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PaRT 1

THEOREM OF BROWDER AND_NCVIKOV

§ 1. PRELIMINARIAS.

The homology and the cohomology groups we use are the singu-
lar ones. Let Z. denote the ring of integers ar/ld /\an arbitrary com-
mutative ring with 1 4 0. For any topological space X and any inte-
ger n}O the set of singular n-simplices of X is denoted by Sn(X).
For any s€ S (X) and any integer 1 satisfying O €i<n 1let
s(0,..1)(resp. s(i,..,n)) denote the element of Si(X)(resp. Sn_i(X).)
got by restricting s to the front i-dimensional (resp. the rear (n-1)-
dimensional) face of the standard n-simplex An' Let C(X) denote

1]

the singular chain complex of X over Z and C = C(X)@/\ the chain
complex of ’ X over /\ . The cochain complex of X overz;\ which is
defined as Homz(C(X), /\) is canonically isomorphic to |

Hom/\ (c(x) %A, /\). The boundary homomorphism (g in ¢ = Hom/\(C,/\)
is given by f = (—1)1’1--1 f o a for every f eCn(X, /\) = Hom (C,, /\)
where a : C —>C,_, 1is the boundary homomorphism in C As usual C*
is considered as a chain complex with C-)-(:n = ¢™X, /A ). The e:;\ailuation
map e @ C*®C —> N\ is defined by e(f@c) = fle)WLE C%_:{1 and
c€C, and e s C%_(:p@ Cq = O whenever p # q. Considering M\ as a

chain complex (with all its elements of degree zero) it is easily seen

% :
that e: C QG —> A\ is a chain homomorphism.
A



™D

Yor any Swo cliain complexss & and B over/\ let
o 1 H(A)@H(B) »—ja-H{A@B) be the natural map. If xG_-Hp(A)
and yfg_f};(?(B) and if 7z and z' are respectively cycles of A
and B representing x end y, tamm z@z' is = cycle of
A(X)B  and the homology class of z z' is by definition A (x@y) .
Let T : A@B -—5B®A be the chain isomorphism given by

A N

T(afk)b) = (-1)F? bR ava & By ® € By.

The Alexander-Whitney diagonal map m, : C -%C(%C is

defined to be the unique /\ -homomorphism satisfying

m (s) = § s(o,..,i)Q‘?s(i,..,h) Mts e S (X). It is well-known
1= /

and is not hard to check that m, is a chain map. We denote the
composition of the chain homomorphisms indicated in the following

diagram

Idc*g)mo T®1d, Id,&e
3 3 * ~
c (?c “——}ckcﬁg\m ——.—ﬁcc%c & —> @A ¢

by ﬂ: C7\® C ‘*}C. More explicitly this map is given by
A

e

v

N(E@s) = fns = (_wq(n—q)f (s{n=q,«+e,n)ds(o,..,n-q) if n?qh
0o if n g

for every f qu(X, N) and s£& 5,(X). ILet

H(N) ¢ H(C*®C) --—>H(C) be the homomorphism induced by ﬂ' .
A



For any agHUCT) = H_ (0 Yy - a4z, A) and ueH (C) =8 (5, A)
the element H( M )ocAla®u) 1is called the cap- produc,t of a
py u and 1s denoted by &M U.

The chain map € * o @ ¢ —> A induces & homomorphism
H(e) H(C*®C) —3A . For any ac H (X /\) and uE,H (LA)
the image H(e)oo((a@ u) is known as the value of the cohomology

class a on the homology class u and is denoted by a(u)

1.2, The following properties of the cap-product will be needed
later. |
® (cub)nu=an Auw)ira €H (KN, bE H3(x, A ) and
ue Hn(X, /\) with p,q,n arbitrary integers. Here a Wb denotes
the Cup product of & and b.
@ For any continuous map £ Y —>X, if the induced homomorphisms
in homology and cohomology are denoted by Ly H(TL,A )—-ﬁH(X,:/\) and

f s H (R, A) —DHE (Y, /\), then for any a ¢ HYX, A) and
v E Hn(Y’/\)

£y (a1 v) = 2 T(v)

/
1.3, POINCARE DUALITY.

When we refer to homology and cohomology groups without
mentioning the coefficients we mean integer coefficients. lLet M
be a compact, connected, orientable manlfold (without boundary) of

dimension n. Then it is known that Hn(M) ‘“_\.fZ; A choice of 2




generator u for Hn(vi) is known as sn orientetion for M. M
together with a chosen orientation is cealled an oriented manifold
and the distinguished element of H n(M) is celled tre fundamen-
tal class of M and is denoted by [M:{

Let h t Z —> /\ be the obvious ring homomorphism (which
sends ! of 77 into 1 of /AN). let v= he([M]) where
he + H (M) —> B (M, A\) is the homomorphism induced by h. Then
Poincaré duality can be stated as follows:

The map A\ @ Hq(M,/\) -5 Hn__q(M, A) given by
A\(x) = xnv is an isomorphism for all q .

In case M is not necessarily orientable it is true that
H, (¥4 Zz) .:;I Zzand if v denotes the non zero element of H (M; Z)
then [V 13 22) —> Hn_q(M; Zz) is an isomorphism for
all q .

When M is compact and not necessarily connected M is
orientable if and only if each of its connected components is orien-
table. M being compact, the number of connected components is

finite and denoting them by {MJ.ZI we have H, (M) @ Hn(M ).

\
If each Mj is oriented and if fM;} is the fundamental class of Mj

r _ r
then [M:] = %:_1 LMj]éHn(M) = ?2 Hn(Mj) is defined to be the

fundamental class of M.




Lol All the vector bundles we consider are real vector bundles.
For any X the triviel vector bundle of rank /Q over X will be
denoted by ,(ﬁji . The total space and the tase space of any vector
bundle ;-: will be denoted by E( E) and B respectively. To
denote that E is of rank k we just write )ng LDIf £ Y—X
is a conﬁinuous map and € any vector bundle over X the pull back
bundle on Y is denoted by £1( é‘). If 5 carries a Riemannian
metric, for any £ > O the subspace of E(g ) consisting of vectors
of length { £ is denoted by E &( g ) and the boundary consisting
of vectors of length £ is denoted by }:‘:e( g ). When B is com-
pact the Thom space of % denoted by T( g ) is defined to be the Ore
point compactification of E(é ). Let 'oo' denote the point at
infinity of T(% ). When }; carries a Riemannian metric we can
describe the Thom \space alternatively as follows. Let TE.( t‘g ) be

[ 4
the quotient space got from E (C ) by collapsing B ( E) to
""""‘:S"'

a point. The map {8 E (é) -)T(g) defined by F( v )= e
tor PEE(E) - (F) and ﬁ(?> - for VEB (E)
passes down to a homeomorphlsm o T (%) —_ Tkg) Compactness
of B~5 is essential for & to be a homeomorphi sm. el

For any differential (=C®) manifold M the tangent
bundle of M will be denoted by TM. The word differentiable will

’ o
always meen differentiable of class C  for us. For the rest of

thig section M denotes a compact, connected, oriented differential



nanifold of dimension n0 with [1] s the fundamental class.
By Whitney's imbedding theorem M can be differentiably imbedded
in ]‘Rmk. Except when n = 0 the compactness of M automati-

. cally implies that k‘,}h Bven when n = 0 we can assume k},h

Let )/ be the normal bundle of this imbedding. Then
n+k n+k
’C;/I@)/r\__{éM . Since 'CM and 'éM are both orientable it

follows that Yy 1s an orientable vector bundle. Identifying the

-+

+k
tangent space to TRn k at any point with "Rn in the usual

3 +
way and taking the usual Riemannian metric on o " o ir:ka

any element of E()/) can be thought of as a pair (x, V) with
-~y _ ntk | . .
xé&M and VeER in a direction normal to M at x. let
n+k
e : E(V) SR be defined by e(x,v) = x+v. = an ¢ %0
such that e is a diffeomorphism of the set Eé('})) on to a
neighbourhood A of M. A is called a closed tubular neighbourhood

.

of M., Iet A= e(ﬁe()/)). Considering st*kK o5 the one point
nt+k

compactification of 'IR we can define amap G & Sn+k—-_>T( V ).

This is the map got by collapsing the complement of A - A in Slrl+k

to a point. More precisely, C l A= (g oe” ! and C\ (Sn+k- A) = 0.
-

Let & : Hy(M) —>Hyy (T())) e the Thom 1 somorphisn/ 57/,

. o
Proposition 1.5. @(@[J) = Cx(( ) for a generator (, of 1LIn+k(Sn )

n+k '
Proof. We have only to show that Gy ¢ Hn+k(s )—-§Hn+k(T( V))
is an isomorphism. We abbreviate Eé,( V) by EE. etc. Let

onto

Ay = e(B E/2 ). Clearly (9

Eg isa homeomorphism of B
Z

E
=z



the image T‘ (ssy). et =x be any point in M (such a point

exists because dim M ;O by assumption) and

. r+k n+k _ntk . p+k n+ y n+k  on+k
i+ 8 .._-.-f,(S ,5 - x) and 3.( , —F)—}(S , S £ )
the respective inclusions. Consider the following commutative
diagram.
(lx)*
n+k gn* k'n+k Excision H
A -M
) ._,__> H, (87758 - M) = pogc By 7 A1)
~~ )
. (e")*
Cs @ Cy
>/ /

H +k(T(y))---T'?ﬁ/x,ﬁ (2(y/) T(V)—M)ém H (T T-M)z?;.n +k(’%,E;§ )
2

Diagram 1

The homomorphism indicated as /6’* is an isomorphism since

ﬁ: E e —-}T\ is a homeomorphism. It follows that the homomorphism
2 ..
numbered @ is an isomorphism. The space T( )/) - M is contractible



i . ap H T(V i T (Y )=
in itself to oo. Hence the map Pn+k( W) - ﬂn*-k( (V),T(¥)-m)
is an isomorphism. ( The assumption kZA is used here) , Since
— n+k.n+k . .
Hn+k(T( v)) :::,Hn(M) 7o 4/ we have Hn+k(s }(S M ) . Since (1x)-x-

is an isomorphism it follows that j* is a monomorphism and that

ntk _n+k

image of j, is a direct summand of Hn+k(s ) M). The

+k +k
groups Hn+k(8r1 ) and H (Sr1 ,Smk— M) being both isomorphic

ntk
to Z. it follows that j, is an isomorphism. It now follows that

c ntk

Y Hn+k(s )—-}Hmk(T(V)) is an isomorphism.

1,6. THE INDEX OF A 1,d-DIMENSIONAL MANTFOID.

Let M be a compact, connected, oriented manifold of

dimension A4d with d an integer ?/ 0 and let [M] be the funda-
mental class of M. The image hye( [M]) of the fundamental class of
M under the inclu‘sion h: . —2 (Q.is called the fundamental class

with coefficients in @ and is also denoted by [M] . The map

(x,7)av-3(x U ¥) Dﬂ of HZd(M, (Q)XHZd(M, Q)..-} Q_gives a sym-

L 2 .
metric, non degenerate bilinear form H d(M, @_). Symmetry is clear
AN

13

» 2d.2d .
from| x Uy = (1) yuUux =y Jx. That it is non degenerate 1s

a consequence of Poincard duality together with the fact that

(a, u)av—>a(u) is a bilinear non degenerate pairing of

24 ]
B, (X B, (1, Q) —> (. Thio later fact is embodied in the




¢ yniversal cqefficient theorem HZd(M,Q) = Hom@(ﬂ2 q\ O}(), QT().
The signature (i.e. the number of +ve diagonai elements minus
the number of —ve diagonsl galements when disgonalised over Q)
of the bilinear form (x,y)wv~Xx Uy) [M] on HIW, Q) is
defined to be the index of M and is denoted by I(M).

In case M is also differentiable we hav_e the follow-
ing Theorem of Hirzebruch /17

Theorem 1.7. Let Lk(p1,..,pk) be the multiplicative sequence

of polynomials corresponding to the power series

k-1

=1

1 o
= ‘—t - "l" o---+( "'1
oy A )

 (Here B, 1is the kth Berno uilli number). There the index I(M)

k

is equal to the L-genus of M defined as

){Ld(p1( "C';,I),.., pd( 't’M)} (fi]), where pi((ql) is the il

3
b

Pontrjagin class of ?:M' -

For more informstion about the formalism of multipli-
gcative sequences and the correspondence between power series and

multiplicative sequences the reader is referred to [ 1_7, [.5_7 .
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We just content ourseives with the remark that Lk(p1,..,pk) are

universally defined polynomials (i.e. independent of M) with

coefficients in the indeteririnates PisPysees o The total weight

of each term of Lk(pI""pk) is Lk when P is alloted the

weight 4j. The first two of these polynomials are

J

L,(pl) -3

p; L(p s py) = 3k (7“102 - p?) .
1.8, We will be mainly concerned with a space X which is a
finite simplicial c§mple:x. Given any vector bundle gk over X
there exists a vector bundle 7 over X withg@v,v ,dx

some rank). In fact 3 amap f : X ——-9Gk QK (the Grassmann-

k+ L
manifold of k-planes in TR ) for some i such that

k k | ,
iy )= é . Here Yy = 1is the universal bundle on Gk+1,k .

The space E( Yk) is the subspace of Gk+1 ,kX‘RkhQ consisting

of elements (y, 7 ) with 'V%E y. Let *}/L be the vector bundle
= kel
on G ok K consisting of elements (y, —‘>) with '%ER + ortho-

~ R +
gonal to y. Then 17 f'()’ ) satlsfles§@7,u ;i Two

t
vector bundles E) and over X are said to be stably equisr

valent if g@diﬁ{ g'@_df for some ,4_ and A' .. The stable

class of g is denoted by Eg] . If E and g' are stably
equivalent and if 7 and "7' are such that E o "-”Un and

' ' 1
g @)79&0’“ for somve n and n' it is easy to see that
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are stably equivalent. The class of ?7 is denoted

It is known that the Pontrjagin classes of a vector

). D.(¥),s.. denote the Pontrjagin classes of some
5’0 P2

longing to the class - \:g] it follows that the elements

{ﬁ: (g), see 5 By (g )) depend only onthe.dass[gl of §
: d
Referring to the situation where MI+ is differentiably

with normal bundle V we see that

B (VD) = LG (Geeopy (IEH R,

Hirzebruch's theorem can be rephrased in terms of the normal

o Y s { LV ), s B (0D) - 100

let X be a connected finite simplicial complex with

; X) = 0. The theorem of Browder and Novikov deals with conditions
r which X will be of the same homotopy type as a compact differ-
eritiable manifold M without boundary. Since X 1is simply connected

f such an M exists it has td be orientable. We first state the
A

13

theorem, which actually consists of two parts.
Theorem 2.1. Let X be a connected finite simplicial complex with

»«TFI(X) = 0. Suppose that the following two conditions are satisfied.
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1) X sstisfies Poincaré duality i.e. to say a some integer n
with B (0= Jand if u is a generator, MuH X) —yH_ (X)
is an isomorphism for all q.
1) — an oriented vector bundle %k over X such that
P e n  (T(Z)) is spherical, G 1 (0 i, (1(E))
being the Thom isomorphism.
Then if n is odd X is of the same homotopy type as

a compact differentiable manifold M of dimension n under a
nomotopy equivalence f 3 M~—>X satisfying [f!(' g )__}= - [’Cﬂ

The second part of the theorem is concerned with the
= 4d with d an integer > 1.

X being a finite complex we have HA(X, Q) = Hq(X)®Q
‘and Hi(X, Q) = Hi(X)®Q Denoting the.image of u in
H (X, Q) under h : H (X) — 1, (&, Q) where h i Z—>Qis
he inclusion of Z into Q by v we have
by HU(x, Q) —> H q(X Q) an 1somorphlsm for all g. Actually
Yv can be identified with (ﬂu)@(}l Thus assumption i)
actually implies Poincaréd duality for coefficients in @_. Actual-
'xl;f, it is true that assumption i) implies Poincaré dualit.;'ﬁor
any arbitrary commutative coefficient ring /\ (with 1 # 0).
The procedure adopted to define the index I(Mhd) in B 1.6 can

now be used to define the index I(X) of X .
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Assume in addition to 1) and ii) we heve the fol-

lowing valid for F

N

1) I ={LGT ), -, BUED W

Then X is of the same homotopy type as a compact
differentiable manifold M of dimension 4d under an equiva-
lence f : M —» X satisfying Lf‘.( 13 )j = _[Q:M]

Part I of these lectures is devoted to the proof of this
theorem. From B 1 it actually follows flhat the conditions i),
ii), and iii) when n = 4d, are necessary for the validity of
the Theorem.
From the assumption TT; (X) = 0 it follows that the
integer n satisfying condition i) of Theorem 2.1 .has to .be 23
whenever n 1is odd. But for n = 3 the condition i) itself
‘im‘plies that X 'is of the same homotopy type as 83. Moreover
_every vector bundle on 83 is trivial since 'ﬂE(SO(k)) =0 for
every integer k20. Thus for any vector bundle g’ over X and

~ any homotopy equivalence f 3 52 — X we have [f!( I3 )] = -[’g] .

‘This shows that Theorem 2.1 is trivially valid for n =3 and hence
o . \‘

it only remains to prove the Theorem for n ?/ 5. But some of the
- Lemmas and propositions that will be proved here are valid for n >4,

_and it will be clear later when exactly we need the assumption n >A4.




i Realizing ¥ as a subcomplex of a simplex AN for
some integer N and imbedding AN affinely in RN we get an
open set UJX of TRN such that X is a deformestion retract
of U, Let Jt X-——)U be the inclusion and r ¢ U —;-}7}{ the
retraction (i.e. roj = Id) with JOI‘mId (N— homotopic to ).
Let g be a véc@r«bmdle on X satisfying condition ii) of

Theorem 2.1. Let \g = r! (g ). It is easy to see that §'~
can be made into a differentiable vector bundle. Actually g' is
induced by a certain map g ¢ U "_}Gk-"f K for some integer 1
k .
from pﬁe universal bundle ¥ on Gk+l K. Since the map g can
be approximated by a differentiable map g 3 U -——}Gm )( K with
b

greg' , it follows that ' can be made into 2 differentiable
g

yector bund\le. The Thom space T( ‘é') of g' is defined as
follows. Introducing a fixed C° Riemannian metric on g' , let
E ( ’9’ ) be the subspace of E( ‘E ') consisting of vectors of
length < 1 end E ( § ) the boundary of E,( § ') consisting
'precisely of vectors of length 1. The space T( § ) is defined.
as the quotient space E1( g')/ﬁ.]( g'). In this case T( E')
':is not the one point compactification of B( gl ). Still we denote
_the point of T( g') to which ﬁ‘,1( g') is collapsed by “ool; .
Clearly T( §') - ® is a differentiable manifolds

Since roj = Id, we heve ¥/ x- E . Taking the

1
restriction to g of the Riemannian metric on ‘g , and realizing
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T{ g) as E1( E )/ 31( £ ) we see that the inclusion map
hs E(g ) %E( E') induces a map T(n) : T( g ) =TI E')
The syrbol @ denotes throughout the Thom isomorphism. let
ok T( ¥ ) be a map such that f*(\ () - @(u), s

being a generator of Hn+k(Sn+k). By condition ii) such a map

exists.l The naturality of the Thom isomorphism yields
(Th) o), (L) = Eﬁ(j*(u)). Denoting T(h)of by f we see
; ,
that '+ SP¥—> T( E) is a map savisfying
t
£.00)
+k
theorem [h'_7 s 3 a differentiable map T s —> T( Zé')

-1 ) 1
(whenever it makes sense i.e. o2 £ (T g ) - )) with

§ (j*(u)). By the transverse regular approximation

-1,
g~4r' and f" transverse regular on U. Clearly £ () o
- . 1] n+k _ ". n+k . |.
for if f ") N U=¢ the map f*.Hmk(S )..9Hn+k\T( g ))
t t
would factor through Hn+k(T( g ) -U) =0 (since T( E ) - U

is contractible to "®") . But f:(_( L) = £,(L) = @ (j*‘(u)) # 0.

= . l-
_Hence M = f 1(U) is a differentiable manifold of codimension k

+k , !
with normal pundle Vi o £'t(E') . But M need not

n
in S
; ‘ ] t )
necessarily be connected. Since f ( E ) and ’Cémk are orien-
0 "y ‘L‘.' -
,M———%@f ( b) we see that ’q{ is

f

=t~ (V)

tsble and since r%mk

orientable. Since U is closed in T( é) we have M

o+
closed in s® k and hence M is a compact, orientable differen-

tisble manifold of dimension n. Choose some COO Riemannian




tric for Y o 1t is known that 3 a tubular neighbourhood

e, a diffeomorphism D of E'E( ) for some .70 onto a

oged neighbourhood B of M in Sn+k, and a mep
n+k N, il i N % . - - - .
1 5 = 1( E ) satisfying the following conditiens:

1) T is differentiable on _f'_1( T( g') - o) and transverse
regular on U

"

" on M and T ' (U) = £ (U) = M

3) ToD is a bundle map of Eﬁ( /) onto the image (i.e.
maps the fibre of E E,( Y ) at x¢& M homeomorphically onto the
image portion of the fibre at f(x) in E( § ))

8 Frof' s My £).

For a proof refer to steps 1 aﬁd 2 of the proof of

Theorem 3.16 in [LJ

From the compactness of M it follows that 3 a g>0

with ToDE, (V) :)Ed,( g')l F(m). Let{Mi}ri:]’ | be the
connected components of M and let A, = 7 (E 5( g')) I M
and Ai =77 1'4:5( §')) lMl We will write the same symbols

Ai’ Al to denote D—?(Ai), D-l(.'fn‘.) etc. In otherwords we iden-
tify E £ ( V) and the tubular neighbourhood B . >
We now introduce the following changes in notation. We
write E , f and u for g , T and j*(u) .  With this altered
notation f Sn“% T( g ) is a map satisfying @(u) = f,((C ),

. . -1
differentiable on f (T( }; ) - ©), transverse regular on U
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let f QLNE] = d1. We have to show that o = . ¥We have

' n+k s - ’ . )
(9*1) &L }= zw_, \Jl)*( l,r“&ij) ., To ghow that d= 1 1%
1

i

zuffices to shew that /f T

have % £, [M] = ¢ (Z‘_}z/ [M] )= f (L(J ) LA 5N
SR Pl BECYSC JRXCH [
(e g0 ) L ()

But by the definition of % we have J(u) = (e )—1(j§ )* §(u).

