column 
and the j th row. Finally, let C, be the free abelian group generated by 
A-handles If:, . . . , If:*. If C, = 0 we let C, be the trivial group. In this case 
we let P2, and P2,+, be trivial matrices, that is, to have all entries equal zero. 

It is clear that if B is obtained from a Morse function f, then C, is the 
number of critical points off of index A. 

It will be convenient to represent an element v = C m,Ht of C, as a C, x 1 
matrix ‘( m, , . . . , mc,). With this notation we define a homomorphism 
a, : C, + CA-] by 

(3.2) 

i.e., aH1 = C j  [a)-’ : p , ” - ” ] ~ ; - ’ .  

a,v = %RA * v, 

(3.3) 
be called the homology data of 9. 

Definition The graded group {C,} and the set of matrices P2, will 

(3.4) Theorem C, = {C,, a,} is a chain complex, and H*( C,) = 

H*(W VO). 

Proof Assign to a A-handle the class in HA( W,, WA-1) corresponding to 
the orientation of its core. By VI,lO.l(a), this induces an isomorphism 
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C, + HA( W,, WAPl). By VI,lO.l(b) and VI,10.5 this isomorphism makes 8, 
correspond to the composition 3.1. Thus the theorem follows from 
[D,VI.3]. 

We have shown how the homology data of a presentation of a cobordism 
W determine the homology of W with integral coefficients. However, if R 
is any principal ideal domain and we let C, be the free R-module generated 
by the set of A-handles, then VI,10.5 will still make sense, hence 3.2 as well, 
and the proof of 3.4 (with the reference changed to [D,VI,7.11]) will remain 
valid for homology with coefficients in R. 

If R = 2/22, then the theory is considerably simplified by the fact that 
intersection numbers can be replaced by intersection numbers mod 2, i.e., 
the number mod 2 of points of intersection, and no orientations have to be 
chosen. 

Exercise Represent P2 as in 1.2: D2 c W, c P2,  where W ,  is a Mobius 
strip, and calculate the integral and mod2 homology of P2 from this 
presentation using 3.4. 

Exercise Let p, q be a pair of relatively prime integers. A (p, q)-torus 
knot is a simple closed curve S on the surface of the solid torus T = D2 x S2 
that wraps p times in the longitudinal direction and q times in the meridianal 
direction. Attach a 2-handle H 2  to T along S and show that the boundary 
of T ti H 2  is a 2-sphere. (Use combinatorial handles as in VI,8 and prove 
first that a surface of T with a (p, q)-torus knot removed is an annulus.) 

Attach a 3-handle to T u H 2  along the boundary. The result is a closed, 
compact 3-dimensional manifold called the lens space L(p ,  q ) .  Since T = 

D3 u H' we have a presentation L(p ,  q )  = D3 u H' u H 2  u H 3 .  Calculate 
the homology of L(p, q) .  

Exercise Let E ( n )  be the total space of the disc bundle associated to the 
Hopf fibration S"-' + S"", n = 4,8,16. Attaching an n-disc (n-handle) to 
E ( n )  along the boundary produces a compact manifold M ( n ) .  Find a 
presentation and the homology data of M ( n ) .  

It is worthwhile to emphasize that all constructions in this section were 
made without any assumption on the global orientability of W; only orienta- 
tions of cores were used, and these were chosen arbitrarily. In particular, 
the orientations of cores of B do not induce any orientation of the dual 
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presentation 9. However, if W is an oriented manifold, then a preferred 
way to orient 9 is given as follows. Denote the oriented core of the handle 
H: of 9 by c; and orient the transverse disc tyPA by the convention VI,10.2; 
this can be written symbolically 

(*) C: A ty-* = w, 
where “ A ” means “followed by” and the equality sign applies to orienta- 
tions. 

Now, the cores of @ are the transverse discs of 9. We extend this rule 
to their orientations, that is, we orient the cores of 9 by the rule 

(**I c7-A = t 7 - A .  

9 is now oriented; we call the resulting homology data {cA}, %A the dual 
homology data. Note that cA is generated by the A-handles of @, that is, 
by the (m - A)-handles of P. The relation between the intersection matrices 
is given by: 

(3.5) Proposition IDzA = ‘%m-A+l 

Proof The key to the proof is that in an oriented manifold the intersection 
numbers can be expressed as intersection numbers of oriented submanifolds, 
provided that the transversal discs are oriented by V1,10.2. For 9’ this has 
already been done in (*); for P we set analogously 

p y - A  I\ i-; = W. 

Comparing this with (*) we get 

C’ A lYpA = pY-” A = (-l)A(m-A)-A t i  A tY-*; 

hence c l  = (-l)A(m-A)-A t i .  

Passing to the boundaries in this and in (**), we get 

ff;-l = (-l)A(m-A)E-l, ~ m - A - 1  = P T - A - I .  
(***) 

Now, GT-A and B;-’ are submanifolds of a + W m - A ;  a;-’, pY-* are sub- 
manifolds of 8, WA-1. Since a, W,,-A is the same manifold as a, WA-l but 
with opposite orientation, we conclude from (***) that 

which is precisely 3.5. 
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4 Morse Inequalities 

We will apply 3.4 to obtain the celebrated theorems of M. Morse. 

(4.1) Theorem Suppose that M"' is a compact, closed manifold and f a 
Morse function on M. Let ci be the number of critical points off of index i 
and let bi = rank H i ( M )  (the ith Betti number of M ) .  Then, for every n, 

(4.1.n) b, - b,-l + bn-2 - * . . 5 C, - c , ~ ,  + ~ , - 2  - * * . . 

Proof Recall ([D,V.5]) that if C ,  = {Ci} is a complex where all the Ci are 
of finite rank and almost all are of rank zero then 

where bi = rank H i ( C , )  and ci = rank Ci. 
Now, the function f yields for the cobordism (0, M, 0) the homology data 

3.3, i.e., the chain complex C, = {Ci, a i }  such that H,(C,)  = H,(M)  and 
rank Ci = ci = number of critical points off of index i. For a given number 
n, 0 5 n < rn, consider also the chain complex C(;l) = { Ci, dJirn. By (*) we 
have 

b;  - bk-1+ b;-2 - .  * * = c, - c,-1+ c,-2 - * * * , 

where b' = rank Hi(C',"'). Since Hi(C',"') = Hi(C,)  for i < n and H,(C,)  
is a quotient of H,(C',")), bi = bj for i < n and b, I b:. 0 

Let x ( M )  denote the Euler characteristic of M. 

(4.2) Corollary , y (M)  = co - c, + c2 - - . . 0 

Adding the inequalities 4.1.n and 4.1.n - 1 ,  we obtain: 

(4.3) Corollary For every n, b, 5 c,. 0 

The following strengthening of 4.3 is due to E. Pitcher [Pi]. Let t ,  equal 
the number of torsion coefficients in dimension n and let b,- , (d)  be the 
rank of the group of boundaries d,(C,). Then c, = b, + b,(a) + b,-,(d) and 
b,(a) 2 t , ,  cJ: [ES, V,8.2]. This yields 

(4.4) c, 2 b, + t, + tnpl 
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5 Poincare Duality 

As another application we prove the Poincari duality theorem for a 
cobordism. 

(5.1) Theorem Let { V,, W, V , )  be a cobordism. Assume that W is orient- 
able. Then Hi( W, V,) is isomorphic to Hm-i(  W, Vo), i = 0, 1 , .  . . m = dim W ,  
cohomofogy with integral coeficients. 

Proof Consider a presentation 9 of the cobordism with handles Hi and 
the dual presentation $ with handles B;. By 2.3 the handle HZ is the 
handle nr-" with the transversal disc becoming the core disc and vice 
versa. Any choice of orientations for 9 and 9 will produce homology data 
C, = {CA,aA}, c, = {c,+,z,}, where a,u = 2JtA v, 2°C = n,,- 3. By 3.4 we 
have H,(C,) = H,( W, V,) and H , ( c , )  = H*( W, Vl). 

Let C" = Hom( CA, 2) and identify C" with the free abelian group gener- 
ated by handles of dimension A. Then the dual cochain complex C* = 
{ C", 8,) has the coboundary operator 8, : C" 

6Au = ' f X n A + l  * u, 

and by [D,6.7.11] H*(C*)  = H*( W, V,). 

3.5 holds, and define the homomorphism g :  c* 
Then the diagram 

Now, assume that the dual orientation has been chosen for @, so that 
C* by gA(fi:) = HT-". 

gAl 

The Poincark duality theorem for manifolds with boundary, as in 
[Sp,6.2.20], is a special case of 5.1 for the cobordism { V,, W, 0). However, 
our proof applies only to smooth manifolds and the duality isomorphism 
is defined using a presentation instead of an invariantly defined cap product. 
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Observe, too, that with W orientable (that is, as everywhere in this book, 
orientable over the integers), 5.1 remains true for homology and cohomology 
with coefficients in an arbitrary principal ideal domain R. The only change 
in the proof is that C A  is defined as Hom,(C,, R). If W is not orientable, 
then the theorem remains true with coefficients 2/22. Indeed, the proof in 
this case is considerably simplified by noticing that with mod 2 intersection 
numbers Proposition 3.5 becomes trivial. 

6 0-Dimensional Handles 

The 0-dimensional handles play a somewhat exceptional role in a presen- 
tation of a cobordism. For instance, the matrix 2Jll has only zeros and *1 
as entries. Every row of zeros contributes an infinite cyclic subgroup to 
Ho( W, V,), while a row in which there is a nonzero entry contributes nothing. 
The following theorem shows that it is always possible to find a presentation 
without superfluous rows. 

(6.1) Theorem Let V = { Vo, W, V,}  be a cobordism. Assume that W is 
connected. If V, # 0, then there is a presentation of V without 0-handles. If 
Vo = 0, then there is a presentation with one 0-handle. 

In both cases, 2Jl, is trivial. This is clear if there are no 0-handles; if there 
is only one 0-handle, then every 1-handle, if any, has both endpoints in the 
same sphere; thus the relevant intersection number equals 0 and the first 
level is a handlebody. 

Proof Consider first the case V, # 0 and assume that co > 0. W, is just a 
disjoint union of V, x I and co copies of D". Since Ho( W , ,  V,) = 
Ho( W ,  Vo), there must be a 1-handle H' with one end in x I and another 
in a 0-handle Ho. Therefore W, can be represented as 

W, = ( Vo x I u H o  u H') u (other 0-handles) u (other 1-handles). 

By the Cancellation Lemma, VI,7.4, Vo x I u H o  u H' is diffeomorphic to 
V, x I; hence there is a presentation with co - 1 0-handles. 

Consider now the case V, = 0 and assume that c, > 1. Since W, is 
connected, the same argument as before shows that there is a 1-handle H' 
with ends in different 0-handles H y ,  H : .  Therefore Wl can be represented 
as 

W, = ( H y  u H :  u H') u (other 0-handles) u (other 1-handles). 
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Again by the Cancellation Lemma, Hy v H: v HI is diffeomorphic to D"'; 
hence there is a presentation of W, with co - 1 0-handles. By induction, 
there is a presentation of W, with one 0-handle. 

(6.2) Corollary If V, x I = W-I c W, c W, c - - c W,,, = W is a pres- 
entation as in 6.1, then rri(a+ W,) = ri( W,) = mi( W) for i < A < m - i - 1. 

Proof Applying VI,8.3 successively to the inclusions W, c W,,, c . - we 
conclude that 

(6.2.1) rri( W,) + rri( W) is surjective if i < A + 1 and injective if i < A. 

Similarly, we have from the presentation of the cobordism {a+ W, , V,} that 

.rri(d+ W,) + rri( W,) is surjective if A < m - i and injective if 
A < m - i - 1 .  0 

(6.2.2) 

The case of the fundamental group is of special importance: 

(6.3) Corollary 
m - 3 .  0 

rfrr,(  W) = 1, dim W > 4, then rrl(a+ W,) = l for  2 5 A 5 

If W is a compact connected 2-dimensional manifold, then it follows 
easily from 6.1 that W has a presentation with first level a (2,l)-handlebody 
W, and only one 2-handle. Therefore the boundary of W, is a circle, which 
is a strong restriction. (For instance, if there is only one 1-handle then W 
must be P'.) Through a closer inspection of such a presentation one can 
obtain the classification of compact 2-manifolds. 

7 Heegaard Diagrams 

Theorem 6.1 has two well known applications. The first one is due to 
M. Morse [Mo~]:  

(7.1) Theorem 
with precisely one minimum and one maximum. 

On a closed compact connected manifold there is a function 
0 

The other one is due to P. Heegaard: 

(7.2) Theorem Every closed compact connected 3 -dimensional manifold M 
can be obtained by identijying boundaries of two copies B,, B2 of the same 
handlebody B under a difleomorphism. 
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Proof By 6.1 there is a presentation of M with c, = c, = 1 and with the 
first level a handlebody B1. Then the first level of the dual presentation is 
a handlebody B2 and M = B1 uh  B2,  where h: aB1 -+ aB2 is a diffeomorph- 
ism. Since genus and orientability of a (3,l)-dimensional handlebody can 
be read off from its boundary, B ,  and B2 are diffeomorphic by VI,11.4. 

Note that by V1,11.4, B is a connected sum along the boundary of g 
2-disc bundles over S'. If M is orientable, then these disc bundles are 
trivial, i.e., they are solid tori S' x 0'. 

The minimal genus of B necessary to obtain M is called the genus o f M .  
Handlebodies of genus 0 are necessarily homeomorphic to S3 .  

Exercise Show that S3 can be obtained by identifying the boundaries of 
two handlebodies of arbitrary genus. 

In the representation of M given by 7.2 the attaching spheres of 2-handles 
are precisely the belt spheres (= meridianal circles) of B2.  Thus a system 
of g disjoint simple closed curves on the boundary of a handlebody B of 
genus g will determine a manifold M if there is a diffeomorphism of the 
boundary of B onto itself mapping the system of belt spheres onto the given 
system of curves. Such a system of curves is called the Heegaard diagram 
of M. Since there is a unique way of attaching a 2-handle along a curve 
the Heegaard diagram determines M uniquely, at least up to homeo- 
morphism. 

Exercise 
and that the Heegaard diagram of L ( p ,  q) is the (p, q)-torus knot. 

Show that lens spaces L ( p ,  q), as defined in 3.4, are of genus 1 

Suppose now that M, in addition to the hypotheses of 7.2, is also 
orientable. Then 7.2 yields a presentation for which matrices 2RA, A = 1,3, 
have only zero entries, 2J12 is a g x g matrix, and B is the connected sum 
along the boundary of g solid tori. Moreover, the elements of 2JL2 are 
intersection numbers of curves in the Heegaard diagram with the meridianal 
circles of B, and the orientations can be chosen at will. Thus the homology 
of M is easily computed. 

Exercise Find 2JL3 if M is non-orientable. 

Exercise Show that M is a homology sphere if and only if det 9J12 = *l. 
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The fundamental group of M is the same as the fundamental group of 
the complex consisting of B with 2-discs attached along the attaching spheres 
of 2-handles (i.e., cores of 2-handles). Therefore it has a presentation with 
g generators and relations R,  = 1,. . . , RB = 1, where Ri is the class of the 
attaching sphere of the ith 2-handle in r 1 ( B ) .  These can also be easily read 
from the Heegaard diagram. 

Exercise Show that r , ( L ( p ,  4)) = Z/pZ. 

A good illustration of this theory is the following classical construction 
due to H. PoincarC [P3]. Consider the diagram: 

5 

The two circles, both marked pl ,  are identified as the arrows indicate 
as are the circles marked p2. There results a surface of a handlebody B of 
genus 2, and the continuous and dotted lines represent simple closed curves 
aI , a2 on it. This is a Heegaard diagram of a manifold M; that is, there is 
a homeomorphism of dB onto itself mapping ai onto pi. PoincarC gives 
two proofs of this: The short and ingenious one consists in noticing that if 
we cut the surface along a,, a2 then the resulting diagram is exactly the 
same, with the roles of al, a2 and PI ,  Pz  interchanged. (A more pedestrian 
argument would consist in showing that after attaching 2-handles to B along 
al, a2 the boundary becomes a 2-sphere.) 
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Exercise Show that M is a homology sphere. 

Now, the fundamental group of M has generators g, h and relations 

g4hg-’h = 1, g-’hg-’h-* = 1. 

PoincarC shows that it is non-trivial by showing that after adding the relation 
g-’hg-’h = 1 it becomes the icosahedral group. Thus M is not homeomor- 
phic to the 3-sphere. 

Poincari concludes this computation by asking the question: “Is it poss- 
ible for the fundamental group of M to reduce to the identity element and 
M not being homeomorphic to the 3-sphere?” After rephrasing this slightly, 
he ends the paper, his last paper on topology, by saying that “this question 
would lead us too far.” 

Indeed, this question, known as the Poincare‘ conjecture, led to a good 
part of topology created in the 80 years since then. In the next chapter we 
will present a solution due to S. Smale of a generalization of the Poincari 
conjecture in dimensions larger than 4. Recently, M. Freedman [F] solved 
the 4-dimensional case. But the original question of PoincarC remains 
unanswered. 

8 Historical Remarks 

The ideas presented in the last two chapters have a long and somewhat 
tangled history. Handle presentation of 2-dimensional orientable manifolds 
appeared for the first time in 1861 in the work of A. Mobius [Mo]. Mobius 
assumes that there is an imbedding of a closed surface in R3 such that the 
height function on it is a Morse function with distinct critical points (in 
our terminology, of course). This yields a handle decomposition. He then 
develops a certain notation and an algorithm corresponding essentially to 
moving handles, which allows him to deduce the analogue of our 7.2 for 
surfaces. Mobius calls critical points of the height function of index 0 and 
2 elliptic, those of index 1 hyperbolic, and deduces the equality of the Euler 
characteristic with the alternating sum of numbers of critical points, i.e., 4.2. 

Mobius’s proofs were grossly deficient. Despite its astonishing novelty 
his work remained unknown. More details about it can be found in [Pn]. 

Morse functions reappeared again in Poincari’s “Fifth Complement” 
[P3]. Poincar6 recognized that the topological character of the surface 
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f = constant does not change between critical points and, in the 3- 
dimensional case, studied in detail the change at the critical point. The 
existence of such functions was again assumed. 

Poincart also developed a certain scheme, called by him the skeleton of 
a manifold, which essentially described contiguity relations between handles. 

Modern history of handles began with M. Morse’s paper [Moll in 
connection with his investigation of critical points of differentiable func- 
tions. Since Morse was interested in the homological aspect of the situation, 
the operation he considered would in today’s language be referred to as 
attaching of cells in the sense of CW-complexes. The differential aspect of 
the situation seems to have been described first by G. Chogoshvili in [Cho], 
still in the context of the study of differentiable functions. Thus the Presenta- 
tion Theorem, 1.2, could have been stated and proved in 1941 by just 
juxtaposing published papers. But this was not done until 20 years later 
when various versions of it appeared in the work of S. Smale and A. Wallace. 
Its real importance became clear when S. Smale used it as a starting point 
in his successful attack on the PoincarC conjecture in high dimensions [Sm2]. 

The operation of spherical modifications appeared in differential topology 
independently of the theory of handles. This technique was introduced 
independently by A. H. Wallace in [Wa] and J. Milnor in [M7]. (Milnor 
credits Thom with suggesting the use of the operation.) 

There is an inherent difference in the two operations, which may have 
contributed to their independent appearance. Surgery is informally 
described as “taking out Sk x Dn+’ and gluing in Dk+’ x S”.” There is not 
much trouble in endowing the resulting manifold with a smooth structure. 
On the other hand, when attaching a handle is described as “attaching 
Dk x D” along Sk-’ x D”,” then the resulting manifolds has “corners” and 
a device has to be invented to endow it-canonically-with a smooth 
structure. Complications arise when more than one handle has been 
attached. When this happens some proofs have to rely strongly on the 
technique known as vigorous hand waving. 
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The h-Cobordism Theorem 

The presentation of a cobordism is a geometric object. The homology data 
derived from it are algebraic objects, subject to algebraic manipulations. 
In this chapter we study the problem of finding a presentation of a given 
cobrodism with the minimal number of handles and approach it by trying 
to realize geometrically certain algebraic operations on incidence matrices. 
Appropriate conditions for this to be possible are given for elementary row 
and column operations in Section 1 and, for one further operation corres- 
ponding to the cancellation of handles, in Section 2. Section 3 deals with 
the special case of the matrix TI2, i.e., of 1-handles. The main result of this 
chapter, the existence of a minimal presentation for a simply connected 
cobordism of dimension 2 6  with free homology, is proved in Section 4. 
Among its most important consequences is the PoincarC conjecture for 
smooth homotopy spheres of dimension at least 5 and the topological 
characterization of the n-disc, n 2 5 ,  by homotopy conditions. All these 
results are due to S. Smale. 

The relation of h-cobordism is introduced in Section 5 .  It is an equivalence 
relation, and equivalence classes of n-dimensional homotopy spheres form 
a group 8". It is shown that for n 2 5 this group is isomorphic to the groups 
r" and A" defined in Chapters I11 and VI respectively. This means that 0" 
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can be identified with the group of differentiable structures on S" and that 
each such structure can be realized by an atlas with two charts only. 

In Section 6 we obtain a characterization of handlebodies by their 
homology properties and a description of the structure of highly connected 
manifolds. 

In Section 7 we review some subsequent developments. 

1 Elementary Row Operations 

Throughout this chapter we make the following assumptions: (e = 

{V,,  W, V,} is a cobordism with W and V, connected. 9 is a presentation 
of v: 

V , x I =  W-,c W,c W , c . . . c  W m =  W, m = d i m W ,  

with one 0-handle if V, = 0 and none otherwise (cJ: V11,6.1), and with 
homology data { C,, Z,}, 1 5 A 5 m. 

We will consider the following elementary operations on matrices: 

E l  
E2 
E3 

Interchange of two columns or rows; 
Multiplication of a column or row by -1; 
Addition of a column (row) to another column (row). 

We say that an operation on a matrix Z, yielding rXn: can be performed 
geometrically if there is a presentation 9" of the same cobordism that has 
23: as the intersection matrix. 

We ask the question: What operations on 2XA can be performed geometri- 
cally? There is certainly no problem with El :  this operation corresponds 
simply to a renumbering of handles. 

To perform E2 note that, whether W is oriented or not, the orientations 
of cores of handles are always chosen arbitrarily ( c !  VII,3). But the change 
of the orientation of the core of the ith A-handle will change the sign of 
the ith row of and of the ith column in ZA. Thus E2 can always be 
performed geometrically. 

We will show presently that E3 can be achieved geometrically. The key 
to the proof is the following rather obvious lemma. 

(1.1) Lemma Let N"-' be a connected closed manifold containing two 
imbedded ( A  - 1)-spheres S1, S 2 ,  1 < A < m. Assume that S ,  bounds a A-disc 
K disjoint from S 2 .  Then there is an isotopy in N of S,  to a sphere S, which 
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can be described as “Sl joined by a tube to S2;” that is, S consists of S ,  and 
S2 with small discs D , ,  D, removed and of a tube d D ,  x 1. If V m - A  is a 
submanifold of N which does not disconnect it, then we can assume that 
V n  S = ( V n  S1)u ( V n  S 2 ) .  

Proof. Let L be an arc in N with endpoints u E S 2 ,  s E S,. We request 
that L be disjoint from V and from the interior of K. Let D1 be a disc in 
S, centered at s, and let A and D2,  A = D2, be two concentric discs in S2 
centered at u. Both D1 and D2 should be disjoint from V (see Fig. VII1,l). 

The isotopy of S2 will be performed in two stages. 
At the first stage, we move u along L to s and extend this to an isotopy 

of M, that moves A onto D,, places D2 in a tubular neighborhood of L, 
and keeps S2 - D2 fixed (cf: III,3.6). 

At the next stage we move D,  “across K,” keeping its boundary fixed, 
so as to cover S - fil. Again, this is extended to an isotopy of N. Composing 
these two isotopies results in an isotopy that moves S2 to a sphere S which 
consists of S,  - D2, S1 - D1 , and a tube in a tubular neighborhood 
of L. 

Let W” be a manifold, M a connected component of its boundary. In 
M we have two disjoint oriented ( A  - 1)-spheres Z, ,  Z2 and a submanifold 
V = Vm-” which is transverse to both spheres and does not disconnect M. 
We will assume that the normal bundle to V is oriented. Let W2 = 

W u H :  u H ; ,  where H,, H2 are attached along XI, 8, respectively. 

Figure VIII.1 
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Assuming again 1 < A < m, we have: 

(1.2) Lemma There is a ( A  - 1)-sphere S in M such that: 

( a )  [ S :  V] = [H,: V] * [H,: V]; 
( b )  W, can be obtained by attaching H: along XI and H ;  along S. 

Proof We regard W, as obtained by two successive attachments of handles: 
attaching H :  along I;, , yielding W,, followed by attaching H :  along H2. 
XI is not present in the boundary N of W,, but if K is a small disc in N 
transverse to the belt sphere of H : ,  then its boundary S,  can be viewed as 
being both in M and in N. Moreover, by VI,6.2, S, is “parallel” to H, , i.e., 
it is a cross section of a tubular neighborhood of XI in M. Hence S, is 
isotopic to 2, and, with properly chosen orientation, we have 

[ S ,  : V] = [X, : V]. 

As a submanifold of N, S, bounds a disc K. Thus we can apply 1.1 to 
obtain an isotopy (in N) of H, to a sphere S described there as ‘‘I, joined 
by a tube to S,.” Since for dimensional reasons S can be assumed to be 
disjoint from the belt sphere of H : ,  it can be regarded as a submanifold 
of M. Since the intersections of S with V are the same as these of 2, and 
S, we have 

[ S :  V] = [2,:  V] * [ S , :  V], 

and 1.2(a) follows. 
Now, W, was obtained by attaching a handle to W ,  along X,. Since H2 

is isotopic to S, W, can be obtained by attaching a handle along S 
instead. 0 

(Observe that V may disconnect M only if A = 2. However, 1.2 remains 
valid even if V disconnects M: the additional intersections will occur in 
pairs cancelling each other.) 

