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where for nonabelian = one should interpret Ext(Z,., n) and Hom(Z,. , ) as
Ext(Z,,,n) = n,R K(n, 1), Hom(Z,., ) = n,R K(n, 1).

Note that for n nilpotent and finitely generated one has that Hom(Z,,,n) =0
while ExY(Z,,. , r) is the p-completion of . 4

We end with the observation that, although the associated spectral sequence
converges to m, R, X whenever X is connected with A,(X; Z) finite for each n
(4.1), tl}is need not be the case without this assumption, even I'or’,X a K(n, n). Still
for a nilpotent X the tower {R,X} and the completion R, X determine e;wh othe;
up to homotopy (6.1) and hence it should be possible to find out what homotopy
information about R, X is contained in E (X ; Z,).
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1. Introduction. Surgery is one of the main tools of differential topology.
Typically, one wishes to construct a manifold with certain properties. By some
means, usually a transverse regularity argument, one constructs a manifold
enjoying some of the desired properties. Then, by surgery, one attempts to
modify this manifold to meet all the required conditions. Usually, when the
dimension of the manifold = 2mod 4 one meets Kervaire or Arf invariant
obstruction. As an example of this we describe surgery on a map.

Suppose X is a finite CW-complex.

ProBLEM. When does X have the same homotopy type as a smooth, closed,
compact orientable manifold?

Necessary conditions are that the homology and cohomology of X satisfy
Poincaré duality (see [ 1] for details) and that there is a vector bundle 7 over X such
that the top homology class of the Thom space T{») is spherical. Assuming these
conditions hold, one can construct an m-manifold M and maps

g
Vy ——— 1

»

M — X

where v,, is the normal bundle of M in R™** (k large), such that f,: H,(M) = H,(X).
Surgery in this situation proceeds as follows: Let «e ker fum(M) - 7 X).
Represent « by an embedding i:S' = M (if possible). Extend i to an embedding
j:8' x "' = M (if possible). Let N = M x I u D'*! x D™~ with (j(x, y), 1)
and (x, y) €§' x D™!identified (smooth corners). Choose j so that g can be
extended to G:vy—n (again if possible). N =M x {0} u M'. M’ and
g’ =G| vy are said to be obtained from (M, g) by surgery on a. One can apply
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this technique, by induction on i to produce an (M, g) such that f, is a mono-
morphism on (M) for i < [m/2]. Furthermore, if one can carry through this
construction to produce a monomorphism for i = [m/2], f will be a homotopy
equivalence. Wall has defined a group L,(m,(X)), depending only on the group
,(X), and an element (M, g) in this group such that the surgery can be performed
ifand only if 6(M, g) = 0.

We consider the case 7,(X) = 0and m = 2n > 4. Suppose [, :m(M) — n(X)
is a monomorphism for i < n (it will be an isomorphism by Poincaré duality).
Let K = ker(H (M)— H(X)). If we can kill K by surgery, f will be a homotopy
equivalence. Each element of K can be represented by an embedding i:S" = M
but in general, the normal bundle v; of {(S") in M will not be trivial. v, is stably
trivial because i(S") represents an element of K. If n is even, v; is characterized
by its Euler number, and when n is odd v; is either trivial or isomorphic to the

tangent bundle of §". Let
Z, neven,

oK~ {zz, n odd,

be defined as follows: Let u e K and let i:S" = M represent u. Let ¢(u) be the
Euler number of v; if n is even and 0 or | as v; is trivial or not when n is odd,
n # 1,3,7. When nis even, o(u) = u n u, where ** 0" denotes the intersection
pairing, but for n odd ¢ cannot be expressed in terms of the intersection pairing.
One does have the relation:

(1.1) o(u + v) = @) + @) + un vmod?2

for n odd. To perform the surgeries making f: M — X into a homotopy equiva-
lence it is necessary and sufficient that there is a symplectic basis 4;, u;, i = 1,
2, ., L (inpj=08; And;=yopy=0) such that o(4;) = o(u) = 0.