§

We change our notations again and write f : M —2> X for

1}

]

the map rof where r : U -—-——>X is the homotopy equivalence chosen
already and write u for the original generator of H (X). Then f
is of degree 1. The homomorphism Hq(M)—-ﬁ Hq(X) induced by f

is denoted by fq..
Lemma 2.5. There exist homomorphisms 8, Hq(X) ———}Hq(M)x with

° gq = Idy, (x) and hence H (M) = Kar f @gq(ﬁq(x))

Proof. For any x & Hy (X) 1let {C_H “4X) be the element Q (x)

“where /\: B q(X) —%H (X) is the Poincar€ isomorphism. Setting
gg(®) = £°0¥) 1 [M] we have £, g(x) = £(£7(¥)n D)=y £,[] =¥rmax,

The proof of this lemma uses only two facts @ @X satisfies
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oincard duality and (b} f : M—>X is a map of degree 1.
t
Let 7' be a bundle over X(of rank ,2 say) such

o ' k+ §' = k+n
that £ & ]?de . Let e 7@/6{)( . Then
1 -~

=071 - -[g] ena

. k+n ' k '
i‘:(’i?) = f£I( }7 )@/{jM o fi( b/ )@Zﬁ\unggf{@f;(? )P £i( '@)

n 1 - k+ 9_ '

~ R BT OBy @b,

!
Denoting k+ k by /Q we have the following situation:
3 a vector bundle ‘7 of rank n+l on X with ["7] = "[E)} and

n

amap f : M-—}X of degree 1 satisfying fl(y)%%@,d&.
Without loss of generality we can assume }{' 21. Our aim is to
surgerize M finitely many times and obtain a connected simply con-
nected manifold M' together with a map f' : M' —>X inducing
isomorphisms in homology and further satisfying f'!(g)rn‘i ﬁ,@ le

If this is done the theorem is proved since f' will then be a homotopy

equivalence by a theorem of J.H.C. Whitehead and the relation

1 s n l . . it n

f 1(§.) = ZM'$"jM' implies lf 1 § )J = —(?:M']' In case n
is odd and 2, 5 we will be able to achieve this using conditions 1\}\
and ii) and when n = 4d with d an integer > 1 we will also

need condition iii) to do the same.
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§i3. SURGERY OR SPHERICAL MODIFICATION.

v e . 2 ¢ 1 Lyn "
The unit disk (_(Xt""”%)‘luz . X, &1Tin R

-)}
is denoted by D" and the unit open ball {(x1,..,xn)é ’[Rnixi< 1}
1=1
by B, For any real number t>0 the closed disk and the open
‘ball of radius t are_denoted by tD® and tB" respectively.
All the manifolds we consider are oriented Coo manifolds. We use
“the letter V to denote a compact manifold without boundary, of
dimension n Z 1.
Definition 3.1. Given an orientation preserving differentiable im-
. . a9y¢3 An- .
bedding @ S Xz 0037 with n>ap0 let XV, )D)
denote the quc;tient manifold obtained from the disjoint union
' n- 1 -~
v - }D(sq)(g D4 v % BT 'S by identifying Plxty)

with (tx, y) YvFx€ s9, y—thn-q_1 and -12-<t<3/2 .

Tt is easy to check that X (V, ¢p) 1is Heusdorff. Since

’ P(x,ty)m.} (tx,y) is a diffeomorphism for xesq,ye g-a-

%<t<3/2 it follows that X(V, 70) is a C®-manifold. It is

and

AN

13

clearly compact and oriented. The manifold X(V, ?) is said to be’
got from V by a surgery of type (g+1, n~q).
Two compact oriented manifolds V and V' are said to

be requivalent if 9 a finite sequence of manifolds

1

such" that V;

'Vl = V,, V2, cv 3 Vr= v j+1 1is got from V; by a

_surgery.
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&Lesmma 3.2. Suppose V has s connected components with s 22
and /93: o Dn-—9V an orientation preserving imbedding which
carries the two components of S°)<Dr1 into distinct components
of V. Then 7('(V, ?)) has exactly (s-1) connected compon-
ents. |

Proof. Trivial for n22 . For n =1 we have to use the fact
that every component of V is diffeomorphic to s'.

Using conditions i) and ii) of Theorem 2.1. we
obtained a compact oriented mani:fold M of dimension n, a

vector bundle ) of rank (n+L) on X with [-7'[= -[&] and
amap f 2 M—)X of degree 1 satisfying fl(v)N%@d«
Let ?: qu.g_ p* —>M be an orientation preserving imbed-
ding with n3»q>0. Assume further that

fo ;D(Sq)(-g- 0" = x¥, a chosen base point for X . Let

u =Y, ﬁD) and let ' + M! —>X be defined as follows.
Setting M, =M - /@(quBn—-q) the map f' is given by
f"MO = f{MO and f"'?'(DqH‘XSn_q—l) = x* where

P' : D' X s -q—1~’->M' denotes the imbedding induced by the
inclusion Dq”Xsn‘q;'._a %Bq*‘x 101, Glearly f' is well

defined and continuous.

‘Lemma 3.3. The map £ -—-?X is of degree 1.
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sof. Consider the following commutative diagram.

Hn(M)-‘>Hn(M, ;D(SQX i q))___..i:__.g,.,H (Xx *y
AN | _
ey &

By (Mg, (81 X gy

ex | &
A4 1
) s o, gl T

Diagram 3.

o 1 . .
k| o Oy ey and e ;, are homomorphisms induced by the res-
. . - ! .
ve inclusions. The maps e, and e, are isomorphisms by

sion and homotopy. That f' is of degree 1 now follows
[w]= ey d [y
Suppose M is not connected. Choosing F): S°)<_32. p?
that the two components of SO;(% D® go into distinct com-
o,
ts of M let M' =¥, @) . Since X is connected it

ows. that fo p s SC}(% Dnr-—->X is homotopic to the con-

v

nt map. By homotopy extension property we can choose a map
M—>X with gnJf  and g\?D(SOKB n) = x¥, Then clearly

is
?i‘ degree 1 and gl(')7 Yoo dl/[@’dM Thus we can wibhout




';}.oss of generality assume that [ itself satisfies the condition

i’ (So}(-g- D) = x* . Let f' i M —>X be the associated map

L. e, = £fu, ana 1| ?‘(D‘;(sn") =% .

Lemma 3.4, £’ : M —3X is of degree 1 and f’l(y)yﬁl&‘@é'.

Proof. That f’ is of degree 1 follows from Lemma 3.3. Let

A n,_ X v
TM= Z)I:‘/[@&}‘% and TM’=’2/M'®45M‘ and 3{,: TM—éfI(7) a
bundle isomorphism. Our aim is to get a bundle isomorphism
7 _ ! . - -
Yo T, >t H7) . since Ty, ‘ My = Ty|M, and | ¥, = f\Mo
! ' o n
we can take % =‘}L on TM' \Mo . We denote the image of S )(D
)

, -1
}:&y?ﬂ in M by Imp and the image of D1><Sn under ;Z) in

. > 1 n-1
W by In @ Ve identify T, | Im ;9' = T (D Ks ) with

‘ / =1 A1
D /NS . Let w,...,W be a
Z% VER } 2 >@thX g1 1 n+fL

D _& -1 and take the
2 gn B! x% P

rivialization of ’Z"
3 R
5B K32 pi

i
induced trivialization of T, ‘Im 7' to identify it with

1 n-1 n+ L . .
'/’< S XR « Let e1,..,en+x be a basis of the fibre of 7

. x and let UpseensWy be the pull back trivialisation of

i 77 )! Im ?7’ . Using this trivialization we identify k
”z(); )) Im 76" with D'y(s““)( )R“*R

TM' l Bdry Mvo ~—> £l 7 )‘ Bdry M, then corresponds to an

. The map

rientation preserving bundle map

- -1 .
%z SO)(S 1)(TRH+ —-}SOXSn me,Q and thus to a continuous
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0 -1 .
E: s 7<S#1 -——}GL+(n+,Q, IR) eiven by

n+ L

(x,»?) = (x, B(x) —v'}’) v e TR . To get 2 bundle map

( ! . —,? " 1
,m>f:(7?) extending & ¢ 1M,‘Mowz>f!(??)\Mo
t suffices to get a continuous extension of & into a map
, -1 :
133)( s" “*‘—}GL+(n+£ ,TJR ). But we know that ‘%z comes from a

3*

bundle map TM‘ Imygﬁf!( ’)7 )l Im ;0 . Since f{SD(SOXDn) = X

the trivialization vp,...,uy g of TD'4 | Bary ¥ = TM‘ Bdry M,

extends to a trivialization of fI( )7 ) I Im ?J . Also

' X O
’i‘ﬁl Im c)z)= (Z:P(SO)(DH)@ d?)(SOXDn) can be identified with

. ,L _Q__1
Z::% B1)<-3?: ! @4_/% B1)<% g

SO)<Dn. Thus the trivialization

1""wm+,Q extends to a trivialization of TM ‘ Imf . Using

hese trivializations we see that ;VJ corresponds to a bundle map

-

‘ X,DHXTKH+X——%SO)<Dn)(TRn+R .  In otherwords 3 an extension
gy . o ., N .

O of & into amap S XD ~—>GL+(n+,Q ,JR ). Since .GL+(n+9\,TR)

is connected and D" contractible it follows that 3 a map «

. i
DiXDn-—)GL*_(n-UQ,TR) extending & . This completes the proof °
of Lemma 3.4,

As an immediate consequence of Lemmas 3.2 and 3.4 we get the

+

following:
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position 3.5. There exists a connected, compact, oriented c®
nifold M which is ’quulvalent to M and a map £’ —pX
degree 1 with £ 1( /AL @’ @@M'

We now change our notations. We replace M’ by, M and g

by f. Thus M is connected and f : M—3X is of degree 1 with

(e,

et £ M = X 50) ~—> X . be the associated map. In general

> 1( 7 ) need not be isomorphic to ’5 @d Consider the
ollowing alteration of the map ?3 . Let o(: sd —350(n-q) be a

o a3 n-q .
map and let t S Xz D M be given by
| S RS Rl

’ = ;CX ’ 2 'B'Dn—q' cl 1
Py = Pl X () D) oy) & 57X 3 arly 2

is an imbedding, also satisfying f P (Sq)(% Dn-q) = x*. Let
' 2 ¢

i‘% : M:D( ;XfM, ;Z) —>X be the associated map; The sets
?(sqy(\Dn'q) and ?'(Dq“)(s“'q") (and similarly .
? (quDn—q) and f’(( pd*! X )) are denoted by Im 529 and
Im ?9 respectively (similarly by Im P and Im f’ res-

pectively). Let }(, be defined to be % on T ‘ M, = TM’ M

into f';(]? ) lMO = fI( }7 )‘ M, . . Let e1,...,en+l be a fixed
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: +1 - ;
dmits of an extension Dq A D ez GL (n+ £, 412), Choosing

- ) n~g-1
fixed point Yo = S q the obstruction to the existence of

uch an extension is given by the homotopy class of the map

» . Sc,l.mv; GL, (n+A , R) where ¥ (x)= & (x,yo). Let us

&

denote this obstruction class by ¢ (54.:){;— ?Tq(GL+ (n+ £, 42)).
:L@t the obstruction class for the imbedding }Zz be denoted by

¥ ( Qx ).

, Lemma 3.6. The obstruction ¥ ( ’L«h ) depends only on ¥ (%)
:and the homotopy class (= ) of & in TTq(S 0 (n-q)). More
precisely identifying TTq(SO(n-—q)) with T,—q(GL+(n—q),; wo)

we have ¥ ( {;,f )= (@) *+ sx( o) where
O q(GL+(n-q,IFz' )) —s ’;Tq(GL+(n+{: , #2)) 1is the map

induced by the inclusion s : GL, {(n-q), IR) —> GL (n+ A, 1),

1
of. Suppose Eqsves & is any trivialisation of TM,‘]'_m ?»

n+¢
. ' q. <n-g=1 7 .
and suppose A : S'X S 3 GL (n+d , R) the map given by
’ -g-1
x,7) = MN&x,y) & (x,y) ¥ (x,y) & Sq %579 Then J a conts

+1 n-g-1 ' _
p P D% x s q-—-—-j,- GL,(n+ X , iR) such that
(x,7) = » (x,y) P (x,y). Actually P is the transformation

lating the frame £ (x,y) to v'(x,y). Hence the homotopy

= g+t n=q . 5. J o .
D % (- ;0% ) — M x {K be the map given by

), #yy-1). Choosing some

' y
X = —ee
Goy) = C @ (=%




&
€y "’C,O—1 of 1/ ’ we gsee that

o’ ; Imf?

RO RN
OE ’9 g e

c

~ 1
be choser as a trivialization for TM'\ Im @ . Thus the

is the class of the continuous map "“y{x)

v (x) , the matrix of v w.r.t.

The obstruction Y ( 52( ) _is the homotopy

,( ’
v (x) where @ a
. It is easily seen that we

25; i (for some aki)

®

Akj where (Akj(x)) = X (x). If, for

3
‘Ogt 41 the frame —g—%ﬁ* 1 is defined by

«*(‘aﬁé‘" 3. (i= 1,2,:. g*t)

Yk

n-q) and

éLQO() ,V (x) gives a homo-

between the map "&’Ok (x) = w(x)* s(x) where

(0-q,R )—> 6L (n+f ,R ) is the inclusion and
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(x) = );Sx). Thus the homotopy class \:\‘(0(] is the same

[+ s (o0). et s tosay () = W(P) + s ().

Perhaps we should have remarksd earlier that while dealing
h oriented bundles the trivializations are supposed to be those
: longing to the orientation class. Since

:T[;(SO(n—q))——}’ﬂ;l(so(m,Q )) 1is surjective for qdn-q

have the following:

roposition 3.7. If q<g Ha ¢“map o ¢ ST —50(n-q) such

, .
i<‘>( : M, =X(M, 5‘00< ) —>X satisfies

Let now V be connected of dimension n 224 and v*

chosen base point in V. Choose some base point p* in S1

1 -1
let )Z: 3 X% D —> V be an orientation preserving

bedding such that }Z)(p*,o) = v"  and ?3\ S] X 0 represents
(V,v'). Let V :xv,/@) and let V_ and

-2
DK g™ ~>V’ have their usual meanings i.e.

A
1 n-1 ’ 2 -2 "
o=V~ @(SXB ) and ¥ is the imbedding of D XS

. - 2, n-2
nto V  induced by the inclusion of Dz)(Sn 2 in -32-: B )(Sn .
Choose some fixed z"& Sn_2 and choose

#*
v o= ¢(p*,z*) = }D’(p*,z*) as the base point of V'. Let &~

be the path in V given by (t) = fa(p*,tz*); it is a path
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*
ing v to v* in ¥V and let__,wﬁ;‘v:T[;(V,v*)——?_HT(V,V’)

he isomorphism induced by S .

.8, Let N( /) be the normal subgroup of TT1(V, v )
srated by 6';( A). Then TT;(V' v is isomorphic to
(7,v'#) [NOV).

Let j @ (Vo,v'*)-?(v,v'*) be the inclusion. We
laim that  J, :TT;(VO,V’*) \_;T[T(V,v’*) is an isomorphism.

n fact if O: (s', *) -—}(V,..v’*) is any map and

73 (Sl, *)-—-}(V v'¥*)  a map homotopic to 3 and transverse
gular on ?(S )(O) (such a map exists since v’*¢f7(si)<0))
insée Codim P(S)( 0) in V is > 2 (actually COdlmF(S )(O)
V> 3). We see that 5(81)(‘\ 5D(S1XO) = @ . Choosing a
eformation retraction r : S1 ><(Dn'1 - O)-—}S1 Sn-2
hat r’ = ;Der : ;Z)(S1><(Dn-l— )—-——-}?0(81><Sn 2 is a

formation retraction and that r’& is a map homotopic to @

we see

and satisfying r’ @(s') C V.. Thus j, is onto. Also

: f}l, : (51,13*) -—?(Vo,v'*) is a map such that j]é is homo~
opic to a constant map then 3 an extension (also denoted by %,}
of plnto a map p D° —>V with }(O) = v . We can get a
map ;& with lS 30 = ](/; SyuU0 and % transverse regular
on ?(s’)(o). Since Codim of ;D(s')( O) in V23 we see
that %(D )/‘)}U(SXO) and an argument similar to the one
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yields a homotopy of %: (S1 ) —>(Vo,v*) with the
tant map, taking place on Vo, itself. This shows that j*
monomorphism,

We have V' =V, Im }’0’ (as usual

f’ 52) (D*Xs"2 )) with V,NTIm ;z:’

;z)(s’ X2 = F’(S'Xsn’z). Clearly V,,Im ;23’
Vo Im ?}’ are connected. Lemma 3.8 follows immediately
ym Van Kampen theorem. Also, clear:ly V' is connected.

As already remarked earlier by us Theorem 2.1 needs to
proved only when n 2 5. We have already obtained a compa_c;t,
,iz’ted, oriented COO manifold M of dimension n and a map
-——}X of degree 1 with fl(7)gfqn/l@,d;l . (Refer
sition 3.5.)

sition 3.9. There exists a connected simply connected mani-
M  which is -equivalent to M and map £ v ~>X of
e satisfying £ I( ’7 ~J ,JM @4

fa Choose some base point m’ 6 M. We can without loss of

rality assume that f(m* = x* for otherwise we can change f

AN

L3

& homotopic map satisfying this condition. Since M 1is a compact”
fold W(M,m*) is finitely generated. Let ) ST 7\1' be
ayrators for I!I(M,m*) . We can get an imbedding F): s'—>u

resenting A, (for this n 23 is sufficient). Since M is

1
nted the normal bundle of }ﬁ jn M is trivial and hence it can




)

', .ended into an orientation preserving diffeomorphism
51)(% Dn_L-?M. Since X is simply connected we have

F homotopic to the constant map. By changing f 1if neces~

to a homotopic map we can assume f}b(S)( ) = x".

!

let M, =M ) and : —>»X be the map asso-
ot My =X P fy * Mg
ated to f . By proposition 3.7 3 a ¢ map KX S _?SO(n—l)
ch that £, ;p =% (M, F ) —>X satisfies
Q_ " 1
. (77 Y @’M’ & and is of degree 1. The map p }S )(O

1

e same as FDIS \<O = p : 8' —>M, Hence Z( } S  represents
same element as }7) i.e. AI' By Lemma 3.8 it follows that
{M;() is isomorphic to T{"](M) /(Normal s.g generated by
) and hence T{;(M;«) is generated by (r-1) elements. It
lfollows that after a finite number of surgeries we can get a
nected, simply connected manifold M and a map £ M —>X
;isfying the requirements of the proposition.

k, For applying Lemma 3.8 we only need that dim M = nzh.

over we have so far used only conditions i) and ii) of

orem 2.1,

. EFFECT OF SURGERY ON HOMOLOGY.

Let A and B be any two connected, simply conn_ect’ed
ological spaces and g an integer 22. Suppose h : A 5B
a continuous map such that hy @ Hi(A) ~—PH; (B) is an isomor-

sm for 1i<q and an epimorphism for i = g. Denote the Kernel

hy Hq(A) ~—}Hq(B) by Kqe
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My xX& Ky cen be represented by a map
) = x where 1iq is a generator of

?A (i.e. Q* (iq

ho @ homotopic to & constant map.

with
ume h to be an

Without loss of generality we can ass

on map, for otherwise, we replace D by the inclusion of

For the proof of Lemma Lot

Since hy @ Hi(A)-—>Hi(B)

Bism for 1= Q it

_the mapping cylinder of h.

e the Relative Hurewic?z Theorem.

Z;isomorphism for 1<q and an epimorp

e of the pair (B,A) that

s from the exact homology sequenc

) = 0 for i &a-
,&) s 0 for i&Lq and /o: 'ﬂ_q

/O is the Hurewicz homomor phism.

Hence by the relative Hurewicz Theorem

—~
(B, A) =g (BsA)

Now consider the following

(B,4) ﬁ-}'ﬂg(A) «r-li*.—')‘!‘g(B) -———>Trq<_a,m =0
F I /° r

§&1(B,A)~—§4—>HQ(A) ,f_*—'}Hq(B) ———>Hq('B,A) =0

Diagram b

1f

maps indicated by P are the Hurewicz homomorphisms.

K. then o v€ Hq+1(B’A) such that Q¥ = X

9
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. -1
Let y‘é Hq 1(B,A) be given by /0 (y). The element
+

(A) given by 1z = ?y1 satisfies {)(z) = x and
4

i
= h( o y ) = 0. Hence if & Sq...?A represents

q(A) then © satisfies the requirements of the Lemma.

a 4.2. Suppose V is a vector bundle of rank (n-q) over Sq

h is stably trivial. If 29 n then )/ itself is trivial.

of. Let YV be determined by the element/,u._ of Hq_1(SO(n—q)).

hle triviality of )}/ implies that 3 an integer r>n-q

3 TR ; ) .
that s*(/u_) = O where s*.ﬂ;_1(so(n q)) 7“(;_1(80(1')) is

homomorphism induced by the inclusion 50(n-g)-— (S0(r) ). But

&£ n the map s, is an isomorphism. Hence /u_= 0.