The sign in 1.2 can now be explained by noticing that if A < m - 1 then, 
in the proof of 1.1, in the first stage of the isotopy we can choose whether 
A “moves onto D” with the same or opposite orientation; if A = m - 1 ,  
then this is predetermined by the chosen orientations. Thus if A < m - 1, 
then the sign in 1.2(a) can be prescribed in advance. 

We now collect our results. 
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(1.3) Theorem Given A, 1 < A < m, elementary column operations E 1-E3 
on m, , and their inverses, can be performed geometrically afecting only levels 
A and A + 1. 

Proof The operations El and E2 having already been dealt with, we will 
consider E3. 

Let W,-, be the ( A  - 1)-st level of the presentation, W, the A-level. Then 
W, = W,-, u H: u H: u - u H a .  Let V = Vm-” be the union of all belt 
spheres of W,-, . By VIy9.3,d+ WAv1 is connected; we claim that V does not 
disconnect it. For V might disconnect it only if A = 2, but a+ W, - V is 
diffeomorphic to d+ W, with a finite set of points (= attaching spheres of 
1-handles) removed. Since d, W, is connected, so also is a, W, - V. 

This argument shows that 1.2 applies with M = a+ WA-l and Vmp” = V .  
It follows that we can obtain W by attaching handles H : ,  H i  so that the 
intersection numbers will be given by 1.2(a), with-if A < m - 1-the sign 
of our choice. Doing this and then attaching the remaining handles will 
have the effect of adding (or subtracting) the first column of m, to (from) 
the second. If A = m - 1,  then we may have to change the orientation of 
the attaching sphere of H: beforehand. 

This procedure will also affect the matrix m A + ]  (by an appropriate row 
operation, as it is easy to see), but nothing else. 0 

(1.4) Corollary 
1 < A < m, are lower triangular. 

There is a presentation of (e in which all matrices m,, 

Proof The Euclidean algorithm applied to elements in the first row pro- 
duces a sequence of column operations yielding one nonzero element in 
the first row, the greatest common divisor. It is clear how to proceed by 
induction. 

(1.5) If; in addition to our previous assumptions, W is oriented 
and V, is connected, then row operations E 1 - E 3  on matrices m,, 1 < A < m, 
can be performed geometrically. 

Corollary 

Proof 1.3 applies now to the dual presentation 9 and, by VIIy3.5, a column 
operation on the matrix n m - A + ]  of 9 corresponds to a row operation on 
mA* 0 

We apply this to obtain a particularly simple presentation of an oriented 
cobordism, c j  [ES, V,8.2]. 
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(1.6) Theorem 
presentation of W i n  which all matrices m,, are diagonal. 

If W, V,, V, are connected and oriented, then there is a 

Proof We proceed by induction. 2R, is diagonal by V11,6.1; assume that 
%Jli is diagonal, 1 I i I A < m. The well-known theorem of H. J. Smith 
asserts that 2RA can be reduced to the diagonal form through operations 
El-E3 (cf. [ST, 0 871 or [N,II.lS]). We have to see that this can be done 
without affecting a,-,. This follows: Since { C,, m,} is a free chain complex, 
every row of 2RA containing a nonzero element corresponds to a column of 
2JtA-, consisting of zeros. Thus we can make all mi, i 5 m - 1, diagonal. 
Finally, 2R, is diagonal by VII,6.1 again. 0 

There is another use of our results. Given a base of a finitely generated 
free abelian group, any other base can be obtained from the given one by 
a sequence of the following elementary operations: 

C1 Interchange of two elements; 
C2 Multiplication of an element by -1; 
C3 Addition of an element to another. 

Now, if C, is the free abelian group generated by A-handles of a presentation 
8, then these A-handles, oriented, constitute a preferred base of C, and 
what we have shown in this section is that any elementary operation C1-C3 
on the elements of this base can be realized by an appropriate operation 
on A-handles. Thus we have: 

(1.7) Proposition Given a presentation 8 of a cobordism with homology 
data { C, , m,}, 1 5 i 9 m, and a base b of C,,  there is a presentation 8' that 
has b as the preferred base of C,. 0 

2 Cancellation of Handles 

We will now consider the following operation on matrices: 

E4 Adjoining a row and a column with f 1 at their intersection and zeros 
everywhere else. 

When performed on a matrix 2RA of a presentation then one also has to 
adjoin a row of zeros to ZJl,+, and a column of zeros to 2RA-,. 
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It is clear that this operation can be performed geometrically at any level: 
WA-, = WAp1 # b  D” = WA-l u H A  u HA++’ ,  by VI,7.4. Moreover the attach- 
ing and belt spheres of HA+’ and H” intersect transversely in one point. 

It is quite another matter to perform geometrically the inverse of E4: One 
has to show that it is possible to remove two handles of successive dimensions 
knowing only that the algebraic intersection of the corresponding belt and 
attaching spheres is *l. Now, it is certainly possible to do so if their 
geometric intersection consists of only one point; this is precisely the content 
of VI,7.4. Therefore we are led to the following question: Given two 
submanifolds V ,  V’ of a manifold M such that [ V: V’] = c, is it possible 
to isotope one of them so that it will intersect another in precisely IcI points? 

The answer is provided by a theorem of Whitney. We make the following 
assumptions: 

(a) M”-’ is a closed connected and simply connected oriented manifold; 
V”-’ and Vm-“ are closed compact connected submanifolds of M 
interesecting transversely; 

(b) m 2 6; 3 5 A I m - 3 ;  if A = 3, then r l ( M  - V”-”) = 1. 

(2.1) Theorem Under these assumptions there is an isotopy h, of the identity 
map of M such that h,( V”-’) intersects V”-” transversely in I[ V”’: V”-’]l 
points. 

A proof of this theorem can be found in [M8,6.6]. Its details are subtle 
but the main idea can be explained rather simply: One chooses a pair of 
points p, q in the intersection V“’ n Vm-” with opposite indices and 
connects them by arcs L1 in V”-’ and L2 in Vm-”. The crucial step of the 
proof consists in imbedding a 2-disc D in M so that its interior is disjoint 
from V“-’ u Vm-“ and its boundary is the simple closed curve L, u L2.  
This done, V”-’ is moved “across D” so as to remove the pair p ,  q from 
the intersection. This isotopy may be assumed to be stationary except in a 
neighborhood of D. In particular, it moves only a small neighborhood of 
L1 and places it in a neighborhood of D. 

To apply 2.1 to a cobordism % = { V,, W, Vl), as in Section 1, we have 
to make additional assumptions: 

(2.2) Proposition Assume that W is simply connected and m = dim W 2 6. 
Given A, 4 5 A 5 m - 3 ,  we can assume that for all i, j the absolute value of 
[a:-’ : pi”-“] equals the number of points in a:-’ n py-”.  The same is true 
if A = 3 provided that, in addition, 7rl( V,) = 1 and there are no 1 -handles. 
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Proof Let H"-' and H A  be two handles, pm-* the belt sphere of HA-' ,  
and a"-' the attaching sphere of H", A 2 4. Both spheres are in a+ WA-, , 
which is simply connected by VII,6.3. We apply 2.1 to conclude that a"-' 
can be isotoped to a position in which it will intersect pm-" in a number 
of points equal to the absolute value of [a"-' : p"-"]. Moreover, this isotopy 
can be performed in the complement of all other belt and attaching spheres 
that lie in a+ WA-l, this complement being simply connected for dimensional 
reasons. Thus this operation can be applied to each pair of handles without 
affecting what has already been achieved. 

If A = 3 this argument will still work, and 2.1 will apply, for d+ W2 with 
belt spheres removed is diffeomorphic to d+ W, with attaching spheres of 
2-handles removed. If there are no 1-handles and T,( V,) = 1, then this last 
manifold is simply connected. 0 

The last proposition sets the stage for an application of the Cancellation 
Lemma, VI,7.4, to achieve a simultaneous removal of two handles H )  and 
El;-' such that [af-':/3y-AJ = *l, which amounts to the inverse of oper- 
ation E4 on the corresponding incidence matrix. The precise statement 
follows. W is assumed to be as in 2.2. 

(2.3) Theorem Suppose that in the matrix 2JlA the ith row and thejth column 
intersect in *l and have only zero entries elsewhere. If  4 5 A I m - 3 ,  then 
one can remove the corresponding A- and ( A  - 1)-handles from thepresentation 
of W without afecting any other intersection numbers. The same is true if 
A = 3 provided that, in addition, w1( V,) = 1 and there are no 1 -handles. 

(Observe that this operation will affect matrices 2RDZh+', mA, and 
that some of them might become trivial. However, any matrix which was 
trivial before will remain so.) 

Proof Let i = j  = 1. By 2.2 we can assume that the absolute values of 
entries in mA are actual numbers of points of intersection of respective belt 
and attaching sphere. In particular, H ;  is attached away from all handles 
I-€?-', i > 1, and we have 

WA = W A - 2  U kl-' u . * - u H:A:t u H ;  u * - * u H:A 

= ( W ~ - ~ U H : - ~ U H : ) U H ~ - ' U . . . U H ~ ~ ~ ~ U  H ; u . * * u H t A  

= WA-2 u H i - 2  u * . u H"-' cA-, v H i  u * * * u H a ,  

the last equality by the Cancellation Lemma, VI, 7.4. 0 
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3 1-Handles 

Theorem 2.3 does not apply to fez, and in the case of foz, it involves an 
additional unpleasant assumption that there be no 1-handles. In fact, it is 
not in general possible to eliminate a pair of 1- and 2-handles with the 
intersection number *l. However it is possible to eliminate 1-handles at 
the expense of replacing them with 3-handles. 

(3.1) Proposition Let 9 be a presentation of %' = { V, , W, V,} .  Assume that 
W and V, are connected, T,( W )  = 1, and dim W 2 5 .  Then there is a 
presentation 9' with one 0-handle if V, = 0, none otherwise, without 
1-handles, and with the number of handles of dimensions higher than 3 
unchanged. 

Proof By V11,6.1, we can assume that the condition on 0-handles is already 
satisfied. Note that this implies that a+ W, is connected. Let H' be a 1-handle 
and L an arc in its boundary intersecting the belt sphere of H' transversely 
in one point. Then the endpoints of L lie in 8, W,. Connecting them there 
by an arc missing all attaching spheres of other 1-handles (a  finite set of 
points), we obtain a simple closed curve S1 in a+ W, intersecting the belt 
sphere of H' transversely in one point and staying away from other 1- 
handles. We can assume that it is smooth and transverse to all attaching 
spheres of 2-handles. For dimensional reasons this implies that S,  is disjoint 
from all attaching spheres of 2-handles; hence we can view it as being in 
a, W2 where, by VII,6.3, it is null-homotopic. 

Now, we can represent W, as W ,  # b  D" = W, u H 2  u H 3 ,  where the 
attaching sphere of H 3  intersects the belt sphere of H 2  transversely in one 
point and the attaching sphere S2 of H 2  bounds a 2-disc in a+ W, that 
intersects neither the belt spheres of 1-handles nor the attaching spheres of 
2-handles. Thus S,  and S2 can be regarded as two null-homotopic 1-spheres 
in d+ W2 and, since dim a+ W2 2 4, they are isotopic there by the theorem 
of Whitney, II,4.7. Therefore we can assume that H 2  is actually attached 
along S ,  . Symbolically, 

W2 = W, u (1-handles other than H I )  u H' u H 2  u H 3  u (2-handles), 

where the attaching sphere of H 2  intersects the belt sphere of H' transversely 
in one point. The Cancellation Lemma, VI,7.4, implies now that 

W2 = W, u (1-handles other than H I )  u H 3  u (2-handles); 
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i.e., the handle H'  disappeared from the presentation and a new 3-handle 
appeared. Repeating this process with other 1-handles will eventually elimi- 
nate all of them. 

The process of elimination of 1-handles will affect intersection matrices. 
In particular, the matrix 9J13 will become enlarged by addition of new 
columns corresponding to new 3-handles and, similarly, new rows will 
appear in X4. But since the new 3-handles are attached to a, W, and their 
belts lie in discs, the new rows and columns will have only zero entries. 

(3.2) Corollary If% is a simply connected 5 -dimensional cobordism between 
two homotopy spheres, then there is a presentation of V with 2-  and 
3 -dimensional handles only. 

Proof By 3.1 there is a presentation of %' without 0- and 1-handles. Then 
the dual presentation is without 4- and 5-handles and applying to it 3.1 we 
obtain what we wanted. 0 

This process of trading handles for handles of higher dimension can be 
applied-under suitable hypotheses-to handles of higher dimension. The 
essential part of the proof was the construction of the sphere S, intersecting 
the belt of H ,  in one point and null-homotopic in a, Wz; the rest of the 
argument generalizes immediately. 

4 Minimal Presentation; Main Theorems 

The main theorem of the theory developed in the last two chapters asserts 
the existence of a presentation with minimal number of handles. It is due 
to S. Smale. 

Let V = { V,, W, V,} be a cobordism. We say that V is simply connected 
if V,, W, V, are connected and simply connected. The dimension of V is 
by definition the dimension of W. Recall that, for a given presentation, 
c, = # of A-handles and bA( M, V,) = rank HA( M, V,). 

(4.1) Theorem Let V be a simply connected cobordism of dimension m 2 6 
such that Hi( W, V,) and Hi(  W, V , )  are free for i < k, k > 1. Then there is a 
presentation of V such that ci = b,(M, V,) for i < k and i > m - k 

Proof By VII,3.4 we have to show that there is a presentation with the 
homology data {Ci, a,} such that matrices 5111, are trivial for i 5 k and 
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i 2 m - k + 1. This is done inductively, the cases i = 1, 2 being already 
done in 3.1. Assume then that we already have 332, trivial for i 5 A < k, 
A 2 2, and consider mA+,. By 1.6 we can assume that n,,, is diagonal. 
Since HA( W, V,) = CJIm a,+, is free, the nonzero entries in m,,, , if any, 
must equal + l .  By 2.3, if A 5 m - 3 then we can get rid of the corresponding 
A-handles without affecting the triviality of mj for j 5 A. Therefore there 
is a presentation with all Wi, i c: min(k, m - 2), trivial. 

Consider now the dual presentation. By VII,3.5 this has trivial ni for 
i 2 max(m - k + 1,3), and that relation is preserved when 1-handles are 
removed. (As we have noted already, the removal of 1-handles adds only 
zeros to n3 and n4.) Thus we can assume that al and a2 are trivial. Since 
Hi( W, V,) is free for i < k, we conclude again that it is possible to modify 
the presentation so that all ni, i 5 min(k, m - 2), become trivial. 0 

The presentation we obtained is, in fact, minimal; this follows from Morse 
inequalities VII,4.3. Without any assumptions on either Hi( W, V,) or 
Hi( W, Vl), the same method of proof leads to the existence of the minimal 
presentation in the sense of Pitcher inequalities VII,4.4, cf: [Sh]. 

Observe that the hypotheses of Theorem 4.1 are satisfied if Hi( W )  is free 
for i < k, k > 1, and both V, and V, are (k - 1)-connected. This is certainly 
true if W is closed: 

(4.2) Corollary If W fs a simply connected closed manifold of dimension 
m 2 6 and H*( W )  is free, then there is a handle presentation of W such that 
cA=bA(W),  h = 0 , 1 ,  ..., m. 0 

As another corollary of Theorem 4.1 we obtain the main result of this 
chapter: 

(4.3) The h-cobordism Theorem If %? is a simply connected cobordism of 
dimension m 2 6 such that H*( W, V,) = 0, then % is a trivial cobordism, Le., 
W is difeomorphic to V, x I.  

Proof By 4.1 there is a presentation of %? without any handles. 0 

The following is known as the Disc Bundle Theorem: 

(4.4) Theorem Let W a n d  a W be simply connected and let M be a simply 
connected closed submanifold in the interior of W. If dim M + 3 5 dim W 2 6 
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and H*( W, M )  = 0, then W i s  dzffeomorphic to a closed tubular neighborhood 
T o f M i n  W. 

Proof Let V = dT and let W, be the closure of the complement of T in 
W. Then { V ,  W, ,  d W }  is a simply connected cobordism, as follows easily 
from the assumption on the codimension of M and the fact that V is a 
sphere bundle over M. Evidently, 0 = H*( W, M )  = H*( W, T )  = 
H*( W, , V); thus, by 4.3, W, is diffeomorphic to V x I. The theorem follows 
now from VI,5.3. 0 

Theorem 4.4 yields the following characterization of D" (take as M a 
point in the interior of W): 

(4.5) Corollary 
of dimension m 2 6 ,  then W is diffeomorphic to D". 

If W is contractible with a simply connected boundary and 
0 

In particular, there is a unique smooth structure on D". 
The next corollary establishes the Poincari conjecture for smooth mani- 

folds of dimension larger than 4: 

(4.6) Corollary 
homeomorphic to S". 

If M is a homotopy sphere of dimension m 2 5 ,  then M is 

Proof By VI,1.4, M # (-M) bounds a contractible manifold of dimension 
26, thus, by 4.5, diffeomorphic to D"+l. Hence, by VI,2.4, M is homeomor- 
phic to S". 

For m 2 6 we can avoid the recourse to VI,2.4: By 4.2 the cobordism 
(0, M, 0) has a presentation with one 0-handle, one m-handle, and no other 
handles. Thus M = D" Uh D", where h: do" '  -$ dD" is a diffeomorphism. 

Corollary 4.6 is a case of mixed categories: M is smooth but the conclusion 
asserts only a topological equivalence. In fact, it is not possible to assert 
that M is diffeomorphic to S": As we will see in X,6, the differential 
structure on a topological sphere in general is not unique. However, by 4.5, 
the disc D" possesses a unique structure. 

We have shown that 4.5 in dimension m implies the PoincarQ conjecture 
in dimension m - 1. Accordingly, the case m = 5 of 4.5 is very difficult. 
Using a result from Chapter X we can prove the following weaker version. 



4 MINIMAL PRESENTATION; MAIN THEOREMS 155 

(4.7) 
S4, then W is difeomorphic to D5. 

Corollary If W is a 5-dimensional contractible manifold bounded by 

Proof. Attach to the boundary of W a 5-dimensional disc (i.e., a 
5-handle). The resulting manifold W' is a homotopy sphere, which by X,6.3 
bounds a contractible manifold. By 4.5, W is diffeomorphic to S', and 
W-as the complement of the interior of a closed disc in S5-is diffeomor- 
phic to D5. 0 

Exercise 
conjecture in dimension 4. 

Show that 4.5 in dimension 5 is equivalent to the PoincarC 

The characterization 4.5 of D"' can be generalized to a characterization 
of handlebodies. 

(4.8) Theorem Suppose that M is a simply connected manifold of dimension 
m 2 6 with a non-empty simply connected boundary. Then M is a handlebody 
i f  and only i f  its reduced homology vanishes in all dimensions but one, and is 
free. 0 

In other words: M is an ( m ,  k)-handlebody of genus g if and only if it has 
the homology of a wedge of g k-spheres. 

Proof. The condition is necessary by VI,11.5. To prove the sufficiency we 
consider the cobordism {0, M, dM}.  Since H,(M)  = H,(M, 0 )  = 
H * ( M , d M )  = H,(M,aM),  c f :  VI1,S.l and [Sp,V,5.4], H,(M,0) and 
H,(M, a M )  are free. Thus 4.1 yields the desired presentation of M. 0 

Another simple manipulation of duality and universal coefficient theorem 
yields the following corollary. 

(4.9) Corollary Suppose that M is a (k - 1)-connected manifold of 
dimension 2k 2 6 with a non-empty boundary. Then M i s  a (2k, k)-handlebody 
i f  and only i f  the boundary of M is (k - 2) -connected. 0 

A presentation of an (m, k)-handlebody determines a preferred basis for 
its k-dimensional homology. Conversely, as we have shown in 1.7, every 
choice of basis can be realized by a presentation. 
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5 h-Cobordisrn; The Group 8" 

The notion of h-cobordism which appeared in the name of Theorem 4.3 
was introduced by R. Thom in [T5]. 

Definition 
Vo v W, V, L, W are homotopy equivalences. 

A cobordism { V,, W, V,) is an h-cobordism if the inclusions 

An equivalent requirement is that Vo and V, both the deformation retracts 
of w. 

An h-cobordism is oriented if W is oriented and dW = Vo u V, as 
oriented manifolds. For instance, { M x {0), M x I, (-M) x { 1)) is an orien- 
ted cobordism if M is oriented. 

If { V,, W, V,} is an h-cobordism, then each connected component of W 
is an h-cobordism between its left and right boundary. 

The following lemma explains the apparent asymmetry in the hypotheses 
of the h-cobordism theorem, as well as its name: 

(5.1) Lemma 
if and only if H,( W, Vo) = 0. 

A simply connected cobordism { Vo, W, Vl} is an h-cobordism 

Proof The relative Hurewicz theorem implies that the inclusion V, L, W 
is a weak homotopy equivalence, hence a homotopy equivalence, for W is 
a CW-complex (c$ [Sp,VII,6.24 and 251). The conclusion for the other 
component follows from VI1,S.l. 0 

The h-cobordism theorem 4.3 states that simply connected h-cobordisms 
of dimension 2 6  are trivial, that is, diffeomorphic to products. S. Donaldson 
provided examples showing this to be false in dimension 5, cf: [DK]. 
However, according to M. Freedman [F], 5-dimensional h-cobordisms are 
homeomorphic to product cobordisms. 

Exercise 
to the PoincarC conjecture. 

Show that the h-cobordism theorem in dimension 3 is equivalent 

We will now consider compact, closed oriented manifolds of dimension 
m 2 3. Two such manifolds V,, V, are said to be h-cobordant if there is 
an oriented h-cobordism { V,, W, - V,} .  Given two oriented h-cobordisms 
V, %' it easy to see that V u V' is also an oriented h-cobordism. This shows 
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that h-cobordism is a transitive relation. It is clearly reflexive and symmetric; 
thus it is an equivalence relation. More information about the set of its 
equivalence classes is given by the following three lemmas, in which all 
manifolds are assumed to be simply connected. 

(5.2) Lemma 
manifold. 

M" is h-cobordant to S" ifand only i f i t  bounds a contractible 

Proof Given V = {M", W, S"} and %' = {S", Dm+', 0}, V u V' rep- 
resents M" as a boundary of a contractible manifold. Conversely, if M = 

a W, W contractible, and if W' is obtained from W by removing the interior 
of an imbedded (m + 1)-disc, then {M, W', S"} is an h-cobordism. 

It is known [Ma31 that there exist non-simply connected manifolds 
bounding contractible manifolds. Thus 5.2 does not hold without the 
assumption of simple connectivity. 

(5.3) Lemma Zf M is h-cobordant to MI then M # N is h-cobordant to 
MI # N. 

Proof Let {M, W, -MI} and {N, N x I, -N} be oriented h-cobordisms 
(see Fig. V111,2). Let L,  be a neatly imbedded arc in W with endpoints on 
M and MI, and let L = {pt} x Z c N x I be an arc in N x I. Recall (cJ: 
VI,4) that one can paste W and N x I along these arcs. The resulting 
manifold W, is simply connected (here we use the assumption m 2 3), one 
of the components of its boundary is M pasted to N along a point, i.e., it 

Figure V111.2 
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is M # N ,  and another component is for the same reason -(MI # N ) .  Thus 
we have a cobordism {M # N,  W,, - ( M I  # N ) ) .  Now, a rather simple 
computation shows that Hh( W,, M # N )  = 0 and an application of 5.1 
concludes the proof. 0 

(5.4) Lemma 
manifold if and only i f  M is a homotopy sphere. 

There is a manifold Nsuch that M # N bounds a contractible 

Proof If M # N bounds a contractible manifold, then by 5.2 it is a 
homotopy sphere. By VI,2.1 both M and N are then homotopy spheres. 

Now, if M is a homotopy sphere, then we have already shown in VI,1.4 
that M # (- M) bounds a contractible manifold. 0 

Taken together, 5.2-5.4 yield the following: 

(5.5) Theorem The set of equivalence classes of the h-cobordism relation is 
a commutative monoid under the operation of connected sum. The identity 
element is represented by the class of manifolds bounding a contractible 
manifold, and the group of invertible elements consists of homotopy 
spheres. 0 

This group of homotopy spheres will be denoted 8". By the h-cobordism 
theorem and the PoincarC conjecture, 4.6, it can be identified for m 2 5 
with the group of smooth structures on the topological m-spheres. 

Recall now the group r"' of diffeomorphisms of Sm-' modulo those which 
extend over D" defined in III,6.2 and the group A"' of invertible differenti- 
able structures on a topological m-sphere defined in VI,2. By VI,5.2 there 
is a monomorphism r" + A". Assigning to every element of A"' its class 
in Om, we obtain a homomorphism A"' + 8"'. 

(5.6) Corollary 
are isomorphisms. 

For m 2 5 both homomorphisms I'" + A"' and A" + 8" 

It follows that all three groups can be interpreted as groups of differenti- 
able structures on the topological m-sphere, and that every such structure 
is invertible and can be represented by an atlas with only two charts. 

Proof Consider first the homomorphism A" + 8"'. Its kernel consists of 
those homotopy spheres which bound contractible manifolds; thus, by 4.5, 
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it is injective if m 2 5. Since the homomorphism r"' + A"' was shown in 
VI,5.2 to be injective in all dimensions, all that remains is to show that the 
composition r"' + A"' -+ 8" is surjective. To see this, let Z be a homotopy 
sphere and D"' c B an imbedded m-disc. If D is the complement of its 
interior, then I: = DU,, D"', where D is a contractible manifold with boun- 
dary Sm-' .  By 4.5 if m 2 6, and 4.7 if m = 5, D is diffeomorphic to D"', 
i.e., I: = Z(h) .  This shows that r"' -+ 8"' is surjective. 