By Poincaré duality, N is nonsingular on K. Suppose nis odd,n # 1,3,7. Inthis.

case N is skew so there is a symplectic basis for K. The Arf invariant of ¢ is an
algebraic invariant given by A(p) = Y @(4)e(w;) € Z, for any symplectic basis
A, 1;. An algebraic result about A is that A(p) = 0 if and only if 4;, &; can be
chosen so that ¢(1;) = ¢(i;) = 0. In this case the Wall group Ly, ,(0) is Z, and
(M, g) = Alp).

Suppose n is even. M on K is nonsingular and u n u = Euler number v;
is even. It follows from results on quadratic forms over Z, that there is a symplectic
basis if and only if the signature of ¢ is zero. Thus L,(0) = Z and o(M, g) =
signature . Furthermore, we can give a formula for ¢(M, g) in terms of X and #.
H (M) splits, with respect to the intersection pairing, as H, (M) =~ K & H,(X),
where the pairing on H,(X) comes from the fact that it satisfies Poincaré duality.
Thus

THeoREM 1.2. Ifnis even,
oM, g) = I(M) — I(X),

where I denotes the index.
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Using the Hirzebruch index theorem we have
I(M) = L,,(p()XM) = L, (p)X X),
where L,, is the L-polynomial and p is the Pontrjagin class. Hence
THEOREM 1.3. o(M,g) = L, (p(mMXX) — I(X).

Theorems 1.2 and 1.3 provide a model for what we would like to do when n
is odd. In subsequent lectures we describe a version of Theorem 1.2 for n odd.
) An important special case of the above is X = S$2*, y trivial and n odd. Then
g is a framing of the normal bundle of M and o(M, g) is the Kervaire invariant [2].
This defines a homomorphism

K:Q, (framed)— Z,.

Kervaire and Milnor conjectured that K =0, n # 1, 3, 7. (K is defined for
n=1,3,7as o(M, g) but in these cases (M, g) is the obstruction to finding G;
see page 65. K # 0,n = 1, 3,7) The results on this conjecture are:
Kervaire: K = Oforn = 5,7[2],
Brown-Peterson: K = 0forn = 1 mod 4 [3],
. IBrowtderb:: K =(h0 I'c‘;rdn #2—1 |i4], and K s Oforn = 2' — 1,ifand only if,
i lives to E,, in the Adams spectral sequenc
P Rb p q e for homotopy groups of spheres.
We will indicate some of the methods used by Browder to prove his results.

2. Algebra of the Arf invariant. Let V be a finite-dimensional vector space over
Z,. The Arf invariant is defined on quadratic functions ¢:V — Z,. Both for
algebraic and geometric reasons it is useful to consider functions into Z,.

DEFINITION 2.1.  @:V — Z, is (nonsingular) quadratic if

ou + v) = o(u) + @) + juu ® v),
where u: ¥V ® V— Z, is a nonsingular pairing and j:Z, — Z, is the nontrivial
homomorphism.

REMARK. 20(u) = ju(u ® u). Thus considering ¢ with values in Z, instead
onZz alloyvs us to deal with the case in which u(y &® u) # 0. Thisallows us to deal
with manifolds in which cup product to the top dimension is nonzero.

) It" (p,:l'/l —Z, z.md ©2:V; — Z, are quadratic, we define ¢, = ¢, if there
is a linear isomorphism 1: ¥, — V, such that ¢,4 = ¢,. We define
o t+eV @V, Z,
by
(@1 + @2)u,v) = 0,(1) + @,(v)
and we define ¢,¢,:V, @ V, — Z, by

010:(u @ v) = ¢,(u)p,(v).