Let V be a compact, connected, oriented c® mani-

with TE(V) = 0 of dimension n and let B be any con-

d, simply connected space. Let h:V-—>B be a continuous
ith hy ¢ H;(V) "‘}Hi(B) an isomorphism for 14 q and an
orphism for i = q where q/>,2. Further assume 3 a vector
Z on B with [hl( Z)’)] =[’gjv]. Denote the Kernel of

K .
q \' Yy

@
Le3. If 2q4n any X€E Kq can be represented by a C

ding F: 83—V  whose normal bundle )/P is trivial and

ch further satisfies h o/@N constant map.
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Proof. By Lemma 4.1 q awap & sq_._;:,v representing x

00
uch that h o (—9 is homotopically tirivial. If 2gq¢n o a C
imbedding }ﬁ : >V Vﬂtﬂ@/\}? We have
5«9( ’7’/ 5) & ‘,/ where }/_ is the normal bundle of

F
the imbedding ;’7 . Slnce ?/(Sq) @

+1
4 /@<Sq>’“‘%?sq>
see that [@V) ?)(Sq)—{- - [yp] . Bufc,
[/Z;I (?(ng = [ h"(;)i P(Sq)J . Since h o/@ is homoto-

pically trivial by construction we see that )//@ is stably trivial,

Now Lemma 4.2 yields that V_r itself is trivial.

f)

sgume 2q<_n. Let xeKq and let p: Sq—9>V be a C®° im-

edding representing x. Since the normal bundle )iQ‘ is trivial

can extend }D into an orientation preserving 1mbedd1ng

q><3 "% >V, Since h o]’Z) is homotopic to the

onstant map, changing h in its homotopy class we may assume

o @ = Const by . Let V =’X,(V,§Zﬁ) and b’ : V,\>B the

associated mep i.e. to say B[V, = h ‘(Vo and h’) Im f’

ere VO,Im ;U and Im F), have Lheir customary meanings.

2

roposition 4. L. h, Hi(V') —%Hi(B) is an isomorphism for

< g and the Kernel K; of (; H (V) >Hq(B) is isomorphic

we

((x), whenever 29 n-1.
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’

Proof. Consider the following commutative diagram.

H; (574079 —&—9 Hy (1) i (7, T 27 2 s, (5509

)

h
#*

e
WV
Hi(B)4Q:-—Hi(Vo,Bdry Vo)
4N
1 L e|
#*

1, (0% X8I —> 1y (7) ?‘>Hi(v’ JIm 2°) —B;Hi_wnq*‘xs“’q")
3

Ll

h

Diagram 5.

Since by assumption 29q&n-1, whenever 1L£igq we have

- 1 -
Hi(Sq)(Dn q) =0 = Hi(Dq+ Ashe 1) and hence

2 23 3 . . .
oce oe oj = H.l(V ).@Hi(v) will then be an isomorphism

satisfying commutativity in

1y =2
Hy (V) —>H, (V) | s

H, (B)

This shows that n’# is an isomorphism for i<Qq.




n 1=24 Diagram 5 yields the following diagram.

h 2‘)- e
q
Hq(B) Hq(Vo,Bdry Vo)
] \
N K e'

0 — Hq(v’)——j—‘»}Hq(v ,In P ) —>0
#*

Diagram 6.

‘fhe map ?* is given by 79*(1) = x. We get an ;somorphism of
ﬁq(V)/(x) (induced by 3, with Hq(v, Im?) and then we see

'y : nd ’ .
hat a an isomorphism Hq(V)/(x)__.?Hq(V ) making

Hq(vy(;)—-———}}{q(v )

’ .
got from h *\ / h, commutative .,

H Ol(B)

This proves that K;{Q{, Kq/(x).



Assuming conditions 1) and ii) of Theorem 2.1 with

; @ .
connected oriented C mani-

sld M of dimension 1 with Tf (M) = 0 and a map ¢ M ~—3X
2

degree 1 satisfying f!(77) (C/ @(/M

simply comne cted mani-

.?,h we have obtained a compact,

Proposition L.>. There exists a connected,

fold M which is W equivalent to M and amap £ =M -——>Xof

such that '(72)~? B, end £ (1) H; (X)

degree !
an isomorphism for i g .
roof. For n = L there 1s nothing to prove for £ M=K

ready satisfics the requirements of the proposition. Since M

compact the homology groups Hy (M) are 211 finitely generated.

n>/5 Proposrolon L.5 is a consequence of this fact, Lemmd L.3

¢ propositions L.L and 3.7.

o ) » ’ . ) R . .
ark L.57¢  If f Hq(M )w—}qu(X) als0 is an isomorphism for

-2] then @ M w>X will be a homotopy equivalence. To

w this we have only to show that Ty ¢ Hi(M’)-—->Hi(X) is an

orphism for every i. As already proved (Lemma 2.5) the

that f’A is of degree 1 implies that © .H-l(M’),_%Hi(X)
-,

onto for every i. Let 2 £ Hi(’M ) be such that .

a) = 0 (i>q). Let XK= /_\’1(a)E—H“'i(M’). Since i>aq we

n-i<q. Since f; . Hj(M,)“’?Hj(X) is an isomorphism




L0

¥ 3 :
J
jLa we have £ sH (X) —-}HJ(M’) an isomorphism for j&£a

the Universal (oefficient Theorem., Hence X can be written as

a =0 and hence f;_ an isomorphism for 21l i.

Let A be any connected topological space satisfying
Poincar duality with u¢ H (A)~v 7 as the fundamental clase.
efinition 4.6. Let ag& Hi(A) and b(’:Hn_i(A). The homology
nterseCtioﬁ of a and b, denoted by a-b is defined as
follows: We il_dentify HO(A) with Z. with any element (i.e.pt)w
sf A as a generator. Let &= A“’(a) and 18: LY’(b)
ere /\ is the Poincaré isomorphism. Then a(uﬁe H'(A). The
logy intersection a*b is that integer which satisfies

(O U/é) M 1= (a.b)w, Because of (1) § 1.2 we see that
b can also be deflined as the value (:')(w)/j) (W] ofex u-/é? on
e homology class u .

‘@

Let V be a compact, ccnnected, simply connected C «
rn’l

{

a
20

anifold of dimension n},h and let g =

Lemma L.7. Let a¢& Hq(V) and suppose _3 b& 1n_q(v) such that

1. Suppose also that a 1is represented by an imbedding

?: qu% D“*l__@?v (i.e. ;D ‘ Sq)<0 represents  a).

v




L1

XA, 70). Then Rank Hq(v’)< Rank H,(V) and

AL .
)NHi(V) for i Q.

3
£, Let V,, Im P and Im 'P have their customary meanings.

q)<Dn a g g™ 9).

excision and homotopy we have H, (V v )<

Z if i=n-q or n

80 H.(SqXDn—q, sxs —aly o .
i .
0 otherwlse

om: the homologv exact sequence of the pair (v,v ) we see that

n-q and n.

(V )___o-?f->H (V) is an isomorphism whenever 1 £

i 3 V,—>V denotes the inclusiog). Alsn we have the

1lowing exact sequence?

. . %
: Hn_q(vo)—>Hn_q(v)—%%_q(v,vo)gz_;%_q_1(vo) .-

se homomorphism Jj, @ Hn_q(V) —?Hn_q(V,Vo) can more explicitly~

described as follows. Tdentifyin (V,V.) with
ving Hy_o(V,V,

g - _
(8D 4 595" 4"y we see that ?(xOXD N owathox,

ome fixed base point in Sq, is a generator for the group

(V \ )r\J /Z‘ Denoting this generator by 1 we have ju(y) = *a.yl.

n fact the 1ntersectlon number of ?(Sq7\0) with ?(x ><D ~9)

~

being clearly =+ 1 we have j*(y) = =+ a.yl.




sistence of an element bDE Hn_q(V) uitn aeb = 1 ensures that

_q(V)———}Z is an epimorphism and hence we have the exact

Hn_q(v(,)——aHn_q(V>—i’i—>Z—->0 -
)‘f&x'ti.cular Rank Hn__q(Vo) < Rank Hn_q(V).

—o- g1
We tave Vv = v UD®T XS with 70T X579 s,

1
ing Jq ¢ —-——->Dq+)<8n ! and i = v, _..>V’ denote the

sctive inclusionswe have the Mayer-Vietais sequence.

n-g-1

(=3,) . |
Jq *@W S H, (Dq 1 /at—a~1 )@ (V )9”* l*H (V )._?H 1(8)(5

ilows that if 1{i<n -~ q - 1 we have

i

1

#* Iy
Hi(VO)_____} Hy (V)

o if i=1 and ign-g-1 we have +}.e exact sequence

i (-3 P Bl
/~}O@H1(V )”‘%HAV’)“—*?Z“JLL?’*Z.WF"}Z*

map (J ) @70* carries 1€ // = H(quan ) into (-1,1 )

@Zmd hence a monomorphism. Therefore H, (v )_.__,___>H1(V )
jlso an isomorphism in this case. Thus we see that if idn-g-t

Hy (V) ,___j:i*_>Hi(v’ )

is an isomorphism. We now consider the
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]

cases n= 2q + 1 and n = 2q separately.

it

t). n=2q+ 1. Then q= n-g-1. We have already proved

(1) 3
Hi(Vo).__-_S_t}Hi(V) is Bn isomorphism for i # n-q and n.
Mayer-—Victoris sequence for i =4 yields the exact sequence
. q @9”

(s )<sq>
9
iting Hq(Sq)(Sq) as Z@ 4 we see that (-j1)*€9’)ﬁ* carries

1,0) of Z®into (0,a) of Hq(Dq”?(Sq)@Hq(VO) and

0,1) into (-1,0). Since the intersection number asb =1 we

Dq+1)<Sq)@H (V) —>H (V) —>0 -

W that a has to be of infinite order and the gbove seguence now
: >

1ds  H(V )._N.Hq(Vo)/ (a)- Observing that (i), : Hg(Vo)=—>H (V)
an isomorphism we see that Rank HO(V’ ) < Rank Hq(V). Actually

’ e

. N/

V) (V) (a). ,

2), n = 2g. As already verified H, (V ) >H (V ) is an

, i)

omorphism for id{n-qgq-1=49- 1. Alzo Hs (V )s._,__._>.H1(V)

an isomorphism for i #q and n. Combining these




bt

) 1 _ )
aq_1(sq>(sq ):\_JZ,Hq_1(DqH)(Sq "Y~o Z and the map

. ot
E}%jz carries 1 of Hq_1(Sq?‘\Sq ) into (-1,0).

¥ b . . . .
i, qu1(vo)"'f>Hq_1(V ) is an 1somorph1?m. Since
3 Hq_1(VO)-—§>qu1(V) is also an isomorphism we have
(V ) an isomorphism. For i = q the

Victoris sequence yields

&) 5 0@, (V,)—SH (V' )—9Hq (%8 ')-“-‘3ri‘?—>ﬁ(ﬁ T D ()
o

-j GB}D
Ao/ 01 (-3)® g+l , a1\
o1 (8°X8%) Loy 0T X ET ) @y (o)

H

srries the generator 1 of (Sq)<Sq ) into (-1,0) is

_monomorphism. Hence Hq(S%¥<u 3——i;H (v, )‘*“—-4§>H (V‘).A’r 0
It follows that Rank Hq(v’)< Rank Hy(V,). The map
__%>Hq(Vo) carries the generator of H (S)(S ) into

element of infinite order. As already verified
g)<:_Rank Hq(V) (since g =n-q, and we actually verifie:
n_q(v) ).

This completes the proof of Lemma 4.7.

V,) < Renk H
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'PROOF OF THE MATN THEOREM FOR n = L d >4

We have already obtained a compact, connected, simply con-

c® manifold .M of dlmensmn Ld and amap f ¢ M-—>X

sz = Ker f?,d : H2d(M).-——>H2d(X)-

5. 1. sz is a free abelian group.
Since H, d(M) is finitely generated and K, & direct
and of Hp (M) (Lemma 2.5) it follows that Kyy is finitely
rated. To prove that K2d is free it therefore suffices to
e that K2d is torsion free. We write g for 2d for simpli-
» If possible let xg& Kq be any torsion element and let

1
Hq(M) correspond to x under Poincaré duality i.e. x" CM] = X.
is then a torsion element of H(M). By the Universal Coefficient

rem for cohomology we have the following commutative diagram.

Em(Hq_,(M),Z) (&}Hq(M) = }Hom(Hq(M), Z ) ——>0 ~

% Hom( £, Id 71_)

£ D<>Hom(Hq(X), Z)—=>0

yExt(H,_, (X), Z) 4 (X)

Diagram 7.




arly, Hom(Hq(M),Z) is torsion free. Also for any finitely

rated abelian group A the group mxt(A, Z) is a torsion

up. It follows that ﬁ.(Ext (Hq_1(iﬁ_), 7Z)) is precisely

e torsion subgroup of HY(M). Hence = an element

! . 1 1 ,

€ Ext (Hq_1(M),Z) with B(y')=x. Since fy: H; (M) S, (X)

s an isomorphism for i&ag-1 we have

t(f,, Id ) s Ext(Hq_1(X), ZZ)—-—;Ebct(Hq_1(M), Z.) an isomor-

y/
-1, 1
sm. Let z1qu(X) be given by A = o (Ext(f,,Id__ ) (¥ ).
- ﬂ 3# Z
n clearly f*(z1) = x'. Our aim is to show that Kq has no

1
orsion, or that x = 0. For this it suffices to show that x =0

nce () [M] = A\ Hq(M)—-}Hq(M) is an isomorphism. HNow con-
ider the element z1ﬂ ue Hq(X). Since f is of degree 1 we
ve f*([M]) = u. We have
2 oe(x) = px'n [ ) = £(f (2 [MD) = ') =2 A
by assumption mu:Hq(X) -——éHSX) ic an isomorphism. Hence
= 0 and therefore x = f7(z') = 0. This completes the proof
of Lemma 5. 1.

For the rest of 3 5 we denote 24 by Qq.
Hq(M) = Kq@ qu(X) be‘ the splitting given Ey Lemma 2. 5.
‘}xmna 5.2. For any a&-Kq and any b & qu(X) the intersecfc,ion
number acb = O, Also if b, = glc;) and by = g(cz) with
1 cZE_Hq(X)» then the intersection number bycby 1s the same as

1' Czo




Let b= g(c) with cE-Hq(X) (¢ is unique since g 1is
o). Let YE #%X) be such that ) M u= c. Then by the

' 3
- definition of g we have b = f (Y )¥a! [M] . To prove that

= 0 it suffices to verify that £, (A J Y )) n[M}) = 0
q .
A € H (M) satisfying N [M]: a.. Since q =

D(Uf*( Y) = (Y ) Uy o, Hence

24 we

@ufy)n M) = e ((Fyue) [ )=

Frn (e (3] Nsince a = 24) = £,(£7 A 8) =¥0 Ty(2) =0

ce f,(a)=20. Choosing 1(1, ¥, in Hq(X) with

*
Au= cy, )/2./‘!u=c2 we have b, = f(}(ﬂf\[M} and

- (AN . Now

(*y vy, nl)-= NCAC SV AT [M]d = (v, uvn 04 )
S = (fjuY)au. "

1 this the equality b‘.b2 = cq*Cy follows.

he torsion
Hq(X)

Denoting by Tq(M) and Tq(X) respectively t
b f H (M M ~ K .
groups o q(1) and Hq(X) we have Hq( /Tq(M)/"" q@ Tq(X)

ecause of Lemma 5.1). Lemma 5.2 precisely states that we can

Hg(X)

3 £
ind bases for Kg and T—q—(—ﬂ such that the matrix AM of the

ntersection bilinear form on Hq(M)/Tq(M) takes the form
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where AK and AX are the matrices of the form restricted
A
X p

.0 Kq and Hq(X)//fq(X). Also the lemmaasserts that the restriction
the intersection bilinear form on Hq(li)/ Tq(M) to Hq(X) / Tq(X)
agrees with the intersection bilinear form on Hq(X) Tq(X) got from
the fact that X satisfies Poincaré duality. Since intersection by
;definition corresponds to cup-product under Poincaré duality we see
hat the signature of AM is the same as the index of the manifold
I(M) defined in 1.6 and similarly signature of AX is I(X). Let
:uq denote the signature of AK by I(K) . Then we have

I(x) + (k) = I(M).

Lemma 5.3. I(K) is zero.

Proof. The assumption iii? of Theorem 2.1 is actually used in

concluding that I(K) = O 2— We have amap f ¢ M—>X of degree 1

with fl(?) = 5;@»{?; . Also E‘? 1= - [‘5]. By Hirzobruch's
P e .

Ingex Theorem I(M) =-{lﬂ(p1( kﬁﬂ), ve pd('Z:M ))}-[Nﬂ .

But Ly (py( Tods +s Bg(Z5)) = Ly(p, (2101 ))ees p(£2(7) D)
-

v

(since L (py(A), .., p(/\)) for any vector bundle Adepends
only on the stable class of X_). Hence
T(2) ={Ld<p,<fz(7>,..,pd<f.'(;7>>} (]
= {140y ()50 ,p (9N § (2, 0D)
ST I ¢ PRy e SIS

= I(X) by assumption (Lii).
This proves that I(K) = O.




LS

Denote the group Hq(M) /Tq(M) (where T3(M) is the

on of HXM)) by BIM) and similarly the group Hq(M)/Tq(M)
(M) Choosing any basis xX;,..,x, for B} we see that

q . "
XN [M] ( actually ﬁ[M] (M) _.?H (M) gives a well de-
ned isomorphism also denoted by mM of B (M) onto B (M))
a basis for Bq(M). Since B 9(21) ~Hom ( Bq(M), ) we can
o1, . oy

lements y.,..,¥, in B® such that yi(yj) = Sij . The
ear form (x,y)~(x Uy) [M] on B! is easily seen to have

+ 1, for (yj].u xl)(M] = y;(xi(‘; {:M:)) = Y;(Yi) = &13..

ws that AM nas determinant + 1. Similarly A has
- h'd

Few

+ 1. It follows that A, has determinant + t.

If B 1is a symmetric non-degenerate bilinear form on
ly generated free abelian group H, with determinant + 1

he signature of B is Zero then a x#£ 0 in H such

e e

proof of this can be found 1n[6_7 As a corollary we
£ Kg# 0 - an element a £ 0 in K, such that
Moreover we can choose 'a' to be indivisible in Kq‘ \

(a) is free and hence we can find a basis of tbe ZTorm

for Kq. Slnce AK has determinant +1 and a.a= o}
have a.b; =0 '\7"‘3 If Jy,..,3p0 are the indices in
With aebj 7{ 0O then g. c.d (a-b ) has to be 1 for

i,..1,..r
his greatest common divisor wiil ddvide determinant of AK
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. - J
‘ r
Hence 3 integers m. such that ma (&rbj )=1.,The element
& Ji : ' 1=1 Ji i

b

r
b€ K, given by b = ?_ m, b, satisfies a.b=1.
=T JiJi

femma 5.5. If d>1 there exists an imbedding
s? ——?Mhd(q = 2d) representing a and further satisfying

-

3 i
f ofﬁr\ff (where %* is the constant map sq.a.x carrying the

. *
whole of S¥ into x .)

Proof. It is for the proof of this lemma that we need d to
be 1. By Lemma 4.1 E a continuous map e: s? —~3yM repre-

. . Il .
senting ‘'a' and satisfying f o©@nux . We use the fact that
M is simply connected. Also since M 1is of dimension 44d with
d an integer _> 1 it follows from Lemma 6 of[-é_]that
a ¢®° imbedding @ slsM with Pry 6. This proves
hemma 5. 5. |

. 2 b

Bemark. It is not true that a continuous map & § —>V
© Lo, .
is homotopic to a C  imbedding even if V' is a compact, simply

connected C menifold (of dimension L). Mn example is given by

Kervaire and Milnor in [ 3_7.
Lemma 5.6. For any c® imbedding }Z’: Sq—>M representing 'a’

*
and satisfying f o N’)\CJ the normal bundle VP is trivial.

Proof. We have Z/M’ ;D(sq)gff(sq)gg y; Since M and

g9 are orientable it follows that Y is orientable. Also
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0 f’<775'¥ P(Sqw(z;@qﬁ{ P(s), we nave
£
7 )]?(sq)ﬁ ’Z:q¢sq) @yq®é Sq) P(Sq)@;gts%@)’/%. sa)

g+t ' +
ft%(sq)@ DR ?(s V@{% (%)
2q+J.

But since f ojbnﬁc)* we have f.'('l7 )HD(SQ):!(}Z(Sq)‘

Thus Thus M. is stably trivial.

i'];f )j(:_ Hq_1(SOq) is the element corresponding to the burdle Vf

9 e have s*()/) = 0 where sy :Trq_,(soq)ﬁ'rgq(sozq,,}\)

on S

the homomorphism induced by the inclusion. Since

m_1(50q+1)—-‘>_rg_-_1(502q+2) is an isomorphism it follows that

1*(1/ ) =0 where 1, : ”q_1(SOq)—>T];1(SOqH) is induced
by the inclusion. Since SOqH/E;()q = 8% we have a fibration of
S0 by 80, as the fibre and s? as the base, Consider the

g+l

corresponding exact sequence

TI; (SQ)E‘—}TIﬁSO )-———\,T\_ (SOq+1) .

L3
5

D carries a generator of Trq(Sq) into the element ftJ of Trq_l(SOq)




le of s3. Since 1,( Y )=0

?f for some integer K. The map which

sgigns to an jsomorphism class 7\ of an orientable vector

its Euler class X, () ) defines

undle of rank Q OVer Sq
gent bundle

nomomorphism )3 H (SO ) —=H (qq) For the tan

/(\J/Of s the class 7(,( N~) is known to be twice a genevator

of Hq(sq) (The q 24 1is even, we use here). Thus the com—

position TT'(,-q) *‘—>T\— (SO )———}Hq(‘%q\ is a monomorphism

; element in the image of D is zern if and only if its

and any
The Euler class of +ha normal bundle of

the imbedding jD representing ‘'a' can pe identified with a-a

Buler class is gzero.