6 Highly Connected Manifolds 

The results of Section 4 can be applied to obtain information about the 
structure of manifolds that have few nonvanishing homology groups, for 
instance, highly connected manifolds. More precisely, we will study here 
connected, closed, orientable manifolds M satisfying the condition: 

(k) where dim M = m 2 2 k  

Examples of such manifolds are provided by ( k  - 1)-connected 2k- and 
(2k + 1)-dimensional manifolds. Another class of examples is obtained by 
taking two (m, k)-handlebodies with diffeomorphic boundaries and gluing 
them by means of a diffeomorphism of boundaries. We will show that with 
some dimensional restrictions, this last example is, in a sense, generic. 

H i ( M )  = 0 for i # 0, k, m - k, m, 

First, observe the following: 

(6.1) 
of M are free except, possibly, Hk ( M )  i f  m = 2k + 1. 

If M is orientable and H , ( M )  satisfies ( k ) ,  then all homology groups 

For if 'Hi(M) stands for the torsion subgroup of H i ( M ) ,  then 

' H i ( M )  = 'H"- ' (M)  = tHm-i-l(M), 

by VI1,S.l and [Sp,V,5.4]. 

of 3-dimensional manifolds described in VII,7.2. 
The following theorem is a generalization of the Heegaard decomposition 

(6.2) Theorem Suppose that M is a simply connected, closed manifold 
satisfying ( k ) .  Assume dim M 2 5 and let bk = rank H k ( M ) .  7'hen i f m  = 2k, 
M is a (2k, k)-handlebody of genus bk with a 2k-disc attached along the 
boundary. If m > 2k, M = M ,  Uh M2, where M ,  and M2 are two (m, k ) -  
handlebodies of the same genus and h is a difleomorphism of their boundaries. 
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Proof If m > 2k + 1, then we apply 4.2 to obtain the presentation: 

M = (0-handle) u (bk k-handles) 

u (bmPk ( m  - k)-handles) u (m-handle). 

Since bk = bmPk, the theorem follows in this case by taking as MI the kth 
level of this presentation and as M2 the kth level of its dual. 

If m = 2k, then 4.2 yields the presentation: 

M = (0-handle) u (bk k-handles) u (m-handle), 

and the kth level is again the desired handlebody. 
If m = 2k + 1 > 5 ,  then 4.2 does not apply but 4.1 does and yields a 

presentation with only k- and (k + 1)-handles. If m = 5,  then this follows 
from 3.2. Thus, again, we see that M = MI u h  M2 and, since the boundaries 
of MI and M2 are homeomomorphic, their genera are equal by 
VI,11.6. 0 

Putting together 6.2 and V1,11.2, we get: 

(6.3) A (k - 1)-connected closed (2k + 1)-dimensional mani- 
fold, k > 1, is obtained by identifying the boundaries of two manifolds, each 
of which is a connected sum along the boundary of a number of ( k  + 1) -disc 
bundles over Sk. 0 

Corollary 

If more is known about the manifold, then more can be said about the 
disc bundles occurring in the decomposition. For instance, if its tangent 
bundle is stably trivial, then all bundles must be product bundles, as we 
will see in IX,7.3. 

Exercise Show that S2k-1 is fibered by ( k  - 1)-spheres over S" if and 
only if there exists a (k - 1)-connected closed 2k-manifold M with 
H , ( M )  = z. 

Suppose now that W is a (2k + 1)-dimensional ( k  - 1)-connected cobord- 
ism between two (k - 1)-connected manifolds Vo and V,, k > 1. Applying 
to W either 4.1 or 3.2 (if k = 2), we obtain a presentation 

W = ( Vo x I) u (k-handles) u ((k + 1)-handles) u (V, x I ) ,  

which yields again W = Mo uh M ,  with 

Mo = ( Vo x I) u (k-handles), M ,  = (V, x I) u (k-handles). 
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Observe now that in both cases the k-handles are attached to ( k  - 1)-con- 
nected manifolds. Thus VI,11.3 applies and we conclude that Mo is a 
boundary connected sum of Vo x I and a certain number of (k + 1)-disc 
bundles over Sk, all attached to Vo x (1). The same holds for MI.  We 
summarize this as follows. 

(6.4) Proposition Under the preceding assumptions, W = Mo v h MI 
where Mo = ( Vo x I )  #b To, M ,  = (V, x I )  # b  TI, and both To and TI are 
boundary connected sums of a number of disc bundles over Sk. 0 

(6.5) Corollary Under the preceding assumptions, there are manifolds So 
and S ,  , each a connected sum of a number of k-sphere bundles over Sk, such 
that Vo # So and V, # S, are drfleomorphic. 

Again, we will see in the next chapter that if the tangent bundles of W is 
stably trivial, then So and S1 are connected sums of product bundles Sk x Sk. 

Exercise Show that the boundary of an ( m  + 1, k)-handlebody satisfies 
condition ( k ) .  

Exercise Show that if M has a presentation 

M = (0-handle) u (k-handles) u ((k + 1)-handles) u ( ( 2 k  + 1)-handle) 

and is a rational homology sphere, then the matrix m k + I  is square and 
non-singular. If M is a homotopy sphere, then n k + 1  is unimodular. 

7 Remarks 

The theorems of this chapter culminate a line of research initiated by 
PoincarC’s question whether vanishing of the fundamental group, a 
homotopy invariant, characterizes the 3-sphere up to a homeomorphism 
[P3]. At the time homotopy theory was in its infancy, concurrent with its 
subsequent development a more general question was asked by W. Hurewicz 
in his pioneering paper on homotopy groups: Does the homotopy type 
characterize the homeomorphism type of manifolds? 

In this generality the conjecture is already false in dimension 3. For 
instance, the lens spaces L(7, l )  and L(7,2)  are of the same homotopy type 
but are not homeomorphic. This follows from the work of Reidemeister, 



162 THE h-COBORDISM THEOREM 

Moise, and Brody, who classified lens spaces up to homeomorphisms, and 
J. H. C. Whitehead who gave a classification up to homotopy type. 

Simpler-and simply connected-examples were found in higher 
dimensions, but there still remained the possibility that the homotopy type 
of the sphere characterizes it up to a homeomorphism. This question, known 
as the generalized PoincarC conjecture, GPC for short, was finally answered 
by S. Smale in 1960 for smooth homotopy spheres of dimensions greater 
than 5 [Sm2]. An authoritative and well-documented account of events 
surrounding this discovery and a detailed review of results obtained until 
1962 can be found in [Sm5,6]. It suffices to say here that A. H. Wallace 
[Wa] was independently following a similar method and that J. Stallings 
[St] spurred by the news of Smale’s success developed another method, 
which yielded the proof of GPC for combinatorial homotopy spheres of 
dimensions larger than 5.  

Smale’s work culminated in 1962 in his proof of the h-cobordism theorem 
[Sm3]. Soon afterwards M. Morse undertook to redo Smale’s theory. His 
idea was to try to eliminate directly critical points of the Morse function 
of a cobordism, instead of eliminating handles. A good account of this is 
in [B2]. A complete proof of the h-cobordism theorem by this method was 
given by J. Milnor in 1963 [M8]. Milnor credited the proof of the Cancella- 
tion Lemma, in this setting, to M. Morse and qualified it as “quite formi- 
dable.” (The proof given here in VI,7 does not appear to me “formidable” 
and might convince the reader of the advantage of the handle approach. 
The same remark applies to Morse’s 30-page proof of VII,7.1 in 

Smale’s h-cobordism theorem had three limiting assumptions: simple 
connectivity, smoothness, and dimension. A counterexample of J. Milnor 
[M6], which appeared at the same time as the theorem itself, showed that 
the simple connectivity was essential: L(7, 1) x S4 and L(7,2) x S4 were 
shown to be h-cobordant but not diffeomorphic. Milnor used the same two 
lens spaces to provide counterexamples to the so-called Huuptuerrnutung 
conjecture: Two homeomorphic complexes possess isomorphic sub- 
divisions. (These counterexamples were not manifolds; the question of the 
validity of the Hauptvermutung for manifolds remained open for some 
time, see what follows.) An essential role in these constructions was played 
by Whitehead’s torsion invariant. It turned out that this was the right 
invariant to look at. The first extension of the h-cobordism theorem was 
given by B. Mazur in [Ma21 in the following form. 

[Mo31.) 
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A cobordism {V, ,  W, V,} is said to be an s-cobordism if the inclusions 
V, c W, V,  c W are simple homotopy equivalences. The s-cobordism 
theorem asserts that if dim W 2 6, then an s-cobordism is a product. 

The final result combines the ideas of Mazur with those of Stallings and 
Barden to give a classification of h-cobordisms with the given left-hand 
boundary V,. One begins by constructing a group Wh( r )  associated to the 
fundamental group T = T, (  V,) and showing that to every h-cobordism 
{ V,, W, V,} there corresponds an element T( V,, W) of W ~ ( T ) ,  called its 
torsion. The theorem of Barden-Mazur-Stallings asserts that this correspon- 
dence is bijective and trivial cobordisms are those with vanishing torsion. 
Needless to say, the dimensional restriction of the original h-cobordism 
theorem must be retained. 

The reader of this book should have no trouble in following the presen- 
tation of this theory in [ K3]. The line of argument is similar to one employed 
here. The relevant material about simple homotopy theory is in [Co]. 

The problem of extending the h-cobordism theorem beyond smooth 
manifolds was very intensely pursued. It appeared quite early that an 
extension to combinatorial manifolds did not present essential difficulties. 
Indeed, certain difficulties in Smale’s proofs were easy to remedy in the 
combinatorial setting using older methods and results of J. H. C. Whitehead 
and M. H. A. Newman. The topological case presented difficulties of another 
order of magnitude. The first step was due to M. H. A. Newman who in 
1966 extended Stallings’s engulfing method to topological manifolds, 
thereby obtaining a proof of GPC for topological manifolds. 

A complete theory of topological manifolds was developed by R. Kirby 
and L. Siebenmann. Besides the topological s-cobordism theorem it includes 
the theory of surgery and of triangulability. Siebenmann produced a striking 
example of a topological manifold that does not admit a combinatorial 
triangulation and an example contradicting the Hauptvermutung for closed 
manifolds. A summary of these results is in [Si] and a detailed exposition 
in [ KS]. (It is not possible to enumerate in this brief survey many important 
contributions of a large group of mathematicians. The bibliography in [ KS] 
contains 314 entries.) 

In lower dimensions progress was not as rapid. The breakthrough came 
in 1982 with the work of M. Freedman and S. Donaldson on, respectively, 
topological and smooth manifolds. We will mention here only those results 
which are most closely connected to subjects dealt with in this book. By 
manifold we will mean here a closed, compact, and oriented manifold. 
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M. Freedman obtained a quite complete topological theory of simply 
connected 4-dimensional manifolds. The existence and uniqueness theorem 
of Freedman and Quinn [FQ,10.1] asserts the following: 

Suppose we are given a free abelian finitely generated group H, a quadratic 
form A on H,  and an element ks E Z2. If A is even, then we assume that 
ks = signature A18 mod 2.  

Then there exists a simply connected 4-dimensional topological manifold M 
such that H 2 ( M )  = H, the intersection form on H 2 ( M )  is isomorphic to A, 
and ks = ks(M). 

These invariants characterize M up to a homeomorphism. 

Here ks(M) stands for the Kirby-Siebenmann obstruction to stable 
smoothability: ks(M) = 0 if and only if M x R is smoothable. 

Of course, the Poincark conjecture for 4-dimensional homotopy spheres 
is an immediate consequence of the uniqueness part of this theorem. It is 
also a consequence of the 5-dimensional topological h-cobordism theorem 
proved by Freedman in [F]. 

Another consequence is that every simply connected 4-manifold is a 
connected sum of a certain number of copies of S2 x S2,  CP2 and its 
conjugate m’, and of two exotic manifolds. (One of these was constructed 
in V1,lO.) 

Freedman also obtained a large number of results without the assumption 
of simple connectivity. Some of his methods originated in the ideas of A. 
Casson. For a recent exposition of this theory the reader is referred to [FQ]. 
An excellent introduction is in [Ki]. 

The theories of smooth and topological manifolds diverge sharply in 
dimension 4. In a striking contrast to the results of Freedman, S. Donaldson 
showed that the intersection form of smooth 4-dimensional manifolds must 
satisfy strong additional conditions. For instance, if it is definite, then it 
must be diagonalizable over the integers. Other limitations hold for indefinite 
forms. They are based on new Donaldson invariants for smooth manifolds. 
These invariants are of differential-geometric character and originate in 
theoretical physics. 

At this moment there is no existence and uniqueness theorem for smooth 
4-manifolds. The situation is quite complicated, as the following two 
examples of Donaldson show. 

First, the 5-dimensional smooth h-cobordism is false: There exist 4- 
dimensional simply connected smooth manifolds that are h-cobordant but 
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not diffeomorphic. (Note that according to C. T. C. Wall simply connected 
4-dimensional manifolds with isomorphic intersection forms are 
h-cobordant.) 

Second, there are non-diffeomorphic smooth structures on R4. Indeed, 
Taubes and Gompf constructed uncountable families of such structures. 

This theory has interesting ramifications in algebraic geometry. It is 
expanding rapidly; a recent exposition is in [DK]. 
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Framed Manifolds 

We will study here a construction due to L. Pontriagin that associates to 
every map from a manifold Mk+" to a sphere S" a submanifold V k  of M 
and a framing of its normal bundle. 

Section 1 contains some general results concerning the problem of com- 
pleting a frame field to a framing. In Section 2 we construct the set f l k ( M " + k )  
of framed cobordism classes of framed k-dimensional submanifolds of a 
manifold Mn+k, and in Section 3 we show that it can be given a group 
structure. In Section 4, as an example, we calculate the group fl"(M") for 
M" a closed, compact, connected, and orientable manifold. The link with 
homotopy theory is provided in Section 5 ,  where we prove that flk(M"+k) 
corresponds bijectively to the set [ M n + k ,  S"] of homotopy classes of maps 

+ S". Using this correspondence in Section 6 we interpret a few 
standard operations of homotopy theory as operations on framed submani- 
folds. 

In Sections 7 and 8 we study r-manifolds, that is, manifolds that have 
trivial normal bundle when imbedded in a Euclidean space of high 
dimension. In Section 7 we establish some critieria for handlebodies to be 
r-manifolds, and in Section 8 we do the same for some classes of closed 
manifolds; in particular, we show that homotopy spheres are r-manifolds. 

1 67 

M n + k  
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This will be used in the next chapter to establish a link between the groups 
0" and the stable homotopy groups of spheres. 

The ideas studied here have an interesting history, which is briefly 
sketched in Section 9. 

1 Framings 

An n-frame in an n-dimensiona- vector space E is an ordered set of n 
linearly independent vectors in E, i.e., a basis of E. A frame determines 
and is determined by a unique isomorphism of E with R". Extending these 
notions to vector bundles, we define a framing of an n-dimensional vector 
bundle E to be an ordered set of n everywhere linearly independent sections 
of E or, equivalently, a continuous map F: E + R" that is an isomorphism 
on each fiber. (We could as well define a framing as a section of the 
associated principal bundle.) We will also have occasion to consider k-frame 
fields in E, such a field being, by definition, an ordered set of k everywhere 
linearly independent cross sections of E. We assume that the base B of E 
is a nice space, e.g., a CW-complex. 

We will use the same letter to stand for a bundle and its total space. The 
dimension of a bundle E will mean its fiber dimension; to avoid confusion 
it will be denoted dimf E. 

A bundle E admits a framing if and only if it is trivial. A framing F of 
E determines in every fiber Ep a coordinate system F( p ) .  This given, every 
k-frame field G determines and is determined by a map hF(G) of the base 
B of E to the Stiefel manifold Vflsk of all k-frames in R": The columns of 
the matrix hF(G)( p) are the coordinates of vectors of G(p)  in terms of the 
coordinate system F(p). We call hF(G) the coordinate map of G and say 
that two frame fields are homotopic if their coordinate maps are homotopic. 
The reader will easily verify that this does not depend of the choice of F 
and defines an equivalence relation among k-frame fields. In particular, we 
have an equivalence relation among the framings of E. 

Exercise Show that two framings differing only by an even permutation 
of cross sections are homotopic. 

Exercise Assuming that E is a Riemannian bundle, an orthonormal 
framing is defined in an obvious way. Show that every framing is homotopic 
to an orthonormal framing. 
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If F, and F2 are two frame fields then F, + F, will stand for the ordered 
set of cross sections of E consisting of the cross sections of F, followed by 
the cross sections of F2. Of course, F, + F2 need not be a frame field. 

(1.1) Proposition Let G be a framing of an n-dimensional bundle E and 
let G,  be a k-framejeld in E. If dim B < n - k, then there is an ( n  - k )  -frame 
field G,  in E such that G ,  + G 2  is a framing of E homotopic to G. 

Proof Fix a framing F of E; we will assume all framings and frame fields 
to be orthonormal. We have the following diagram of maps 

where p is projection of a fibration and O ( n ) / O ( n  - k) = Vn,k is 
( n  - k - 1)-connected [S,25.6]. Therefore, if dim B < n - k, then ph,(G) 
is homotopic to hF(GI) .  This homotopy can be covered by a homotopy of 
h,(G) to a map h' such that ph' = hF(GI) .  Now, if G' is a framing of E with 
the coordinate map h' and G ,  the (n - k)-field made of the last n - k 
sections o f  G', then G' is homotopic to G and G' = G ,  + G2.  0 

In other words, every framing of a k-dimensional subbundle of E can 
be completed to a framing of E in a preassigned homotopy class. There is 
a uniqueness statement for such a completion, which we state in the 
following form. 

(1.2) Let E = E ,  + E2,  where El and E2 are both trivial bundles, of dimension 
k and n - k respectively. Suppose that G ,  is a framing of El and G 2 ,  G ;  are 
two framings of E,. If dim B < n - k - 1 and G1 + G, is homotopic to 
G I  + G ; ,  then G2 and G;  are homotopic (as  framings of E2). 

Proof Let G = G ,  + G2 and consider h,(G, + G J ,  a constant map, and 
hc(G, + G;) .  By assumption they are homotopic as maps into O ( n ) .  Since 
hc(G, + G;)  is a composition of h,(G;): B + O ( n  - k )  with the inclusion 
O ( n  - k )  c O ( n ) ,  and this inclusion is injective on the homotopy groups 
in dimensions less than n - k - 1, h,(G;) is homotopic to a constant as a 
map to O ( n  - k ) .  0 
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(1.3) Definition We say that a bundle is stably trivial if its Whitney sum 
with a trivial bundle is trivial. The bundle TVO is called the stable 
tangent bundle of V. 

Here E' stands for the trivial 1-dimensional vector bundle. Observe that 
if V = a W, then TW( V can be identified with the stable tangent bundle 
of V. 

(1.4) Corollary 
then E is trivial. 

Zf E is a stably trivial bundle over B and dim B < dimf E, 

Proof Suppose that El 0 E is trivial with El trivial; we assume that El 
and E are Riemannian bundles. Let GI be an orthonormal framing of El. 
By 1.1 there is an rn-frame field G in El 0 E, m = dimf E, such that GI + G 
is a framing of E ,  O E. But then G is a framing of E. 0 

It is enough to require that B be of the homotopy type of a CW-complex 
of dimension satisfying the dimensional restriction. In particular, if either: 

(a) B is a connected and compact manifold with non-empty boundary; 

(b) B is the result of removing a point from a compact, connected, and 
or 

closed manifold; 

then it follows from VIL2.2 and VI,8.2 that B is of the homotopy type of 
a CW-complex of dimension smaller than the dimension of its tangent 
bundle TB. In this case we can restate 1.4 as follows. 

(1.5) Corollary 
stably trivial, then B is parallelizable. 

Zf B satis-es either (a) or (b) and its tangent bundle is 

If E is a smooth vector bundle over a smooth manifold, then by a framing 
of E we will always mean a smooth framing. It follows immediately from 
I,3.4 that a continuous framing is homotopic to a smooth framing and that 
all our arguments remain true with all framings, homotopies, and maps 
assumed smooth. 

Consider now a cobordism { Vo, Wk+', V,} where W is assumed to be a 
submanifold of R"+k x Z with V, c Rn+k x { i } ,  i = 0,l .  By II,3.2 such an 
imbedding can always be found if n > k + 1; henceforth we make this 
assumption. Let Fo be a framing of the normal bundle Y of Vo in Rn+k x (0)  
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and let E be the standard framing of the tangent bundle of Rn+k+l .  Since 
TR"+k+l 1 Vo = TWI Vo 0 v, it follows from 1.1 and the assumption n > k + 1 
that there is a framing Go of TW Vo such that Fo + Go is homotopic to E 1 Vo. 

(1.6) Proposition 
a framing of v W. 

If Go extends to a framing G of Tw, then Fo extends to 

Proof By 1.1 (and the dimensional assumption) there is a framing F of 
uW such that F + G is homotopic to E. In particular, (F + G)l Vo is 
homotopic to Fo + Go. But (F + G) 1 Vo = F 1 Vo + G 1 Vo = F I Vo + Go, and it 
follows from 1.2 that F(  Vo is homotopic to Fo, provided that n > k + 1, as 
we have assumed. Therefore F can be viewed as an extension of Fo. 0 

2 Framed Submanifolds 

We will now concentrate our interest on the framings of the normal bundle 
of a submanifold. 

(2.1) Definition A framed submanifold of a manifold Mn+k is a pair 
( Vk, F) where V k  is a neat submanifold of M and F is a framing of its 
normal bundle vVk. 

We will allow V k  to be the empty set. 
Recall that if a V # 0, then vV restricted to a V coincides with the normal 

bundle of a V in aM (cf: III,4.2). Thus a framing F of VV induces a framing 
of the normal bundle of dV. 

Framed submanifolds arise naturally in the following situation. Suppose 
that V = f - ' ( a ) ,  where f :  M n c k  + N" is a smooth map and a E N" its 
regular value. Let p E V. As we know (IV,1.4), Dfp: uPV+ TON" is an 
isomorphism. Therefore if E: TON" +. R" is a system of coordinates-a 
frame-in TON", then E * Df is a framing of vV. We will call it the framing 
induced by Df from E. Note that if two frames El and E2 yield the same 
orientation of TON", then the framings induced from them by Of are 
homotopic. 

Among the set of framed submanifolds of M of dimension k we introduce 
an equivalence relation called framed cobordism. First, observe that if ( V, F) 
is a framed submanifold, then V x R is a neat submanifold of M x R which 
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carries a framing induced by the projection A4 x R + M. The resulting 
framed manifold will be denoted ( V  x R, F). 

Now, let (V,, Fo) and ( V , ,  F,) be two framed submanifolds of M. We 
say that they are f-cobordant if there is a framed submanifold ( Wk+',  C) 
of M x R such that the part of W below the level t = 0 coincides with 
( V, x R, F,) and the part above the level t = 1 coincides with (V, x R, Fl). 
Such an f-cobordism is said to be concentrated between 0 and 1. 

A simple example of f-cobordant framings is provided by homotopic 
framings of the same submanifold. 

(2.2) Lemma Framed cobordism is an equivalence relation. 

Proof Only transitivity is non-trivial. So, let (Wok", Go) and (Wf+', G,) 
be f-cobordisms between ( V,, Fo), ( V, , F,) and ( V, , Fl), ( V2, F2) respec- 
tively. Clearly, we can assume that that the cobordism Wgk+l is concentrated 
between 0 and 1/3 and that Wf+' is concentrated between 2/3 and 1. But 
if this is the case, then the manifold W c M x R defined by 

W n ( M  x[-00,2/3])= Wgk+', W n ( M x [ 1 / 3 , ~ ] ) =  WfC1 

realizes the desired f-cobordism between (V,, F,) and ( V,, F2). 

If a framed submanifold is moved by an isotopy, then its framing can be 
pulled along, cJ: III,2.7. 

(23) Proposition r f  ( V,, F,) is a framed submanifold of M and V,  c M 
is isotopic to V,, then there is a framing of V ,  such that ( V,, F,) isf-cobordanf 
to (V*,FI).  

Proof Let G be the isotopy, which we view as a level-preserving imbedding 
Vo x R + M x R, and consider the normal bundle Y to G( V, x R) in M x R. 
Then Y = T*( v I G( V, x (0)) = 

T*( v( V,)), where n-: G( V, x R) + G( V, x (0)) is the projection. It follows 
that (G( V, x R), T*F,) is the desired cobordism between ( V,, F,) and 
(G(Vo x {1)), m*FoIG(Vo x (1))) = (Vi,  Fi). 

v I G( V, x { i } )  = v( K), i = 0,1, and 

0 

If V k  is a framed submanifold of an oriented manifold M", then it is 
orientable and, in fact, it is possible to orient it unequivocally by agreeing 
that, at every point, the orientation of V k  followed by the orientation of 
the frame yields the orientation of M"; the frame always specifies an 
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orientation. Conversely, we will say that the pair (V",F) is oriented if it 
satisfies the preceding convention. The definition of framed cobordism 
extends in an obvious way to oriented pairs. 

We will show now that every equivalence class of framed k-dimensional 
submanifolds of Rn+k, n > k + 1, can be realized by a framing of a connected 
manifold. This is a consequence of the following: 

(2.4) Let (V,", F,), ( Vf , F,) be two disjoint framed submani- 
folds of Rn+k,  n > k + 1 > 1. Then there is an imbedding of the connected 
sum V," # V: in Rn+k and a framing F of it which isf-cobordant to the union 

Proposition 

(V,",F,) LJ (VLFl). 

