where for nonabelian π one should interpret $\operatorname{Ext}(Z_{p,\infty}, \pi)$ and $\operatorname{Hom}(Z_{p,\tau}, \pi)$ as

$$\text{Ext}(Z_{p\pi}, \pi) = \pi_1 R_{\infty} K(\pi, 1), \quad \text{Hom}(Z_{p\pi}, \pi) = \pi_2 R_{\infty} K(\pi, 1).$$

Note that for π nilpotent and finitely generated one has that $\operatorname{Hom}(Z_{p_{\infty}}, \pi) = 0$ while $\operatorname{Ext}(Z_{p_{\infty}}, \pi)$ is the p-completion of π .

We end with the observation that, although the associated spectral sequence converges to $\pi_* R_{\omega} X$ whenever X is connected with $\tilde{H}_n(X; Z_p)$ finite for each n (4.1), this need not be the case without this assumption, even for X a $K(\pi, n)$. Still, for a nilpotent X the tower $\{R_n X\}$ and the completion $R_{\omega} X$ determine each other up to homotopy (6.1) and hence it should be possible to find out what homotopy information about $R_{\omega} X$ is contained in $E_{\omega}(X; Z_p)$.

BRANDLIS UNIVERSITY AND
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

THE KERVAIRE INVARIANT OF A MANIFOLD

EDGAR H. BROWN, JR.

1. Introduction. Surgery is one of the main tools of differential topology. Typically, one wishes to construct a manifold with certain properties. By some means, usually a transverse regularity argument, one constructs a manifold enjoying some of the desired properties. Then, by surgery, one attempts to modify this manifold to meet all the required conditions. Usually, when the dimension of the manifold $\equiv 2 \mod 4$ one meets Kervaire or Arf invariant obstruction. As an example of this we describe surgery on a map.

Suppose X is a finite CW-complex.

PROBLEM. When does X have the same homotopy type as a smooth, closed, compact orientable manifold?

Necessary conditions are that the homology and cohomology of X satisfy Poincaré duality (see [1] for details) and that there is a vector bundle η over X such that the top homology class of the Thom space $T(\eta)$ is spherical. Assuming these conditions hold, one can construct an m-manifold M and maps

where v_M is the normal bundle of M in R^{m+k} (k large), such that $f_*: H_m(M) \approx H_m(X)$. Surgery in this situation proceeds as follows: Let $\alpha \in \ker f_*\pi_l(M) \to \pi_l(X)$. Represent α by an embedding $i:S^l \subset M$ (if possible). Extend i to an embedding $j:S^l \times D^{m-l} \subset M$ (if possible). Let $N = M \times I \cup D^{l+1} \times D^{m-l}$ with (j(x, y), 1) and $(x, y) \in S^l \times D^{m-l}$ identified (smooth corners). Choose j so that g can be extended to $G: v_N \to \eta$ (again if possible). $\partial N = M \times \{0\} \cup M'$. M' and $g' = G \mid v_{M'}$ are said to be obtained from (M, g) by surgery on α . One can apply

AMS 1970 subject classifications. Primary 57D65, 57D90.

THE KERVAIRE INVARIANT OF A MANIFOLD

this technique, by induction on i to produce an (M, g) such that f_* is a monomorphism on $\pi_i(M)$ for $i < \lfloor m/2 \rfloor$. Furthermore, if one can carry through this construction to produce a monomorphism for $i = \lfloor m/2 \rfloor$, f will be a homotopy equivalence. Wall has defined a group $L_m(\pi_1(X))$, depending only on the group $\pi_1(X)$, and an element $\sigma(M, g)$ in this group such that the surgery can be performed if and only if $\sigma(M, g) = 0$.

We consider the case $\pi_1(X) = 0$ and m = 2n > 4. Suppose $f_*:\pi_i(M) \to \pi_i(X)$ is a monomorphism for i < n (it will be an isomorphism by Poincaré duality). Let $K = \ker(H_n(M) \to H_n(X))$. If we can kill K by surgery, f will be a homotopy equivalence. Each element of K can be represented by an embedding $i:S^n \subset M$ but in general, the normal bundle v_i of $i(S^n)$ in M will not be trivial. v_i is stably trivial because $i(S^n)$ represents an element of K. If n is even, v_i is characterized by its Euler number, and when n is odd v_i is either trivial or isomorphic to the tangent bundle of S^n . Let