For, given a normal vector field

imes a generator of H (Sq)
a
we car. deform ?(S )

th a finite number of zeros on P(S )

long these vectors to obtain a new imbedding which intersects

?9(5% at only finitely many placeS. The multiplicity of each

such intersection is equal to the index of the correspondlng Zero

af the normal vector field.
A more 'formal' proof for the fact that %( )/?9 = a.a

q(Sq) can be given as follows. _
sd itself,

mark.

imes a generator of H

Denoting the imbedded manifold ;E(Sq) by
et, _@ H ('Sq) -—}Hq l(T()/ )) be the Thom isomorphisi.

U= @ (1) € H” (I‘( ¥ )) then the Euler class of )/ can be defined

(by XYV )= @_ (Uuu)[ 57 Taking a tubular neighbourhood

psing the exterior of A to a point

If

of Sq in M and colla
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et amap C: M—~—>T( )} ). If ¥¢& Hq(M) is the class which
‘responds to‘. 'al under Poincaré duality (i.e. UM [M]: a) it
known that C*( J) = Y[9__7 . Hence |

#(JuU) = Wu Y= aa[M] by the definition of the inter-

section number. But from the diagram

¢ =z
1) =S V) & Y1V, Y ) - 5
'~

+*
C 22 excision

7

2 2 PR 2
H q(MK'}_’H q(M,M—-Sq) ex0151on_\H q(A, A - Sq)
# ~

2
We see that H q(M,M—Sq)DJZ_. Taking any pt x& s? we have

. 2 K 2
the triangle: sy q(M) (-J—_H q(M,M—-Sq)

g\
1292, M-x)

2q
Hence H (M,M-x)oJ Z has to be a direct summand of qu(M,M—Sq)
" ] ¥ 2 2
which is also & :/Z_ It follows that j zH q(M,M—Sq);\v,H Um). .,

HT(V ) pgHHM).

[t}

Examining the diagram again we see that C*
Hence UUU = a.a times a generator of qu(T( V)
and §—1(UULD = a.a times a generator of Hq(Sq)v.

We are now almost at the end of the proof of Theorem 2.1

for the case n = 4d. Choosing an indivisible a# O in K_ with

q
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ara = 0 we saw that 3 vex, with ab= 1. The existence
_of such an 'af. was guaranteed by Lemma 5.4. From Lemmas 5.

and 5.6 we see that 3 an orientation preserving imbedding

: Sq)(%Dq-—-gM with f o}DN()\c)* and representing 'a'.

Let now M = X (M, p) and f’ : M—> X the associated

map which is constructed after altering f in its homotopy class
so as to satisfy f o = x*. By Lemma 3.3 f is of degree 1.
To get an 1somorph15*n -’C‘ @,@ _,._>.f (7 ) we had an
obstruction Y& 1T (Son+,{) and when )b was replaced by ]0 given
by A ) = ? (x, % (x)y) with of: 8'—=80  a CFmap
then the new obstruction th satisfied the relation

\3;* Y+ syu(e{) where sy ¢ Tja(soq).~,5>7ja(son+JL) is the

homomorphism induced by the inclusion . (Lemma 3.6). Since q

i

is even the homomorphism Tr(SO ———>TT(SO o) isonto . £ 8.7
Also Hq(SOqH) ~>T1 (SOrH,[) is omto. Thus there exists an &\

such that f;L : X(M )Z ) —>»X satisfies the condition

f; '(77 ) C&% @—é in addition to beinz of degree 1. Thus

without loss of generality we can assume that £ itself was ;
AN

tgood' in the sense that 1 :(7) )2 %,@/@J\_ . Denoting °
i - M’ i}

the inclusions of My in M and M’ respectively by i and i’

we have the following commutative diagram for every integer J .




1300

x
i .

* \
Hj(x’l

(1)

e
-
H

Hj(M’ )

i :H-(MO) ——)Hj(M) and

By Case 2 of Lemma 4.7 we have
Since

i :H(M)~—>H

£, s Hi: (M)——%H (X) 1is an isomorphism for

(M) to be 1somorphlsms for j<£Q.
j<a i1t follows that

: Hs (M ),—éH (X) is an 1somorphism for J<La. Also by the

f
denotes the Kernel of

same lemma RK H (M ) < BK Hq(M) if K;

free and of rank & rank of Kq.

£ =H (M )———->»H (X) we have K;

Q-
1t follows that after a finite numoer of cpherical modications we

it

1
can obtain a manifold M : M »....;7)( with

and a map f
1"
degf =1, £ (')7)?\)2;4"@’%" d ¥4 = Ker f'c‘l.—-O. It

that f M "}X is a homotopy

letes the proof of the main theorem for w

follows from the Remark h.S

5

equivalence. This comp

= Ld  b.
8 6. PROOF OF THE MAIN THEOREM FOR n = 2g+1.
n=2q+ 1 with 9 an

Throughout 8 6 we will assume

W2q+2 be a compact orientable topological

integer ?/ 2., Let W=
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manifold of dimension 2g+2 with boundary bW: Let F be any
%

fixed field. The semi-characteristic e (bW;F) of bW with

respect to F is defined to the residue class i Rank H..l(bW;F)

modulo 2. Let /0 be the rank of the blllnear palrlng
q+1(W F)®Hq+|(W F) —>F given by the intersection number and

e (W) the Euler characteristic of W,

!

. #* —
Lemma 6.1. We have e (bW;F) + e(W) :@ (mod 2).
Proof. Consider the homology exact sequence of the pair (W, bW)

with coefficients in F ,

J
Hq+1(W;F) %HQH(W,bW;F) __a.?Hq(bW;rF‘) —e ..._..>HO(W';bW;F) —>0.

By Poincaré-Lefschetz duality if 7 7 & H (W,bW;F) is such that

= 0N x & HqH(W;F) then Z = 0.. Tt follows from this
remark and the relation x.y = xJj,(y) for any Xyé& Hq+1(W;F)
that Ker j, 1is precisely the nullity of the intersection bilinear

form on Hq+1(W;F) . Hence
/{rZ = dim Hq+1(W;F) - dim Ker j, = dim Im j, = dim Ker o
= dim Hy, (W, BW;F) - dim Inm 3

Denoting the dimensions of Hj(W;F) and Hj(W,bW;F) by bj(W;F)

and bj(W, bW; F) respectively we have

/??= by, (W,bW;F) = b (BWSF) + b () = By(W, bs F) 4 eoee o
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But bi(W,bW;F) = ~b2q+2-i(W;F) by Poincaré-Lefschetz duality.
. *®
Thus /?‘ -"ﬁe (bW;F) + e(W) (mod 2).

00
Let V be a compact connected oriented C manifold
of dimension n = 2g+! and let aEHq(V) be any torsion element

# 0. Suppose further P: Sq)(_z. Dn_i!._..? 7 1is an orientation

preserving imbedding representing the homology class 'a'.

Let V = X(V,P}.

Lemma 6.2. If g 1is even we have an exact sequence

0 ——;Z-?Hq(v’ ) ---)Hq(v)/(a) —>0

whers - (a) i the subgroup generated by a in Hq(V).

Proof. As usual let V_ =V - }D(Sq)(BqH) and let
p¥*'%(s%—>V be the imbedding induced by the inclusion

of Dq+]><Sq i -g- Bq”)(Sq: We then have the following com-

mutative diagram with exact horizontal rows.

7. At (307 )—i&ﬁq(V)———)Hq(v, PEHET ) —30

R
1 (Vo sixs?)
/Y (Dq”xsq)&riq(V’%——}_Hq(V’, ;z’ (0¥ Xs) >0

Diagram 8
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1 +
follows that Hq(v' s 5Z9 (Dq ]><Sq))

ince
2 we have only to

;q(V, P(Sq)(Dq+1 )) Q—’..Hq(\f)/(a); To prove Lemma ©.

L ! . i .
how that ?9* A ~_.91-1(.1(_\1 ) is a monomorphisim.
orsion element to show that )

! ' .
hat  bo(V', Q) ﬁFqu(V,Q)(mod 2) where b.(V, Q) is the
xqth Bettinumber of V i.e. the rank of Hq(V, (Q) Since

a1, PER N, PRy (7 P (0

. | 1 .
for 1< q the statement bV _’Q)—‘f:bq(v’ @) (mod 2) will follow

3f we show that S z bi(V' , CQ) + Zq% by (V, (Q) 3:}*0 (mod 2).
1= 1=

1
Let W= I)(VLJDqJ(J)(Dq+ be the topological manifold got as f
pa*+ ¢pd*!  and identify

*(1) = a by assumption it

Since ‘'a' is a

is a monomorphism we have only to

prove t

0 es?ypva (V1)

ollows.

We take the disjoint union of ¥V and
Sq)(Dq+1 with their images under ? in VX1.
q+2 with boundary

Y

Then

the points of

W is a compact orientable manifold of dimension 2

gonsisting of the disjoint union of vV and y'. Hence by Lemma 6. 1

we have e*(bw; Q) + e(W) '"ﬁ/o (mod 2) where

*1(W, @_)XHq+1(w: Q)""‘é Q‘

ilinear pairing is skew symme-

is the rank of

the intersection bilinear pai ring H
Q
8ince- q 1is even, this intersection b

tric and hence /9 is even. But

% — ' 4
H(ow; QD= 2< by (7, @) *+ 2 by (V, Q) (md 2).
i=0 1=

+
s the space got from V Dby attaching - p°

.,

v

Also W is of
1

the same homotopy type &
13 +1 .
by means of ?\ Sq7<0 and hence e(W) = e(V) + (—1)q . Since V
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by Poincarcfa duality we have e(V)=0 (mod 2)

How Q) + e(M=0 (mod 2)

of dimension 2g+1
yields

hence the relation

bi(V' , Q)+ j}_‘_’% o, (7, Q) * (c)®* =0 (n0d 2) o

b.l(v‘ , Q) + f: bi(v’ Q) #::O (mod 2). This completes the
. A

i=0

sroof of Lemma 6.2.
Let d be the

e when q 18 odd.

We now consider the cas
ement of Hq(v),

rder of 2] Since £ 0 and is a torsion el
Now suppose the imbedding

+1
q)<3 p? ————}V representing 1a! is replaced by E( given
®

y ﬂ(x,y): SD(X, ol (x)sy) with ol t S.-——-)SOqJr1 a C map
where 8, ! TE(SOQ+1)-—§-FE(SOZq+1+1 )

lusion 8 ¢ SOqH"'—?SOZqH»«L'

is an integer 2> 1.

satisfying su(X) =

the homomorphism induced by the inc

ot y* be a base point chosen once for all and let j:SOqH*—-% 4
(We consider y as a row vecbor

e the map given by jw) = ¥ *ow .
x w operates On

')Rqﬂ and the matri the right on ¥ ). Ve
th yomology of Vo( X(V ﬁ ).
vV - 2( (Sq)<Bq ) is independent of o{ and the

~

Ay «dy =
2\(5 K g1y = Bdry Y, as a

Clearly the

v

!

*
(v )(Sq) of the torus

point set does not depend on X , hence its homology class &

LH ) does not depend on X . and the homology

in H On the other h
class E%o P(Sq%y ) in Hq(V ) does depend on K . Let &
P(s ;(y ) in H (v ).

Then we have

e the homology class of
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. = &+ j*(O<) 6: ’where g W;(SOQJ-—-;TQ(SCJ)I.",Z

he homomorphism induced by J - X
such that d & = a' E!

1
We claim that 3 an integeTl d ot

‘, Hq(VO) . Actually in the homology exact sequfance

'ﬂq.‘_' (vo) —-}Lﬁq+1 (V) ""?Hq.ﬂ (V;Vo) “—'S‘Iq(vo) —ﬁ?ﬁq(\z ) _____-—->

‘o a0+ A9 .
entifying Hq+1(v’V0) with Z_:r‘—- Hq+1(s Xp* ,5°KS ) by excision

(V)—3 Hqﬂ(v,vp)

Since 'a' 1is a

saw that the homomorphism Hq +1 was given by

x (Refer to the proof of Temma L.7).

x =0 and hence

P i ae.

o

psion element we have a

0“>z’”ﬁq+1 (V,V,) —%Hq(vo) S (V-

¥* + .
9 cerries the generatol )’:D(y WD 1) of the relative

£' in Hq(VO)-

exact.
The element d&. of

up Hq”(V,VO) into
and hence 3 an integer

1
£+ 35,0l & we have

ﬁfo) gets mapped into da = 0 by i

such that i = d' E,' From Eof. =

1 ) 1
= (d + dj*(a( )) & . Thus

- ag e (00 &
he requirement d Ea{"' '°< e . <

=4+ dj*(c»() satisfies t
1 1 L 1
et a:-,( pe the element (i )5:( £)E Hq(“o() where 1% Vo-‘?":,(\

he exact sequence

o ,
D gy )=

. D
Hq+1(V 4 VO)'_'_“;HQ(VO)"—’—_—w_—-—> g ol

s the inclusion. Then from t
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“see that (i(;()*(da{ E_') = (i'o()*(d E,“) = 0 since O carries

," ' '
he generator 2( (Dq+1?<y*) of the relative group Hq+1(v »Vy)

1 & ; ] 3 .
to the element E‘;( Hq(VO) represented by 2&(8 Ky, It
ollows that a;( is of order ‘d' + dju( ok )\ with d' = the

x;der of a'gC Hq(V') represented by ?'(y*)(Sq).
o o ‘th
Identifying the stable group TE(S D14 1) wi

fq(SOq+2) there is an exact sequence associated with the fibration

+2/Soq+1 = 53+,
Tl;”(sq”)—-a.)ﬂ; (soq+,.)__ff_>Tg (80,,5) .

' +1 1
he composition TT;]H(Sq )%m(soq+1)_i*.?m(sq)

for q odd) carries a generator of TT;H(SqH) into twice a
nerqtor of 'ﬂ;( Sq) . It follows that J,(o{) with K & ker sy
an take any even value. ( + ve or - ve). Thus if ' is not

'(ﬁsible by d we can choose an®X & Ker s such that the order

*
T \

,dot\ of a;« satisfies \d"x*( d. Thus we have proved the
6llowing .

+1

emma 6,3. Let q be odd and >1 and ?: Sq)(% pd --..9V an

rientation preserving imbedding representing a torsion element
€ Hq(V) of erder d >1. Then the element a'é Hq(V') represen-

. 1
ed by ? (5%%59)  is of finite order; moreover if d' is the
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is not divisible by d then 3 an

' -
Ker s, such that the element a"{ in

rder of a' and if a'

(V;( ) = Hq(X(V, 52{)) represen;oed by ?:x(y*;(sq) has

order strictly less than that of a in Hq(V).

Next we deal with the case when q' is divisible by 4.

We recall the definition of linking numbers [ Siefer*t—'[‘hrelfall['{] _7

ot NE H(V) end o€ By p g

Associated with the coefficient sequence

(V) be torsion classes in the
" espective groups.

> 17— G >®/z;;——>0

we have the exact homology sequence

;-—>Hp+1(v;®/z>-?-—>1{p(v>-i"iaﬂp<v; Q) —> -
(h is the inclusion of Z in Q) Since A is a torsion
element we have h*(}_) = 0 . Therefore 3 Y& Hp+1(V; Q_/Z)
 such that 2()Y)="A . The pairing (Q/Z) ®Z—-)Q/Z—

defined by multiplication gives an intersection pairing

Hp+1(V;@_/Z)®Hn_p_1(V) """"?Q/Z. We denote this pairing by .
adot .0 . .
Definition 6.h. The linking number LA, /u/)

number modulo 1 defined by L n y= Ve . This linkin
y ’ &

d and satisfies the relation

is the rational

nunber is well-de fine

L( Mo A) o+ (—1)p(n'p_1) L(A ) = 0 [ Ref: Siefert-Threlfall [177.
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ma 6.5. L(a,a) = + d"d‘ (mod 1)+ (This lemma is valid even
a' is not divisible by d. In fact when d' is divisible

d this lemMa asserts that L(a,a) = 0).

roof. We have dE - a' E.' =0 in Hq(VO). Therefore the
yele d? (Sq7<y*) - d';ﬂ'(y*)(sq) bounds a chain C in V,.
et C, = }Z)( )<Dq+1 be the cycle in f(S )(D

‘with boundary p(y )(S ) The chain C +d' C, has boundary

q
f(S )(y*). Hence C+i Ci has boundary ;D(Sq)(y*). Also

*
?,’I(S%(O) represents the same class aeH (V) as ?D(quy ).

Taking the intersection of C+d’ Ci  with fO(S )(O) we get
d

k
;,a-,d'/d since C is disjoint from @(S X0) and C; has
intersection number + 1t with ?’(Sk)( 0). Thus

};,(a,a) = + d'/d (mod 1).
. 2g+1 . ™ .
Lemma 6.6, Let V=1V be a compact oriented C  manifold

th g1 odd, and f = V—>X a map of degree 1 satisfying

: Hi(V) ~—3H;(X) is an isomorphism for 1dq

S

9 Ker f, : H (V) —>Hy (X) is a torsion group. Suppose
further that L(a,a) = o%et{ . Then K, is a direct sum of a

finite number of copies of ZZ =Z/2 7




6L

R&mark. When stating this lemma we have a complex X satisfying

the conditions of Theorem 2.1 in our mind. In particular X

satisfies Poincaré duality and it is only this that is needed for

the validity of Lemma 6.6. .

Proof. Since X satisfies Poincark duality for integer coeffi-

cients it follows that X satisfies Poincarb duality for coeffi-
cients in any arbitrary commutative ring. Using the fact that £

is of degree 1, monomorphisms gJ.H (X) >H (V) were constructed

satisfying Hj(V) Ker f 8} & (H (x)) for every J [Lemma 2. 5_/

The same procedure can be adopted to define monomorphisms

TN H. (X /\) —-—-?H .(V, /\) for any commutative coefficient
ring and we still have H(V /\)zKerf,/\@g,/\ (H (x, A)).
Also the exact sequences in homology corresponding to the exact

coefficient sequence O——}Z —}@_ «71 give rise to

g ‘commutative diagram.

B (B &/ — D0y i, B —>
/N AN AN

gq 8, Bq

8/ Z) % DI Q)
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Let Tq(V) and Tq(X) denote the torsion subgroups of | Hq(V) and
Hq(X)g respectively. Then from "asswnption @ we have

Ty(V) = K, P e T,(X). For an;; b, b Tq!‘v) let L(b,b') denote
their linking number. Then since ¢ is odd we have

L(b,bi) = L(b1,b). According o Poiﬁcaré duality theurem for
torsion group [7, p. 2&5__7 L defines a non ‘degenerate pairing
Tq(V)@Tq(V) —»——-)Q/l We claim that L \Kq® Kq gives a-non
degenerate pairing Kq@ Kq—-?@/l. Let bg_Kq satisfy

L(‘b,b1) = 0 W b'e_ Kq. We have to show that L(b,c) = O%fc <__Tq(v).

Since Tq(V) = Kq@ g Tq(X) we have only to prove that

‘ i
L(b,y) = ONye¢ g To(X) . Let y € T(X) be such that g(y') = y.

 Then h*(y1) = 0 (since y'

3 z'e HQ+1(X,®/ZZ) such that 921 = y' . The element

is a torsion element) and therefore

zen , (LQ/Z) givenby 2= g(z') satisfies DZ=y.

Now L(b,y) = L(y,b) = Z.b (this intersection is the one corres-

ponding to the pairing ((&/Z) @ZZ_“'?@Q/Z) Thus we have only
to verify K. g(Hq”(X, (I%/Z) = 0. This can be proved in & way
similar to Lemma 5.2. Thus L{ Kq®Kq‘—*‘3'Q/Zgives a non-
degenerate pairing.

We now claim that every element aéKq "is of order 2.

In fact for any be‘-_Kq we have

0 = L(a+b, a+b) = L(a,b) + L(b,a) = L(2a,b). Hence 2a = 0.

This completes the proof of Lemma 6.6.
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Lemma 6.7. Let f 1 V—X be of degree | satisfying the following

conditions.
1) £, H; (V) —>H, (X) an 5 somorphism for every 1<d ;\

f a finite number

2) Kq= Ker fq : Hq(V.) ——‘9Hq()() a direct sum ©

of copies of Zz and that “v*a & K, the linking oumber L(a,a) = 0 -

SqX% Dq+1—...>v is an imbedding represegting a#0

Suppose P:
= %, jﬁ) the Bettinumber

in Kq. Then for the mani fold ’\Il

bq(V';ZZ) (i.e. the dimension of Hq(V'; Zz)) satisfies
b (V's Zp) = 0y (1s Z,) (ot 2)-
+1
Let W= 1X VUDqH)(Dq as in the proof of Lemma 6.2. By
we have e*(V' ;ZZ) + *(V; ZZ> + e(W);-:——_'—_-/.') (mod 2)

is the rank of the intersection bilinear Hq+1(W; ZZ) .
n the proof of Lemma 6.2 it

Proof.

Lemma 6». 1

. where /0

1f we show that /O is even then as 1

. ' .
will follow that bV 3 Zz)i bl Vs ) (mod 2). Thus we have

only to show that /O is even. If for every X& Hq”(W;Z_Z)

the intersection XeX is zero then will be even. Thus we have

only to show that X.X = 03¢5 é_—HqH(W; Z,). 1In the homology

exact sequence for the pair (W,V) with ZZ coefficients

3 o
By (V5 7)==y g (W5 L) —pHqn (T3 Z,) (Vs Zp)

as generator

‘ »
the group Hq+1(W,V; ZZ)C‘JZZ with 77(Dq X‘y*
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a carries it into a # 0 in Hq(V;Z,z) « Actually if we

Zz co§ff101ents and take the kernel Kq\ Z ) of

H (Vs Z,)—>H (%, Z,) it will be isomorphic to K since

is a direct sum of a finite number of copies of Zz and

y Hj(V)—?Hj(X) is an isomorphism for j« g. Hence

q”(w V3 Z )—-—-ZhH (v; Z ) is a monomorphism and therefore

dy # Hy (V5 Z5) ~—>Hq+1(W; Z,) is onto. It is clear that
xx =0 for elements of the form = Ju(y) with q+1(v Z)

‘because a cycle representing y can be deformed in W so as not to
tersectt V . This completes the proof of Lemma 6.7.