Proof The orientations of Vo and V,, necessary to make V, # V, unam- 
biguous, are chosen so that ( V," , F,), ( V:, F,) become oriented pairs. We 
let W = (V, x I) # b  (V, x I), the connected sum taken along & x (l}, i = 

0, l .  This is unambiguous as well, for the orientations of V,, V, determine 
the orientations of products with I. By II,3.2 we can view W as a submanifold 
of Rn+k x I with V, u V, c Rn+k x (0) and V, # V, c Rn+k x (1). Let Ho 
be the framing of V, u V, which on equals Fi, i = 0, l .  To complete the 
proof we have to show that H, extends over W; this will be done by applying 
1.6. 

As in 1.6 there is a framing Go of TWI ( V, LJ V,) such that Ho + Go is 
homotopic to E, where E is the standard framing of Rn+k+l.  We claim that 
Go extends to a framing of TW. This follows, for Go certainly extends to a 
framing of the tangent bundle of the disjoint union V, x I LJ V, x I, which 
on each oriented chart is homotopic to the framing induced by the chart. 
Since W is obtained by identification of a chart in V, x I with a chart in 
V, x 1 by an orientation preserving diffeomorphism, we can assume that 
this diffeomorphism identifies the framings as well, i.e., that together they 
yield a framing of W. 17 

The last proposition is valid in considerably greater generality: Rn+k can 
be replaced by an arbitrary connected manifold Mn+k and the dimensional 
restriction n > k + 1 reduced to n > 1. The proof of this is based on a 
simple geometric construction but the details are somewhat tedious. We 
will give a brief sketch. 

Consider the (k + 1)-dimensional surface S in Rk+' x Rn-' defined by 



1 74 FRAMED MANIFOLDS 

It consists of two connected components distinguished by the sign of & + I .  

It follows without much trouble from 11,2.3 and III,3.7 that there is a chart 
that intersects Vo u V, in S. The required cobord- 

ism between Vo u V, and V,, # V, is now built in Rk+' x R"-' x I in the 
following way: In U x I it is the surface T: 

u = Rk+l Rn-1 in M n + k  

x: + . - . + x i  + 1 = xi+, + 2f, 

xk+z = ' * * = xn+k  = 0, f E I, 

and in ( 

match. They will match if we would take as T the surface 

- U )  x I it is ( Vo u V,) x I. 
Now, this is a rather optimistic description: the two parts do not quite 

" ( & + I ,  t ) ( x :  + ' ' + xi )  + 1 = xi+, + 2t, 

x k + z  = * ' ' = x n + k  = 0, t E I, 

where a is a smooth positive function satisfying: 

T is framed by the normal vector and the standard framing of R"-'. It 
is not difficult to see that this framing can be assumed to match the obvious 
framing of (( Vo u V,) - U )  x I. 

Let n k ( M m )  be the set of equivalence classes of compact, closed, framed 
k-dimensional submanifolds of M". We will show in Section 5 that Qk(A4") 
is in one-to-one correspondence with the set of homotopy classes of maps 
of M" to the (m - k)-dimensional sphere S"-k. This explains our interest 
in the possibility of introducing a group structure in n k ( M m ) .  The obvious 
way is to try defining addition of two classes as the class of the union of 
disjoint representatives. Now, by IV,2.4, if 2k < m, then every two k- 
dimensional submanifolds can be separated by an isotopy. Thus 2.3 implies 
that any two classes in n k ( M " )  can be represented by disjoint representa- 
tives. A similar argument applied to f-cobordisms shows that if 2k + 1 < m, 
then the f-cobordism class of the union of two disjoint framed manifolds 
depends only on their f-cobordism classes. Therefore, if 2k + 1 < m, there 
is a well-defined operation of addition in the set nk(M"). 



3 n K ( M m )  175 

(3.1) Theorem With this operation ofaddition f l k ( M " )  is an abelian group. 

Proof The operation is certainly associative and commutative and the class 
of the empty manifold is the neutral element. To show the existence of an 
inverse, consider first the submanifold V = V k  x (0) of V k  x R" with the 
framing E = (el, e,, . . . , e n ) ,  where e l ,  e2,.  . . ,en at p E V is the basis of 
( p )  x R" induced by an orthonormal basis of R" by the projection Vk x R" + 

R". We will show that 

(i) ( V ,  E) has an inverse. 

Let W be the result of imbedding V x [0,1] in V k  x R" x R, by the map h, 

h ( p ,  t )  = ( p ,  cos pt, 0,. . . , O ,  sin at). 

W is framed by taking as the normal frame f , ,  . . . , f, at h(  p ,  t )  the vectors 
f, = (cos a t ,  0 , .  . . ,0, sin Tt) ,  f, = e,, . . . , f, = en (see Fig. IXJ). In par- 
ticular, at the two components of the boundary of W, h( V x (0)) and 
h( V x {l)), this framing becomes, respectively, e l ,  e2 ,  . . . , en and 
-el, e2, . . . , en . Thus 8 W with this framing is null-cobordant, which is the 
same as saying that h( V x (1)) with the framing -el, . . . , en represents the 
inverse of h( V x (0)) with the framing e l ,  . . . , en.  Since h( V x (0)) with 
this framing is clearly f-cobordant to ( V ,  E), this proves (i). 

The general case follows now from (i): every framed submanifold ( Vk,  F) 
of M n + k  may be viewed as the submanifold ( V k  x {0}, E) of its tubular 
neighborhood in M. 17 

Figure IX.1 
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Exercise Let A E O ( n )  be a matrix with negative determinant. Show that 
( Vk, A * F) is the inverse of ( Vk, F). 

Without the dimensional restriction it is not possible, in general, to 
introduce a group structure in i lk(M"): Two framed cobordism classes 
need not have disjoint representatives and, even if they do, the framed 
cobordism class of the union may depend on the choice. However, f l k ( S m )  
carries a group structure with the only restriction being that rn > k + 1. For 
in this case we can always isotope representatives of two classes into two 
different hemispheres and the class of their union will not depend on the 
isotopies. However, the argument we used to prove the existence of the 
inverse has to be modified. To do this, we view S" as a one point compac- 
tification of R" with RT, R_" corresponding to two hemispheres. Now, let 
( Vk, F) be a submanifold of R," and consider its image ( V : ,  F,) under the 
reflection in the last coordinate. A framed cobordism between the two is 
obtained by imbedding V k  x [0,77] in RT+' by the map 

(xl,. . . , x,-~, x,, t )  H (xl , . . . , x,-~, x, cos t, sin t ) ,  

(xl,. . . , x,,-', x,, t )  E V k  x [ O ,  771, and suitably framing the result. This 
shows that (V:, F,) is the inverse of ( Vk, F). 

If we consider oriented pairs, then 3.1 still holds. Indeed, it is clear that 
there is a bijective correspondence between the set of equivalence classes 
of oriented pairs and f l k ( M m ) .  

If F is an oriented framing of an oriented manifold Vk, then the construc- 
tion employed in the proof of 3.1 yields the inverse of ( Vk, F) as a framing 
of - Vk, i.e., V k  with reversed orientation. 

Let i l k (  M"),  respectively Q,k(M"), denote the subset of f l k ( M " )  consist- 
ing of these classes which can be represented by a framed homotopy sphere, 
respectively a framed k-sphere. We have by 2.4: 

(3.2) Corollary If m > 2k + 1 > 2, then @(S") and fl,k(S") are sub 
groups of flk(S"). 0 

The generalized version of 2.4 discussed at the end of Section 2 shows that 
the condition m > 2k + 1 can be weakened to m > k + 1. Also, with the 
dimensional restriction retained, S" can be replaced by an arbitrary con- 
nected manifold M "'. 

Since S' is the only 1-dimensional connected compact closed manifold, 
we have fkk(Mm) = fl'(M"), m > 3. 
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4 fI0(M") 

There is no method known for an effective calculation of Rk(M"), m > 
2k + 1, even if M" is a sphere. As we will see in the next section this case 
amounts to a calculation of stable homotopy groups of spheres. Some 
information can be obtained for low values of k; as an example we will 
calculate here n o ( M m )  when M" is closed, compact, connected, and 
oriented, m > 1. 

Let ( V ,  F) be a compact framed 0-dimensional submanifold of M. Then 
V is a finite set of points p ,  , . . . , pm and the normal bundle of pi  is just the 
tangent space Tp,M. Define E~ to be +1 or -1 according to whether the 
framing of TpiM agrees or disagrees with the given orientation of M, and 
let E (  V,  F) = x i  E ~ ;  this number will be called the degree of ( V ,  F). 

We claim that f-cobordant manifolds have the same degree. For let ( W, G) 
be a framed cobordism between ( V ,  F) and (V', F') concentrated between 
0 and 1. Then the part of W between the level t = 0 and t = 1 consists of 
a finite number of arcs with endpoints at level 0 or 1. (Here we use the fact 
that M is closed and compact.) Suppose that both ends p ,  q of an arc A 
are at the same level, say t = 0. Orient M x R by the orientation of M 
followed by the orientation of R, orient the arc A, and consider the orienta- 
tion of the tangent space to M x I along A given by the frame G + 7, where 
7 is the oriented tangent vector to A (see Fig. IX,2). This orientation either 
agrees or disagrees with the orientation of M x R along the entire arc A. 
However, since at the endpoints p ,  q of A the vectors T (  p )  and T( q )  point 
in opposite directions, the framings G ( p )  and G ( q )  must yield opposite 
orientations of M x {O}, that is, we must have ~ ( p )  = --E(q). A similar 
argument shows that if p and q are at different levels then ~ ( p )  = & ( q ) .  
This proves the claim. 

Consider now a pair ( p ,  +l) ,  (4, -1) .  By II,5.3 and 2.3 we can assume 
that q lies in a tubular neighborhood of p .  Then the argument used in the 
proof of 3.1 shows that this pair is null-cobordant. Therefore if E (  V, F) = 0, 
then ( V ,  F) represents the null element of flo( M). 

Taken together, our arguments show that the map Ro(M) + Z given by 
(V, F) H E (  V ,  F) is a well-defined injective homomorphism. Since dim M 
is positive, it is also surjective. This we have proved: 

(4.1) Proposition 
of dimension >1,  then O o ( M )  is isomorphic to the group of integers. 

If M is a closed, compact, connected, orientable manifold 
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Figure IX,2 

Exercise 
able, then no( M) is isomorphic to Z2. 

Show that if M is closed, compact, connected, and non-orient- 

Some information about Cl'(M"), m =- 3 ,  can be derived from 3.2. First 
of all, as we have already noted there, Q1(Mm) = CIA(M"). Second, since 
dim M 2 4, the isotopy classes of imbeddings S' + M are in one-to-one 
correspondence with homotopy classes of maps S' +. M. In particular, if 
M is simply connected, then there is only one such class and it follows that 
there is a surjective map .rr,(SO(m - 1)) + rCZ1(Mm). Therefore we have: 

(4.2) Proposition 
dimension 2 4 ,  then Cll(Mm) has at most two elements. 

If  M" is closed, compact, simply connected, and of 
0 
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5 The Pontriagin Construction 

Let V k  be a neat submanifold of M n + k  and N its tubular neighborhood. 
If the normal bundle of V k  is trivial, then N is diffeomorphic to the product 
V k  x R"; a definite diffeomorphism t: N + Vk x R" is called a trivialization 
of N. Given a trivialization t, we will define a map p(  Vk,  1): M n f k  + S". 
To do this, we first-and forever-identify R" with S" - a _  via the stereo- 
graphic projection p - :  R" + s" - a _ ,  as in I,1.2. This done, p (  Vk,  t )  is 
defined by 

if q E N, 

if q E N, 
p (  vk, t ) ( q )  = { r t ( q )  

a- 

where T is the projection V k  x R" + R". 
Since V is assumed to be a neat submanifold of M n + k ,  the map p (  Vk,  t )  

is continuous. Observe that every point x of R" is a regular value of p (  Vk,  t )  

and that V, = p (  Vk,  t ) - ' ( x )  is diffeomorphic to Vk. Every point v E V, lies 
on a well-defined fiber Nu of N, which p (  Vk,  t)  maps diffeomorphically 
onto R". Hence there is a unique n-frame in the tangent space of N ,  at u 
that the differential of p (  Vk,  t )  sends to the standard frame of R" at x. These 
frames form a framing F, of V, called the pull-back framing. Observe that 
we defined it not in abstract0 but as a definite field of frames in TM"+k 
along V,. 

(5.1) Lemma (V,, F,) and ( V,, F,) aref-cobordant. 

Proof Let h, ( z )  = z + s(x - y )  be an isotopy of R". Then x is a regular 
value of H = h,(p(Vk, t ) )  and H - ' ( x )  with the pull-back framing is the 
desired cobordism. 0 

Let N and N' be two tubular neighborhoods of V, t and t' their trivializ- 
ations, and F, F' the respective pull-back framings of the normal bundle of 
V. Let p = p(  V, t ) ,  p' = p (  V, t'). 

(5.2) Lemma If F is homotopic to F', then p is homotopic to p' .  

Proof By the Tubular Neighborhood Theorem, 111,3.5, there is an isotopy 
Ht of the identity map of Mntk such that H ,  1 N: N + N' is linear on each 
fiber. It follows that p1 = p'H,  is homotopic to p' and that the pull-back 
framings G of p1 = p'H, and F' are homotopic. Let h,(G) be the coordinate 
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map as in 1.1. To prove the lemma it is enough to show that if hF(G) is 
homotopic to a constant map, then p and p 1  are homotopic. 

The maps p and p 1  are defined on the same tubular neighborhood N but 
using different trivializations: t for p ,  and tl = t'H, for p l .  The frames of 
F and G at u E V can be naturally identified with the two systems of 
coordinates induced in the fiber of N at u by t and tl . Therefore we have 

tl = hF(G)f, 

where hF(G) is now interpreted as a map V x R" + V X R". If F is homotopic 
to G, then it follows that t l  is isotopic to t through an isotopy that at each 
stage is a trivialization of N; hence it can be used to produce a homotopy 
between p and p l .  0 

The following criterion is useful when applying 5.2. 

(5.3) Let F and G be two k-frame $eZds in T(  V x R")  along V x {x}. If 
F ( p )  = G ( p )  - A ( p ) ,  where A ( p )  is a diagonal matrix with positive entries 
on the diagonal depending smoothly on p E V then F and G are 
homotopic. 

Now let F be a framing of V"; F yields a definite diffeomorphism between 
the total space of the normal bundle of V and V k  x R", which we still 
denote F. The composition of F with the inverse of an exponential 
diffeomorphism is then a trivialization t F  of a tubular neighborhood N. The 
map p (  V", t F ) :  M"+" + S" is the Pontriagin map associated to (V", F), and 
denoted simply p( V", F). 

There is an ambiguity here in that the trivialization tF will in general 
involve, besides the exponential map, some choice of a shrinking map on 
the normal bundle. However, by 5.2, this will not affect the homotopy class 
of p( V", F): The pull-back framings corresponding to different choices of 
shrinking maps will also differ only by shrinking, i.e., a multiplication by 
a diagonal matrix with positive entries, and hence will be homotopic. 

Exercise 
choices of Riemannian metric are homotopic. (Hint: 5.3.) 

Show that the pull-back framings corresponding to different 

Observe that p( V", F)-'(O) = V k  and that the pull-back framing of Vk 
corresponding to p (  Vk,  F) is homotopic to F. 

Slightly more general is the following remark: Start with a map p(  V, t )  
and consider the pull-back framing F. Then construct the map p(  V, F) and 
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consider its pull-back framing F'. By construction, F and F' satisfy 5.3; thus 
it follows from 5.2 that 

(5.4) p (  V, t )  and p (  V ,  F) are homotopic. 

Clearly, if ( Wk+', G )  is an f-cobordism between (V, , F,) and (V, ,  F2), 
then p (  Wk+', G )  is a homotopy between p (  V,, F,) and p (  V,, F2). Therefore 
the Pontriagin construction actually yields a map p of the set f l k ( M " + k )  
to the set of homotopy classes of maps M"+k + S". 

(5.5) Theorem I f M n + k  is compact and closed, then p is bijective. 

Proof Let h be a homotopy between po = p (  V,, F,) and p ,  = p (  V , ,  Fl), 
and let z E R" be a regular value of h. Then h-'( z )  is an f-cobordism between 
p ; ' ( z )  and p; ' ( z ) ,  all with pull-back framings. By 5.1, p ; ' ( z )  is f-cobordant 
to (V,,  F,) and p; ' ( z )  is f-cobordant to ( V , ,  Fl). The three f-cobordisms 
together show that (V, ,  F,) is f-cobordant to ( V, , Fl), i.e., that p is injective. 

We will show now that p is surjective, that is, that for every smooth map 
f: M"+k + S" there is a framed submanifold ( V ,  F) such that p (  V ,  F) is 
homotopic to f: 

Let z E R" be a regular value off: By II1,S.l there is a chart U in the set 
of regular values and a diffeomorphism t :  f-'( U )  +f-'(z) x U such that 
the diagram 

commutes. 
Let h, be a homotopy of the identity map of S" to a map that maps U 

diffeomorphically onto R" = S" - a-  and shrinks the complement of U to 
a _ .  Let g = h,f  and V = g-'(O); since f -'( U )  is a tubular neighborhood 
of V ,  we have g = p (  V,  t ) .  Now, g is homotopic to f and, by 5.4, is also 
homotopic to p (  V ,  F), where F is the pull-back framing of V corresponding 
to g. 0 

As we have noted in 3.1, f l k ( M f l t k )  carries a group structure, provided 
that n > k + 1. Thus we have: 

(5.6) Corollary If n > k + 1 and is compact and closed, then one 
can introduce a group structure in the set [ M"+', S"]  of homotopy classes of 
maps M"+k + S". 0 
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This is the so-called Borsuk-Spanier cohomotopy group of M, 
If M n + k  = Sn+k then, as we know, f l k ( M n + k )  carries a group structure 

provided only that n > 1. A comparison of the definition of addition in this 
case with the usual definition of addition of maps Sn+k + S" by concentrat- 
ing them on different hemispheres shows that flk(Sntk) is simply the 
homotopy group T"+~(S"). 

It follows from 2.4 that the addition in f l k ( M " + k )  can be realized by 
framing the connected sum: 

(5.7) Corollary 
maps. If n > k + 1, then there is a framing F of V, # V, such that 

Let p (  V,, Fo), p (  V , ,  F1): M"+k + S" be two Pontriagin 

P (  vo 3 Fo) + P (  Vl , Fd = P (  v* # Vl , F). 

Exercise Show that every framed submanifold of S", m > 1, of 
codimension 1 is framed null-cobordant. (This accords with the fact that 
rm(S1) is trivial for m > 1.) 

Suppose now that M" is a closed, compact, connected, and oriented 
manifold. The orientation determines a generator y M  of Hn(M");  similarly, 
let ys be the preferred generator of Hn(S")  with standard orientation. The 
degree of a map f: M" -+ S" was defined in II,2.7 as the integer d such 
that f*yM = dys. A comparison of II,2.7.1 with the definition of the degree 
of a framed O-dimensional submanifold ( V ,  F) of M given in the proof of 
4.1 shows that the degree of (V,  F) equals the degree of the map p (  V ,  F). 
Thus we obtain as a corollary of 4.1 and 5.5 the classical theorem of H. Hopf: 

(5.8) Corollary 
the isomorphism being given by associating to every map its degree. 

7'he group [ M " ,  S " ]  is isomorphic to the group of integers, 

This is equivalent to the statement that [M", S"] is isomorphic to the 
group of homomorphisms H n ( M " )  + H,(S"). In this form the hypothesis 
of connectedness is not necessary. 

Exercise State and prove the analogue of 5.8 for non-orientable manifolds. 

Note that all maps and homotopies in this section can always be taken 
to be based. For if p E M"+k and V k  c Mn+k, p E Vk, then we can always 
assume that a tubular neighborhood of V k  is disjoint from p and, similarly, 
if n > 1, then every framed cobordism can always be pushed off { p }  x R. 
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6 Operations on Framed Submanifolds 
and Homotopy Theory 

The results of the last section imply that operations on homotopy classes 
of maps of manifolds into a sphere correspond to operations on framed 
submanifolds and vice versa. In a number of cases the corresponding 
operations on framed manifolds have a particularly simple geometric mean- 
ing. We will provide a few examples here. For this purpose it will be 
convenient to consider S" as the one point compactification of R" and, 
consequently, to study framed submanifolds of R". 

As usual, el,. . . , en will stand for the standard framing of the tangent 
space of R" and II for the inward pointing normal to S" in R"+'. 

(6.1) Composition of maps. Consider two maps g = p (  V", G ) :  Mn+k+m + 

Sn+k and f = p (  Vk, F): S"+k + S". Then there is a tubular neighborhood 
on which g is the projection V" x R"+& .+ Rn+k 

and, similarly, we can view f as the projection Vk x R" .+ 

R", V" x R" = Rn+k. Then (fg)-'(0) = g-'( Vk x 0) is diffeomorphic to 
V" x V k  and the composition fg is the Pontriagin map associated to a 
framing of V" x Vk imbedded in a tubular neighborhood of V". In par- 
ticular, two such composition maps can be represented by framings of 
disjoint manifolds, provided that m < n + k 

vrn R n + k  of v m  in M n + k + r n  

(6.2) The suspension Let f = p (  Vk, F), where V k  c R"+k, i.e., f: Sn+k .+ 

S". Then the suspension o f f ,  Ef, is defined to be the Pontriagin map 
associated to ( Vk, G), where we now view Vk as a submanifold of Rn+k+' 
and G = F + en+k+lr i.e., F followed by It is clear that this defines 
a homomorphism E: r n + & ( S " )  + r n + k + l ( S n + ' ) .  The Freudenthal sus- 
pension theorem asserts that 

(6.2.1) E is surjective if n > k and injective if n > k + 1. 

Proof Let p (  Wk,  G )  represent an element of rnfkfl(Sn+'), W k  c Rn+ktl. 
If n > k, then there is an isotopy of ( Wk,  G) to ( Vk, G') ,  where Vk c Rntk c 
Rnck+',  cf: 2.3 and II,4.7. By 1.1, if n > k, then G' is homotopic to a framing 
F + Thus p (  Wk,  G )  is homotopic to Ep( Vk, F), which proves surjec- 
tivity. 

is null-homotopic, i.e., that ( V k , F +  
To prove that E is injective, assume that Ep( Vk, F) = p (  Vk, F + 

is a boundary of a framed 
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manifold ( Wk+', C ) ,  Wkil c Rn+lcc2 . A slight extension of the previous 
argument shows that, without moving V', we can isotope Wk+' to a position 
in the subspace defined by &+k+l = 0, Xn+k+2 2 0 and that it has there a 
framing G' + en+&+] such that G'I V k  is a framing of V k  in R"'k. This shows 
that p (  V', G'( V k )  is null-homotopic. But C'I V k  + en+'+] is homotopic to 
F +  Thus by 1.2 G'I V k  is homotopic to F; hence p(  V', F) is also 
null-homotopic. 

6.2.1 shows that the groups ? r n + k ( S " )  stabilize for n > k i- 1: Their value 
depends only on k and it will be denoted ? r k ( s ) .  By 5.5 this group is 
isomorphic to flk(S""); this will be abbreviated to a," and the subgroup 
n$(S"+') of framed spheres to S,". 

(6.3) The Hopf- Whitehead J-homomorphism Consider S' c Rk+" with 
the framing F: n, ek+2 , .  . . , ek+,,. Let y :  S k  + SO(n) be a smooth map and 
G the framing of S' whose coordinate map h,(G) is y. Then p ( S k ,  G )  maps 
Sk+" to S" and this construction defines a map J :  .rrk(SO(n)) + rk+n(Sn). 

2.4 implies easily that this map is a homomorphism. 
Nothing is gained by considering maps to O ( n )  instead of SO(n) ,  at least 

if n > k + 1. For if hF(C) has a negative determinant and M is a matrix 
with determinant -1, then (M. hF(G))-' is in SO(n)  and the Pontriagin 
map associated to it is homotopic to the Pontriagin map associated to h,(G). 
(It is the inverse of the inverse if n > k + 1.) Hence every framing of 
Sk c Rk+" yields a map in the image of J. Now, if n > k + 1, then every 
imbedding of Sk in Rk+" is isotopic to the standard imbedding. Thus: 

(6.3.1) 
is in the image of J, i.e., S," = Im J, cf: 3.2. 

If n > k + 1 and V' is an imbedded n-sphere in Rk+", then p (  V', F) 

If k = 1, then S' is the only compact, closed, connected manifold. Thus 
(cJ 4.2): 

(6.3.2) J: ?rl(SO(n)) -+ T, ,+~(S")  is surjectivefor n > 2.  

In particular, T , + ~ ( S " )  has at most two elements if n > 2. (It is somewhat 
more difficult to prove that it has exactly two elements.) These results 
appeared already in the first paper of L. Pontriagin on the subject [Pol]. 
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The case k = 1, n = 2 was first considered by H. Hopf in 1930 [ H o ~ ] .  In 
this case SO(2) is the group of matrices 

cos t  -sint 
M ( t )  = 

and elements of r l (S0(2) )  = Z can be represented by maps t H M(rnt) ,  t E 

[0,2.n], m E Z. The corresponding framing F, at the point (cos t, sin t )  of 
S' is given by the frame 

v1 = (cos mt)n + (sin mt)e, ,  

v2 = (-sin mt)n + (cos mt)e3 .  

It is easy to see that p(S',F,) is the Hopf map, that is, the projection in 
the Hopf fibration S' -+ S3 + S 2 ,  as given in [S, 9 20.11. It follows from the 
homotopy exact sequence of this fibration that the Hopf map is the generator 
of r 3 ( S 2 )  = Z. Thus: 

(6.3.3) J: 7r1(S0(2)) +P r 3 ( S 2 )  is an isomorphism. 