 $\varphi: K \to \begin{cases} Z, & n \text{ even,} \\ Z_2, & n \text{ odd,} \end{cases}$

be defined as follows: Let $u \in K$ and let $i:S^n \subset M$ represent u. Let $\varphi(u)$ be the Euler number of v_i if n is even and 0 or 1 as v_i is trivial or not when n is odd, $n \neq 1, 3, 7$. When n is even, $\varphi(u) = u \cap u$, where " \cap " denotes the intersection pairing, but for n odd φ cannot be expressed in terms of the intersection pairing. One does have the relation:

$$(1.1) \varphi(u+v) = \varphi(u) + \varphi(v) + u \cap v \bmod 2$$

for n odd. To perform the surgeries making $f\colon M\to X$ into a homotopy equivalence it is necessary and sufficient that there is a symplectic basis $\lambda_i,\ \mu_i,\ i=1,2,\ldots,\ l\ (\lambda_i\cap\mu_j=\delta_{ij},\ \lambda_i\cap\lambda_j=\mu_i\cap\mu_j=0)$ such that $\varphi(\lambda_i)=\varphi(\mu_i)=0$. By Poincaré duality, \cap is nonsingular on K. Suppose n is odd, $n\neq 1,3,7$. In this case \cap is skew so there is a symplectic basis for K. The Arf invariant of φ is an algebraic invariant given by $A(\varphi)=\sum \varphi(\lambda_i)\varphi(\mu_i)\in Z_2$ for any symplectic basis $\lambda_i,\ \mu_i$. An algebraic result about A is that $A(\varphi)=0$ if and only if $\lambda_i,\ \mu_i$ can be chosen so that $\varphi(\lambda_i)=\varphi(\mu_i)=0$. In this case the Wall group $L_{4k+2}(0)$ is Z_2 and $\sigma(M,g)=A(\varphi)$.

Suppose n is even. \cap on K is nonsingular and $u \cap u = \text{Euler number } v_i$ is even. It follows from results on quadratic forms over Z, that there is a symplectic basis if and only if the signature of φ is zero. Thus $L_{4k}(0) = Z$ and $\sigma(M, g) = \text{signature } \varphi$. Furthermore, we can give a formula for $\sigma(M, g)$ in terms of X and η . $H_n(M)$ splits, with respect to the intersection pairing, as $H_n(M) \approx K \oplus H_n(X)$, where the pairing on $H_n(X)$ comes from the fact that it satisfies Poincaré duality. Thus

THEOREM 1.2. If n is even,

$$\sigma(M,g) = I(M) - I(X),$$

where I denotes the index.

Using the Hirzebruch index theorem we have

$$I(M) = \bar{L}_{2n}(p(\nu))(M) = \bar{L}_{2n}(p(\eta))(X),$$

where \overline{L}_{2n} is the L-polynomial and p is the Pontrjagin class. Hence

Theorem 1.3.
$$\sigma(M,g) = \overline{L}_{2n}(p(\eta))(X) - I(X)$$
.

Theorems 1.2 and 1.3 provide a model for what we would like to do when n is odd. In subsequent lectures we describe a version of Theorem 1.2 for n odd.

An important special case of the above is $X = S^{2n}$, η trivial and n odd. Then g is a framing of the normal bundle of M and $\sigma(M, g)$ is the Kervaire invariant [2]. This defines a homomorphism

$$K: \Omega_{2n}(\text{framed}) \to \mathbb{Z}_2$$
.

Kervaire and Milnor conjectured that K=0, $n \neq 1, 3, 7$. (K is defined for n=1,3,7 as $\sigma(M,g)$ but in these cases $\sigma(M,g)$ is the obstruction to finding G; see page 65. $K \neq 0$, n=1,3,7.) The results on this conjecture are:

Kervaire: K = 0 for $n = 5, 7 \lceil 2 \rceil$,

Brown-Peterson: K = 0 for $n \equiv 1 \mod 4$ [3],

Browder: K = 0 for $n \neq 2^i - 1$ [4], and $K \neq 0$ for $n = 2^i - 1$, if and only if, h_i^2 lives to E_{∞} in the Adams spectral sequence for homotopy groups of spheres. $(K \neq 0, \text{ if } n = 30.)$

We will indicate some of the methods used by Browder to prove his results.

2. Algebra of the Arf invariant. Let V be a finite-dimensional vector space over Z_2 . The Arf invariant is defined on quadratic functions $\varphi: V \to Z_2$. Both for algebraic and geometric reasons it is useful to consider functions into Z_4 .