Now we go to the proof of Theorem 21 when n = 2q + 1

‘with q 2.2. We have already obtained a connected simply comnected,

ompact oriented c® manifold M of dimension n and a map

t M—>X of degree 1 satisfying f!( /i )Q_'qr,l[ @'(‘_‘&’K

% Hj(M)->Hj(X) isomorphism for j< q. Let Kq be the Ker'n_el
fq Hq(M) —-—}Hq(x). Let Kq = Fq &5 T(Kq) with Fq freg

and T(Kq) the torsion subgroup of K,. Choose an element 1at

forming part of a basis for Fq. As an. easy consequence of Poincaré

duality we get an element b & HqH(M) such that a*b =1 . By

Lemma 4.3 3 a ¢ imbedding P: sd _7\,M representing ‘'e' with

trivial normal bundle )/, and further satisfying f o ;p,ﬁc" ¥ (the

constant map). Extending ? to an orientation preserving imbedding

? : Sq)( .g. p2*! —>M and performing surgery we get 'a mani fold




Y=M' and a map £ : M'——> X of cegree i with
i(kM',)_?Hj(X) : somorphisms for j£a and

f(l'i : Hq(Mf)—.?I—Lq(X) isomorphi. to K%/(a).

ary for a suitable ¢® map ¢{ Sq---»_)»SOqH we may

n
£ ’7 ) o %‘M,@ q,@_ (Proposition 3.7). Applying

gery successively to 'kill' elements of a basis of Fq We

s counected, simply connected compast oriented ( mani-

.M" znd a map e M“—-—?X of dzgree 1 satisfying the
owing conditions:

o X
£, t Hj(M")'——-}Hj(X) is an isomorphism -g*- j <<{q and

, n - . .
Ker T : Hq(M )~——-—7Hq(X} is precisely the torsion sub-

(7 ) I;111‘ "%;v

changing notations ws may assume that the original

vM-—?X itself satisfied the conditio that Ka is a torsion

up. Now assume a even. Croosing an element

applying surgery to 'kill! a' {this is possible because of

mma L.3) we introduce an additional ZZ to the Kernel, but the

- . . s\
orsion subgroup ol the Xernel becomes Kq /(a) . (Pefer to Lemma 0.2,

t by our earlier remarks we can suceessiully app’ 7 surgery to

kill Z . In other words by two suitanle curgeries on M weo can get




compact, oriented, connected, simply connected ¢® manifold u!

o
a map f1 ¢t M ——=>X of degree ! with
(7)) ,an (43 - £ ew (M) H.(X) isomorphism for
77 ~~ {%1 S — J 1SOmorp
q and Ké = Ker f:l : Hq(Ml) ——}Hq(X) definitely smaller +than

Iteration of this procedure a finite number of times proves
rem 2.1 for n =29 +1 with g even.
We have still to consider the case q odd. If a # 0 in

is of order d when we perform surgery by means of an imbedding
1 .
Sq)<-32- Dq+__-.} M representing 'a' and get

M = X/(M P)-—}X we introduce a new element of flnlte

r in the Kernel of f . To get £ .’* Y2 27 1&96 we may

to alter F’ into }77 for a suitable X : 8% —350 and
X q*1

can be done by Proposition 3.7. We can assume that ? itself

sfied this requirement also. However if we change again )D to

with o & Ker Sy there is no obstru r‘tlon to gettlng an iso-
1

rphism of £ !( 1) with @Mi P é It is this freedom of

ice of X in Ker s, that helps in proving Theorem 2.1 for

22q+1 with q odd 1. Ifthe order d' of a1§_Hq(M1)

. 1

presented by 77 (y*X s9)  is not divisible by d then for

1
,’/ﬁuitableo( & Ker s, the element 24 &3 Hq(M;lZ will have order
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strictly less than 4 (Lemma 6.3). It follows now from Lemmas 6.5

and 6.6 that we cen get a menifold M" which is ¥ -equivalent

to M and a map £ e M"n-m—} X seztisfying the following conditionse.
1e M" is connected, simply connected and f" is of degree 1.

2. Ty Hj(M") — Hj(X) is an isomorphism for j«gq ; the Kernel
Ka of " :H (M) —> Hq(x) is a direct sum of a finite number
of copies of aﬁfiZ.

Mo e n . {ff
30‘ £ 1( ';) A ;’i" " l;f:’;jn .
M M

Lemma 6.7 coupled with the observations made above helps

in getting a menifold M" which is connected and simply connected

and X -equivalent to M" and a map ™ ¢ M"'-—> X with

;u: Hj(M"') -~ Hj(x) jsomorphism for j q and

. Ay n f nt
] 1(7’"[)-:‘:;?;::*”&; 3, « From the remark L.5 it follows that £ 18

‘& homotopy equivalence. This completes the proof of Theorems 2.1.
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PART TT

SIEBENMANN'S THEOREM

1, THE ASSUMPTION OF SIMPLE-CONNSCTEDNESS TN THE _BROWDER-NOVIKOV THEOREM.

In this section we will illustrate by examples that simple

nnectedness of X and condition (iii) are essential for the validity

2f Theorems 2.1 of Part I. We first construct a compact, connected

sombinational manifold Y of dimension 12 with ,—-1 (Y) =0 and

atisfying condition (1i) of Theorem 2.1 which however is not of homotopy

manifold. Since Y is an orientable
7r (Y) = 0) compact manifold condition (i) is automatically satisfied.

i s example thus illustrates that condition (iii) of Theorem 2.1 (Part I)

k
not redundant. Let k be any integer 1 and TT s! the cartesian
k

roduct of k coples of the circle. We will show that X = Yx ‘)’}’S1

isfies condition (ii) , and in case k is diviesible by &4 satisfies

ondition (iii) as well. However from Siebenmarm's Theorem (which will '

e stated _later) it follows that X is not of the homotopy type of any

closed C " manifold.
elow is a unimodular matri{

13

el The symmetric 8x8 matrix given b

f signature 8.

/21000000
/12101000
} 01210000
; 00121000
{ 0-1 012100
00001210
\00000121
00000012

s

-
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e the (i,3j) th entry of this matrix by Cjj. It is known that
an choose G imbeddings f; ¢ S°X O —b p'?2 =54 = 1,..,8)

disjoint images such that the linking numbers L(f.(S5% 0), f.(SS{O))
i J

1(55‘0) and fj(s5.>:;o) in bD!* for i#j are Gjj More-

for each i we can choose f; 8O that = a differentiably imbedded

k Dié in D' which bounds fi(s5,< 0). A tubular neighbourhood of
3% in bD'® can be got as the restriction of a tubular neighbour-
ood of Dié in Dlz. In otherwords = ¢ imbeddings gy ¢ D();‘-:Dé,,.ﬁ»—%»D12
uch that g, (5°xD8) o D'%, g;!8740 = ; and pz® - g, (0% 0). We

an choose these g5 such that gi(SS.‘w D6-) are pair-wise disjoint in
pl%. Let A3 8% 3 80, be a ¢ ™ map representing the element

?*;6"“"_775 (306) where 'm_;:'wé(sé) is a generator and  is the boundary
jomomorphism in the exact sequence ’T,Fé(Sé) —_— T 5(306) e --v-';i’%(SO?)
12

," , 6
rresponding to the fibration SO,?;SO() =5, Let ¥ izssx Doe—sbD

. : 6 .
defined by g i(x,y) = gi(x, o (x) y). Let Di&Di (1= 1, 8)

6 6

eight disjeint copies of Déa(D and let Si»(Di be the submanifold

XD6 of Dix Dg. Let w'z -pl1% 4 (fg:-;f’) ...t (ng) be the compact

125¢u. p® XD
1 1

4.3]
¢ manifold with boundary got from the dis joint union D g)
.,

by identifying points of Si X Di with their images under SZ'P 5 ard then

rounding off the corners. We claim that W12 is a manifold with

boundarypwith Hé(wjz) free of rank 8 and having the given matrix

as intersection matrix for a suitable choice of a basis for Hé(Wm).

In W' the image of DgAO is also a disk bounding fi(SSKO) and




Th

6 6 12
= D; U(Dia(O) is a differentiably imbedded sphere in W  whose

rmal bundle corresponds to the element J é_.6é "'“5 (806). The classes

£
srresponding to _f_o form a basis for Hé(w12) since the classes

i
orresponding to Di’a 0 form a basis for Hé(wlz,Dm). The inter-

ections of Zé and 26 in W'% are precisely those of D]f_ and
2 * J
in D1 which by definition are the liaking numbers

(i'-l(SSy( 0), fj(S5‘< 0)). Hence 2:6 . 26 = Cij for i # j. Also
i J

. 5y . ko,
f k, 3 ‘!‘?‘5(806):.__.; 7 5(3 ) is the map induced by | .~ mX o f (xo a

5

fixed element in S?) of SO, in S° tlen it is known that

6

i_  a generator for T > . b
515 nerator for 5(S )). Also k*( }6t,6) is
recisely the Euler class of the normal bundle of each p . in W12,
/ i
and this as we have seen already (Refer to proof of Lemma 5.6, Part I)

s the self intersection T times a generator of T (.35).

6 6 6
hus by proper choice of gl ;—;6 (S7) we see that zi -g;i can be

ade equal to 2. Since the matrix we started with is a unimodular
atrix it follows that the boundary » W is a homotopy sphere [ 12_7.
ence by Smale [-10] W 1is actually a combinatorial SHo By

- attaching the cone over st to W by a PL-isomorphism we get

' a closed combinatorial manifold Y12. Cléarly W is b5~-connected

_2nd since Y12 is got by attaching a 12-cell to W it follows that
Y is also 5-comnected and that Hé(W) ggHé(Y1_2) under the map induced
by the inclusion W ——» Y. It follows that Y is a 5-connected

combinatorial manifold of dimension 12, having the given matrix as




1

_4intersection matrix for a suitable choice of basis for Hé(Y).

Lemma 1.2. Y is not of the homotopy type of any compact COO manifold.

Proof. For if Y were of the homotopy type of a compact c®

 manifold there should exist classes Py th (Y;2) (i = 1,2,3)

1 3 ) e
- (62p, - 13p, p, + 2p})¢1¥ 1= 8.
P57 2 o

such that ;LB (p1, Ps P >§£?].=§

. L 8 .
Since H (Y; ) =0 and H (Y;z ) =0 the above implies that 1 a
12 1 - s
class PBCE H (Y¥Y; Z ) v z such that —3—;_— 62p3 {Y7=8. This in
37.5.7
3

turn means the existence of an integer ,{3 such that 62F = 3.5.7.8.

This is impossible since the prime 31 does not divide 33.5.7.8.

Lemma 1.3. Let & be the trivial line bundle over Y. Then for the

Thom space T(£ ) of £ the homology H13(T (£)) has a spherical
generator.
(This observation is due to A, Vasquez.)

Proof. Y is a 5-connected polyhedron with Hé(Y) free abelian

of rank 8, H12(Y)12'; Hj(Y) = 0 for all other j 1. Thus a

6 12
'homology decomposition' /2 / for Y will be (SéV.- vVsS) g e

where the wedge is a 8 fold wedge and to it is attached a 12-cell
by means of a map h : 511m_~3, sév .. VS representing the so called \'3
k-invariant or the dual Postnikov invariant. The Thom space T(%)

of F 1is homotopy equivalent to the suspension S (YU ta') of the

~

NI |
disjoint union of Y and a point 'a'. Hence T( ;ﬁ_?)«)S’V (S7V..V S7)U e
g

3

(we use ' ' to mean homotopy equivalence) where

g : 812...-—781\[ shv..v s is some map. It is know that 7T12(S7) =0 /4 /.
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theorem of Hilson / 3/ it follows that ??12(31V37V--V37) =
ghows that g is homotopically trivial and hence
s'vs"v. vsT)vs'3. o inclusion of 8 in 8 visTv. s s

lowed by a homotopy equivalence f slysT..7s)vs13, 7(5)

.
i

gents a generator of H13(T\§ D

let V be 2 closed, connected, orientable combinatorial

514 satisfying condition (ii) of Thecrem 2.1 (Part I). Then

slso satisfies condition (3i). If dim. V= 4d -1 then V S

satisfies condition (iii).

let aim V =n and let .gk be an orientable vector bundle

ank k on V with Hn+k(T(j ))~ z with a spherical generator,

ey K T{y ). Choose any orientable

s represented by the map f @ >
tor bundle "7 of rank /{ over 51 with a spherical generator for
a+1

1(T( Y, ))z 77 represented by g ¢ T(‘y) Such a bundle exists

e 8' isa C® manifold. (In fact the trivial line bundle itself
tisfies this condition). ILet % w 7}’ be the cartesian product bundle

V;LS1. Choosing fixed Riemarmian metrics for § and ’7 denote the

ciated unit disk bundles by A and A and let A and AV
/

A and A‘ respactlvely. Then T(g) = A /A

the boundaries of
. 5 \"
id T(ﬂ]) =45/ A, . For the bundle ~x "] with the cartesian product
emannian metric we have A = A, ;(A, and A,‘, = A 28 A xA_.
5% ) < ") £xg £ 37 7ETY

hoosing the respective points at o as base points in T(é’) and

(7) let T(r)H#T(4) = z‘(é*%);zi??g . The canonical projections
A —T(g) and G : Ar) — T(7) yield the map
/
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PA A — T(£)AT(9). If p: T(5)xT(] ) T(3 )#T(1)

the canonical map then po((“',{ % "5,:,“,) : A x A’"P —5 T(:}FPkields a
byx Aw ! '
. . ¢ -
- 1) onto map of A <k o 1 o T(%)#T("7). The compactness
S0 800

of the spaces involved shows that the map T( Exy) — (5 )xT(7)
: us obtained is a homeomorphism. Clearly the map

#e :Sn+1§ﬁ: Sh] = Sn+1+k:f_7 T(£ )#T(7) represents a generator of
s 1eiced (T(5=1)).

| Suppose n = 4d - 1. Choose a basis X1;..,Xr for

3
;Rd-1 ror H(v;29)

| ¢
such that X,.Y, =<, .. Then for 124V #8';@) the elements

(V;£2). By Poincare duality J a basis Y.,.,Y,

Xfﬂ S,--:Xr@s H Y1é§} 1,00,Y01 where seH'(S',&) is a generator
, r

™ a basis. With respect to this basis the intersection matrix is
24

E{;’O IY . Hence the signature of the manifold VxS' is O.
‘\I 0
oosing /i to be the trivial line bundle on S' we have

(51( Sfﬁ),"':;d( £x7})) E’ )<S1j= Ld(51(5)(33‘1s--;5d(§)4§1) BT"“S‘H”‘ 0.

2 k
It follows from Lemmas 1.3 and 1.4 that X12+k = Yi',( T S1

o

tisfies conditions (i) and (ii) of Theorem 2.1 (Part I) and also (iii)
case kpz1 is divisible by 4. From Siebenmann's Theorem stated

low and Lemma 1.2 it will follow that none of the manifolds x'z"k(k,; 0)
s of the homotopy type of a compact ¢® manifold.

Let -7 be any multiplicative group and Z (71) the group ring
T over Z . Two finitely generated projective 2 (11 )-modules P1

d P‘2 are said to be equivalent if =] finitely generated free
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W‘j")-modules F, and F, with P, :3,:-F13P2 #F,. The set of
iyalence classes of finitely generated pro jective modules is denoted

ﬁo(ﬂ.(’ﬁ }); it is an abelian group under the operation induced by

he direct sum operation on projective modules.

(Siebenmann). Let X k2.2 finite complex such that

re s e
¢® panifold

e of a compact, connected,

with njp5. Suppose Z (1)
Choo sing

s! is_of the homotopy typ

n+1  ithout boundary of dimension n+1
(KO(Z(T")) = 0 where TT = 1”:’1()()-

Noetherian and that

and denoting the projection

homotopy eguivalence gtV —>» XrLS1

let W Dbe the covering

onto the second factor xxS'—» 8! by P,
x Exp 21
of V got as the pull back of the covering % (__E 2 15) s' by means

of the map p2.O t V— st. Then W with the natural dif ggrential

ptructure it acguires as @ covering manifold of V, is diffeomorphic

N = N* a compach ¢® manifold without poundary, of

to N'x#z with

dim ension I
As W is of the homoto

py type of X« or X it follows

Remark:
that X is of the homotopy type of N. If T is free abelian of

we have 22(n’);z_{rxl,..,x&,,xﬂ,..,x;"J where Xi» Xoy e oXy

and in this case 2 () is

o _
Noetherian and KO(Z?,(TF)) = 0, It is now clear that none of the
.

AL 9 %CT g is of the homotopy type of any compact

rmkif(oo

are # —indeterminates over Z

manifolds

¢® manifold without boundary.

The theorem remains true if we drop the assumption that Z{;rr‘}

o details on this in §3-

A example of a group

The

is Noetherian. We give some mor

s
assumption Ko(z{‘m) 15 however essential.
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E;(me) # 0 s the cyclic group or order 23. (See D.S. Rim [.9']).
The rest of Part II deals with the Proof of Theorem 1.5.

£1V —» 5! be é C®  approximation to Py0 © with

Po 0: V—>5" (we use '-~'! to mean 'homotopic'). We denote

map Exp(2mi) ¢ R ----3).51 by q and let p ¢ W—2» V denote the
vering mapping. By definition W is the inverse image of the

vering q ¢ IK—> s! by means of the map P, eV «—-781. Since
~Po0 0 J amap F : W =)k making the following diagram commtative,

reover F is C%°.

[ —— =

y i

f

v > Sl

Diaggam 1

Sard's Theorem < a regular value a.f;;S1 for f and without loss

generality we can assume 1;-’;81 to be a regular value for f. Then

ny integer is a regular value of F.

2. THE EXISTENCE OF ARBITRARY SMALL O_ and 1-NEIGHBOURHOOD OF «

‘! AND 'eg',

Definition 2.1. A C® sub-manifold M = M™*! of dimension n+1 with

boundary b M, of W is said to be a O-nbd of ® (respy "-oo") if
ﬁ) M is a closed subset of W
@ 3 integers m,<m, with F—1E“1’°°) > M;::F’1E?2’°°)

rrespy F,—1 (-0 ,mJ_:, Mo F (- ,mzj }

k

Ve
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{f}} b M is compact; M and b M are comected.

M is said to be a 1-nbd of ® (respy "-oo") if it is
already & O-nbd of oo (respy "=oco®) and the maps

7T1(b M) —s ‘lT1(M); TT'1 (M) ——-=r'?T'1 (W) induced by the respective
jnclusions are isomorphisms.

Definition 2.,2. By the statement " arbitrary small O (or 1)-nbds
of ® (respy -m)" we mean that given any compact set

KeW3Ra 0 (or 1)-nbd M of o (respy - @) with M~<W - K.

let J denote an infinite cyclic group and let x be a

generator of J. The Deck transformation group of the covering

R L5 8! can be identified with J with x acting as the
homeomorphism r-—sr+1 of J€ onto itself. Since W _...p; V is the
pull back of the covering space IK -..q-;v S!  the Deck transformation
group of the covering W _.E:,V is also J and we denote the
homeomorphism of W which corresponds to the generator x by = .

Lemma 2,3. Let o be any arc in V and w W any point with

Wo
p(w ) =a(0). Let T be the unique 1ift of .~ sugh that
W W, W
f;;°(o) = w . Ihe variation Max ’ F 2o (t) ——F 5—_;0(1;’)’
LA t, t°¢]0, E’
f F on @ depends only on o and not on the 1lift wo of 9"’(0).\.:‘

— e

This quantity which depends only on «r we refer to as the

"yariation of F on " and denote it by VF(-*’").

Proof. Suppose w2 is any other element of W with p(w(’)) = 4= (o),

k w?
then w) = & W, for some integer k. The unique lift 20 of

W W ko v
such that & °(0) = w} is given by % (t) = o 7z (t). Because
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the commutetivity of disgram 1 we have

W’
o O/
A

(b) =k +F ;»;W"(t)

all t 6-[:0, 1j The lemma follows.

o 2.4. There exists a constant C >0 guch that any two points of
‘¢an be joined by means of an arc -~ guch that the variation VF(fr)
F on r is less than C.

oof. For any veV S3an arcwise comected open nbd U, of v in

such that p"(Uv) decomposes into a disjoint union of open sets

w;]r ,2 each of which gets mapped homeomorphically onto U, by the
striction of p. We can choose another arcwise comected open set Ux’r

ontaining v such that —ﬁ"r < Uv. Then each of the sets

v') = W;]r s} p"(U"r) gets mapped homeomorphically by p onto U:, and

:,J = pq(U:r) n W‘J, is compact since U’ is compact ,being a closed

subset of the compact space V. The argument used in Lemma 2.3 can be

sed to show that Max F(w) - F(w')] is finite and depends

W, w1g“ﬁ’j
nly on U’ (finiteness being a consequence of the compactness of wd).
We may call the above quantity the variation of F on U or U,
Compactness of V implies the existence of a finite number of sets .,

covering V. Writing U; for U"f_ and denoting the
r i
. . 2
variation of ¥ on U.l by Gy let C be anyconstant > C1+"+Cr'

U’

3
v1""Uv

Then C satisfies the requirement of the Lemma., For if v,,V, are

any two points of V, since V is arcwise comected we can find
distinct indices Jyses J, 0 1525e0,r such that v e U31 and




2 ) L
Ve Uy and Uy 7 U’ # §. Choosing points v;’rc:t’;U’- and joining

£ # Jig.” J‘,+1

to v; by an arc in US 3 v; to vé by an arc in U; and so on
’ 1 2

we get an arc (~ joining v_ to .vl such that VF(;s’)a_L_._C% +..+C .4 C.
o J
1

Lemma 2,5. a constant ¢f. > 0 with the following property:
For every veV J aloop O, at v in V such that the loop f 8y

represents the positive generator of 7T1(S1,f(v)), and Vp(0 )<ad.