The maps p ( S * , F , )  were the first known examples of essential maps 
+ S" with k > 0. Sk+n 

Exercise Consider the cohomotopy group [ M"+', S"], n > 2. Show that 
if M"+l is 1-connected, then this group has at most two elements, and if 
M"+' is 2-connected, then it is isomorphic to r,,+l(S"). (Hint: Consider 
the maps that factor through S"+'.) 

Exercise Let s: r k ( S O ( n ) )  + 7rk(SO(n + 1)) be induced by the inclusion 
A H  (2 y ) .  Verify that EJ = Js, where E: r n + k ( S n )  + ' r n + k + l ( S n + ' )  is the 
suspension homomorphism. 

The groups r k ( S O ( n ) )  do not depend on n if n > k + 1; their common 
value is denoted r k ( S 0 ) .  The first stable group for a given k is thus 
r k ( S O ( k  + 2)), which is mapped by the J-homomorphism to ' r 2 k + Z ( S k + ' ) .  

The last exercise shows that there is a well-defined stable J-homomorphism 
J k :  rk (SO)  + T k ( S ) .  Its image is given in 6.3.1; its kernel can be interpreted 
in the following way. 

(6.3.4) Let Sk c Rn+k be framed by G and let hEG E T k ( S O ( n ) )  be the 
coordinate map of G rel. the standard framing E of Sk in Rn+k. Then, 
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h,G E Ker Jk if and only if the framing G extends to a framing of a neat 
submanifold Mk+' c R:+k+l bounded by Sk. 

It follows that Jk is a monomorphism if and only if every framing of Sk 
that extends over some manifold in RYfk+', extends over the disc S:+' = 
R:+k+1 A s k + l .  

(6.4) The join Let ( Vk, F) be a framed submanifold of a manifold M n + k  
and ( Wry C) a framed submanifold of N"". Then V k  x W' is a submanifold 
of M x N, with the obvious framing denoted F x G .  It is easy to see that 
this is an operation on framed cobordism classes and that it is a bilinear 
pairing of [M,  S"] x [N,  Ss]  to [ M  x N, S""] when these cohomotopy 
groups are defined. It can be shown that Ep( V k  x W', F X G )  is, up to the 
sign, the so-called join of p( Vk,  F) and p( W', G )  (c$ [Kl]). 

If M and N are Euclidean spaces, then this operation defines a pairing 
of homotopy groups of spheres, turning the set of stable homotopy groups 
into a graded ring. 

7 =-Manifolds 

We have seen that maps Sn+k + S" can be represented by framed submani- 
folds of Rn+k. We will now focus our attention on the question of which 
submanifolds of Rn+k can be framed. More precisely, we will study the 
class of manifolds that can be imbedded in a Euclidean space of a sufficiently 
high dimension with a trivial normal bundle. Certainly, not all manifolds 
belong to it. (Already PoincarC noticed that orientability is a necessary 
condition.) It is somewhat unexpected that this class of manifolds can be 
characterized by a condition on the tangent bundle. 

Recall that a vector bundle is said to be stably trivial if its Whitney sum 
with a trivial bundle is trivial. 

(7.1) Definition M is said to be stably parallelizable if its tangent bundle 
is stably trivial. 

For brevity we will also call such manifolds r-manifolds. Note that, by 
1.4, if TM 0 E is trivial, then already TM @ F' must be trivial; sk denotes 
as usual the trivial bundle of dimension k In fact, by 1.5, if M is connected 
with non-empty boundary, then even TM must be trivial, that is, M must 
be parallelizable. 
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Obvious examples of n-manifolds are provided by spheres of all 
dimensions and by parallelizable manifolds. The latter class includes all 
Lie groups, in particular Rk for all k, but among spheres only those of 
dimension 1, 3, and 7. 

It is clear that the boundary of a parallelizable manifold is a m-manifold. 
The class of n-manifolds behaves nicely under the product operation: 

Exercise 
and only if each factor is a m-manifold. 

Show that the product of two n-manifolds is a m-manifold if 

This property is certainly not shared by parallelizable manifolds: The 
product of a sphere with a sphere of odd dimension is always parallelizable. 
For TSZk+' admits a nowhere zero section; thus TSZk+' = 7 + E' for some 
bundle 7, and 

T(SZk+' x S")  = p * ( ~  O E ' )  0 q*( TS") = p * ( 7 )  0 E' O q*( TS") 

= p*(7j) 0 q*( TS" 0 E ' )  = p*( 7 )  O E"+' 

= p * ( q  0 & " + I )  = E 2 k + n + l  
9 

where p and q are projections. 

properties: 
The normal bundle of a submanifold of a n-manifold has special 

(7.2) Theorem (a) Let N be a n-manifold and M c N a submanifold. 
Then uM is stably trivial if and only 

(b) Let N be the total space of a disc bundle over a n-manifold M associated 
to a vector bundle 9. Then N is parallelizable if and only if 7 is stably trivial. 

M is a m-manifold. 

Proof (a) Since T M O  vM = T,N, 

TM 0 v~ 0 E = T,N o = Fdim N+ k, 

and the assertion follows. 
(b) We identify M with the zero section of N. Then TN is stably trivial 

if and only if T N  I M is stably trivial. Since TN I M = TM 0 uM = TM 0 7, 
by III,1.1, and TM is stably trivial, the assertion follows from 1.4. 0 

In particular, it follows from (a) that M is a m-manifold if and only if 
it has a trivial normal bundle when imbedded in a Euclidean space of 
dimension higher than twice the dimension of M. Together with 2.4 this 
implies that the connected sum of two m-manifolds is a m-manifold. 
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Comparing 7.2(b), with M = S", and V1,11.2, we see that an (m, k)- 
handlebody, m 2 2k + 1, is a rr-manifold if and only if it is a boundary 
connected sum of a number of copies of Dm-k x Sk. Appropriate additions 
can also be made to VII1,6.2-6.3, and VIII,6.4 takes the following form: 

(7.3) Proposition Let { V,, W, V,} be a (2k + 1)-dimensional cobordism. 
r f  V,, W, V, are (k - 1)-connected and W is a rr-manifold, then W = 
M o u h M 1 ,  where M i = ( V , x I ) # , T , , i = O , l ,  and both To and TI are 
boundary connected sums of a number of copies of Dk+' x Sk.  

There is also a criterion for parallelizability of ( 2 s  k)-handlebodies. 
Recall that if M is such a handlebody then a basis of H k ( M )  can be 
represented by imbedded k-spheres, which were called presentation spheres, 
c$ VI,12. 

(7.4) Proposition 
have stably trivial normal bundles. 

M is  parallelizable i f  and only i f  presentation spheres 

Proof The necessity is immediate from 7.2. To prove the sufficiency, let 
M = DZk u H'; u - * . u HF and let S,, i = 1, . . . , s, be presentation spheres. 
We assume that the hemisphere Si+ is in D2k and Si- is the core of ith 
handle H : .  If vSi is stably trivial, which we assume, then TMIS, is stably 
trivial, hence trivial by 1.4. 

Suppose now that we are given a trivialization of TM 1 DZk. This induces 
a trivialization of TM 1 S, ,  . Since TM I Si is trivial, every trivialization of 
TM 1 S,+ extends to a trivialization of the entire bundle TM I Si. It follows 
that TM 1 (DZk u u, Si )  is trivial. Since DZk u ui Si is a deformation retract 
of M, TM is trivial as well. 0 

Applying 7.4 to manifolds constructed in VI,12 by the plumbing construc- 
tion from a graph weighted by elements of rrk-,(SO(k)), we see that such 
manifolds are parallelizable if and only if all weights are stably trivial, that 
is, if they are in the image of a: r k ( s k )  + T ~ - , ( s o ( ~ ) ) .  In particular: 

(7.5) Kervaire manifolds K (2k) and the manifolds M ( 4 n )  areparallelizable. 

The Stiefel manifolds vn,k of orthonormal k-frames in R" are a-manifolds. 
This is a consequence of 7.2(b) and the following exercise. 
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Exercise V,,k+, is a fiber bundle over v , , k  with (n - k - 1)-spheres as 
fibers, cJ: [S, 9 7.81. Show that the associated vector bundle E is stably 
trivial. (Hint: The total space of E can be described as the set of pairs 
(v, E"),  where v E v , , k  and E,  is the orthogonal complement in R" of the 
subspace spanned by 0.) 

8 Almost Parallelizable Manifolds 

Let M be a (k - 1)-connected closed m-dimensional manifold and let M' 
be M with a disc removed. If m = 2k + 1, then 7.3 gives a necessary 
condition for M' to be parallelizable; if m = 2% then 7.4 gives a necessary 
and sufficient condition for that. We now ask the question: If M' is paralleliz- 
able, is M a rr-manifold? This leads to the following definition: 

(8.1) Definition A bundle 6 over M is almost trivial if its restriction to 
every proper subset of M is trivial. M is almost parallelizable if its tangent 
bundle is almost trivial. 

This notion is of interest only if M is compact, connected, and closed. 
For if M is not connected, then it is almost parallelizable only if it is 
parallelizable, and the same is true if M is connected with non-empty 
boundary. 

Observe that by 1.4(b) rr-manifolds are almost parallelizable. We will 
study now when is the converse true, that is: When does almost triviality 
imply stable triviality? 

We begin with the general case of an almost trivial bundle 5 of dimension 
k over a closed orientable manifold M, m = dim M. Assuming then that 
this is given, let D = M be an imbedded m-disc, let MI be the closure of 
M - D, and choose framings of 6 I D and 6 I MI. This yields a representation 
of the total space of 6 as the identification space D x Rk u- M, x Rk, where 
(p, u )  E dD x Rk is identified with (p, y ( p )  v )  E dM1 x Rk for some map 
y: dD + S O ( k ) .  

(8.2) Lemma 
y E rr, ,- ,(SO(k)).  Then 5 = f * t ( y )  for some m a p f :  M + S"' ofdegree 1. 

Let ((7) be a bundle over S" with characteristic element 

Proof Identify D with the northern hemisphere D, of S" via a 
diffeomorphism J: Then the bundle [( y) is constructed from the disjoint 
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union D+ x Rk u D- x Rk by identifying ( p ,  u )  E aD, x Rk with 
( p ,  y(p) u )  E dD- x Rk. Now extend f over M, by mapping the collar of 
d D  in M1 onto D- and the rest of M ,  into a single point, the southern pole 
of S". Then f is as desired. 

The lemma implies that all characteristic classes of 6 in dimensions less 
than m must vanish. 

Now, assume that 6 is of dimension m; thus y E n-m-l(SO(m)).  Since 
5 0  s1  = f r [ ( s m - y ) ,  6 is stably trivial if the suspension s,y E 

m,-,(SO(m + 1)) vanishes. According to Bott, this last group vanishes if 
m = 3,5,6,7 mod 8, and is isomorphic to Z if m = 4k4 cf; A,5.1. In this case 
choose a generator T 4 k .  Let pk(() E H 4 k ( M )  denote the kth Pontriagin class 
of 6 and let p k ( t ) [ k f ]  = (Pk(,$), g ) ,  where g is a generator of H 4 k ( M ) .  It 
is known, cf; [B3], that: 

(8.3) pk(6(T4k))[s4k] = *ak(2k - l)!, where ak = 2 i f k  is odd and 1 if k 
is even. In particular, the homomorphism rm- l (SO(m + 1)) + Z given by 
7 H p k ( f (  q))[Sm] is a monomorphism. 

We can now collect our results. 

(8.4) Proposition Let be an m-dimensional almost triuial bundle over a 
manifold of dimension m. If m = 3,5,6,7 mod 8, then 6 is stably trivial. If 
m = 4k, then 6 is stably trivial ifand only i fpk(()  = 0. 

Proof Only the sufficiency of the condition in the case m = 4k remains to 
be shown. Assume then that p k ( # ! j )  = 0. By 8.2 = f *5 (y ) .  Since f is of 
degree 1, it follows from the naturality of Pontriagin classes that p k ( s ( y ) )  = 

0; thus Pk(f(&,Y))  = p k ( s ( y ) )  = 0. This implies, by 8.3, that s,y = 0, i.e., 
#!j(y) is stably trivial. Then #!j is stably trivial itself. Ci 

If 6 is the tangent bundle of a manifold M, we can say more. Let a ( M )  
be the signature of M. 

(8.5) Theorem Let M" be an almostparallelizable compact closed manifold. 
l f  m # 4 4  then M is stably parallelizable. If m = 4k, then M is stably 
parallelizable if and only if a( M )  = 0. 

Proof Assume that m = 4k By 8.4 we have to show that the signature of 
M vanishes if and only if P k (  T M )  = 0. We have already noticed that all 



8 ALMOST PARALLELIZABLE MANIFOLDS 191 

classes pi( T M )  with i < k vanish. Therefore, by the Hirzebruch signature 
theorem [MS,19.4], the signature of M is a nonzero multiple ofpk( TM)[M]. 

The cases m = 3,5,6,7 mod 8 were taken care by 8.4; there remain the 
cases m = 1,2mod8. In these cases, according to a theorem of Adams 
[Ad], Jm-l is a monomorphism; we will dispose of them using 6.3.4. 

Let D c M be an imbedded m-disc, S = aD and MI = M - Int D. Imbed 
M in R"+", n large, so that M1 c RT+", D c RY+", M n Rrn+"-' = S and 
M ff? R"+"-'. This is easy to achieve using III,3.7. By 7.2 the normal bundle 
of MI is trivial; let G1 be a framing of it and G its restriction to S. By 6.3.4, 
G extends over D. Thus the normal bundle of M is trivial and, again by 
7.2, M is a n-manifold. 

(8.6) Corollary Homotopy spheres are n-manifolds. 0 

Observe that 8.5 together with 7.4 provides necessary and sufficient 
conditions for a 2k-dimensional ( k  - 1)-connected manifold to be stably 
parallelizable. 

Exercise Suppose that MI # M ,  is a m-manifold, dim MI # 4 k  Show that 
M1 and M2 are both n-manifolds. This is also true if dim MI = 4 s  provided 
that the signature of M1 vanishes. 

The arguments used in the proof of 8.5 can be refined to yield a theorem 
of J. Milnor and M. Kervaire [MK], which we will use in X,6.2. Let & be 
the kth Bernoulli number (as in [Hr1,1.5] or [MS]), let jk be the order of 
the image of the homomorphism Jk, and let ak be as in 8.3. 

(8.7) Theorem The signatures of 4k-dimensional almost parallelizable 
closed manifolds form a group t k z ,  where 

Proof The signature of the connected sum is the sum of signatures, and 
the connected sum of almost parallelizable manifolds is almost paralleliz- 
able; thus their signatures form a group. 

Suppose that M is imbedded in R"+", n large, m = dim M = 4k, as in 
the proof of 8.5. Let GI be a framing of M ,  = M n RT+n and let G be its 
restriction to the sphere S = M n Rrn+"-l. By 6.3.4 h,(G) E Ker J4k-1, where 
h,(G) f ~r4k-~(SO( n)) is the coordinate map of G rel. the standard framing 
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E. On the other hand, by 8.2, v = vM = f*t(  y )  and a closer look at the 
proof of 8.2 reveals that y = h,(G). Thus y is a multiple of j4k-1714k. 

Since f is of degree 1, p k ( v ) [ M ]  = pk(5(y))[S4k-1], and it follows now 
from 8.3 that 

(*I p k (  u ) [ M ]  is a multiple of ukj4k-1(2k - l)!. 

Now the end is near: By [MS,15.3], p k ( v ) [ M ]  = *pk( TM)[M] and, by 
the Signature Theorem, 

a ( M )  = pk(TM)[M]22k(22k-’ - 1)&/(2k)!. 

Together with (*) this shows that o ( M )  is divisible by rk.  
It remains to be shown that there is an almost parallelizable manifold 

with signature tk.  To obtain such a manifold, we start by framing the normal 
bundle of S4k-1 c Rm+n-l by the generator of KerJ4k-1. This framing 
extends to a framing of the normal bundle of a manifold MI = ,It+’’. 
Attaching a disc to the boundary of M ,  produces a closed manifold M with 
signature equal to tk .  El 

9 Historical Remarks 

The idea that information about a map can be derived from the study of 
the inverse image of a single point can be traced to the pioneering work of 
L. E. J. Brouwer, who defined the degree of a map of an n-dimensional 
manifold to S” in a way essentially similar to our definition in Section 3, 
and showed that the degree is an invariant of the homotopy class of the 
map. Subsequently, H. Hopf showed that it is the only invariant and restated 
the theory in terms of homology theory [Hol]. (Both Hopf and Brouwer 
considered simplicia1 approximation of continuous maps.) The theorem 
thus obtained, 5.8 here, was the earliest and the most complete success of 
homology theory. Only one year later Hopf [Ho2] provided examples 
showing that the induced homology homomorphism was not sufficient to 
characterize the homotopy class of a map S3  + Sz. However, the method 
he employed could still be called “the method of inverse images”: the 
invariant used to distinguish between non-homotopic maps was the linking 
number of inverse images of two points. For the map p(S1, F,) from 6.3.3, 
this is easily seen to equal m. 

Hopf’s work was very influential and widely known at the time. It is not 
farfetched to conjecture that it influenced Pontriagin, who announced his 
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idea how to reduce the study of the homotopy groups of spheres to the 
study of framed submanifolds in a brief note in 1938 [Pol]. Pontriagin 
hoped that this method would allow the calculation of the stable groups 
T , , + ~ ( S ~ ) ,  n large. He accomplished this for k = 1 and (with a mistake) 
k = 2, but the complications in higher dimensions were overwhelming. 

The years of war followed and, except for a single paper of B. Eckmann, 
the method of Pontriagin note of 1938 does not seem to have attracted 
many followers. Pontriagin published a full description of his method only 
in 1955  PO^], one year after the appearance of a paper [T2] of R. Thom 
who came to the same construction in a different way. 

Thom was studying, among other things, the problem of computation of 
cobordism groups, which he reduced to a computation of homotopy groups 
of certain spaces. The link between homotopy and cobordism was estab- 
lished by attaching to every homotopy class of maps the inverse image, 
under a suitably chosen representative, of a fixed submanifold of the target 
space. “Suitably chosen” means transverse to the submanifold, and in order 
to prove the existence of such maps Thom had to develop his theory of 
transversality, another foundational notion of differential topology. This 
was not necessary for the Pontriagin construction, where the existence of 
regular values was guaranteed directly by the theorem of Sard and Brown. 

In a sense, Thom’s method inverted that of Pontriagin, but this time the 
calculation of the appropriate homotopy groups turned out to be possible. 
The method was successful and was subsequently applied to the determina- 
tion of many other types of cobordism. This is presented in [So]. 

While the study of framed cobordism groups did not provide a method 
for a calculation of stable homotopy groups of spheres, it did yield some 
important results when applied to other geometric problems, c j  [Kl]. In 
particular, it allowed an interpretation of the groups of differentiable struc- 
tures on spheres in terms of stable homotopy groups. The crucial step here 
was the proof that homotopy spheres are w-manifolds, 8.6 in the preceding. 
This theory is presented in the next chapter. 

J. H. C. Whitehead [Wh23 defined .rr-manifolds as combinatorial mani- 
folds that have product regular neighborhoods when imbedded in a 
Euclidean space of sufficiently high dimension. (Regular neighborhood is 
a combinatorial equivalent of tubular neighborhood.) He observed that if 
a combinatorial w-manifold is a triangulated smooth manifold then its 
normal bundle, as defined shortly before by H. Whitney in [Will, is trivial. 
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Surgery 

The method of surgery was first successfully applied to the investigation of 
the group 8" of homotopy spheres [M7, KM2] based on the exact sequence 
( ~ $ 6 . 6 )  

0 + bP"+' + 8" + Coker J,,  

where J, is the stable J-homomorphism of IX,6.3, and bP"+' is the group 
of these homotopy spheres which bound parallelizable manifolds. Now, 
the image of J, is a cyclic group of order determined by J. F. Adams; 
hence 8" is essentially determined by the stable group T , + ~ ( S " )  and 
by bP"+'. For instance, a proof that bP"+' is finite will show the same 
for 8". 

To calculate bP"+' one employs the method of surgery. For suppose that 
a homotopy sphere Z is the boundary of a parallelizable manifold M"+' 
We attempt to find the simplest manifold that Z bounds, more precisely, 
to construct a framed cobordism between M and a manifold B still bounded 
by X, but having the simplest possible homology structure. A cobordism is 
a union of elementary cobordisms and an elementary cobordism is the trace 
of a surgery (VI,9). Thus we construct the desired cobordism through a 
sequence of surgeries, each of which aims at eliminating a homology class. 

1 95 



196 SURGERY 

For this to be possible, the homology class has to be represented by an 
imbedded sphere with a trivial normal bundle, and one has to show that 
the surgery on this sphere will actually eliminate this homology class without 
spoiling what has already been achieved. 

An appropriate set of conditions for the elimination of a homology class 
is developed in Section 1. In Section 2 we discuss the problem of framing 
a surgery. Together with the results of Section 1, this allows us to conclude 
in 2.2 that a framed surgery on a homology class below the middle dimension 
is always possible. 

The difficulties begin with the surgery on the middle-dimensional 
homology. In the case of 2k-dimensional manifolds the difficulty consists 
in representing the homology class by a sphere with a trivial normal bundle; 
there is an obstruction to doing this and it provides a monomorphism from 
bP2k to a finite group. This case is considered in Section 3 for k even 
and in Section 4 for k odd. One of the consequences is an elucidation 
in 3.7 and 4.8 of the structure of (k - 1)-connected 2k-dimensional 
.rr-manifolds. 

In the case of odd dimensional manifolds there are no problems with the 
normal bundle, but special care is necessary to ensure that surgery simplifies 
homology. We deal with this in Section 5 and prove that it is always possible 
in this case to find a sequence of surgeries leading to a contractible manifold. 
Consequently, the group bPZk+' is trivial. 

These results are collected in Section 6 and applied to the group 0". 
We prove finiteness in 6.5 and calculate it in a few low dimensional 
cases. In particular, we obtain examples of nonstandard smooth structures 
on spheres. 

The general line of argument and most of the results of this chapter are 
due to Milnor and Milnor-Kervaire and come from [M7, KM21, as well as 
(presumably) from the unpublished second part of [KM2]. However, some 
of our arguments are quite different from theirs. We use only a very restricted 
version of the Kervaire invariant and apply in an essential way the theory 
of handlebodies. This permits a simple treatment of the invariance of the 
Kervaire invariant in 4.3 and of the odd-dimensional surgery in 5.1. The 
original proof of 5.1 in [KM2] is a veritable tour deforce occupying some 
16 pages. 

Finally, a more detailed account of these and subsequent developments 
is given in Section 7. 
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1 Effect of Surgery on Homology 

Let M be an m-dimensional manifold and S c M a (k - 1)-dimensional 
sphere imbedded in the interior of M with a trivial normal bundle. We will 
now study the effect on M of a surgery on S. 

Recall (cf- VI,9) that the trace of a surgery on S is the manifold W 
obtained from M x I by attaching a k-dimensional handle to M x {I} along 
S. Furthermore, M x (0)  is referred to as the left-hand boundary 3- W and 
x( M x {I}, S) as the right-hand boundary a+ W. We will retain this notation 
even if M has a non-empty boundary, in which case, however, it is no 
longer true that a W = a, W u a- W, and consequently W is not a cobordism 
between a+ W and a- W. In order to avoid in the sequel a cumbersome 
wording caused by this, we will extend the definition of cobordism by saying 
that M is cobordant to M' if there is a sequence of surgeries leading from 
M to M'. If M is closed, then this is equivalent to our previous definition 
by VI1,l.l. In any case dM = aM'. 

If W is a trace of a surgery, then, by VI,8.1, W is homeomorphic to 
( M  X 1) u h  (Dk  X Dm-kt'), where h: aDk X Dm-k+' + M x { l }  is a 
diffeomorphism sending a(Dk x (0 ) )  to S, and the homeomorphism in 
question is actually a diffeomorphism everywhere except along dDk x 
aDm-k+l . In particular, it makes sense to talk of the transversal disc D, = 
(0) x Dm-k+l and of the core disc D, = Dk x (0)  as smooth submanifolds 
of w. 

Now, h(dDk X DmPk+') is a tubular neighborhood of S in M, the sphere 
h ( p  x aDm-'+'), p E aDk is called a meridian. Any two meridians are 
isotopic in M - S and, by the Tubular Neighborhood Theorem, the same 
is true for meridians of two distinct tubular neighborhoods. Note that h(aD,) 
is isotopic in x ( M ,  S) to the meridian h ( p  x dDm-kc'), p E aDk. 

The purpose of a surgery on S is to kill the subgroup [S] of E L 1 ( M )  
generated by the fundamental class of S. The following proposition gives 
conditions guaranteeing that this will actually happen. 

(1.1) Proposition 
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Proof Identify M with M x (0) = W and x ( M ,  S )  with x ( M  x {l}, S) = 

a+ W and consider the diagram 

Hi+l(W, x(M7 S ) )  

I 
&+I( w, M )  - H i ( M )  - Hi( W )  - Hi( w, M )  - Hi-,(M).  

It follows from V1,lO.l that Hi(  W, M) = 0 unless i = k Thus the inclusion 
Hi(M) + Hi( W) is an isomorphism if i # k, k - 1. Similarly, it follows from 
VI,9.2 that the inclusion Hi(,y(M, S)) + Hi( W )  is an isomorphism if i # 
m - k, m - k + 1. This yields the first part of the theorem. Now, again from 
V1,10.1, the image of Hk(W,M)  in &l(M) under the boundary 
homomorphism is precisely [ S ] .  Since &-I(  W, M )  = 0,  the second part 
follows. 0 

In a similar way one can deduce the relation between the homotopy 
groups of M and x ( M ,  S ) .  The case of the fundamental group will be 
needed later and we state it here. 