(Uze the quadratic property to extend this to all of ¥, ® V,.) Let (—p)u) =
—(u).
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We wish to show that the Grothcn;lieck roup of jons i
. th
state this in the following form: group of these functions is Zy. We

IHEOREM 2 2 ’Ihele is a uni i (2 q ratic function o
L que functton [ om uad i ?
f f ctions t Zg

) o, =~ 9,,0p,) = a(p,).

(u) a(@y + @2) = oley) + a(p,).

(i) o(—@) = —a(g).

(iv) o(y) = 1, where y:Z, — Zybyy(0) = 0,9(1) = 1.
Furthermore

EV)) a}-(,‘_l’.;lfl’z) = o(@)a(e,).

vi :V— Z, is nonsingular quadratic, o(jiy) = :
by 2 ke q ¢, o(jY) = KArf ) where k:Z,— Zg

(i) If Y :U — Z is a unimodular quadratic 7

i Z,y: i

defined and quadratic and () = signature m@gné.over e

(viii) For any ¢ there is a ¢ such that 5+ (—@) ~
o@)=n—m. i at ¢ + (@ + (=@) = ny + m(—y) and
(ix) o(¢) = dim ¥V mod 2.

PROOF. Wedescribe a trick due to Paul M i i
Ll ul Monsky for defining . Let i = (—1)!/2

alp) = ) i*™eC.
ueV

It is trivial to check that (g, + = (@), i

: ¢ #2) = A )e,), d(— ) = a(g),if L:V — Z, is
linear, (L) = 0if L # Oand «(L) = 29V if I = 0. From the quadratic pro ‘:'t
one then sees that v

dpl(p) = 29m¥  and #(2p) = +i24imV
Hence «(8¢) is real and

o(p) = ﬁdimv -8throotof 1 = ﬁdiml’(l + i)ﬂ(o)‘

2
Continuing in this vein one can prove (i) ~ (ix).
Suppose u:V ® V— Z, is a nonsin, ic pairi
¢ ) gular symmetric pairing. Let =
V x Z, with the abelian group structure given by i T AALS
@, n) + (v,m) = (u + v, pu ® v) +n+ m).

o ﬁ;t is triviallto check .that quadratic functions ¢:V— Z, whose associated
1. ear form is g are in one-to-one correspondence with homomorphisms
¥:0(V, p) — Z, such that y(0, 1} = 2, under the correspondence o) = Y(u, 0).

3. The Kervaire invariant of a manifold. Su i
! " ' ppose M is a closed 2n- i
{or a Poincaré space). Let K, = K(Z »n), (M) = [M* K f c:ls:d Fremanifold

{M*,K,} = lim [S*M*, S*K,].

k=
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Let 6:[M*,K,]— {M*,K,} by 6[f] = {f}. Let d:M— S be a map of
degree 1. {S*",K,} = Z,.

ProposITION 3.1 0 x d*:Q(H"(M), u) ~ {M*,K,}, where U denotes cup
product.

ProOF. One shows that 8(u + v) = 8(u) + 60(v) + (u U v M), where o =
d*1, by using S(K, x K,) = S(K,) v SK, v S(K, A K,). The methods for
proving Proposition 3.3 then yield Proposition 3.1.

Let v,, be the normal bundle of M in R>"**. Recall M* is the S-dual of T{v,).
Hence {M*,K,} ~ {S*"**, Tlvy) A K,}. o corresponds to & = image of the
generator of {S2"*%, §* A K,} ~ Z, under the inclusion §* in T(v,) as a fibre.
Combining the results of §2 and Proposition 3.1 we have:

PROPOSITION 3.2. The quadratic functions on H(M) associated to cup product
are in one-to-one correspondence with homomorphisms

{SZ:H-k’ T(vM) A Kn} - Z4
taking & into 2.