Proof. Choose a point Vv, &V and any loop Oy at v, such that
(o]

fO, represents the positive generator of -5‘1(81,f(v0)). Let e

Yo
be the variation of F on Gv and C70 the constant of Lemma 2.4.

)
Then d = 2C+e satisfies the requirement of Lemma 2.5. For given any

. \ v v
veV Papath o in V suh that o (0) =V, o~ (1) = v and

v v,—1
F( i )< C. If we define Ov for any v;‘ vy by QV= .TVQV (o7)

o
then clearly va represents the positive generator of Tr1((s1), £(v))
and Vp(Q,)&C+e+C = 20+e = d.
According to our choice of d we have a>cC,
-1

Lemma 2.6. let w be any element of F 'ﬂ+d,oo) with A any real
pumber and v = p(w). For any integer k7O let 27 betheumiawe
1ift of 0 satisfying 7,(0) = w. Then the path 27 liesin

3

) md F(B, (1)) = kP,

'~ Proof. That F(’c’kh))

k
k+F(w) follows from the fact that f 0@
represents the element k.(+ ve generator) of ’1,’1(81,f(v)). That '2:"k

. . -1 .
lies in F W,oo) is proved by induction on k. For k =0 there is
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nothing to prove. Assume k 71 and the lemma valid for (k-1) instead

@f k. Let /"’ be the 1lift of Qv with initial point F (0) = (1)

Then F s «(0) = (k-1) + Flw) 7 (k-1) +# + d, Since t

on 0 « d we have Fpﬁ(t)i?(k— 1) +f ¥ te {.O 17 dince

jmplies F}A-(t);»f . Now T, is precisely the product "?,.;k e and

he variation of F

k»1 this

whenever t%<3, F T U:) = F 5. (2t) 4 (by induction nypothesis) and

ir t®3, F? Qt) F ja (2t-1) 7 (k—l) + { (vy what is proved above) «

Tnis shows that B, liesin F [£,0).

Proposition 2.7. There exist arbitrary small

to! (resp. -) in W.

O-neighbourhoods of

Proof. We prove the assertion for @, the proof for o'  being :
t out. Let K ©be any compact subset of W. 3 an

integer,ﬁ such that F_1£{’ , @) W-K. Since A4, is a regular value

similar is lef

of F we ses that F \[£,®) isa c®  gubmanifold of W, with

-1, .
poundary F (4). Let d be the constant of lemma 2.5 (which as

arlier has been chosen to be > ¢ the constant of Lemma 2.4).

of F-1Bf'+ 2d, @) can be joined by

commented e

Claims: Any two points W, Wy

means of a path in F-Wﬁ , @)

Let p(wo) =V, p(w1) = v, By Lemma 2.4 T} an arc g- in V
“

such that o (0) = v, (1) =v, and Vi)« C. Let T be the

e 1ift of # with initiasl point 77 (0) = w . Then ~»(1) and W,

urnil gqu
£ W and hence F(w, ) =k + F(2(1))

are points on the same fibre o

iR

It follows that g" = Ql:r . is a path

with initial point

for a certain integer Ko

joining Vv, to v, in V whose lift 7’
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~ (0) = Wy satisfies 51(1) = Wy We now consider the cases k20

k<0 separately, GCase (i) kj0. Since VF(-T)<C<C1 and

(%(0)) = F(w, )z £+ 2d it follows that F(wit)) >£ + d. From

Lemma 2.6 we now have F( 'Ef1(t)),3}/{y‘ t&[0,1j. Case (ii) k<O.

,~ 1,~1
he path (%) is the composition (& k)' ' where 27, is

(0) =w Now, by

- k
the lift of O, having as imitial point £ '

o
assumption F(w1),,?J.'.' + 24 and -kyO. From Lemma 2.6 we see that 7 K

_— : -
js an arc in F [f,oa). Since " (and hence 77 " also) is an arc
. -1 1,1 -

in F [£+ d,w) we see that () =7 R is an arc in

-1 Y B
F f',{,oo) and hence *’{";1 too is an arc Fv—{,oo).

This completes the proof of the claim. Now it is clear that

-l
F L/ﬁ s @) has only one non-compact connected component say M?  and

a finite number of compact connected components. Since Mo F_1[[+ 2d, ®)

it follows that the boundary b’ of M’ 1lies in

Fq({ , @) - pl(4+ 24, ®) and is therefore compact. If oM were

connected then M’ itself would be a O-nbd of . Suppose oM is
not connected. Choosing a
smooth path in M’ from one : 3 —
component of bM’ to another /[JM' r/ o
meeting pM’  orthgonally and ‘/( ;/ a ‘ -
only at the end points and \5 - t r:’,«m ‘

e .
removing the interior of a Zr:f“:’::x
tubular neighbourhood of the /

path we get a connected c®

submamifold M of W with
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.

compact and bM" having one component less than pM’ . Refer to

Since there are only a finite number of components after a

cubmanifold

pam 2.
te number of such operations we get a comected C<
of W with bM compact and connected. Further M.TJ'F”?,Lfln, ®) for

integer m since the original M’ contained F_1[£+ 2d, ®).

g M is a O-nbd of .

/ 1 ® . ntl
8. let be a C submanifold of W with boundary

and let M and N be comected. Let M be a closed subset

Suppose  the homomorphism '771(1\]) — (W) induced by the

' v 1

Jlusion is an isomorphism. Then Tr1(M)————;v 7 (W) induced by the
1

jonof M in W is also an i somorphi sm.
let 1 ¢t N—>M and jt: M—>»W be the respective

fusions. Then Jjoi ¢ N—s W induced an isomorphism

.

) ¢+ (N)—=77 (W) by our hypothesis. Since (joi) = joi
® 1 1 ' TR oW
follows that Jj, : 7T 1(‘M) — T 1(W) is an epimorphism. To show

£ 3, :771(M) .-:,~‘ﬁ'1(W) is an isomorphism it therefore suffices to

ve that J, is a monomorphism. 9Since dim M = n*1 and nz5 any

ment of 7, (M) can be represented by a ¢® imbedding

: 31_—a; Int M (in fact for this assertion to be valid it suffices .

t n+17f,3). Suppose & &7, (M) is such that j*(ac) =0 and

ppose (p * 51—-9, Int M represents 4 . From ig(a) =0 it

. 1
1lows that =} amap h D2 — W extending & - Since (S )aN=¢

2 , 1 .
can approximate h by a c® map ©: D — W such that /5 =g
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@ is transverse regular on N. Then Dzn o '(N) consists of 2

te number of dis joint simple closed curves (each one of them is 2

imbedded s') in the interior of p2. Take an inner most curve
Now ©jC —>W admits of
extension © t A —3 W

ve Z\ is the closed region

or most) bounded by C.
us Q‘C represents the

rivisl element of 77, (W)

and ©(C)cN. Since

“'[_‘ l" i ’ s e

ar, (n) »——*‘TT1(W) is an

jsomorphism it follows that 3
with %] = 8/C. (Befer to disgram 3).
is easy to get a map Q’: D2-—-=y W

amp NtAD— N Now uging
the fact that N 1s collared in M 1t
th the following properties:
() ols' - ¢

(2) I a nhd A of Ain D?
@"(N)ﬂn2 different from C

with A disjoint from the curves of

such that 6 (A)nN = ¢ and

o’ [0°- &= ofp*- &

- A
For this o’ we have e’ 1(N)r\D:2 consisting precisely of the curves’,
in 07T (MA D2 excepting C. Repeating this argument a finite number
of times we finally get a map @ Dz.-——y W such that rfE S1 = L

-1 2

and £ (OnD = . Since qy(s‘){; Int M
- 2 2 — -1

4 we should have ¢ (D )cInt M, for otherwise D'~ "(Int M)

. 2 .
and since D is

connecte
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sets of D2.

2 or=t
and D n "[ (¢ - M) will be non void disjoint open

This means that X é'_fr](M) is the zero element and hence

7('1(M) — 7T 1.(W’) is a monomorphism.
{-neighbourhoods of "o

Proggsition 2.9. There exist arbitrary ggall

In the proof of this lemma we use a result in group theory

. which we state below without proof.
e finitel resentable Eroups | d

Lemma 2.10. Suppose G and H
Then the Kernel of h is the

h .
G —> H=—s 1 1s 28 exact sequence.

normal subgroup in G generated (as_a normal subgroup) by a finite

number of elements.

We now go to the proof of Proposition 2.9« We have

771(w) ;:Tr1 (X) and by assumption X is 2 finite polyhedron. It
follows that 77 1(w) is finitely presentable. Let W with N =oW’

be a zero neighbourhood of o with M’< W - K. Choosing a base point

W& Int ¥ and a small tcontractible open set 0" in Int M’ as

the "new base point' we can represent a finite system of generators

of Tr1(W) by disjoint C* imbeddings

> 1:-; Q(r

SL L "IN C R P r) with the base point of 8' going into

0. To represent each = . by a C© imbeddingwe need that dim Wz3
N

v

and also to get the imbeddings to have disjoint images we need

aim Wz 3. But by hypothesis dim W'7,6. By choosing W, properly

1(31);;’; Int M’ for every i.

we can assume that &}}
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S
7
\
!Vi R
_, T
! oY
/ ! . ” : j
R x,f\-; ’
! T ~ g4
’ .
/ |
Y S
Soigpl de ek
The normal bundle of </ 5 has a section for every i. Let U, be an

open tubular neighbourhood of i(S1) for every i such that

U Uy - § for i# j. Define M'=M' -U.U;. Then M is still
connected though oM = N is not in general. By choosing C® paths
in M meeting the componerits of oM only at the end points and
orthogonally and removing the interiors of tubular neighbourhoods of

r '
these paths one gets a zero-neighbourhood M .- W - K. OSections of

the normal bundles bUi -.—-n?f}i(SU yield elements

' 1 ‘
n1 E

Apaees % & 1‘{1(bM ) which map onto =« N (W).
r r
unt nt

(Refer to diagram 4). Thus ';TQN"'.?’ —> T7{W }is onto, where N = bM
1

we denote (M" ,N"') agaln by (M,N) and may assume (by Lemma 2.10)

that T N —» 7‘;1w is the normal closure in ?T1N of a finite number

of elements {3'1,.., fuk. Choose C% imbeddings §-; : s'— N
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pase point of 3! going into some contractible open set B of N

that %, represents Fse (i = 1,..,k). It is given that ¥

eribs the zero element in :u'iw. Hence there exists a map which

be assumed to be a ¢® imbedding }?l : D° —> W extending

¢ s ~—> N. By translating M if necessary by a deck transformation

can assume that the images ‘p,i(Dz) all lie in W-K. We can get

tubular neighbourhood of }},i(S‘) sin N as the restriction to

?1(81) of a tubular neighbourhood of 7. _l(Dz) in W. We may assume

hat these tubular neighbourhoods are disjoint, and that their inter-

: ctions with N are tubular neighbourhoods of ?in(Dz)fa N. Let

be an inner most simple closed component curve of ;#i (N)

and let D be the region of D2 founded by C. Then

There are two cases:
1f %, (Int D)~ W-M then add the tubular neighbourhood of
M-

91(D) to M., That is to s&y, 2 handle sz p™-! is attached © M.

™M

L]

.Z:‘ ] 7&.& el
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r;,i(lnt D) = int M delete from M the tubular neighbourhood of

i(,l’,“'*) (Refer to diagram 5.

— &

_,E)\, £ ‘.;g; s Y *3
i

The new manifold M' with boundary N' is still a O-neighbourhood

of & . Moreover, 7T1N' is a quotient of 7 N and the kernel of

?]’11\1'_—-—-9 ™ W is still (normally) generated by the classes of

ij(sﬂ), = 1,0.0,k with j#1 if C= t0® for %j. But the
extend to ézj = D2 — M with i_’j I!.j(Dz) s N' consisting of one
less component curve than the original intersection. After a finite

number of such steps, one reaches a O-neighbourhood M, M = N, such

that ,TI'1N—-——yTr W is an isomorphism. By lLemma 2.8, (M,N) is then
a 1-neighbourhood.

8 3. THE EXISTENCE OF ARBITRARY SMALL k. NEIGHBOURHOODS OF oo T

AD "-oo" FOR_2*k=n-2.

Defipitjon . Let k Dbe an integer 7 2. A k_-_—neighbourhood of
o (respy ~®») in W is a j-neighbourkood M of @ (respy ~®)

satisfylng the following additional conditions
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Denoting the universal covering of M by M with pt M —>M
he projection; iet, N = p~'(N) where N = bM. The condition to be
atisfied is @ Hl(;/{j ’I;I)) = 0 for ik.

Remark: Since 7'1"1 (N) — , (M) induced by the inclusion is an
isomorphism it follows that p @ N —s N is the universal covering

of N.

Proposition 3.2. IThere exist arbitrary small k-neighbourhoods of

@ (respy '-o') for any integer k such that 2%k&n-2.

We prove this proposition for k = 2 first and then proceed
by induction on k. It will be clear from the proof why we are forced
to give a proof for k = 2 separately.

emma 3.3. If M is a O (respy 1) neighbourhood of ' ' then

My = W-M iga O (respy 1) neighbourhood of ‘'-ao'.

\Emg__. Clearly the boundary of M, is the same as that of M.

j Thus tM_ = bM = N is compact and comnected. If m &m, are
integers such thst F_1En1, ®)o M.}F_1[m2, ®) then clearly

Fl(-o, mag M F'1(-oo,m2] . Let a,b be any two points in M,.
We will show that there is an arc in M, Joining a and b. Since
W 1is arcwise cormected - an arc 7 in W with 77 (0) = a and
(1) = b. If the arc o lies in M, there is nothing to prove.

If not 3 real numbers to and t, such that () & M, ¥bet,

and o~ (s):M #s;t, and (L) =N, 7(t,) &N. Choosing an arc
in N joining - (t,) and = (t,) we see thet a and b can be

joined by means of an arc in M,. Thus M, is a 0-neighbourhood
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tmgp!, If M is a 1-neighbourhood of 0o then

zji(bM) = Tﬁ}(be) = ‘TZ1(N)--—a TT}(W) is an isomorphism and

vom Lemma 2.8 it follows that M/ is a 1-neighbourhood.

o~
emma 3.4. 1f M is a 1-neighbourhood of co in W, then HJ.(M)

s a finitely generated Z (7r)-module.

For this we shall use the assumption that Z{THs a

noetherian ring. By an example of J. Stallings the above lemma is

finitely felse without thie hypothesis. However, we really only

sed that if (MN) isa (k-1)-neighbourhood, then Hk(fvf,i\f) is
( Ztmmot necessarily

initely generated. In the general case

noetherian) one proves that (i,N) is dominated by a finite complex

pair. It is then an exercise to deduce from this the finite

generation of Hk(ﬁ;ﬁv.
oof. Let N =DbM and M= W=1M By lemma 3.3, M, 1is a

{-neighbourhood of H-oo” ¢ W is the wnivercal covering of W

L —~ -1 o -1
th p: W —>W the projection then M =p (M), M, =D (Mo)
- - - ~

=p Tw) = p 1(MﬁMO) =M~ M, are respectively the universal
, M, and N. This is so because ) — 7 (W]
?T{M) ——3TT€W} and 7r%MJ~.4 }Téyl7induced by the respective |

_inclusions are isomorphisms. From the Mayer—-Vietoris sequence

o~ v P Ly
. 5 H. =y Hao (M) - (W
HJ(N)u——ﬁ HJ(MO)G.; Hy (M) — 5 )

which is a sequence of 77 -modules it will follow that H4(ﬁ) is

finitely generated over 72 {r)if we show that H2(N) and HZ(W)

Since N is smooth and compact,

are finitely gerierated over zlnl.




_choosing a triangulation of N of N we see that the chain groups of

N with the lifted triangulation are finitely generated over Z 7T .
From the fact that £ 7 is noctherian again it follows that all the
homology groups of ﬁl are finitely generated £ f -modules. Also W
is of the homotopy type of the finite polyhedron X and the same
argument as above yields that 211 the homolcgy groups of W are

finitely generated # 7 -modules.

Lemma 3,5. There exist arbitrary smell 2-neighbourhoods of "',
Proof.  Let M with W' = N' be a 1-reighbourhood of o with
M W-K. By Lemma 2.4, Hz(,M’} is finitely generated over z ().
Let & 1,&., tx:‘r be a system of generatcrs over Z(r) for
HZ(T';LJ') = }TZ(B?) 2 I}’ZQM'). Choosing a2 small contractible open set in
Int M as the base point represent the elements x ; by c®
inbeddings G . ¢ 52 Int M', wth disjoint images and the base
point of 32 going into the chosen contractible oven set. For this

to be possible we need that dim M',;* 5 bubt by assumption dim M = n+12 %,

Let M be formed from M' s explained below: Choose closed tubular
neighbourhoods T; of ¥;(5%) in Intu' with T30Ty=§ S
whenever i # j. Choose C% paths 7, from N o bl (the
boundary of Ti) meeting N' and bl; trensversally and at the

end points only. These paths can be chosen to be mutually disjoint,

and tubular neighbourhoeds ¢* . of f:'x“i can be chosen to be mutually

R

r
disjoint. Let M =M'- f Tp¢ T _Int /. - Then clearly M is
. je=1 i i




9L

s O-neighbourhood of . We claim that M 1is a 2-neighbourhood

of w. First of all, if N = bM it is clesr that N = N'#bT(S* vest BT,

(comnected sum). Also bT1 is an (n=2)-sphere bundle over 82 with
nz5 and hence 1r1(bTi) - 1 . By Van Kampen we see that
171(1\1),_\5-"-1 (N'), under an isomorphism meking the following diagram

commutative:

(@) — 2 7, )
[* | J N

w0 L% sm)

/

Fl

b /1
oy (w)
Diagram 6

Here the homomorphisms indicated by i,,dgsigsdy and o are all
induced by inclusions and the isomorphism -IF, (N) 7T, (n') is

got from Van Kampen's theorem. It follows that i:: j* is an "

jsomorphism since i, and iy are. Lemma 2.8 now implies that M
is a t1-neighbourhood of .

Asgertion: '172(1\1)» _..3*..., ‘TTQ(M) is an epimorphism.

o dx

To prove this it suffices to show that 172(N) avrz(M')

is an epimorphism and that p 3 TFZ(M) -—-?TTZ(M') is an isomorphism.
#
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Let vie ?71 (so (n;l)) be the element corresponding to the normal
bundle of @.(5%) in Int M'. As s, & 77, (S0(n-2))—y 7T, (50(n-1))
is an isomorphism fcr nZ5 we see that )73._ can be written as

Vi + @' where ,01 is a trivial line bundle., Hence there exists
a non zero cross«*secti:)n for the associated sphere bundle. Using this
cross—-section we see that 3 an element in TTz(bTi) which represents
the element ie Tiz(M') under the inclusion bTi...a, M. Tt now
follows that 1r2(N) ﬁf__.‘]l}‘rrz(M') is an epimorphism.

This in particular gives: 7]'2(1\’1') _f::;ﬂé(i\fi') is an
epimorphism. To complete the proof of the assertion we have only to
show that ;. is a monomorphism. Let xé& sz(M) be such that
Fu(x) =0 andlet ©: 82— M bea C® imbedding representing
x. The fact that pe,(x) = O implies that Ja c® np p:P—a M
extending ©. We can get ‘p/ so as to be transverse regular on (,,/?i(sz)
(since 0(8%) N ?{(82) =@ ). The condition n+126 (n*1 = dim M')

implies that % (D) is then disjoint from (/g (S°). By a further

deformation we can make ;V(DB) go into M.
Now, 77'2(N) _._.gf?Tsz) being an epimorphism we have

LA

et j-;(- , . . : =
7T2(N) — TTZ(MS also an epimorphism and hence 772(M,N) 0. The

~
simply connectedness of M and N 10w yields by the Relative
Hurewicz Theorem HZ(I'Z‘,N) = ‘?Tz(ﬁ:,’ﬁ) = 0. This completes the proof

that M 4is a 2-neighbourhood.
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We now proceed to the proof of Proposition 3.2 for an arbitrary

k satisfying 3¢ken-2. Assume by induction that arbitrary small (k-1)

neighbourhoods of ® exist.

Lemma 3.6. Suppose M is any (k-1)-neighbourhood of o. let N = bl
Then
(1) Hk(‘ﬁ},ﬁ) is a finitely generated z (7r)-module.

(2) 3 snother (k-1)-neighbourhood M, of o with M oM gatisfying

the following additional condition:

The homomorphi sm Hk({f,’l\?) — Hk(bjflﬁ’) induced by the inclusion
(E,i\;)i’; (ﬁ,ﬁ) is an epimorphism, where U = ﬁ:ﬁ; and v is_the inverse
imgge of U by the covering map p ¢ ﬁlﬁ’-—y M.
;< Proof of (1). By Lemma 3.4 we have Hj(ﬁj finitely generated over 2 ()

~
for every Jj+ Also since N 1is compact Hj(N) is finitely generated

~t P

ver zZ (). The exactness of Hk(M) - Hk(M,N) —t Hkq(ﬁs together
with Noetherian nature of Z (%) now yield the finite generation of

o Pt
Hk(M,N) over Z ().
Proof of (2). Let CiseesC, Do a finite set of generators for

- ~ I~
k(M,N). There exists a compact set K, in ‘M such that X integral
singular cycles representing C1 ,"’CZ with their supports contained

-'l-f Rt

in K,. Let K = p(K1). By the inductive assumption regarding
existence of arbitrary small (k-1)-néighbourhoods of @ we can find

and M‘C. M, Then

a (k-1)-neighbourhood M, of @ with Mﬁ;w—K

1 1
clearly U = M--M1 satisfies the condition ('J":I(1 and thus the chosen

rcles representing Cq""C.A are cycles of (ﬁ,ﬁ). Hence
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™

-~ ~F
AULN) —s B (M,N) is onto.