(1.2) Lemma 
mal subgroup of r l(  M )  containing the homotopy class of S. 

I f m  > 3 ,  then r l ( x ( M ,  S ) )  = r l ( M ) / G ,  where G is a nor- 
0 

Proposition 1.1 gives a satisfactory explanation of the effect on the 
homology of M of surgery below the middle dimension, that is, on a sphere 
of dimension smaller than $(dim M - 1). To extend our investigation to the 
case of middle dimension, we study first the case when m = dim M = 2k - 1, 
in which case the surgery on a (k - 1)-dimensional sphere S does not 
necessarily lead to a disappearance of [S]. However, we still have 
& - I (  W )  = Hk- l (M) / [S ] ,  and since x(M,  S) uh 0, is a deformation retract 
of W, the vertical exact sequence in (*) yields for i = k - 1 the sequence 
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where the image of d is the homology class generated by h,[aD,],  that is-as 
we have noted already-the homology class generated by the meridian of 
S. It follows that if the meridian bounds in M - S, then a is trivial and 

If the meridian bounds in the complement of S, we say that S represents 
a primitive homology class. A sufficient condition for this is that there be 
in M an orientable submanifold intersecting S transversely in a single point; 
this is certainly true if the cohomology class dual to [S] is spherical. 
Assuming for simplicity that M is closed and letting D stand for the Poincar6 
duality isomorphism, a necessary and sufficient condition for the homology 
class a of S to be primitive is that there be a class p E &(M) such that 
DIY - Dp generates H " ( M ) ;  this happens if and only if a is of infinite 
order and indivisible. 

If dim M = 2k - 2, then the vertical exact sequence in (*) becomes, for 
i = k - 1 ,  

Hk-I(x(M, S ) )  Hk-l(M)/[Sl* 

Since W) =r Hk-I(M)/[S], it follows that Hk-I(X(M, S ) )  is isomor- 
phic to a subgroup of Hk-I(M)/[S], which means that the surgery kills at 
least the subgroup [S], possibly more. However, there might be trouble in 
dimension k - 2: The vertical exact sequence in (*) becomes, for i = k - 2, 

Hk--l( w X ( M ,  s)) ' Hk-2(x(M, s)) --* Hk-2( w) * 0, 

and, since Hk-2( W) = &2(hf), the group Hk-,(X(M, S)) might actually 
be larger than Hk-, (M) .  We dealt with this problem before: The image of 
d in &2(X(kf, S)) is generated by the meridian of S; therefore if S 
represents a primitive homology class, a is trivial and Hk-,(X(M, S)) = 

Hk-2(M). 
We now collect our results. 

(1.3) Proposition If dim M = 2k - 1 or 2k  - 2 and S represents aprimitive 
homology class of dimension k - 1, then a surgery on S will kill [ S ]  and will 
not change the homology of M in dimensions less than k - 1. 0 

Exercise Let M be a ( k  - 1)-sphere bundle over Sk admitting a cross 
section, and let S =  M be a fiber. Show that a surgery on S produces a 
homotopy sphere. 
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2 Framing of a Surgery; Surgery below Middle Dimension 

Assume now that there is given a framing F of the stable tangent bundle 
of M. Let W be the trace of a surgery on M; as before we identify M with 
d- W and the stable tangent bundles of M and x (  M, S )  with the restrictions 
of TW to d- W and a+ W. Thus F becomes a framing of T w ( a -  W and we 
will study here the problem of extending it to a framing of Tw. 

Note that even if the boundary of M is non-empty, the tangent bundle 
to W is still well-defined, for instance, by viewing M x I as a subset of 
M x R; we will not try to round the comers. 

Now, F certainly extends over M x I and to extend it over W it is 
necessary and sufficient to extend it over the core disc D,. There is an 
obstruction to this and it lies in T k - , ( S O ( m  + 1)). For if G is the standard 
framing of D k  x DmPk+’, then the differential of h sends C IaD, to a framing 
of S, and the necessary as well as sufficient condition for F to be extendable 
over D, is that the map wh : dD, + S O ( m  + 1) obtained by comparing 
D h ( G ) a D , )  with FIS be null-homotopic. (The rows of w ( p )  are the 
coordinates of Dh(GldD,) in terms of F(S at h ( p ) . )  

Now, the main property of h is that it yields a surgery on S, i.e., that it 
maps Sk-’ = dD, to S. This will still hold if we replace h by hy, where 

is given by AP, 9 )  = (P, T ( P )  * 41, 
7 :  s k - 1  + SO(m - k + 1). Note that the differential of y at p E aD, is the 
,,: a ~ k  ~ m - k + l  + a D k  ~ m - k + l  

matrix 

Let u: S O ( m  - k + 1 )  + S O ( m  + 1) be given by 

We then have why = wh * u( 7) (product of matrices), and, for the homotopy 
classes, 

[why] = [wh] + a,[?], U,: ‘ T k I T k - l ( S O ( m  - k -k 1)) + “fk-i(SO(m -k I)). 

Now, if either m 2 2k - 1 or m = 2k  - 2 but k f 2 , 4 , 8 ,  then u* is 
surjective, cf: A,5.2, and we can always find y so that [why]  = 0. Thus we 
have proved the following proposition: 

(2.1) Proposition Given a framing F of the stable tangent bundle of M and 
a ( k  - 1)-dimensional sphere S in M with a trivial normal bundle, if either 
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m 2 2k - 1 or m = 2k - 2 but k # 2,4,8,  then it is possible to perform a 
surgery on S so that F will extend to a framing of the tangent bundle of its 
trace. 0 

Up to now we were considering only tangential framings of W. However, 
as a result of IX,1.6, analogous results can be obtained for the normal 
framings. Briefly, if not precisely: If the trace of a surgery on M admits a 
tangential framing of W, then it admits a normal framing. We will use this 
in Section 6 to interpret our results in terms of the Pontriagin construction. 
Until then framed manifold will mean manifold with a framing of the stable 
tangent bundle, and framed cobordism will mean cobordism with a framing 
of the tangent bundle extending the given framing of the stable tangent 
bundle of the boundary. 

We now collect results concerning surgery below the middle dimension. 

(2.2) Theorem Let M be a framed m-dimensional T-manifold, m 2 2k > 4. 
Then there is a framed cobordism between M and a (k - 1)-connected 
manifold. 

If M f 0, then this asserts that there is a sequence of framed surgeries 
leading to a (k - 1)-connected manifold. These surgeries are always perfor- 
med in the interior and affect neither the boundary of M nor its framing. 
Thus we can view the theorem as asserting that if N bounds a parallelizable 
manifold M, then N bounds a manifold that is parallelizable and 
(k - 1)-connected, k 5 $(dim N + 1). 

Proof We proceed by induction on k. By surgery on 0-spheres, i.e., taking 
the connected sum of components of M, we can make M connected and 
we have shown in IX,7 that the connected sum of T-manifolds is a T- 
manifold. Next is the case of the fundamental group. If dim M 2 3, then 
every loop can be represented by a smoothly imbedded 1-dimensional sphere 
S. By IX,7.2 its normal bundle is stably trivial, hence trivial by IX,1.4. Now 
1.2 guarantees that we can eliminate the homotopy class of S by a surgery 
which, by 2.1, can be framed. Since T, is finitely generated, a finite number 
of surgeries will lead to a simply connected 7r-manifold. 

The inductive step is now clear: If M is ( n  - 1)-connected, n 2 2, m > 2n, 
then by the theorem of Hurewicz every homology class in H,, (M) is represen- 
ted by a map f :  S" + M ;  by II,3.2 we can assume f to be an imbedding, 
and the same argument as for the case n = 1 shows that f ( S " )  has a trivial 
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normal bundle. Therefore we can perform a framed surgery on it and obtain 
a r-manifold M' such that Hi(M')  = H i ( M )  = 0 for i < n and H,(M')  = 

Kl(M)/ISI. I7 

This proof illustrates the obstacles we will encounter when trying to 

perform the surgery in the middle dimensions: 

(a) It might not be possible to represent a given homology class by an 

(b) Surgery, even if possible, might not achieve the effect of simplifying 
imbedded sphere with a trivial normal bundle; 

the homology, ~$1.3. 

The first of these problems will occur in the case of surgery on the 
middle-dimensional homology of an even-dimensional manifold, the second 
in the case of odd-dimensional manifolds. Note that in the proof of 2.2 we 
have shown that if dim M = 2k i- 1, then every element of & ( M )  can be 
represented by an imbedded sphere with a trivial normal bundle. 

3 Surgery on 4n-Dimensional Manifolds 

Let M be an oriented (k - 1)-connected 2k-dimensional manifold, k 5 3. 
We assume that the boundary of M is either empty or a homotopy sphere; 
hence &(M) is free. By VIII,4.9 and 6.2, either M or M with a disc 
removed is a (2k ,  k)-handlebody. 

By the theorem of Hurewicz, every k-dimensional homology class x E 
H , ( M )  can be represented by a map Sk + M ;  by the theorem of Haefliger 
[Hl], this map can be assumed to be an imbedding, which is unique up to 
an isotopy if k z 4. Let S(x) be the (oriented) k-sphere in M representing 
x. We assume that its normal bundle is oriented by the convention adopted 
in IV,5. Hence the function x H a ( x )  that assigns to x the characteristic 
element a ( x )  E rk--I(SO(k)) of the normal bundle of S(x) is well-defined. 
Since r2 (S0(3 ) )  = 0, it is defined for k = 3 as well. 

Let x, y E H k ( M )  be represented by imbedded spheres S(x), S ( y ) .  We 
define the intersection pairing & ( M )  x & ( M )  + 2 by the formula 

x * y = [S(x) : S( y ) ] .  

It follows from VI,10.3 that this is well-defined, bilinear, symmetric for k 
even, and skew-symmetric for k odd. 
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Let H k ( M ,  a M )  x H k ( M ,  d M )  -+ Z be the cup product pairing defined 
by (u,  u )  = (u - v, oM),  where oM E H 2 k ( k f ,  d M )  is a generator. If u, u are 
the PoincarC duals of x, y E Hk(M), then x -  y = (u,  u )  by [D,VII1,13.5]. 
This simplifies the proof of bilinearity of the intersection product and defines 
it for all 4n-dimensional manifolds. (It would be possible to avoid here this 
reference to cup product and work exclusively with intersection pairing; 
the proof of 3.3 can be modeled on the proof of 4.2.) 

To a symmetric pairing there is associated a quadratic form Q, Q(x) = 

x . x. The pairing is said to be even if Q takes only even values. The signature 
u of the pairing is the signature of Q, when diagonalized over the real 
numbers. If dim M = 2k with k even, then the intersection pairing is 
symmetric and both notions are well-defined invariants of M; the signature 
will be denoted u ( M ) .  

(3.1) Proposition Suppose that M 2 k  is a .rr-manifold and k is  even. Then 
the intersection pairing is unimodular and even, and S(x) has a trivial normal 
bundle if and only i f x  * x = 0. 

Proof The pairing is unimodular by V412.2. Now, by VI,12.4, with an 
appropriate identification ? r k - l ( s k - * )  = Z, we have 

X ’  x = q5*a(x), 

where 4 is the projection of the fibration S O ( k ) / S O ( k  - 1). We use now 
the notation and results of A,5. Since M is a .rr-manifold, the normal bundle 
of S(x) is stably trivial; thus a ( x )  E Ker s, = Im d. Since for k even & is 
a monomorphism on Im a, the last part of 3.1 follows. Since Im & consists 
of even integers, the intersection pairing is even, 0 

We will now discuss the signature. It follows easily from the definition that 

(3.2) w ( - M )  = - u ( M ) ,  u ( M ~  # M2) = u(M, )  + ~ ( M z ) ,  

where the connected sum is taken along the boundary if MI and M2 are 
bounded. 

(3.3) Proposition u ( M )  is a n  invariant of cobordism. 

Proof If M is closed, then this follows from [D,VIII,9.6], since we can 
identify the cup product pairing and the intersection pairing. If aM is a 
homotopy sphere, then attaching to M a cone on dM produces a homology 
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manifold (indeed a topological manifold by VII1,4.6) with the same sig- 
nature, and the result follows as before. 0 

We now have all we need to decide when it is possible to perform surgery 
on H , ( M )  if k is even, k = 2n. 

(3.4) Theorem Let M be a framed 4n-dimensional manifold, n > 1, aM 
either empty or a homotopy sphere. There is a framed cobordism between M 
and a 2n-connected manifold M’ ifand only i f a ( M )  = 0. 

(Recall the convention of 2.1: framed manifold refers to a framing of the 
stable tangent bundle.) 

If M is closed, then by the Signature Theorem of Hinebruch u( M )  = 0. 
Since a 2n- connected closed 4n-dimensional manifold is a homotopy sphere, 
we obtain the following: 

(3.5) 
cobordant to a homotopy sphere. 

Corollary A framed closed 4n-dimensional manifold, n > 1, is framed 
0 

By IX,1.6 this implies that every element of the stable homotopy group 
7r4,,(S) can be represented (via the Pontriagin construction) by a framed 
homotopy sphere. 

If aM’ ( = a M )  is a homotopy sphere and M’ is 2n-connected, n > 1, 
then M’ is diffeomorphic to D4”, c$ VIII,4.5. Thus: 

(3.6) Corollary 
u ( M )  = 0,  then X is diffeomorphic to S4n-1. 

If a homotopy sphere B bounds a +manifold M and 

Proof of 3.4 By 3.3 the vanishing of signature is a necessary condition. It 
remains to prove the sufficiency and, in view of 2.2, we may assume that 
M is (2n - 1)-connected, a ( M )  = 0. 

Consider the intersection pairing. Recall that a symplectic base for it is 
a base e l , .  . . , e,, f l ,  . . . , f ,  on H k ( M )  satisfying 

e i . e .  = f . . f .  = O  e . . f . =  6.. 
J 1 1  9 1 1 ‘ I ‘  

A fundamental theorem in the theory of quadratic forms asserts that a 
symmetric unimodular even pairing admits a symplectic base if and only 
if it has signature zero (cJ: [Se,V,Th. 51). By 3.1 this is our case. Let then 
e, , . . . , e,, f , ,  . . . , f, be a symplectic base for the intersection pairing and 
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let S = S(e,) be an imbedded sphere representing e,. By 3.1 the normal 
bundle of S is trivial; hence we can perform a surgery on S and, by 2.1, 
this surgery can be framed. This implies that x( M, S) is again a r-manifold. 
Since e, . f l  = 1, S is primitive, as this notion was defined in Section 1. By 
1.3 x ( M ,  S) is (2n - 1)-connected, and the rank of H2,(x(M,  S)) is smaller 
than the rank of H 2 , ( M ) .  Thus a finite sequence of surgeries will reduce it 
to zero. 0 

The fact that S is primitive is easily visualized. If aM # 0, then, as noted 
at the beginning of this section, M is a handlebody and S may be taken 
as a core of a handle. Then a meridian of S lies in a M ;  hence it bounds 
there. If M is closed, then M with the interior of a disc removed is a 
handlebody and the same argument still works. 

There is another interesting consequence of the proof of 3.4. We have 
shown that if M is closed and (k - 1)-connected, k = 2n, then there is a 
sequence of surgeries on k-spheres leading to a homotopy sphere 2. Each 
surgery amounts to attaching a ( k  + 1)-handle to M x I, and the framed 
manifold W that realizes the cobordism between M and X is of the form 

W = M x f u ((k + 1)-handles), a, W = Z. 

The dual presentation is thus W = Z x I u (k-handles) and, according to 
V1,11.3, 

W = (C X I )  Rb TI #b T2 #b * - - #b T,, 

where TI, . . . , T, are (k  + 1)-disc bundles over Sk.  Since W is a r-manifold, 
they must be trivial. This means that the two components of dW are, 
respectively, I; and a connected sum of Z with a connected sum of a certain 
number of copies of S k  x Sk. Since this second component is M, we have 
proved the following: 

(3.7) Proposition A closed (k - 1)-connected wmanifold M Z k ,  k even > 2 ,  
is diffeomorphic to a connected sum of a homotopy sphere X and g copies of 
S k  X Sk, g = $bk(M). 0 

According to [Ko,3.1], if M # Z is diffeomorphic to M, M a 
(k - 1)-connected .rr-manifold, X E 02k, then Z = SZk .  Thus assigning to a 
natural number g and a homotopy sphere Z E O Z k  the connected sum of Z 
and g copies of S k  x S k  establishes a bijective correspondence between the 
set of all such pairs (g ,X)  and the set of all smooth structures on 
(k - 1)-connected, 2k-dimensional r-manifolds. 
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Exercise Two manifolds M, N are said to be almost diffeomorphic if 
M - { p} is diffeomorphic to N - {q} ,  p E M, q E N. Show that M is almost 
diffeomorphic to N if and only if M # Z is diffeomorphic to N for some 
homotopy sphere Z. 

Proposition 3.7 asserts that (k - 1)-connected, 2k-dimensional r-mani- 
folds are almost diffeomorphic if and only if they have the same kth Betti 
number. 

All arguments in this section fail completely in the case of 4-dimensional 
manifolds: It is not, in general, possible to represent a 2-dimensional 
homology class by an imbedded sphere, cf: [KMl]. 

4 Surgery on (4n + 2)-Dimensional Manifolds 

We will now consider a (k - 1)-connected r-manifold M of dimension 2k, 
where k is odd, k = 2n + 1, n > 0. The boundary of M is assumed to be 
either empty or a homotopy sphere. The intersection pairing is now skew- 
symmetric and unimodular; hence it always admits a symplectic basis, cf. 
[N,IV.l]. However, 3.1 no longer holds and we need another way of finding 
spheres with a trivial normal bundle. Our strategy will be based on the 
following proposition. 

(4.1) Proposition a ( x  + y )  = a ( x )  + a ( y )  + (X - y ) ~ ~ ,  

Note that since M is a m-manifold, a ( x )  E Im a and is of order 2 by A,5. 

Proof We will need some results from the theory of immersions, cf: [Wi3] 
and [M7]. 

Observe first that if S is an immersed sphere, then it has a well-defined 
normal bundle (111,2.1) and its characteristic element a ( S )  is an invariant 
of regular homotopy of S, i.e., homotopy through immersions (111,2.7). It 
is easy to see that if S , ,  S, are two immersed spheres in M, and S1 # S2 
stands for an immersed sphere obtained by joining S1 and S, by a tube, then 

(*I U ( S ]  # S,) = a(S,) + 4%). 
Next, for an immersed sphere there is defined a self-intersection number 

P ( S ) ,  which is an integer mod 2 and equals 0 if and only if S is regularly 
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homotopic to an imbedding. Moreover 

(**) p(S,  # S,) = [ S , : S , ]  mod2. 

Finally, we will need the fact that there is an immersion ho: Sk + R2& 
with the self-intersection number P(h , )  = 1. 

Now, let S, = S , ( x ) ,  S, = S,( y) be two imbedded spheres. If x * y is even, 
then p ( S ,  # S,) = 0, by (**), and S ,  # S, is regularly homotopic to an 
imbedding S representing x + y. Hence, by (*). 

a ( x  + y )  = a(S) = a(S1 # S,) = a ( & )  + a(S2)  = .(XI + a ( y ) ,  

which proves 4.1 in this case. 
Suppose now that x . y is odd; hence p(S,  # S,)  = 1. Take a chart in M 

disjoint from S1 # S, ,  and view it as R2k. The immersion ho becomes now 
an immersion of Sk in M representing 0 E & ( M )  and with the self- 
intersection number 1. Since p (S, # S2 # h,) = 0, S ,  # S,  # h, is regularly 
homotopic to an imbedding representing x + y and, as before, 

(***) a(x + y )  = a(S) = a ( S ,  # s, # h,) 

= a ( S I )  + a(S,) + a ( h , )  = a ( x )  + a ( y )  + a ( h o ) .  

There remains to be shown that a ( h o )  = Tk. To see this, let M = Sk x Sk, 
let S ,  = sk x { p )  represent x E &(Sk x sk), and let S,  = { p )  x sk represent 
y. Then x + y  is represented by the diagonal imbedding A, and, since 
a ( x )  = a ( y )  = 0, we obtain from (***) that a ( A )  = a ( h , ) .  But it is well- 
known that a ( A )  = Tk. 0 

(This proof follows essentially Levine’s modification of Wall’s argument, 
cf: b 2 1 ,  [W21.) 

It follows from 4.1 that if the rank of & ( M )  is at least four, then there 
is a symplectic basis for it with at least one element of the basis represented 
by a sphere with a trivial normal bundle. For suppose that 
e l ,  . . . , e , , f , ,  . . . , f ,  is a symplectic basis and that e , , e , , f , , f ,  all have 
non-trivial normal bundles. Introduce a new basis by the formulae 

e; = el + e,, 

e; = el + e, + f ,  + f,, 

f: = f ,  + e,, 

f; = f, + f, + e l ,  

el = ei,  f ;  = fi, i > 2. 

A calculation shows that a ( e : )  = a(f;) = a(e4) = a(f5) = 0 mod 2. 
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It is clear now that if the rank of H2,+1(M) is at least four, then we can 
proceed with surgery in the same way as we did in the proof of 3.4. First, 
we find a symplectic basis such that a ( e l )  = 0. The surgery on S(e,) will 
reduce the rank by 2 and, by 2.1, it can be framed unless n = 1 or n = 3. 
This is no impediment to an inductive procedure, for in these two cases 
(2n + 1)-dimensional spheres in M have trivial normal bundles and we do 
not need to verify at every stage that we still have a .rr-manifold. Continuing 
in this way, we will eventually end up with either a (2n + 1)-connected 
manifold or with a manifold M' with Hz,+, of rank 2 and a ( e l )  = cu(f,) = 1 
for a symplectic basis e l ,  f l .  (Clearly, the second case cannot happen if 
n = 1,3.) We will now show that there is an invariant allowing us to decide 
which of the two cases occurs. 

We assume now that k f 3,7 and identify Im a with Z2. The bilinear 
pairing x . y on Hk( M )  induces a symmetric bilinear pairing (x, y)  to Zz 
by the formula (x, y)  = x * y mod 2. With this notation, the map a satisfies 

a(x + Y )  = d x )  + d Y )  + ( X , Y ) .  

A function a: Hk( M) + Zz such that a ( x  + y) - a ( x )  - a( y )  is a non- 
singular bilinear symmetric pairing is called a quadratic form. Given a 
symplectic basis e l , .  . . , e,, f l , .  . . , f ,  of H k ( M ) ,  the Arf invariant of this 
form is defined to be the number mod 2, 

K = a(e , )a ( f l )  + . * . + a(e l )a( f , ) .  

It is known that K does not depend on the choice of the symplectic basis, 
c j  [Brl,IIJ.l]. Therefore it is an invariant of M, the Kervaire invariant K(M).  

As an example, note that for the Kervaire manifold K(4n + 2) of VI,12 
we have ~ ( K ( 4 k  + 2)) = 1. Of course, K ( 4 k  + 2) is not closed; we will 
discuss in Section 6 the important problem of the existence of closed 
manifolds with Kervaire invariant 1. For the closed manifold S2"+l x SZn+l 
we have Kervaire invariant equal to zero. 

It follows easily from the definition that 

(4.2) K ( M i  # Mz) = K ( M I )  -I- K ( M z ) r  

where the connected sum is taken along the boundary if MI and M2 are 
bounded. (The symplectic bases for MI and M2 yield together a symplectic 
basis for MI # Mz.) 

Observe that the Kervaire invariant was defined for all 2n-connected 
(4n + 2)-dimensional wmanifolds, n # 1,3, closed or bounded by a 
homotopy sphere, and that the framing did not intervene in the definition. 
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The following proposition will allow us to define it for all framed 
(4n + 2)-dimensional r-manifolds. 

(4.3) Proposition Suppose that { M o ,  W, M I }  is a framed cobordism 
between two 2n-connected (4n + 2)-dimensional manifolds Mo and M ,  , 
n > 1, n # 3. Then K ( M ~ )  = K ( M ~ ) .  

Proof Since W is a (4n + 3)-dimensional wmanifold, we can assume by 
2.2 that it is 2n-connected. This being the case, we conclude from VIII,6.5 
that Mo # So and Ml # S ,  are diffeomorphic, where So and S ,  are each a 
connected sum of a number of copies of SZn+l x SZnC1. Therefore 

K ( M ~ )  = .(M0 # So) = K ( M ~  # S , )  = K ( M ~ ) .  0 

We assumed in 4.3 that Mo and M I  are closed manifolds. If they are 
bounded by homotopy spheres and cobordant in the sense of Section 1, 
then there exists a framed manifold W such that d W = Mo u (dM,, x I )  u 
M ,  . By 4.3 we have ~ ( d  W )  = 0. Since we can find a symplectic basis for 
&,+,(a W) that splits into symplectic bases for H2n+l(MO) and H 2 n + l ( M l ) ,  
we obtain again K ( M ~ )  = K ( M , ) .  

It follows from these arguments that if (M, F )  is a (4n + 2)-dimensional 
framed r-manifold, closed or bounded by a homotopy sphere, then we can 
define its Kervaire invariant K (M, F )  as K ( M ' ) ,  where M' is 2n-connected 
and framed cobordant to (M, F). The existence of such M' is guaranteed 
by 2.2. The relation 4.2 becomes 

for an appropriately chosen framing G (4 IXJ.6 and 2.4). We now collect 
the results of this section. 

(4.5) Theorem 
closed or bounded by a homotopy sphere. 

(2n + 1)-connected manifold M' if and only if K (M, F )  = 0. 

exists. 0 

Let (M, F )  be a (4n + 2)-dimensional framed rr-manifold, 

If n # 1,3, then there is a framed cobordism between M and a 

If n = 1,3, then such a cobordism, not necessarily framed, always 

(4.6) 
.rr-manifold M with K ( M )  = 0,  then Z is difeomorphic to S4"+'. 