DEFINITION 2.1. $\varphi: V \to Z_4$ is (nonsingular) quadratic if

$$\varphi(u+v)=\varphi(u)+\varphi(v)+j\mu(u\otimes v),$$

where $\mu: V \otimes V \to Z_2$ is a nonsingular pairing and $j: Z_2 \to Z_4$ is the nontrivial homomorphism.

REMARK. $2\varphi(u)=j\mu(u\otimes u)$. Thus considering φ with values in Z_4 instead of Z_2 allows us to deal with the case in which $\mu(u\otimes u)\neq 0$. This allows us to deal with manifolds in which cup product to the top dimension is nonzero.

If $\varphi_1: V_1 \to Z_4$ and $\varphi_2: V_2 \to Z_4$ are quadratic, we define $\varphi_1 \approx \varphi_2$ if there is a linear isomorphism $\lambda: V_1 \to V_2$ such that $\varphi_2 \lambda = \varphi_1$. We define

$$\varphi_1 + \varphi_2 : V_1 \oplus V_2 \rightarrow Z_4$$

b

$$(\varphi_1 + \varphi_2)(u, v) = \varphi_1(u) + \varphi_2(v)$$

and we define $\varphi_1 \varphi_2 : V_1 \otimes V_2 \rightarrow Z_4$ by

$$\varphi_1\varphi_2(u \otimes v) = \varphi_1(u)\varphi_2(v).$$

(Use the quadratic property to extend this to all of $V_1 \otimes V_2$.) Let $(-\varphi)(u) = -\varphi(u)$.

We wish to show that the Grothendieck group of these functions is Z_8 . We state this in the following form:

Theorem 2.2. There is a unique function σ from quadratic functions to Z_8 such that

- (i) If $\varphi_1 \approx \varphi_2$, $\sigma(\varphi_1) = \sigma(\varphi_2)$.
- (ii) $\sigma(\varphi_1 + \varphi_2) = \sigma(\varphi_1) + \sigma(\varphi_2)$.
- (iii) $\sigma(-\varphi) = -\sigma(\varphi)$.
- (iv) $\sigma(\gamma) = 1$, where $\gamma: Z_2 \to Z_4$ by $\gamma(0) = 0$, $\gamma(1) = 1$.

Furthermore

(v) $\sigma(\varphi_1\varphi_2) = \sigma(\varphi_1)\sigma(\varphi_2)$.

- (vi) If $\psi: V \to Z_2$ is nonsingular quadratic, $\sigma(j\psi) = k(\operatorname{Arf} \psi)$ where $k: Z_2 \to Z_8$ by k(1) = 4 and k(0) = 0.
- (vii) If $\psi: U \to Z$ is a unimodular quadratic form over $Z, \widetilde{\psi}: U/2U \to Z_4$ is well defined and quadratic and $\sigma(\widetilde{\psi}) = \text{signature } \psi \mod 8$.
- (viii) For any φ there is a $\bar{\varphi}$ such that $\varphi + (\bar{\varphi} + (-\bar{\varphi})) \approx n\gamma + m(-\gamma)$ and $\sigma(\varphi) = n m$.
 - (ix) $\sigma(\varphi) = \dim V \mod 2$.

Proof. We describe a trick due to Paul Monsky for defining σ . Let $i=(-1)^{1/2}$ and consider

$$\alpha(\varphi) = \sum_{u \in V} i^{\varphi(u)} \in \mathbb{C}.$$

It is trivial to check that $\alpha(\varphi_1 + \varphi_2) = \alpha(\varphi_1)\alpha(\varphi_2)$, $\alpha(-\varphi) = \alpha(\varphi)$, if $L: V \to Z_4$ is linear, $\alpha(L) = 0$ if $L \neq 0$ and $\alpha(L) = 2^{\dim V}$ if L = 0. From the quadratic property one then sees that

$$\alpha(\varphi)\overline{\alpha(\varphi)} = 2^{\dim V}$$
 and $\alpha(2\varphi) = +i2^{\dim V}$

Hence $\alpha(8\varphi)$ is real and

$$\alpha(\varphi) = \sqrt{2}^{\dim V} \cdot 8$$
th root of $1 = \sqrt{2}^{\dim V} \left(\frac{1+i}{\sqrt{2}}\right)^{\sigma(\varphi)}$.

Continuing in this vein one can prove (i) - (ix).