A : For the pair (U,I\f) we_heve Hifj;ﬁ) = 0 for i« k-1.
o LY v
Let I\I1 = bM1. We have Hi(M,U)Q.:a, Hi(M1,N1)> by excision.
ow from the homology exact sequence of the triple (M,U,N) written

lows

-~ e Pt vy P o
HiH(M,U) — Hi(U,N) _-,Hi(M,N) —_ Hi(M,U) — .

f.0. 0 _—7
u__/i excision ' ,;yi excision
“p
H. M,N H
1+1( 1’ 1) i(M1’N1)

‘and the fact that M, is a (k-1)-neighbourhood of o we see that

l(ﬁ’,ﬁ)—yﬁi(ﬁ,rﬁ) for i< k-1. Since M itself is a {k-1)-neighbour-

ot
hood we have Hi(U,N) =0 for iclk-1.

Remark B : The homomorphisms 7r1(N)..-—, 17'1(U) and T (N1)._-=yr,r1(U)

induced by the i nclusions are isomorphismns.
The proof of this is similar to the proof of Lemma 2.8 and

hence is omitted.

For completing the proof the Proposition 3.2 we need the.

_ following two propositions which we state wi thout proof.

_ Proposition 3.7. Suppose U is a compact orientable C® manifold

of dimension n+1 with nz> and_suppose bU = I\h..wN1 a disjoint

open and closed, connected submanifolds of bU. If the

union of two
homomorphi sms n1(N)__§r 17-1(U) and ‘T';I(N1)_..)1T1(U) induced by

; ot
the inclugions are isomorphisms ond if Hy(U,N) = 0 for ig k-2 4n-2
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then (U,N) has a handle decomposition with handles of type

k"], k,dc-,n—1o )

. In other words U has a presentztion of the form

k-1 k-1 n-1i n-1
U=IxN+{@ +,, .+ ¢ k k :
1 Kk—

The proof is essentially given in [5_7, Lemma 1.

Proposition 3.8. Let X and Y be closed C%® submanifolds of a

C® manifold N, where dim X + dim Y = dim N34, and 2<dim ¥ & dim N-2.

Suppose that 17‘1 (N-Y) s -7;-11\] induced by the inclusion is an

isomorphism. (This is a restriction only if dim Y = dim N-2). Suppose

N

—~t
that X and Y can be lifted to closed submanifolds X and Y of

¥ .

'l

N, +the universal covering of N, and that

Xi*{_,Y'j:O

(where - denotes the homology intersection number) for all &7 and &
R o~

‘. —.Connected components Xi,Yj of X and Y. Then X is

isotopic in N to a submanifold X  such that X1nY=¢, or

eqguivalently Y is isotopic in N to_a submanifold Y1 such that -,

'Xn Y, =g

This proposition is essentislly due to Whitney.

As remarked already proposition 3.2 is proved by induction
on k for k in the range 3<k&n-2. Assume arbitrary small
(k-1)-neighbourhoods of @ exist. Let K be any compact subset

of W and let M be any (k-1)-neighbourhood of @ with McW-K.
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By Lemma 3.6 3 a (k-1)-neighbourhood of @ say M with MM

such that the homomorphism Hk(ﬁ;,"f\f) — Hkiﬁ,ﬁ) induced by inclusion
is onto, where U = ﬁ:ﬁ; and bM = N, bM1 = Nyo From Remark (T
following Lemma 3.6 we have Hi(ﬁ,ﬁ) =0 for i¢k-1 and by Remark (E
the homomorphisms T (N) — 7'[1(U), 771 (N1) ‘*—7?;'1(11) induced by
the respective inélusions are isomorphisms. Herce by Proposition 3.7
we have s handle decomposition for (U,N) with handles of type

k=1, K,.s,0-1. Let Uy be the union of IxN together with handles

of type -k-1 (Refer to diagram 7) and N, the right hand boundary

of Uo . Let U1 = U-U .

/in-»ﬁ,w !,}._ " '-(-f"..
N 2
K :j if # S N i
- - - ﬁ\’
(- 1) ) I
‘i ‘i
/ ‘
]
' {
) f
; jf
by e e e
Uw“‘ ‘.{ j ‘l‘,; 5‘ =~ :’L.‘,_ P 7

Convention: In future when we are in a situation of the form AcB
or (A,A');;(B,B') with A4, B,B' topological spaces by the
homomorphism 77 1(A) ﬂ-——-‘%"‘i‘r1(B) or Hj(A) ——7Hj(B) or

HJ.(A,A'.) — Hj(B.,B') we mean the one induced by the ingclusion.
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When k73 we see from Van Kampen theorem that T 1(N) ___;,,7,"1(Uo)
is an isomorphism. When k = 3 we first observe that the 2-handles fgi
are attached by means of trivial maps to 1xN. In fact ¢;f(81x 0)
bounds a disk in W and as M 1is 2 1-neighbourhood we have

w 1(I\I) — T 1(w) an isomorphism. Now an application of Van Kempen
immediately yields T (N) — T 1(UO) is an isomorphism. Using the
tdual' handle decomposition for U, and the fact that ken-2 we

see that - 1(No) ——-—-}TT1(U0) is an isomorphism, again by applying
Van Kampen. To get U, we attach handles of type Kyeo.,n=1 to Ug.
It follows that whenever k33 the homomorphism 77, (Ny) —> TT, (U1)

is actually an isomorphism. Now choose any A in Hk(ﬁ,ﬁ). By our
choice of M, we have Hk(ﬁ,'ﬁ) u—aHk(ﬁf;ﬁ’) epimorphism. Choose

any ,?;, & Hk(ft}f,!i\nl.) getting mapped onto X . By excision

Hk(ﬁ,fl;) *:‘,Hk(l?;,aﬁo) the isomorphism being & Z (77 )~isomorphism
since the maps induced by the various inclusions, nanely

N —3 Ug; No=—>Up and N,—> Uy are isomorphisms on 7T . Let ¥
be the image of {3’ under the composition of the maps

4 (§F) (inelny g TU) «e=— H (U ,8.).
k( ) ey k( ?70! oxcision K 1770

Since (Ui’No) has s handle decomposition with handles of type
%,..,n-1 we see that Hi(U; ) =0 for igk-1 end by Relative

Hurewicz theorem T, (U 1,No) = H (U (Vo). But n'k(U1,No) g:}Tk(U1,NO).

PR

Thus T k(U1,NO)~;* Hk(U1,NO).
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Claims The element ¥ can be represented by a ¢® imbedding

@ : 05— U ,N).

k

Now, ¥ is homologous to ¥ a, Do with ae 2 (7) and
AR N | i

D!.: the k~-cell of the i-th handle of type k. D}; is a differenti ably

imbedded k-cell in U with boundary 51 in N, Let

8 = Z__ ai*l with a_;q-)& Z and a§“"‘~) = 0 for almost all o .
g k-1 n-k+t . .
We can assume that all the Si D intersect a contractible

open set in I\T0 which can be chosen as the "base point" for homoto py

. . : = v e

considerations. Let ji ; Iai:. Let us take il di stinct

points Xysse5X, in Dril'k”. Form connected sum of

D}i{x x‘,...,D?x Xp. along peths in N, representing the o's for

which aét") 4 0. This operation will give a C® imbedding

o, : (D¥,s° ") (U.,N.) ti pK. Formi ted
i * s — y»No) representing a; Dy. Forming connec

sum of the various Qi(Dk) along triviel arcs in N/ gives a c®

imbedding ¢/ (Dk,Skq) - (U1,No) representing y -

—k+
. Let sg‘ K1 1e the boundaries of the right hand disks
—k+
Dr; 2 corresponding to the handles of type (k=1).
S~ o~
Claim: Let @(s') and s?‘k” be arbitrary lifts of ¢ (857")
n-k+1 . .
and Sj to N,. Then for any 7°¢ TT the homology intersection
fﬁ Sk_‘) 4 S‘g K14 I:T is zero.
— - <l
Actually & (s . - 1:]1k+1 is the same f. x:’,(gr; k 1’
No

“ Eimm,,f
/,}s‘ wmca N
[ -1 e ‘ﬂ?i/
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this later intersection being the one associated to the pair Hk(U,m
I - Nn"’¥+ 1 . e . r\aﬂ-k*' 1
and H ., ,(U). But i Sif = 0 in H_,,(U) since 3 bounds

~ J
a disk in U.
We now want to apply proposition 3.8 to ¥ (Sk—1) = X and

Y = Usr;%"k+1

which are subfianifolds of Ny. To be able to apply

proposition 3.8 we need to have n-k+i&n-2 and T 1(NO -Y) -917'1(N0) |
an isomorphism. The condition n-k+1<n-2 gives kz3+ This is g
precisely the reason why we had to prove the existence of 2-neighbour-

hoods separately: We have already seen that T 1(N) — T 1(UQ) and

i (NO),-g Nii (UO) are isomorphisms. Since TI~ (N) — TT“1(W) is
7 1 1

isomorphism, it follows that ,-'T1(Uo)“"") m 1(W) is an isomorphism

and hence 7T'1(N0)_..+ T 1(w) an isomorphism.- Let '(Lrj(Dk"k pi-k*2)
enote the handles of type k-1. Then the inclusion
o= U ?j(qu)ﬁ Sn‘k”)——? N, - USI:J}"k'H is a homotopy equivalence,

n-k+1 )

and N - U z;,j(sk‘zx %) Ly - ?j(Bk“;g 5 . Consider

he following commutative diagram:

T 00 - U g (82 B )) — T () .

W | T, (W)
P
LECEE z;.j(Bk“,x. SPEM)) g 1T, (= 1) =T (8)

Diagram 8
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[he map
(k=2 n-k+2
N-U ;
TN - U (8 BTE) o
is an isomorphism because it factors through

) ) , -5 -l . .

- Uj?"j(Sk 2 gnteRyy o RURRRANC % 0))—y 7,
where the first map is induced by a homotopy equivalence, and the
second is also an isomorphism since codim SK72 = n-k+2323.

Thus Proposition 3.8 can be applied and it yields the
following conclusion. The imbedding g can be so chosan that
@ (Sk—1)n Y = #. It now follows from Morse theory that e (Sk_1)
s diffeotopic in Up to an imbedding @' : s¥'_5 N, Actually
mne gets a C®  imbedding _.Eé- sk=1x 1 —3 U, extending g i.e.
P [s%) 0= 4 and satistying & (SK"' I)oN. Taking the diffeotopy
F

ogether with the imbedding o (Dk,Sk’1) — (U1’N0) we get an

mbedding G : (D¥,s%71) o (u,n).

See dizgram 9). The homo logy ) é e
- R

lass in Hk(U,N§ repre sented ) Zf" ™~
)4 74 clearly gets mapped into N e -
>he homology class ¥ ). }}
epresented by # in 5 .,_'V"

N / / f
ik(U1,NO) under the 1S T e r:’ -
omposition Al goran ]

excision

1, (U,N) — Hk([f,q:;) — Hk(UPNo)' From the exact sequence of

- -
he triple U, U,> N we have

ot |, o
Hy (UysN) —> By (U,N) — H (U,U]) exact.
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But Hk{UO,N) _ 0 since the handle decomposition of (Uy,N) we have,
consists only of handles of type (k-1). Thus H (U N) —» Hy (U )
is a monomorphism and hence ‘3 is the only element of H (U,N) getting
mapped into ¥ . It follows that t.he class in Hk(U N) represented by
7 0587 — (UN) is o

let A be the union of a tubular neighbourhood of p(Dk)
in M together with a tubular neighbourhood of N in M. Define M
tobe M- A Let N =DM .

Claims M’ is a (k-1)-neighbourhood of @ with

P et e
Hk(M',N')ﬁHk(M,N)((a.) as a 2 (7)-module. Here (x ) denotes
the 7z (W )-submodule of Hk(ﬁ:ﬁ) generated by = .

Clearly M' is a O-neighbourhood of @ and from

Van Kampen's theorem we s€€ that for k satisfying 3¢ken-2
(N )—“) 77"1(\1) and 1, (M) x P (M) where the latter isomorphism is

induced by the inclusion. Aso the isomorphism ¥ (N )_.;Ti" (N)

makes the diagram

W) — T W
(incln), 9, 1 (incln) .
; e R v
7o) o T
1 (incln), !
commutative and hence ! QN ") —gi (M ) is an isomorphism. It
follows that M' is a -neighbourhood of o . From the homology

P

an'd o
sequence of the triple (M, A, N) where A= p 1(A) with p: M- M
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the covering map, we have the following disgram with the horizontal row

exact.
SN e —~— T P . -
H, (4,8) —3 b, (4,N) — H, (LN) —5 H, (,4) —>
. y "
#excision ‘,!,/ excision
=% ""| "‘f'
H (M,N) H (' ,N") S
i+ i i
Diagram 10

Now, H;(A,N) =0 for i#k and Hk(K,‘I&) =Z( %) and the map
Hi(A,N)———; Hi(ﬁ',ﬁ') carries 1 of Z () into & . It follows
that H (W',N') =0 for i&k-1 and that H (W', ') o B (4,N)/ (% ).

By Lemma 3.6 we have Hk(M,N) finitely generated over z (w).
Choose a finite system of generators & FERY E':'r and apply the above
procedure to & = & . Then we get a (k—1)—neighb01-1rhood M' such |
that Hk(ﬁ" ,l\‘I") is generated by the images of  ,,..,® . under. the
isomorphism H2(ﬁ' ,{i\II "= HZ(M,N)/ (o 1). By interating this procedure

a finite number of times we finally arrive at a k-~neighbourhood M" .

bl

of . Clearly M".:-_';MC,W—K. This completes the proof of Proposition 3.2. '

§ 4. THE SXISTENCE OF ARBITRARY SMALL (n-1)-NEIGHBOURHOODS OF "t .

So far we have not used the hypothesis K| (Z(7)) = 0 any

where. It is in the construction of arbitrary small (n-1)~neighbourhoods

of o that we use this hypothesis.
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Lemma 4.i. lLet ™ be any (n-2)-neighbourhood of  and let N = bM.

Then_the pomology H*(?/Lﬁ) is_the homology of a Z (w )-ghain complex

of the form
fad d L
0 — Cn—1 =~ C o — 0
L Ea's
where Cn—1 and Cn—2 are free but not necessarily finitely generated

Z ( T)-modules.

Proof.  Pick a sequence of \n-2)-neighbourhoods

M=M=2MD .. Mr'jM

o™ ™1 o I
such that U U =M where U =M — M .
ri r r r—-1i r

We know that  lorse functions X\ _: U —» [r-1,r | with critical
points of index (n-2) and (n-1) only, having the components of bUr

-1 -1
for level manifolds N (r-1) and X (r) of X . Thus U 1is
r r r

homotopically equivalent to a space of the form Ni[ij‘ » eril-2 U .63-1 gt
ks s & ‘;g 'é’
T N (e PO

‘L,«;;.»,rf‘ ~ l;hép- iel 1 J&J 1

means of attaching a finite number of (n-2) cells and then a finite
number of (n-1) cells, under a homotopy equivalence which is the
identity on N. Choose a triangulation L of N. By the cellular K
approximation theorem to each of the characteristic maps fi

corresponds a homotopic cellular map fi : Sn'3...? Ln"BCZ; L.

Thus Nli{ e§1—2 is homotopy equivalent to the CW-complex

i7 1,

F=NU 32*2 under an equivalence © which is identity on N.

ifi-j 16-11
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Replacing the maps Qo gj vy cellular maps g:i : Sn'.,z...? F we get a

a CW-complex K' = F e"~1  and a homotopy equivalence

U'} .
g.1 J
{ J"jé—J1

h1 : Ui——aK1 which is identity on N. Also K1 contains L as a

subcomplex. Using the Morse function >\2 we see that U W~ U2 ig of

the homotopy type of a space of the form U, U 281:11_2 U e?! under
R {gs?

I, V7 38,

an equivalence which is identity on U1 . Taking cellular approximations

f;. to h1o fi and attaching n-2 cells by means of f:,'L to K1 we get

a CW~-complex F, and a homotopy equivalence

n-2 © n-2 . .
U1{%‘7 ey .__...2_7 F2 = K1 gtil!zei extending h1 . Taking cellular
Hiel, "Hiel,

approximations g:j to ongj and attaching (n-1) cells to F, by
means of the maps g;} we get a CW-complex K2 containing K1 as
a subcomplex and a homotopy equivalence h, ¢ Ujs U, —7 K, extending

h1. Proceeding thus we construct a sequence of Cw-complexes

cKe KoKy veee ' : UU, — K
L K1f K2 K3 and homotopy equivalences hr UUJ...7 " such

N B ¢ .

e

3

that hr is an extension of 'hr_1 and h1 =1Id on N=L. let

K=1U KrLu provided with the "union topology" i.e. to say a set in K
r |

is closed if and only if its intersection with each K. is closed

in K. Then h : M —3> K defined by h!U1 .. U.=h, 1s seen

to be a homotopy equivalence, because of JeHeCa Whitehead's theorem.
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In fact it is easy to see that h induces isomorphisms of homotopy
groups and Whiteheed's theorem asserts that a rﬁap of CW-complexes
inducing isomorphisms of homotopy groups is a homotopy equivalence.
Since the cells of K that are not in L are either of dimension
n-2 or of dimension n-1, we have proved Lemma 4.1.
Corollary L.2. Hn_](ﬁ:ﬁ) is_a finitely generated pro jective
Z \m)-module.

The proof for the finite generation of Hn— 1(1\?,{\;) over
Z (7)) is the same as that of Cf) of Lemma 3.6. Since H (M N)
for i%én-2 we see that d : n 1..._.3, has to be onto. The free

nature of C,_p implies PC;_,;Ker d&? Cn-2' Now Hn,1(i7f:1\?§::fKer d

P

is a direct summand of the free module U, _,

For any integer ez O let E Z (7)) denote the direct

hence projective.

(]
sun of e copies of Z (). Since '*f{ (2(w)) = 0 it follows that

J an integer ez O such that H (M BﬂCJ 2.‘ Z () 1is a free

( Z)-module of finite rank. Let the rank of H (M ) Z z )

be r.

Lemma 4.3. Given any compact set K of W 3 an (n-2) neighbourhobd

M of o with McW-K such that H_ (WN) isafree Z (T7)-module
oi finite rank, where N = bM.

Proof. Choose any (n-2)-neighbourhood M' of o with M'c W-K,
and let H' = bM'.

By corollary 4.2, Hn_1(M',N') is a finitely generated pro jective

Z(Tr)-module and hence o an integer e 70 such that
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Hn_1G“E',N‘) +Z Z(7) is free over & (77) of finite rank say r.
e

We can find an (n-2)-neighbourhood M' of o with M'7.M' and
_1(€,ﬁ')_.¢ Hn_1@£' :ﬁ') onto, where U = m (see -2 ,

Lemms 3.6). By Proposition 3.7, (U,N') has a handle decomposition

consisting of handles of type (n-2) and (n-1) only. Without even

changing M' we can introduce e pairs of mutually cancelling handles

of type (n-2) and (n-1). Let M be formed by removing from M

the union of the interiors of tubular neighbourhoods of the e newly

introduced handles of type n-2 and a tubular neighbourhood of N',

and let N

Claim: M is_an (n-2)-peizhbourhood of ® such that H__ 1(N FN)

is a free Z (7 )-module of rank T.

let A be the union of the closures of the tubular neighbour-
hoods removed and let A= p~1(A). Using Van Kampen and tie fact
that n-2 73 we see that M is a {-neighbourhood of . Also

Hi(rj{,i\f‘) =0 for i# n-2 and Hn_z\ﬂ,’ﬁ') = Z Zz (m)., From the
homology exact sequence of the triple \M JKI(I ),
Hj(.&ﬁ') — H. (M ') = H, (M B (BT =
?ﬁs. excision
B, 1)
we see that Hlm,i\r) =0 for i%n-2 and that

Hn—1(M’N) = Hn__1\M',N') + 7 7z (). But by the choice of e, this




s 8 free Z (7r)-module of rank r. This completes the proof of
lemma 4.3

Remark L.4.: If M is any (n-2)-neighbourhood of o and if N,

s another (n-2)-neighbourhood of @ with M, M and

Hn_1(U,N) —_ Hn_1(ﬁ’,ﬁ) onto, (where U =M - Mi) then

Proof. In the homology exact sequence

e b Rt -~ PR s
H, (M,U) — B, (U,N) — Hoo A N) — H_ W,U7 — H_o(U,N) — O

T o csan 1
i 4 eXcelsion excision ;% .
H, (3, ,Ny) Hy_y (80,1 )

PO

of the triple (i,U,N) we have H,(i;,N;) = O by Lemma h.1. By
assumpt ion Hn_1(€,ﬁ) —3 Hn-t(ﬁ’ﬁ) is an epimorphism. It is now

immediate that H_ _, (U,N)= H _,(M4,N) and that o, (L,N )= H_o(U,N)«

Let M be an (n-2)-neighbourhood of w with Hn-1(ﬁm)
a free 2 (T )-module of finite rank (say r). We can find a

translate M1 of M by a Deck transformstion such that M1-':‘. M and

e

e ~ N
Hn—l(U’N) —3 Hn_1(M,N) onto, where U =M - M, . We have to only D
choose the translate M1 so as not to intersect the compact set got
as the projection by p of the union of supports of singular cycles

(integral) representing a basis for Hn_,'(f/f,'N) over Z (m) (See

2 of Lemmé, 3.6). Corresponding to any handle decomposition of (U,N)
with only handles of type n-2 and n-1 we get a chain complex

0~ C,_,— C,_,—7 O whose homology will precisely be H, (U,N).
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e

o handles of type

ot

S
For the modules Cpets Cp-2 the cells corresponding t

(n-1) and (n-2) respectively form a pasis over Z\ ).
jon for (U,N) with

Proposition LisDe There exists @ handle decbggosit
om handles of type (n-2) and 2m handles of type (n-1) (where m
» » L3 d
is a certaln integer 7(',r) such that the voundary operator Cn—-1 — Cn—2
with reference to the basis given by the handles has & matrix of the
S and T are mxnm invertible matrices oVer

form (X O\, where
0s ')

z(mw) and X 18 the mem matrix (O 0 \
01
m-r

7

Proof. By Remark L.k we have Hn_1({lw,rﬁ) - Hn_1(ﬁ,'ﬁl) and

is a translate of M we have

',,N‘ Pud, — Y A . S- r
Hn_Z\U,N) - Hn_1(M1,N1) ince M,
Hn_1(M,N) o Hn‘-1kM1,N1) and by our choice of M, Hn_1kM,NN3 is a

The pair (U ,N) has a handle

free z (77)-module of rank T.

th only handles of type n-2 and n-1. Choose one

L d L
such and let O — Bn—1 — Bn_z__.a 0 be the complex corresponding

decomposition wi

andle decomposition, giving the homology of the pair

to the chosen h
Z (‘ﬁ)—modules of finite

-

e Fand —
(u,N). Here Bp_4 and B, p are free
rank. Since the homology of the complex B 1is the same 25 H*(U,'ﬁ)

1N

we get the following exact sequence.

a4

0— Imd — Bn;-2 "?Hn—Z(U’N):‘“'-k"“f.ﬁ( ) —>» O.

r
-projective.