Corollary If a (4n + 1)-dimensional homotopy sphere Z bounds a 
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Proof By 4.5 Z bounds a contractible manifold; thus this follows from 
VI11,4.5. (If n = 1,3, then K is not defined and the assumption K(M) = 0 
is supertluous.) 0 

(4.7) Corollary There exists a closed (4n + 2)-dimensional r-manifold M 
with K ( M )  = 1 ifand only ifthe boundary ofthe Kervaire manifold K (4n + 2)  
is difeomorphic to S4n+'. 

Proof Let M be such a manifold, let N be M with a disc removed, and 
let W = N # b  K(4n  + 2). Then a W = S4n+1 by 4.2 and 4.6. But a W = 
aN # aK(4n + 2)  = aK(4n + 2) ,  for dN = S4n+1. The converse is 
obvious. 0 

The following proposition is an analogue of 3.7: 

(4.8) Proposition A closed (k  - 1)-connected wmanifold M2k,  k odd, with 
K( M Z k )  = 0 is difeomorphic to a connected sum of a homotopy sphere Z with 
g copies of S k  X Sk, g = f b k ( M z k ) .  

Proof If k # 3,7, then the proof of 3.7 applies without change. If k = 3 
or 7, then it yields an analogous result but with Sk x S k  replaced by k-sphere 
bundles over Sk.  Such bundles are classified by mkPl(SO(  k + l)), which is 
trivial for k = 3 or 7 ,  cf; A,5.1. Thus the bundles in question are actually 
product bundles. 

Note that, by 4.2, the conclusion of  4.8 always holds for M 2 k  # M 2 k .  

5 Surgery on Odd-Dimensional Manifolds 

In contradistinction to the case of even-dimensional manifolds there is no 
obstruction to the surgery in the middle dimension on odd-dimensional 
manifolds. 

(5.1) Theorem Let {XI, W, Z,} be a framed cobordism between two 
homotopy spheres Z, , X,. If dim W = 2k + 1 > 3,  then Wis  framed cobordant 
to an h-cobordism. 

In the following two corollaries M stands for a framed (2k + 1)-dimensional 
manifold, k > 1. 



5 SURGERY ON ODD-DIMENSIONAL MANIFOLDS 21 1 

(5.2) 
sphere. 0 

Corollary I'M is closed, then it is framed cobordant to a homotopy 

(5.3) 
ible manifold. 0 

Corollary If aM = I; is a homotopy sphere, then Z bounds a contract- 

It follows that Z is diffeomorphic to SZk if k > 2. 

Proof of 5.1 By 2.2 we can assume that W is (k - 1)-connected and we 
have to prove that Hk( W) can be killed by a sequence of framed surgeries. 
The proof will be based on the description of W as W, uh  W,, where 

W1 = (I;, X I )  #b TI #b ' . #b Ts, W, = (X2 X I )  #b Ti #b. ' ' #b T i ,  

the T, and Ti are copies of Sk x Dk+', and h is a diffeomorphism of 
boundaries. We obtained this representation in IX,7.3 starting with the 
handle presentation 

W = Z , X I U H : V * * * U  H ~ L J H : + ' u . . .  u HF+', 

and applying VIII,6.4 and IX,7.2. In particular, the tori T, correspond to 
the k-handles, and the tori Ti correspond to the (k + 1)-handles. 

To each presentation we will associate two square s x s matrices %R, and 
%J12 made of intersection numbers of meridians and equators of the T, and 
the Ti.  More precisely, let m,,  m:  stand for the oriented meridian of T, and 
T: respectively and let eJ, ei be their equators. Then 

%Jll = ( b y ) ,  b, = [m, : m:I, 9% = (cy), cIJ = [e ,  : m:l, 
i , j = l ,  ..., s. 

Thus in both matrices rows are indexed by k-handles, i.e., the T,, and the 
columns by (k + 1)-handles, i.e., the T i .  

Note that m, can also be viewed as the belt sphere of the ith handle H!', 
and rn; as the attaching sphere of H,k+l; thus %Jl, is the intersection matrix 
from VII,3, denoted there by g l k + ] .  It determines completely the homology 
of W. In particular, if %Jll is diagonal with *l's on the diagonal, then 
Hk( w) = 0. 

(5.4) Lemma g.c.d. ( b I i , .  . ., bSi,  c l i , .  . ., csi) = 1, i = 1, .  . . , s. 

Proof We view mi, mi as spheres in a W, . Since [ m I : e: ]  = f 1, m: represents 
a primitive homology class in Hk(a W,). Since Hk(d W,) is generated by the 
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ei and the mi, we have, for some integers xi, yi, 

rnl = C (bjiej + cjimj), e: = C (xjej + rimi). 
i i 

(We are using the same letter to stand for spheres and homology classes 
they represent.) T h s ,  with the dot for the intersection product, 

. ef = bjivj + cjixi = *l, 
j i 

The notion of the equator ei depends on the representation of Ti as the 
product Sk x Ilk+'. Let m = Sk x { p } ,  e = {q} x aDk+' be a meridian and 
an equator of Sk x Dk+', and let y:  Sk + SO(k + 1). The diffeomorphism 
h,, h,(x, y )  = (x, y ( x )  - y )  yields a new parametrization of Sk x Ilk+' with 
the new meridian e, = h,(e) .  The homology classes of e and e, in 
a(Sk x Ilk+') are related by 

where 4*:  Tk(SO(k + I)) + n k ( S k )  is from the homotopy exact sequence 
of the fibration S O ( k  + l)/SO(k) = Sk and we have identified m k ( s k )  with 
Z, c$ A,5. 

This yields 

[e,:S] = [ e : S ] + & [ y ] [ m : S ]  

for any closed and oriented k-dimensional submanifold S of d(Sk x Dk+l). 

It follows that the effect of a reparametrization of Ti by [ y ]  E 

?rk(SO(k + 1)) is to replace the ith row of n2 by its sum with the ith row 
of Dl multiplied by 4 * [ y ] ;  W ,  remains unchanged. 

Suppose now that we perform surgery on the core of the ith torus Ti ; 
this is possible since its core is a k-sphere with a trivial normal bundle. We 
will call a surgery on it a surgery on the ith handle. Viewing a surgery as 
a replacement of S k  x Dk+' by Dk+' x Sk, we see that the effect of a surgery 
on the ith handle is the interchange of the ith rows of 92, and W 2 .  However, 
if we want surgery to be framed, then before pasting Dk+' x Sk in, we may 
have to twist it by the map (x, y )  H ( y( y )  - x, y) ,  where the homotopy class 
of s , [ y ]  in Tk(sO(k  + 2)) is determined by the obstruction to framing, 
$2.1. This is equivalent to a reparametrization of 7;: by h, before performing 
the replacement of Sk x Dk+' by Dk*' x S". Combining this with what we 
know about the effects of reparametrization, we obtain the following lemma. 
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(5.5) Lemma 
'B, and m2 is to substitute cil + +.Jy)bi1 for bil, and bil for cil .  

The eflect of a framed surgery on T, on thefirst columns of 

We proceed now with the proof of 5.1. Assume that W has a presentation 
with s k-handles. We will show that if s > 0, then there is a sequence of 
surgeries on W leading to a manifold W' such that the first column of %31, 
has relatively prime entries; such a sequence of surgeries will be called 
handle reducing. This will prove 5.1, for in this case there is a sequence of 
elementary operations on rows and columns of 2Jll resulting in a matrix in 
which first row and first column intersect in *1 and have zeros elsewhere. 
An inductive argument shows then that we can eventually obtain Bl with 
diagonal elements equal to *l and zeros elsewhere. But then Hk( W') = 0 
and W' is an h-cobordism. (Alternately, if k > 2, we can apply VIII,2.3 
and conclude that there is a presentation of W' with s - 1 k-handles.) 

Suppose now that the presentation of W satisfies the following condition: 
(*I b,, = . * * = b,, = 0 and either b,,cll = 0 or [bill = Ic,,~. 
We claim that in this case W admits a handle-reducing surgery. For in 
either case a surgery on all Ti such that bi, = 0 will result, by 5.5, in the 
matrix 'B, with relatively prime entries in the first column. 

The proof of 5.1 will now be concluded by showing that if s > 0, then 
W admits a presentation satisfying (*). We will consider first the case of k 
even, >2. 

Certainly, W admits a presentation with 'B, diagonal (cf: VII1,l.S). By 
VII42.1 we can assume that the meridian mi does not intersect meridians 
of T2,  . . . , 7'' ; thus it can be viewed as lying in the boundary of 
(Z, x I) # b  TI, i.e., in Z, # (Sk x Sk); we can assume it misses 2 , .  It has 
a trivial normal bundle-it is the attaching sphere of the first 
(k + 1)-handle-and therefore it can be framed and the Pontriagin construc- 
tion will then yield a map Sk x Sk -+ Sk of bidegree ( b , , ,  ell) .  It is well- 
known (cf: [SEJ, § 51) that this implies the existence of a map SZk+' + Sk+' 
with Hopf invariant b, ,c , ,  . But if k + 1 is odd, then the Hopf invariant of 
such a map equals zero. This shows that a presentation of W with %31, 
diagonal must satisfy (*) and concludes the proof of 5.1 for k even, >2. 

If k = 2, i.e., dim W = 5 ,  we cannot use VIII,2.1. To get the same con- 
clusion we apply instead the following lemma, in which T is a boundary 
connected sum of s copies of S k  x Ilk+' and S c aT is a k-sphere represent- 
ing the class Ci (bimi + ciei) E Hk(dT) ;  mi, ei, i = 1 , .  . . , s, are homology 
classes of meridians and equators of aT. 
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Lemma 
such that the map p(S, F): S2kC1 -+ Sk+’ has Hopf invariant C j  bjcj. 

There is an imbedding of T in SZk+’ and a normal framing F of S 

This lemma is easily proved using the definition of the Hopf invariant 
as the linking number of pre-images. It is left as an exercise for readers 
familiar with it. (Choose the imbedding so that the e, bound in the comple- 
ment of T.) 

We will now prove 5.1 for the case when k is an odd integer. 
We begin with a presentation of W satisfying two conditions: 

(a) ‘%!, is diagonal; 
(b) A framed surgery on T, is possible without further reparametrization. 

(c) If (b) holds and we perform a framed surgery on T, replacing it by 
Observe that: 

7, then (bj holds for 7,. 

(This is essentially a tautology.) 
We will prove by induction on lbltl that W admits a handle-reducing 

surgery. By (*) this is true if either bllcll  = 0 or ( b l 1 (  = Iclll. We assume 
then that neither holds and consider two cases. 

0 < ]cl,] < lblll. In this case there is an integer m such that 
either lb,, - 2mcIlI or Ib,, - (2m + 2)c111 is “[clll; say lbll - 2rncll) 5 /cI11. 
Perform a framed surgery on T , ;  this will interchange c,, and bll and 
preserve (b), CJ 5.5 and (c) preceding. Reparametrize the new first handle 
using y E Im 8 chosen so that & ( y )  = -2m; this is possible by A,5.2(b). 
(We now use the notation of A,5 with the index shift by 1.) This will not 
affect (b), for sk+l (y)  = 0. Therefore we can again perform a surgery which 
will result in the element b; ,  on top of the first column of D, equal to 
(bll - 2mc,,( .  Since 

Case 1: 

Ib:ll = Ibll - 2mc11I 5 Ic11l -= Iblll, 

we have succeeded in decreasing lbI1l. 

0 < lbll( < (c , , ( .  In this case there is an integer rn such that 
either (cI1 - 2rnb,,( or (cI1  - ( 2 m  + 2)b1,( is s(b, ,I;  say (cI1  - 2rnb,,( 5 (bill. 
Reparametrize TI using y E Jm a chosen so that & ( y )  = -2m; this is 
possible by A,5.2(b). Since s k + l (  y )  = 0, (b) is preserved and the new element 
c;, at the top of the first column of %J12 satisfies 

Case 2: 

0 i (c;,1 = lcll - 2mb1,( 5 lbll( .  
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If either ciI = 0 or I C ; , ~  = ]bll] then, by (*), we are done. If neither holds, 
then we have reduced case 2 to case 1 .  

The proof of 5.1 is now complete. 0 

It may be worth noting that if k # 3 ,7 ,  then the argument used to prove 
5.1 for k odd can be greatly simplified using A,5.2(c). 

(5.6) Proposition If MZk+', k > 1, is a closed ( k  - 1)-connected rr-mani- 
fold, then, for some homotopy sphere Z, MZk+' # Z is the boundary of a 
parallelizable ( 2 k  + 2, k + 1)-handlebody. 

Proof There is a framed cobordism between M and Z involving only 
(k + 1)-handles, hence the same is true for M # Z and SZk+'. Now, the 
argument used to prove 3.7 easily adapts to yield 5.6. 0 

A classification of such handlebodies was undertaken by Wall in [W2]. 

6 Computation of 8" 

We now apply the results of the last three sections to the computation of 
the group Om, m 2 4. For this purpose we introduce two groups: the group 
P"' of oriented framed manifolds bounded by a homotopy sphere, and its 
subgroup P," of manifolds with the boundary diffeomorphic to Sm-'.  The 
equivalence relation is given by framed cobordism (as defined in Section 
1 )  and the group operation by the connected sum along the boundary; the 
unit element is the framed disc D"'. If m > 5 then P" and P," actually are 
groups, not just commutative monoids: For rn even (-My F) is the inverse 
of (M,F) by 3.2, 3.4, 4.4 and 4.5; for m odd P" = 1 by 5.1.  

Consider the sequence 

where the boundary homomorphism b is given by taking the boundary and 
forgetting the framing. Its image is traditionally denoted bP"'". This 
sequence is exact for m 2 5. For W"+' E Ker b means that d W bounds a 
contractible manifold and is thus diffeomorphic to S" by VIII,4.5. 



21 6 SURGERY 

(6.2) Proposition bPm+' is a finite cyclic group of order: 

(a) t n / 8 ,  t, as in JX,8.7, i f m  = 4n - 1 and n > 1; 
( b )  1 or 2 i f m  = 4n + 1 and n 2 1; 
(c) 1 i f m  = 5,13; 
( d )  1 i f m  = 2n 2 4. 

Proof Let m = 4n - 1, n > 1. By 3.2 and 3.3, assigning to an element of 
P4" its signature defines a homomorphism c+: P4" + Z. By 3.4 it is a 
monomorphism; we claim that its image is the subgroup 8 2  of multiples 
of 8. 

is 
divisible by 8. This follows from [Se,V, § 21 since the matrix of the intersec- 
tion pairing is unimodular and even by 3.1. It remains to notice that there 
is a parallelizable manifold of dimension 4n bounded by a homotopy sphere 
and with signature equal to 8: by IX,7.5 this is the manifold M(4n) 
constructed in V1,12. It follows that u is an isomorphism P4" = 82. 

Now, the image of u restricted to Pt",  as already computed in IX,8.5, is 
precisely t,Z. Therefore (a) follows from the exact sequence 6.1. Observe 
that dM(4n) is the generator of bP4". 

+ Z2 defined 
by assigning to (M, F) its Kervaire invariant K ( M ,  F). By 4.3 and 4.4 K is 
a well-defined homomorphism if n # 1,3; by 4.5 it is a monomorphism. It 
is an isomorphism, for we have constructed in VI,12 a parallelizable mani- 
fold K(4n + 2) bounded by a homotopy sphere and observed in Section 4 
that ~ ( K ( 4 n  + 2)) = 1. Together with 6.1 this proves (b) for n f 1,3. 

To see this, we observe first that the signature of an element of 

To calculate bP4"+* we employ the homomorphism K : 

Now, (c) follows from 4.6 and (d) follows from 5.3. 0 

Since t2 /8  = 28, it follows that bP8 = Z,*, generated by d M ( 8 ) .  In par- 
ticular, the 7-dimensional homotopy sphere aM( 8) is homeomorphic but 
not diffeomorphic to S7. Thus we have obtained the first example here of 
a nonstandard smooth structure on a sphere. Historically, the first example 
was due to J. Milnor who showed in 1956 [M3] that S' admits at least 7 
distinct differentiable structures. This unexpected result attracted great 
attention and gave a powerful stimulus to the development of differential 

Let X be a 4- or 5-dimensional homotopy sphere. It is a wmanifold; 
hence, when imbedded in a high-dimensional sphere, its normal bundle 
will admit a framing F and (2, F) will represent an element of the stable 

topology. 
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homotopy group r,(S). Since .rr,(S) = 0 if rn = 4 or 5 [To,XIV], (Z, F) 
bounds a parallelizable manifold. This shows that 8" = 6Pm+' for rn = 4,s; 
hence by 6.2(c) and (d), 

(6.3) e4 = e5 = 0. 

The argument used in this proof can be refined to extend the sequence 6.1. 
Recall that the group a," of framed cobordism classes of framed T- 

manifolds can be identified with the stable homotopy group T"(S) and its 
subgroup S," of framed spheres with the image of the Hopf-Whitehead 
homomorphism J,, cf: IX,5.5 and 6.3.1. Let Z," c a," be the group of 
framed cobordism classes of framed homotopy spheres. We will construct 
a homomorphism p: 8" + I,"/S;2 suc'h that the sequence 

(6.4) 

is exact for m 2 5. 
Given Z E Om, we consider the set p ( Z )  c Z," consisting of classes rep- 

resented by all possible framings of Z. We claim that p ( Z )  is a coset of s,". 
To see this, recall first that, by IX,5.7, 

(*> 

for an appropriately chosen framing G. Letting Z' = -Z, we get 

P 
0 + 6Pm+' + 8" -P Zly/S;l+ 0 

p ( Z ,  F) + p(B', F) = p(E # Z', G )  

P(% F) - P P ,  F') = A S " ,  G )  

since Z#(-Z) bounds a contractible manifold and is thus diffeomorphic 
to S" by VIII,4.5. This shows that p ( Z )  is contained in a coset p ( Z ,  F) + S;2 

Every element of this coset is represented by a map p ( Z ,  F) + p ( S m ,  F') 
of S,". 

for a suitably chosen framing F'. But letting E' = S" we get, from (*), 

thusp(8, F) + S y  = p ( Z ) .  Consequently, p is a map 8" + Z,"/S,", and since 
homotopy spheres are r-manifolds, it is surjective. That it is a homomorph- 
ism follows from (*). 

Now, suppose that p ( X )  = S,". Since S," contains a null-homotopic map, 
there is a framing F such that p ( Z ,  F) is null-homotopic. This means that 
(Z, F) bounds a framed manifold, i.e., Kerp c bP"". Since the inverse 
inclusion is obvious, the exactness of 6.4 is proved. 
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We have seen that bPm+' is finite for m z 4 and, by a well-known theorem 
of J.-P. Serre, a," = .rr,(S) is finite ( c !  [Sp,9.7]). Thus it follows from 6.3 
and 6.4 that: 

(6.5) Theorem 8" is $finite for rn z 4. 

To obtain more precise results about 8", we patch 6.4 and the exact 
sequence 

0 + X,"/S," + n,"/S," = Coker J,,, + nT/X," + 0, 

and obtain for m z 5 the exact sequence 

(6.7) Theorem Let m > 4, m # 6,14. Then, fl,"/XT is trivial i f  m # 
2 mod 4 and of order 5 2  if m = 2 mod 4. 

Proof According to IX,1.6 all results of Sections 3-5 are valid with the 
framings interpreted as framings of the stable normal bundle. It follows 
that for rn odd the theorem is a consequence of 5.2, and for m = 0 mod 4 
of 3.5. If m = 4n + 2, n f 1,3 ,  then assigning to an element ( M ,  F) E a," 
its Kervaire invariant defines a homomorphism K: +. Zz. By 4.5 the 
kernel of this homomorphism is precisely Xy. Thus fl,"/X," is of order 2 
if and only if K is surjective, i.e., if there exists a closed .rr-manifold with 
Kervaire invariant 1. 0 

Further calculations of 8"' depend on precise knowledge of Coker J,  
and on the resolution of the Kervaire invariant ambiguity if m = 1,2  mod 4. 
Using the tables of .rr,(S) in [To] we obtain the following results in low 
dimensions. The order of a group G is denoted [GI. 

If m = 4n, we have from 6.2, 6.6, and 6.7 that 04" = Coker J4,,. Since 
Im Jan = Z2 for n even and is trivial for n odd, a comparison with Toda's 
tables yields: 

e8 = z2, o12 = 0, el6 = z2. 
If m = 4n - 1, sequence 6.6 becomes 

0 + bP4" + 04"-' + Coker J4"-, + 0, 

where bP4" is cyclic of order tJ8 .  Since Coker J7 = Coker Jll = 0, we see 
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that 
11 o7 = z,,, 6 = 2 9 9 2 .  

To calculate 6" for M = 1,2  mod 4 we need to know whether there exists 
a closed (4n + 2)-dimensional manifold with Kervaire invariant 1. As we 
have seen in 4.7, an equivalent question is whether K(4n + 2) is diffeomor- 
phic to the standard sphere. Leaving aside for a moment the dimensions 
2,6, 14, where we did not define the invariant, the first dimension that occurs 
is 10. In this case M. Kervaire in the paper [K2], in which he introduced 
the invariant, showed that dK(  10) is not diffeomorphic to S9. Thus bP" = 

Z2, Q f o / l x f o  = 0, and we obtain, from 6.6, 

1091 = 8, 16101 = 6. 

A considerable amount of work has been expended on the Kervaire 
invariant problem in higher dimensions. The farthest reaching result is due 
to W. Browder who proved in [Br2] that dK(4n + 2) is not diffeomorphic 
to the standard sphere unless n + 1 is a power of 2 and, in fact, is diffeomor- 
phic to it if n = 7. 

The cases n = 0, 1,3 need separate discussion. Our definition of the 
Kervaire invariant excluded corresponding dimensions 2,6, and 14. 
However, already Pontriagin [ Po21 defined in these dimensions an invariant 
of framed manifolds, which is an obstruction to framed surgery, and showed 
that it equals 1 for certain framings of S' x S',  S3 x S3, and S7 x S'. The 
Kervaire invariant can be redefined so that the definition will encompass 
these dimensions and coincide there with Pontriagin's. It follows that 
Q,"/Zy = Z2 for m = 2,6,14, which implies O6 = 0, @ I 3  = Z3, = Z2. 

7 Historical Note 

The theory presented in this chapter was developed in the six year period 
following Milnor's discovery of nonstandard smooth structures on the 
7-sphere. This period was characterized by an extraordinary meshing of the 
results of mathematicians working in diverse parts of topology. 

(7.1) The natural problem of classification of smooth structures on S" 
faced two difficulties at the outset. First, in order to define rigorously the 
operation of connected sum one needs the Disc Theorem, III,3.6. This was 
proved independently by J. Cerf and R. Palais and published in 1960. 
Second, even with this operation defined, the problem of the existence of 
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the inverse in the monoid of differentiable structures was very hard. Here 
the solution came in substituting h-cobordism, defined by R. Thom in [T5], 
for diffeomorphism as the equivalence relation between smooth structures. 
This shifted the arguments from constructing diff eomorphisms, an impos- 
sible task before Smale, to homotopy theory. The stage was set for the 
construction of the groups 8” and their computation. 

The groups 8” appeared for the first time in Milnor’s notes “Differentiable 
manifolds which are homotopy spheres,” dated January 23,1959. This paper 
was widely distributed but never published; we will refer to it here as DM. 
Its main results were published in [M5] and [M7]. They were: 

-the construction of 8”;  
-the proof that homotopy spheres are wmanifolds, IX,8.6; and 
-introduction of the method of surgery and its application to the calcula- 

tion of bP4k. 

The proof that n-dimensional homotopy spheres are .rr-manifolds depen- 
ded for n = 4k on certain divisibility properties of Pontriagin numbers due 
to Kervaire (1957), and on the Hinebruch Signature Theorem of 1956. 
For n = 1,2mod8 the argument led to the question whether the 
J- homomorphism in the corresponding dimensions is injective, and became 
conclusive with Adam’s positive answer two years later. 

The technique of surgery below the middle dimension was fully developed 
in DM; its use was credited to Thom. Surgery in the middle dimension was 
treated only for 4k-dimensional manifolds concluding with the determina- 
tion of the order of bP4k as t k / 8  with tk as here in 6.2(a), and the formula 
IX,8.7 for tk already established in [MK]. The final determination needed, 
again, the results of Adams. 

It was announced in DM that by “making use of the Arf invariant of a 
certain quadratic form’’ one can show that the order of bP4k’2 is at most 
2. No further details were given. The case of even dimensional spheres, i.e., 
of bP2k+’, was posed as a problem. 

By the end of 1959 the results of Smale elucidated the relationship between 
h-cobordism and diffeomorphism. The group O”, n > 4, turned out to be, 
after all, the group of smooth structures on S“, cf: VIII,5.6. The proof that 
bP2k+’ = 0 was provided by Kervaire and Milnor in [KM2] and, indepen- 
dently, by Wall in [Wl]. (Wall’s paper was submitted earlier, July 21, 1961, 
but it acknowledges that Kervaire and Milnor have obtained the same result.) 

The publication of [KM2] in 1962 filled the remaining gap by providing 
a construction of the Kervaire invariant. Since the results of Adams became 
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available, the calculation of 0" was complete-except for the troublesome 
question of the Kervaire invariant. "Complete," of course, in the mathemati- 
cal sense; that is, reduced to another unsolved problem, that of the determi- 
nation of homotopy groups of spheres. 

Actually, [KM2] omitted some calculations and constructions. They were 
relegated to Part 11, which was never published. A number of people 
attempted to reconstitute it in courses and seminars; notes from J.  Levine's 
course were published in [Le2] (beware of misprints!). 