Let Y be a O-connected spectrum such that H%(Y; Z,) ~ Z, and let U:Y—
K(Z,) represent the generator. A Y orientation for M is a map V:T(vy) — ¥,
such that UV is the Thom class of T(v,,). Hence, a Y orientation of M gives a map

{SZn+k’ T(VM) A Kn} =) {SZn+k’ Yk A K"}
and & maps into an obvious canonical element &.
PROPOSITION 3.3. & is at most divisible by 2 and & # 0 if and only if
2Sg"t U = 0.
Proor.
{S** Y, A K.} = {STL X, A SK,)
For the dimensions under consideration, the two stage Postnikov system of K,

namely (K, ;, Sg"*"), suffices to compute this group. This gives an exact sequence

Hypner() =55 HY(%) —— {S™*4, ¥, A SK,} —— H,ui(%) —— 0.
Q.ED.
Suppose x(Sg"*")U = 0. Choose a homomorphism

A:{SZn+k, Yk A Kn} - Z4

such that A(%) = 2. Suppose Vis a Yorientation of M. We then have a Kervaire
invariant K(M, V) € Z; given by a{(p), where ¢: HY(M) — Z,, assigns to u, A on:

stk L, Tyy) —2— Tlyy) A M* 2 Y, A K,

where t is the Thom construction and A is the diagonal map.
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4. Kervaire invariant and cobordism. Suppose {MG,} are the Thom spaces
for some cobordism theory and x(Sg"*)U = 0, where U is the Thom class of
MG,. Taking Y = {MG,} (and choosing 4 as above) we obtain a Kervaire invariant
for each G manifold of dimension 2x.

THEOREM 4.1. K defines a homomorphism
K:Q,(G)— Z,.

Proor. The proof of this is somewhat tedious but straightforward.
ExampPLE 1. MG, = S*. 1is unique.

THEOREM 4.2. K :Q, (framed) — Z, has its image in {0, 4} and is the Kervaire
invariant.

EXAMPLE 2. MG, = M Spin,, n = 1 mod 4. For certain choices of 4, K
is the Kervaire invariant defined by Brown-Peterson.

ExaMPLE 3. MG, = MSU,,n = 1 mod 4. 1is unique.

EXAMPLE4. MG, = MSO,, n even.

CoNJECTURE.  For a certain choice of 4, ¢:H(M) - Z, is the Pontrjagin
square and K is the index mod 8.

EXAMPLES. MG, = S*"'RP_. 1is unique. Q,(G) is the cobordism group
of surfaces immersed in R® and K is an isomorphism. ¢(u) may be obtained as
follows: Supposei:S — R? is an immersion of a surface S. Represent the Poincaré
dual of u by an embedded circle {or disjoint circles). Let ¢(u) = number of half
twists (in R®) of a tubular neighborhood of this circle (Mobius band has one
half twist).

ExampPLE 6. Let v,,, € H""{(BO,) be the Wu class given by v,,,U =
2S¢ )U in H¥MO,). Let B -2, BO, be the fibration with k-invariant
Uy+y1. Let MB} = T(p*{,), where {, is the canonical k-plane bundle. This is the
cobordism theory utilized by Browder to deal with the Kervaire-Milnor conjecture.
One has a commutative diagram

Q,,(framed) —— Q, (B™)
NS
Zg

Browder shows that t =0 if n # 20 — 1 by constructing a Postnikov system
for M B} up to dimension 2n.

Suppose Y is a spectrum as in §3, 1(Sq"* YU = 0 and suppose A has been
chosen. Let X be a I-connected Poincaré space of dimension 2n, n odd, ¢ its
Spivak normal bundle, ¥ a Y orientation of ¢and a €7,,,,(T(¢) an element
representing the top homology class of T(¢). The methods of §3 give an invariant
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|

M—X

K(X,E& a,V) € Zg. Suppose

g

v —

is as in §1. Let Bemn,,,(T(vy)) be the element obtained from the Thom
construction.

TueOREM 4.3. (M, g) = K(M, vy, B, g*V) — K(X, &, T(g)(B), V).
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