It follows that Imd is finitely generated and Z ()

Adding a finite number of pairs of mutually cancelling handles if
2 (7 )-module. (Here
g
B2 is free of

necessary we can assume that Imd is 2 free

we use the fact that Isd 1is stably free since
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finite rank). Also we have the exact sequence

o d
0 — Hn_1(U,N) L&(‘—"‘)-—y Bn_1 —» Imd —» O. If the rank of

the free Z (rr)-module Imd it k then it follows that both B

o~~~

and Bn—2 have rank m where m = k+r and that EH bases UyseesUpy
B B

of -1 and ViseeaVp of Bn—2 satisfying

du1 =..= du, = 03 dup,, = vr+1,..,dum = Ve Thus the matrix of d

with reference to the bases U,,...,U and  V.,e.yVp of Bn-1 and

o . . _¢{0 O n-1 n-1

Bn.__2 respectively is —( o I ﬁl Let ey aeesSp and

2 ¢™2 e the natural bases for B and ’B, iven by the
1 7" "m ' n-1 n-2 &

handles and let the matrix of d with reference to this natural pair
of bases be A. Now add m pairs of mutually cancelling handles of
types n-2 and n-1. With respect to the handle decomposition of
(U,N) thus obtained the chain modules '5;_1 and.‘a;_2 are both

free Z (7 )-modules of rank 2m and the matrix of d with reference

. A0
to the natural pair of bases constituted by the handles is ( o I °
m
n-1 n-1 n-2 n-2 . ~
if em+1"J’62m and em&l""GZm are the elements of Cn—1
ot

and C,_o respectively, corresponding to the newly attached m pairs

. - -1
of mutually cancelling handles then U, ,.s,W; e$+},..,e2m and
- - ~
n-2 n-2 form bases for GC and C with

ACEAREAS Cot1? %2 n-1 n-2
: : .(Xo
reference to which the matrix of d is t

"

\ . Now, there

exist elements S,T GL(m, 7% (7r)) such that X =3 A T—1. The
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. 3 0 )
matrices -1
(o5

in GL(2m, z (7)), and we have

(s 0 )(A 0)(T“ 0) /%0
-1 = -1
0 8 o 1Jlo T \os T

Thus to prove Proposition 4.5 it suffices to prove the following.

. f 0
Lemma 4,6. One can change the matrix ( A ) of d by left or
0 I;

right multiplication by e ent matrices by performing an iso

1
T O
(O T ) are products of elementary matrices

of the attaching map of the handles.

- -2
2_12.09.;- Let U = Iy.N + f’:’,n 2 4+t q‘)};n + n 1 +, ; be
)’ 1 2m 2m

0 1I

A O
the handle decomposition which gives the matrix ( ) for d.
For each i b5uch that 141i¢2m 1let Y be the right hand boundary

. n=2 n-2
of IxN+ é'f?n ot sfz? + all the handles of type (n-1) except
1 2m

the i th. First we prove the lemma for left multi plication by
elementary matrices. We actually show that by an isotopy of Q,
i
n-1

. n-1 .
into Yi one can change d e; by any 2 Xj da ej with

F i
arbitrary xj(;—z{/rrj . For this it suffices to prove tle same
assertion for X d erjl—1 for a particular j # i and xje.j_'(]‘ .
Now y,j(sn'?;u. #) with * any point on bD°, is isotopic to the
trivial imbedding in Y, for 1 # j, because ?,j(sn-zﬁ #*) bounds
a cell on the boundary of the handle 7 j' Perform "connected sum"

of ‘¢ and ? along an arc representing x:l and take it as the
i _

new 9,' . For proving the lemma for multiplication on the right by
i

-

e




T4

an elementary matrix we look at the dual handle decomposition. Let
2 . %2 #*3 *3
U=1IxgN Pt tovet be the d handl
K1*"‘F1 @2m+g’1 ¢2m e .the dual.handie
. " d* Vo %
decomposition. ILet O —) C3 — 02 —s 0 be the chain complex

correqunding to this handle decomposition. With respect to the

canonical bases of ﬁ(% and ?312 constituted by the handles of type
(A* 0\

3 and 2 respectively, the matrix of a* is the same as *
0 I )
m

where A% = (&) with a', = a. ... Here (a,,) is the matrix A
1J i) Jt 1)
and for each ae 2z ( ), a is the element which corresponds to a

1

under the map which carries any x ¢ T into the Chuwsoroal + X 0,
(The sign depending on whether x preserves (+) or reverses (-)

an orientation of U). Choose liftings of 3 and 2 cells for the

ces =3 ~3 ~2 2
dual decomposition C e A 3L sees so as to
1 2m 1 2m
- )~ 2 - -~ -~ 3
satisfy 2?2.?3.=§..;er.11-g.=¢g.. and 07! 2t
i 3 ij i Jj ij i N
_’ = (C a for every a ¢ 7 . Using the formula
, i
’::3 ~1=1 * ‘”‘.3 =1 . . d 1
E .48 = " &, - 8y (up to a sign which depends only on n
. * ~,
and not on i and k) it is easy to see that the matrix of 4
with reference to the pair of bases constituted by %’3,.., 23
1 2m
2 2 Iy
and ¢ e, 4 1S precisely (up to sign). Now, by
1 2m 0 1

what we have proved already, this handle decomposition of (U,N1)

%*
0 ) by left

can be altered so as to alter the matrix (O I




A
which alters the matrix (
0 I

elementary matrix. This proves Lemma L6

corresponding to the first r handles of type (n=1).

by a C® imbedding O, * @1 8%, (U,N).

2m

i=
as above N, is the right boundary of U):

_ - 2&1 - # n-1 1
‘Tr1(NO—Y)—->TT1(N1—U.l=1 ANCIPE )) =T, N,
| . }=

W

t o > 'y

it

pultiplication by an elementary matrix. Now, taking the dual of the
altered handle decomposition we get a handle decomposition for (U,N)

0 .. ,
} by right multiplication by an

We choose a handle decomposition for (U,N) of the type
mentioned in Proposition 4.5. Then the Kernel of d ¢ C

is the free 2Z (W)-module of rank r with the elements

Assertion. Agy one of the elements ﬁé?"‘ (14i<r) can be represented

- : o~ -
In fact de ' - 0 implies that any lifting ;,.l(sn o %)

-2 ]
of ﬁi(Sn % #) has trivial homology intersection in N, with any
~~i 2
lifting ﬁ (# xS ) of any of the tranverse 2-spheres of the handles
J
of type n-2. (Here N_ = is the right hand boundary of

2m
_n=2 , 2
IxN + 2_.1 ?)j . Now use Proposition 3.8 with X = J P (xS )
J=

n-2 . ps
and Y= 5 Qi(S % *). The condition 7T (No -Y) LK N,
’ .

an isomorphism is satisfied because of the following diagram (where




G-

116

;‘;The "ypper" horizontal isomorphisms are obvious. The isomorphism

T1 N,— 77 ,W follows from the fact that (M1,N1) is a. 1-neighbour-
hood. The "bottom" horizontal map is also an isomorphism because

T No— T 4U; is an isomorphism (Uy = IxN, + (handles of type
n-1).) MU, —>T,U is also an isomorphism since U=0, + (handles

of type 3), and TT,U— 7 ,W has been noted to be an isomorphism

before. (Recall Lemma 2.8.) Using Proposition 3.8 as before we see

. Lo . - -
that we can find C imbeddings ©; ¢ (o1, 88 2) -3 (U,N)

representing e;l—k. Hn_1(U,Nj. Let B be the union of tubular

neighbourhoods of Qi (DP') and N in M and let M =M - B. By
Van Kampen it is easy to see that J an isomorphism ‘TT1(N) — T 1(N')
where N' = bM' and that the inclusion M' —» M induces an iso-
morphism Tr1(M').~7 ‘;‘,"‘1(M). Also the isomorphism T("1(N) —_— -T,-1(N')

makes the diagram.

commutative. It follows that M' is a t-neighbourhood. Now from

s v

the homology exact sequence of the triple M,B,N it follows that

- e Lo ¥ T
Hy(M',N') = 0 for i4n-2 and H_, (',N') =< fgj_‘(ifi,N)/(ep...,er) = 0.

Thus starting from any (n-2) neighbourhood M of @ with H . (M,N)
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free of rank r OVer .2 () we have constructed a (n-1)-neighbour-

_hood M' of @ with W' M.

Proposition 4.7 There exdiol arhitrary small (n-1)-neighbourhoods

of ™.

g 5. COMPLETION OF THE PROOF OF SIFRENMANN'S THEOREM.

Lemma 5.1. Suppose M and My are two (n-1)-neighbourhoods of ®

with MoM, and oM, = ¢, Then U-=-M-M isa h-cobordism between
B znd bM,. |

Proof. Denote bM and DM, by N and N1 respectively. Then as
already observed ‘Ti'1(N) —3 T, (U),'n"(l\l‘)—-—_;y Tr1 (U) are iso-
morphisms. (Remark B after Lomma 3.6). Since M end M, are
(n-1)-neighbourhoods we have Hi(ﬁ,’ﬁ) =0 = Hi(ﬁ;’ﬁ) for all 1i.

In fact by Lemma L.1, P%(ITF,’IM‘J) (or H%(f/f;,rl‘\f.l)) is the homology of a

-

complex of the form C == %;1_4 —3 B_p-=7 0, Thus Hi(M,'N) =0
for iy u and by definition of an (n-1)-neighbourhood of @ We
have H;(M,N) = 0 for isn-t. From the homology exact sequence of

the triple (1,0,N)

o P ool ot

va(;u,;q) - H.l(M,N) — Hi(M,U) — Hi_“1(U,N) —, Hi_l(M,N)-——-? <
T ’

exclision j

i~
M
Hi(“‘,N1)

we see immediately that HJ.(I},N) - 0 for cvery J. Thus to prove

lemma 5.1 it only remains to show that Hj(U,N.) =0 for every J-
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For the pair (U,N) we have a handle decomposition with handles of type

— d
- -1 ] O o C s O
n-2 and .n-i only. If <© Cpey —3 Cpp— U 18 the

corresponding complex giving the homology of ('ﬁ,m, from the fact
that Hl(lj,N) = Oyl it follows that d is an icomorphism. If we
use the dual handle decomposition for (U,N1) the homology H*(ﬁ,ﬁ1)
P d* Nt

will be the homology of a complex of the form 0 — C3 — Cy — 0.

If A= (aij) is the matrix of d with respsct to the bases

constituted by the handles of type (n-2) and (n-1), then as already

seen the matrix of ¢* with respect to the bases constituted by the

)

handles of type 3 and in the dual decomposition is A* = (ai');)

aji . It follows that if d is an iso-

. o~
morphism so is d*. Hence H*(U, N1) = 0.

(up to sign) where a,lg

Proposition 5.2. Let M be any (n-1)-neighbourhood of o in . W.

Then M is diffeomorphic to N';-L[O,o:)) where N = DbM.

The proof of this proposition uses the S-cobordism theorem
of Parden - Mazur - Stallings [.5__7, [-6J or L—Sj. Let U be a
h~cobordism between two compact, connected oriented ¢® manifolds
¥ and VT of dimension n 75+ Using the i somorphisms

7, (V) — 77, (U) and T, (7') 7 ,(0) we identify all the three

v

groups 3T|(V): T, (U) and T 1(V') and abstractly denote any one
of them by T - Let Z(U,V)¢& Wh(77) denote the torsion of the

pair (U,V). We now state the S-cobordims theorem which actually

consists of two parbs.



19

S-Cobordism Theorem: (1} Ihe inclusion of V in U can be extended

into a diffeomorphism of VI onto U if _and only if ® (U,v) = 0.
manifold V% of dimengion nz>

(2) Given a compact, comected C%

= ‘1’{‘1(V), there exigts a h-cobordism

and auwy v WaliT)  sherg
U between V and a certain v' such_thab '(“_,’(U,V) = T,

For more information about torsion and the Whitehead group

wh( ) refer to [1_7, [5_7 or [—13_7. We list below some known

properties of torsion that we need for the proof of Proposition 5.2.

The symbols V,V',V1,V; etc. are used to denote connected,

compact, c® manifolds. Let U, be a h-cobordism between v, and
V, , and U2 a h-cobordism between V2 and Vé. let g ° V2..__:> V;

be a diffeomorphism of V2 onto V;. let U= U1 . 02 be the
g

differential menifold got, from the union of U1 and U2 by

by means of the diffeomorphism g The

identifying V, with v'1
groups T, (V)5 T, (U) and Ty

denote any one of them.

(V;) are all identified as explained

already and let T, Let Tl'2 have a similar

- . | ' * —
meaning with respect to V,,U, and v, (i..TT, = 1(V2) etc.).

The diffeomorphism g induces an isomorphism g% *: T, - T, .
~

V)& wn(TT,)

il "’C e r == T
f T, (U1,V1)¢ Wh(‘rr1) and T, 2 (U,,
then U = U1é U2 is a h-cobordism between V1 and V'2 satisfying

i

> (U,V) = Ty * gx(%5). In particular if U, is a h-cobordism

petween V and v' and if U2 ig a h-cobordism between V' and

o certain V& such that T,(U',V') -~ 7.(u,V) then U .Uy is
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diffeomorphic to VA I whenever dim V(= dimV') 5. If U is a
h-cobordism between V and V' with torsion #°(U,V), we can construct
5 h-cobordism U~' from V' to some V with torsion

z;(U",V') = T(U,V). (Use part {2} of the S-cobordism theorem). Then,
pasting U and y~! along v' by the idendity mapping, the
hecobordism U U”!  from V to V' has torsion (U,V) + ’E(U"1,V‘)= 0.
It follows by part @ of the S-cobordism theorem that U™ is
diffeomorphic to ¥~I and in particular that V and V' are
diffeomorphic. The formation of products of h~cobordisms satisfies

the following associativity rule. Let Ui(i = 1,2,3) be a h-cobordism
between Vi and Vji and let g V2-_-7 V;; h: V3 TN V'2 be
diffeomorphisms. Then 3 a diffeomorphism

e (U, .U,) .U U, .
1g2h3“5’ s

v,. Mso if U is a h-cobordism between V and V'] a diffeomorphism

}5 : U=y U.VAI with B[V =1Id; and /3 (v') = (v, 1) ¢ v U,

(U2 . U3) extending the identity map of
h

(This is a consequence of the fact that v' is differentiably collared
in U). For the proof of Proposition 5.2 we need the following
Lemma on infinite products of h-cobordisms.

Lemma 5.3. For every integer k1 let Uy bea h-cobordism between

V and V' andlet V'=V . If dim V25 then the infinite
k k k k1 1

product U,.U,.U,. .. is diffeomorphicte V, [0, ).
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Proof. As observed already J diffeomorphisms /jk U Uk'vl'{ I

with F’k' Vk = Idvk and F} k(v') = (v, )¥v'e Vl'( . Hence the infinite

product U1.U2.U3. ceerns is also diffeomorphic to the infinite product

U1.V;7&I.U2.V'2AI.U3.V§>¢I. .... . For every integer k#%1 the product

VL L v-'. u.....U0 4is a h-cobordism with torsion zero.
k k-1 i 1 k

. : - -1 -1
Therefore - a diffeomorphism. o ¢ kaI —> U e o U, ’Ul' oo o Uy
satisfying @ (v',0) = v' of the left hand boundary of

U;. U'1'1.U1 .o 'Uk' The map V'~ Gk(v',1) is a diffeomorphism

t . _ 1 1
& of Vk onto the right hend boundary of U}'( . we U; . U1. e o Uk‘

. . t 1 )
Now it is clear that the product U,. V1>e.I . U2.V2;<I. UB.VBV- Loy ooeee

is diffeomorphic to the product
-1 -1 -1 -1 ~-1 =1
L] L L] L ] . L] . L] - L] L] vl . ] L ] U .o
U1 (U1 U1)g U2 (U2 U1 U1 U2) U3 (U3 U, U1 U1 U2 U3) L
&, &

Also it is clear that the diffeomorphism g * V;{ —_— V{( is homotopic

to the identity map of Vi and hence gy, *77 — T is the identity
map. Since product formation of h=-cobordisms is an associative

operation we have A

U1. (u

JU.). U.. (U, .U, LU .U2). ceee diffeomorphic to
g
4

&y

 ~1 -1 -1 -1 =1 -1
(U1 -U1 )-(U1. U2.U2 |U1 )'(U1 1U20 UB.UB .U2 -U1 )'

&

e oo .
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Denoting the products Uge vt UM Uy =+ 'Uk o Uy Uk+1 . e .U:‘
g
k
and Uk+1'Uk+1‘Uk N A ;B and O respectively we have

T (Bk,v1) = ?"(Ak,v1)+ (gk‘?& ( & (Ck, k"’1)) = @(AK’V1)‘+ Z’I\(Ck,VkJ,.‘)

since i i i = ( * =
gk* is the identity map. But < (Ak,V1) * «(Ck:vk_.,.,) 0
Hence the inclusion of 'V, into B, as the left hand boundary extends

to a diffeomorphism of V 1741 onto B . It follows that the product

-1 -1 =1 -1 =1 =1

U oU . . " . - . * o oo

(U,.U) (U1g-U2U2 vl . (U, UgU3U3 U, U1)
1 2

is diffeomorphic to V x.l-_(-);. © ). This completes the proof of Lemma 53

We now take up the proof of Prop031tion 5,2, lLet M be any

(n-1)—nelghbourhood of @ in W. The Deck transformation group of

the covering W __._j, V is the same as that of “..1.__.7 st, let

denote the diffeomorphism of W which corresponds to. translatlon by +i

of J& on itself, under the isomorphism - between the Deck transformation

gI‘Oups. Choose an integer [ » 1 such that N/\ac N=p (N= bM) .

Let N = a(kM for each integer k70 and Nk—ka. We have

N = T ———— )
o = M, My DMy, and Ny ANy = @ Tet Uy = W, - M, for any

k 71. We then have U U, =M By Lemma 5.1, Uy is a h-cobordism ™
k 1 *

between N and N. By Lomma 5.3 it now follows that M is

diffeomorphic to Nx [O,oo ). Actually the inclusion of N into M

extends to a diffeomorphism of N "f-E), o) onto M.

Theorem 5.4. Let M be any (n—1)-neighbourhood of @ in W.

Then W is diffeomorphic to N, {R where N = M.




Proof. For the integer A having the same meaning as above we see

-4 . A
that ¥ NaN = . It follows that for every integer kO if we

I
define M, by M, =4 W then NN, ;= $ wk>0, where

C————————

=M., . -M for each

. !
N, = bM_ Now, if Uy =M ., - M,

-k Mso M_

. A
K* ke Mo
k21, by Lemma 5.1, U;{ is a h-cobordism between N—k and N—-k+1'

It is clear thst if k' = W - M, then M' 1is the infinite product
of the h-cobordisms U;('1 and by arguments used in the proof of

Lemma 5.3 we see that the inclusion map of N into M' can be
extended into a diffeomorphism of I x ( —00,0] onto M'. This,

combined with Proposition 5.2 gives Theorem 5.k4.

This completes the proof of Siebenmann's Theorem.

vyf:
3.7.'69
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for read
' 1
e 65
.»g 2n+2k n+k
hd ;Rn+k / L
there then
+ —_— n+1f-
%Velgnf e ver
(6L4(n-q), R) o(GL, (0=, R))
+a.y ) +(a.y)
+ayl +(a.y) !

(1.0) of Z8Z into (0,8)  (1,0) of ZOZ into (0,105(2))
Hg(V") 2 B0}/ (a) Hy(7) = Hg(Vo)/ (57! (2))
o
o~ Hq(V)/(a)

The map H (S)<,Sq )7H (Vo) The composite map

(58T ) (Vo A Hy (V)
z by (7, Q)+;: by (V,@ ) (mod 3)

Z b, (V , Q)+ ;bi(v Q) (mod 2)

. 3 .
= w) =
j(w) =y w j(w) .
y* as a row vector y* as a column vector i
w operates on the right w operates on the left on y*
on y* '
Theorems?2. | Theorem 2.1
We use ° ° We use "~

gubmanifold submanifold