(7.2) Even before [KM2] was published A. Haefliger [H2] applied the 
technique of surgery to obtain an example of differentiably knotted spheres 
in Euclidean space with codimension greater than 2. This was unexpected, 
for shortly before Zeeman had shown that in the combinatorial case knotting 
can take place only in codimension 2. Haefliger extended the notion of 
h-cobordism and of the connected sum to obtain the group X"," of h- 
cobordism classes of imbeddings S" + S", and calculated X6k,4k-1 . In turn, 
J. Levine constructed a larger group 0"*" of homotopy n-spheres in S", 
which provided the additional information on which homotopy n-spheres 
imbed in S", [Lel]. This group was studied using a sophisticated version 
of surgery techniques applied to submanifolds of S". The final results 
appeared as an interrelated family of exact sequences. Since for rn large 
Om," becomes isomorphic to t9", Levine's sequences contained the results 
of [KM2] and could be viewed as their unstable generalization. 

This direction of research was continued by Haefliger, Kervaire, and 
Levine. 

Another direction was initiated in 1962 by W. Browder and S. Novikov. 
Their point of view can be, with some simplifications, stated as follows. We 
are given manifolds M and X, a k-vector bundle ,$ over X ,  a mapf: M + X 
of degree 1 and a bundle map b: v + 6 covering f; v is a normal bundle 
of some imbedding of M in the Euclidean space of high dimension. The 
problem is to decide whether there is a cobordism between this configuration 
and one in which f is a homotopy equivalence. (This is Browder's version 
of the problem, cJ: [Brl].) 

If X is a single point, then we have, of course, the case of surgery on 
wmanifolds and the work of Kervaire and Milnor can be viewed as the 
determination of the obstruction to obtain the desired cobordism through 
a sequence of surgeries. It turns out that in the general case there is also a 
well defined obstruction that can be calculated if X is simply connected. 
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The principal application, indeed, the original motivation, is to classify 
(up to a diffeomorphism or almost diffeomorphism) the set of manifolds 
of the same homotopy type. A comprehensive treatment of this subject was 
given by Browder in [Brl]. 

Without the assumption of simple connectivity of X, the theory becomes 
considerably more difficult. This research was initiated by Wall and early 
results can be found in [W3]. 

The method of surgery was applied successfully in the theory of imbed- 
dings and in the investigation of group actions on manifolds. (An introduc- 
tion to the use of surgery in the latter subject can be found in [PR].) At 
present there are no comprehensive surveys of these and other applications. 

(7.3) The homomorphism 0'" -+ Coker J,,, of 6.6 does not provide a method 
for an explicit construction of exotic smooth structures on spheres. The first 
such examples were provided by 3-sphere bundles over S4. In [ M4] Milnor 
introduced the operation of plumbing disc bundles over spheres (cJ: VI,12), 
and obtained a new large class of explicit examples of exotic smooth 
structures on (4k - 1)-spheres. As we have seen in 6.2 one can obtain in 
this way generators of bP2k. A special case of plumbing of two disc 
bundles yields a bilinear pairing of the subgroup S+Tk-] (SO(k  - 1)) of 
T ~ - ~ ( S O (  k)) with itself to 02k-' ,  with a large image if k = 0 mod 8, cf- [KO]. 

In 1966, E. Brieskorn discovered a new class of explicit examples of 
exotic smooth structures. The remarkable feature of his examples is that 
they occur in a rather classical context: as boundaries of small neighbor- 
hoods of an isolated singularity of an affine variety. More precisely, let V, 
be the complex hypersurface 

( Z p  + ( 2 , ) n 2  + . * + ( z k + l ) a * + l  = 0 

in Ck+', a = (a l ,  a*, . . . , ak+l) .  Then, with an appropriate choice of a, 
the intersection of V, with a small sphere centered at 0 is a smooth 
(2k - 1)-dimensional homotopy sphere and all elements of bPZk can be 
obtained in this way, CJ [Bk] and [M9]. In particular, all these spheres can 
be imbedded in the Euclidean space with codimension 2. 

Plumbing and the Brieskorn construction seem still to be the only known 
methods for an explicit construction of homotopy spheres. 



Appendix 

In Sections 1 and 2, we present some consequences of the Implicit Function 
Theorem important in the study of smooth manifolds but difficult to find 
in textbooks. Section 3 contains the Sard-Brown Theorem in a form adapted 
to our purposes. In Section 4 we discuss orthonormalization procedures, 
with an emphasis on the uniqueness and smoothness of the resulting 
decomposition of matrices. In Section 5 we collect various calculations of 
the homotopy groups of the orthogonal group. 

1 Implicit Function Theorem 

Let M be an rn x n real matrix. The so-called Gaussian elimination 
procedure provides a proof of the following fundamental fact: 

There exist invertible matrices A and B such that 

k = rank of M. 

If L: R" + R" is a linear map given by the matrix M, that is, 

L ( v )  = M .  v, 
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then this result may be interpreted as saying that with respect to some 
system of coordinates in R" and R" the map L is the composition of the 
projection R" + Rk with the inclusion Rk L, R". We will show that there is 
an appropriate generalization of this to arbitrary smooth maps R" + R". 

Definition Let f: U + R" be a smooth map, U an open subset of R", and 
let p E U. If there is a neighborhood V of p such that the map f I V: V -f f ( V) 
has a smooth inverse, then we shall say that f is a local difeomorphism at 
p. A local diffeomorphism at 0 is also called a local coordinate system at f (0). 

All that follows will be based on the following fundamental result: 

(1.1) Implicit Function Theorem Let f: U + R" be a smooth map, U an 
open subset of R". If the rank of the Jacobian matrix J ( f ,  p )  off at p E U 
equals m, then f is a local difleomorphism at p. 

Briefly: If J ( f ,  p )  is invertible, then so also is f in a neighborhood of p. 

Implicit Function Theorem, that we are after is as follows: 
The generalization of the linear algebra statement, as well as of the 

(1.2) Theorem Let f: U + R" be a smooth map, U an open subset of R". 
If the Jacobian J (  f) is of constant rank k in a neighborhood of p E U, then 
there is a local coordinate system g at p and a local coordinate system h at 
f ( p )  such that 

h-'fg(xl,.  . . , X m )  = ( x l , .  . . , xk,o). 

In other words, with respect to these coordinate systems the map f is the 
composition of the projection R" + Rk with the inclusion Rk L, R". 

Proof Without restricting the generality of the argument we can assume 
that p = 0 E R" and f (  p )  = 0 E R". Let f = ( fi , . . . , f"). Renumbering the 
variables we can also achieve that the determinant of the matrix 

is not zero at 0. 
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Let f' = (f,, . . . , f k ) ,  f" = (A+,,  . . . ,fn) and set F ( x , ,  . . . , x,) = 

(f', & + I , .  . . , xm). Since 

J ( F , O ) = ( J ,  Im-k * ) 
is non-singular, there is a local diffeomorphism g defined in a neighborhood 
of 0 such that Fg(x) = x, and hence f ' g ( x )  = ( x l , .  . . , xk). 

If k = n, then f = f' and the proof ends here; otherwise we continue as 
follows. Since f g ( x )  = ( x l , .  . . , xk, f " g ( x ) ) ,  

where J2 is the Jacobian of f " g  with respect to the variables & + I ,  . . . , x,. 
Since J ( f g )  = J ( f ) J ( g )  and J ( g )  is invertible, the rank of J ( f g )  equals the 
rank of J(f). The latter equals k in a neighborhood V of 0 E R"; thus J2 
has only zero entries in V. This means that, in V, f " g  is a function of the 
variables x l , .  . . , xk only. Denote this function by g', let a ( x , ,  . . . , x,) = 

( x l , .  . . , xk), ~ ( x , ,  . . . , x,,) = ( & + I , .  . ., xn) ,  and define 

h(x1,. . ., X " )  = ( 4 x 1 ,  g'+) - + ) I .  

Then h is a local coordinate system at 0 E R" and 

An often encountered case of 1.2 is when the Jacobian off is of maximal 
rank at p ,  that is, of rank m or n. Since in this case the rank must be constant 
in a neighborhood of p, we have the following: 

(1.3) 
ately chosen coordinate systems f is: 

Corollary I f f i s  of maximal rank atp, then with respect to appropri- 

-the projection R"' +. R", if n I m; 

-the inclusion R" L, R", i f m  5 n. 0 

All results of this section apply to smooth maps defined on an open 
subset of R," = { x  E R" I x, 2 0}, such a map being smooth if it extends-at 
least locally-to a smooth map on an open subset of R". For iff  is such 
a map, p E R"-' and f is an extension off over a neighborhood of p in 
R", then J (  1 p) is completely determined by f I R," , i.e., by j 
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2 A Lemma of M. Morse 

The investigation of maps R" + R" is frequently simplified by a lemma of 
M. Morse, which gives a presentation of such a map that looks like a linear 
map but has variable coefficients. 

(2.1) Lemma 
a smooth function, f ( 0 )  = 0. Then 

Let CJ c R" be a convex neighborhood of 0 and f :  U 3 R 

for some smooth functions a,(x),  . . . , a,(x) satisfying ai(0)  = 8f/8xi(0). 

The second part follows by differentiating (*). 0 

(2.2) Theorem 
a smooth map, f ( 0 )  = 0. Then 

Let CJ c R" be a convex neighborhood of 0 and f : U + R" 

f ( x )  = M ( x )  * x, 

where M ( x )  is an m x n matrix whose entries are smooth functions of x, and 
M(O) = J ( f ,  0). 

Proof Let f = ( f ,  , . . . , fn) and apply 2.1 to each function A. 0 

With f ( x )  represented as in the preceding, consider the map 

F,(x) = M ( r x )  . X ,  0 5 t 5 1. 

F, is a deformation of the map f to the linear map given by the Jacobian 
o f f  at 0. Observe that the rank of J(F , ,  0) equals the rank of J ( f ,  0). This 
is so because F,(x)  = ( l / t )  f ( t x )  for t # 0, i.e., F, is the composition o f f  
with the multiplication by t in R" and the multiplication by l / t  in R", and 
those two maps are of maximal rank. 

3 Brown-Sard Theorem 

We will derive a version of the Brown-Sard Theorem adapted to our 
purposes. 
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Recall that a subset C of R" is said to be of measure 0 if, for every E > 0, 
C is contained in a denumerable family of balls { Bj} with total volume less 
than E. A set of measure 0 cannot contain an open set; therefore its 
complement is dense in R"'. Note also that if Ci is a denumerable family 
of sets of measure 0, then C = ui Ci is also of measure 0. For, if E > 0 is 
given, then each set Ci is contained in a family {Bf} of balls with total 
volume less than ~ / 2 ~ .  Then the family {B j }  contains C and its total volume 
is less than E. 

Now, let f: U +. R" be a smooth map, U = R". A point p E U is a 
singular point of f  if the rank of J(S,  p )  is less than n. Let S c U be the 
set of singular points of j The theorem of Brown and Sard asserts that 

f ( S )  is a measure 0. 

(The proof given by Pontriagin [Po21 presently enjoys great popularity. 
Simplified versions of it can be found in [M2], [Hl], [Bd].) 

This generalizes to maps of differentiable manifolds. 

(3.1) Theorem 
the set of regular values off is dense in N. 

Let f : M + N be a smooth map of smooth manifolds. Then 

Recall that the set of regular values is the complement in N of f ( S ) ,  where 
S is the set of singular points of either f or f IdM, cf: II,2.4. 

Proof Let { V,, h,} be an adequate atlas on M and { V,, g,}  an adequate 
atlas on N. We have to show that, for every p ,  V, - f ( S )  is dense in V,, 
i.e., that gpl(  V, - f ( S ) )  is dense in gj' (  V,) .  This will follow if we establish 
that gp'( V, n f ( S ) )  is of measure 0. But gp'( V, n f ( S ) )  = 

U, g;'(V, n f(S n V,)) and each of the sets gp'(V, n f(S n U,) )  is of 
measure 0 by the Brown-Sard Theorem. 0 

4 Orthonormalization 

We give two theorems here about decompositions of matrices. The emphasis 
is on smoothness of procedure and uniqueness of results. 

The following theorem is known as the Gram-Schmidt orthonormalization 
procedure. 
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(4.1) Theorem Given a matrix M E G l ( n ) ,  there exists a unique upper 
triangular matrix T with positive entries on the diagonal such that MT is an 
orthogonal matrix 0. The entries of T a r e  smooth functions of entries of M. 

Proof This is usually proved by induction; the geometric content of the 
inductive step can be described as follows. Suppose that the first k columns 
v l ,  . . . , vk are orthonormal and consider the vector space v k + ,  spanned by 
v l ,  . . . , v k ,  v k + l .  There is a unique vector w such that: 
(*) v l ,  . . . , v k ,  w form an orthonormal basis of v k + , ;  

(**) The orientations of Vk+, given by vl , . . . , v k ,  Vk+1 and v, , . . . , v k ,  w 

( w  is obtained by subtracting from all projections on v l , .  . . , vk and 
normalizing the result; w depends smoothly on v ,  , . . . , V k + l . )  

coincide. 

Now, w is taken as the (k + 1)st column of 0. 
The uniqueness of 0, hence of T, follows: The triangularity of T forces 

0 (*), and the fact that its diagonal elements are positive forces (**). 

Let T( n )  denote the set of upper triangular matrices with positive diagonal 
elements. Clearly, T( n )  can be identified with a convex subset of R"("+1)'2. 
Therefore we have: 

(4.2) Corollary 
G l ( n ) .  0 

C l ( n )  = O ( n )  x T ( n ) ;  O ( n )  is a deformation retract of 

The decomposition M = OT in 4.1 lacks an important property: If M 
and M ,  are orthogonally similar and M = OT, Ml = O , T l ,  then 0 and 0, 
need not be orthogonally similar. The existence of a decomposition having 
this property is assured by the following theorem of Chevalley. 

(4.3) Theorem Given a matrix M E G l ( n ) ,  there is a unique symmetric 
positive deJinite (s.p.d.) matrix S such that M = OS with 0 E O ( n ) .  S is a 
smooth function of M. 

Proof We first observe that M = OS with 0 orthogonal and S symmetric 
if and only if there is a symmetric S such that S2 = 'MM. For if S2 = 'MM 
with S symmetric, then letting 0 = MS-' we have '00 = '( S-')'MSS-' = I,, . 
The converse is proved similarly. 

Now, 'MM is s.p.d. Hence to prove the theorem we have to show that 
an s.p.d. matrix has a unique s.p.d. square root depending smoothly on it. 
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Taking into account that the set S(n) of s.p.d. matrices is an open subset 
of Rn(n+l)'Z, this amounts to asserting that the map f : S(  n) + S(n) sending 
M to M 2  is a diffeomorphism. Thus we have to prove three statements: 

(a) f is surjective; 
(b) f is one-to-one (hence it has an inverse); 
(c) f i s  of maximal rank at every point of S(n) (hence, by 1.1, its inverse 

is smooth). 

Let 0 E O(n) and f o ( M )  = OMO-'. Then: 

(4.3.1) fo: S( n) + S( n) is a diffeomorphism and fof = f fo .  

This is clear since f o - l  is the inverse of fo. 
Now, if M E S(  n), then, for some 0 E O( n), f o ( M )  is a diagonal matrix 

diag(d,, . . . , d, )  with all di positive. Let D = d i a g ( a , .  . . ,a). Then 
f ( f ; ' D )  = fG1D2 = fG1fo(M) = M, which proves (a). 

Now, let S be s.p.d. and assume that S2 = diag(d,, . . . , d , ) .  To prove (b) 
we have to show that S = d i a g ( a ,  ...,a). Let D = 

diag(l/d&, . . . , l / a ) .  We will show that SD = I,, by showing that SD 
is symmetric with all eigenvalues = f l .  The following argument was sug- 
gested to me by P. Landweber. 

Observe first that D2S = SD2; hence D(SD - DS) = (DS - SD)D, i.e., 
SD - DS anticommutes with a diagonal matrix with positive entries. This 
implies readily that SD - DS = 0; thus SD is a symmetric matrix. Since 
(SD)' = I,, the eigenvalues of SD equal *l. But the eigenvalues of SD are 
( e l l a , .  . . , e , / a ) ,  where ( e l , .  . . , en)  are the eigenvalues of S. (This 
follows from the fact that an eigenspace of D is an invariant subspace for 
S.) Since all the ei are positive, all eigenvalues of SD equal 1. This completes 
the proof of (b). 

There remains to prove (c). By 4.3.1 it is enough to calculate the rank of 
the Jacobian J ( f ;  M) when M is a diagonal matrix. 

We arrange the calculations as follows. Let M = (+), xy = xji. The map 
f is given by n(n + 1)/2 functions 

f i l s  * . . , f i n ,  f 2 2 ,  * . ., f 2 n 7  - * * fnn, 

where Aj is the product of the ith and j th  rows of M. In J ( J  M) the 
derivatives of J j  fill the r( i, j ) th  row, where 

r( i, j )  = n + ( n  - 1) + . . - + (n - i + 2 )  + ( j  - i + I ) ,  

and the derivative with respect to x,, stands at the r( rn, n)th place in this 
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row. (Only x,, with n 2 m are considered.) This implies that entries below 
the diagonal are either 0 or xg with i # j and the entries on the diagonal 
are the diagonal entries of M, with coefficient 2 if i =j. This implies that 
if M is a diagonal matrix, then J ( J  M) is upper triangular and its deter- 
minant equals 2" times a product of diagonal entries of M. Thus, if M is 
s.p.d., det J(J M) > 0. This concludes the proof of (c) and of 4.3. 0 

Another proof of 4.3 can be found in [Ch,l. 8 V]. But the preceding proof 
utilizes only elementary notions of linear algebra that can be found in most 
undergraduate texts. 

(4.4) Corollary GI( n) = O( n) x S( n) as topological spaces. 0 

Now let 0 5 t I 1 and let S , ,  S, be two s.p.d. matrices. Then 

( ( t S ,  + (1 - t)S,)u, u )  = t(S,v, v )  + (1 - t)(S,U, u )  > 0, 

i.e., S( n) is convex. An important consequence of this is given in I,3.3. (The 
fact that O( n) is a deformation retract of G1( n) we already know from 4.2.) 

5 Homotopy Groups of SO(k)  

Let 4:  SO(k)  + Sk-' associate to a matrix M E S O ( k )  its first column, i.e., 
+ ( M )  = Ma el where e l ,  . . . , en is the standard basis of R". Then 4 is the 
bundle projection of a bundle with fiber SO( k - l), with the inclusion 
s k - 1 :  SO( k - 1) L, SO(k)  given by 

[S,7.6]. The homotopy exact sequence of this bundle implies that this 
inclusion induces anisomorphism r i (SO(k  - 1)) + r , ( S O ( k ) )  for i < k - 2 
and is surjective for i = k - 2. In particular, the groups r i ( S O ( k ) )  stabilize 
for k > i + 2; we let r i (SO)  denote their common value, i.e., lim wi(SO(k)) .  
R. Bott showed in 1959 that it depends only on the congruence class of 
i mod 8 and calculated it as follows (cf: [Ml] for a proof and references): 

(5.1) i m o d 8 =  0 1 2 3 4 5 6 7 

w,(SO)= 2, z* 0 z 0 0 0 z 
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Besides the stable group we will need information about the group 
r k p 1 ( S O ( k ) ) .  For this purpose we consider the diagram 

where the diagonal sequences are parts of homotopy exact sequences of 
the fibrations SO( k + l)/SO( k )  + Sk and SO( k ) / S O (  k - 1) + Sk-'. Let bk 

be a generator of rk(sk) and let a L k  = T k ;  T~ is the characteristic element 
of TSk. 

(5.2) Proposition 
i f k  = 1,3,7. 

k = 2,4,8.  

( a )  If k is odd and # 1,3,7, then Tk is of order 2; Tk = 0 

( b )  If k is even, then +*rk = 2bk-1; r k k - l ( S O ( k ) )  = Im a 0  Im sk-l unless 

( c )  The composition sksk- I is surjective except if k = 2,4 ,8 .  

Proof For (a) see [S,24.9]. The statement that S k  is not parallelizable for 
k # 1,3,7 can be found in [B3]. 

The first part of (b) is proved in [S,23.4]. To prove the second part observe 
first that r , - , ( S O ( k ) )  = Im & 0 Im s k - 1 .  To finish the proof it is enough 
to show that Im & = Im for k # 2,4,8.  This, in turn, is equivalent to 
proving that if qh* is surjective, then k = 2,4,8.  But if a E r k - l ( S O ( k ) )  is 
such that +*(a) = b k - 1 ,  then Tk-1 = a b k - 1  = d4*(a )  = 0; hence k = 2,4 ,8  
by ( 4 .  

Now, for k odd rk-1(Sk-')  + r k - 2 ( S O ( k  - 1)) is injective by the first 
part of (b). Hence Sk-1 is surjective, which proves (c) in this case. For k 
even (c) follows from the second part of (b), for Ker sk = Im a. 0 

If k = 2,4 ,8 ,  then the situation is complicated by the presence of elements 
a with & ( a )  = Lk-1,  the Hopf fibrations. The argument used in the proof 
of (b) shows that r k - - l ( S O ( k ) )  = H ( a )  0 Im s ~ - ~ ,  where H ( a )  is generated 
by the a. If k = 4, then Im s3 is infinite cyclic with generator a, and 
T~ = -u + 2a, cf: [S,23.6]; hence the composition s4s3 yields only the even 
elements of r 3 ( S 0 ( 5 ) )  = Z. 
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and the J-homomorphism, 184-186 
stable (see also 0"). 168, 177. 184, 186. 193, 195, 

Homotopy group 

204.217-219 
and surgery. 113.201 
and suspension, 183 
See also Fundamental group; Homotopy sphere. 

Homotopy sphere, 94.158,161,162,191, u)4. 211 

bounding parallelizable manifold (see btn+l) 
and generalized Poincan? conjecture, 162 
and invertible classes under h-cobordism. 158 
See also 8". 

fibration. 185,231 

invariant. 213,214 
map, 185.192 

bounding n-manifold, 204.209.21 1 

Hopf 

attaching a handle to, 133 

Hopf, H.. 40,182.185.192 
Hurewicz, theorem of, 156,u)1,202 

J 
Jacobian 

and critical points, 68-70 
and Implicit Function Theorem. 224.225 
and lemma of M. Morse. 226 
and local coordinate system, 224 



INDEX 245 

and transversality, 62 
I-homomorphism. Hopf-Whitehead, 184-186.191, 

192,218,220.222 
stable, 185, 195 

image of, 191,195,217 
and 8". 195,218 

Join of maps. 186 
Joining manifolds along submanifolds, 89.99. 100 

along boundary, 100-102 
See also Boundary connected sum; Connected sum; 

Handle, attaching a; Surgery. 

K 
Kervaire invariant, I%, 208.216.218-221 

Of COMeCted Sum. 208 
and framed cobordism, 209 
and framed n-manifold, 209.210 

Kervaire, M..40.121. 191,1%,219-221 
Kervaire manifold, 120, 122,210. 219 

graph corresponding to, 122 
intersection matrix of, 208 
Kervaire invariant of, 208 
is parallelizable, 188 

Kervaire sphere, 120, 122,219 
Kirby, R., 40. 163. 164 

L 
Leaf, of a foliation. See Foliation, leaf of. 
Lens space, 133, 161, 162 

fundamental group of. 140 
Heegaard diagram of, 139 

Levine, J. P., 207,221 
Lie algebra. 80, 8 1 
Lie group. 5.30, 187 

Link. See Handlebody, and presentation links; 

Linking number. 119 
Locally finite family, 6 

of vector fields, 76 

tangent bundle of, 16 

Presentation link. 

M 
Manifold. 1 

with boundary, 53 
closed, 2.4 
cobordant (see Cobordism) 
differential (see also Smooth manifold), 2-4 
framed (see Framed submanifold) 
h-cobordant (see H-cobordism) 
highly connected (see Highly connected manifold) 
interior of, 2 
oriented, 5.3 1 

tangent bundle of, 16 

R-(m n-manifold) 
parallelizable (see Parallelizable manifold) 
smooth (C") (See Smooth manifold) 
stably parallelkable (see n-manifold) 
Stiefel (see Stiefel manifold) 

Map, local equivalence of, 25. See also 
Diffeomorphism; Smooth map. 

Mazur. B.. 96,162 

Meridian. 197,199,205 
Mehic, Riemannian. See Riemannian metric. 
Milnor, J., 58. 125, 127. 142. 162, 191, 1%. 216. 

Mobius band, 77. 133 
Moise. E., 162 
Morse functions, 66.74 

approximation by, 67 
and attaching a handle, 130 
existence of, 67.68 
and cobordism. 127 
critical points 66.68 
and Handle Presentation Tbeorem, 127 

Pitcher inequalities, 135. 153 

lemma of, 226 

s-cobordism theorem of. 163 

219-222 

Morse inequalities. 135.153 

Morse, M., 66.73,135. 138,142,162,226 

Morse theory. See Morse function. 

N 
Newman. M. H. A., 163 
Normal bundle, 44,45 

of the boundary, 53 
characteristic element of, 202.206-208 
framing of (see Framed submanifold) 
to an immersion, 45 
and intersection numbers, 70.71 
and intersection pairing. 203 
of inverse image, 55.61 
isotopy of, 48 
and n-manifolds. 187 
and parallelizable manifolds, 188 
of presentation sphere, 120.122 
and Riemannian metric, 44.46 
to a sphere, 44 
and tubular neighborhood, 46 

Novikov, S., 221 

0 
O(n). 4, 10, 30.92, 169, 184 

and G r d c h m i d t  orthononnalization procedure, 

as group of Riemannian vector bundle, 10 
and J-homomorphism, 184 
and Stiefel manifold, 169 

228-230 



246 INDEX 

Orientation, 5 
and degree of framed submanifold, 177 
of ftamed submanifold, 172, 173 
of h-cobordism 156 
and intersection numbers, 70,71 
local. 5 
and signature of a manifold. 203 
See also Diffeomorphism. orientation preserving, 

orientation reversing. 

P 
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