Suppose $\mu: V \otimes V \to Z_2$ is a nonsingular symmetric pairing. Let $Q(V, \mu) = V \times Z_2$ with the abelian group structure given by

$$(u, n) + (v, m) = (u + v, \mu(u \otimes v) + n + m).$$

It is trivial to check that quadratic functions $\varphi: V \to Z_4$ whose associated bilinear form is μ are in one-to-one correspondence with homomorphisms $\psi: Q(V, \mu) \to Z_4$ such that $\psi(0, 1) = 2$, under the correspondence $\varphi(u) = \psi(u, 0)$.

3. The Kervaire invariant of a manifold. Suppose M is a closed 2n-manifold (or a Poincaré space). Let $K_n = K(Z_2, n)$, $H^n(M) = [M^+, K_n]$, and

$${M^+, K_n} = \lim_{k\to\infty} \left[S^k M^+, S^k K_n\right].$$

Let $\theta: [M^+, K_n] \to \{M^+, K_n\}$ by $\theta[f] = \{f\}$. Let $d: M \to S^{2n}$ be a map of degree 1. $\{S^{2n}, K_n\} \approx Z_2$.

PROPOSITION 3.1 $\theta \times d^*: Q(H^n(M), \cup) \approx \{M^+, K_n\}$, where \cup denotes cup product.

PROOF. One shows that $\theta(u+v) = \theta(u) + \theta(v) + (u \cup v)(M)\alpha$, where $\alpha = d*1$, by using $S(K_n \times K_n) = S(K_n) \vee SK_n \vee S(K_n \wedge K_n)$. The methods for proving Proposition 3.3 then yield Proposition 3.1.

Let v_M be the normal bundle of M in R^{2n+k} . Recall M^+ is the S-dual of $T(v_M)$. Hence $\{M^+, K_n\} \approx \{S^{2n+k}, T(v_M) \wedge K_n\}$. α corresponds to $\bar{\alpha} = \text{image}$ of the generator of $\{S^{2n+k}, S^k \wedge K_n\} \approx Z_2$ under the inclusion S^k in $T(v_M)$ as a fibre. Combining the results of §2 and Proposition 3.1 we have:

PROPOSITION 3.2. The quadratic functions on $H^{n}(M)$ associated to cup product are in one-to-one correspondence with homomorphisms

$${S^{2n+k}, T(\nu_M) \wedge K_n} \rightarrow Z_4$$

taking $\bar{\alpha}$ into 2.

Let Y be a 0-connected spectrum such that $H^0(Y; Z_2) \approx Z_2$ and let $U: Y \rightarrow K(Z_2)$ represent the generator. A Y orientation for M is a map $V: T(v_M) \rightarrow Y_k$ such that UV is the Thom class of $T(v_M)$. Hence, a Y orientation of M gives a map

$${S^{2n+k}, T(\nu_M) \wedge K_n} \rightarrow {S^{2n+k}, Y_k \wedge K_n}$$

and $\bar{\alpha}$ maps into an obvious canonical element $\bar{\alpha}$.

PROPOSITION 3.3. $\bar{\alpha}$ is at most divisible by 2 and $\bar{\alpha} \neq 0$ if and only if

$$\chi(Sq^{n+1})U=0.$$

PROOF.

$${S^{2n+k}, Y_k \wedge K_n} \approx {S^{2n+k+1}, Y_k \wedge SK_n}.$$

For the dimensions under consideration, the two stage Postnikov system of SK_n , namely (K_{n+1}, Sq^{n+1}) , suffices to compute this group. This gives an exact sequence

$$H_{k+n+1}(Y_k) \xrightarrow{Sq^{n+1}} H_k(Y_k) \longrightarrow \{S^{2n+k}, Y_k \land SK_n\} \longrightarrow H_{n+k}(Y_k) \longrightarrow 0.$$
OF D

Suppose $\chi(Sq^{n+1})U = 0$. Choose a homomorphism

$$\lambda: \{S^{2n+k}, Y_k \wedge K_n\} \rightarrow Z_4$$

such that $\lambda(\tilde{\alpha}) = 2$. Suppose V is a Y orientation of M. We then have a Kervaire invariant $K(M, V) \in Z_8$ given by $\sigma(\varphi)$, where $\varphi: H^n(M) \to Z_4$ assigns to u, λ on:

$$S^{2n+k} \xrightarrow{t} T(v_M) \xrightarrow{\Delta} T(v_M) \wedge M^+ \xrightarrow{V \wedge U} Y_k \wedge K_n,$$

where t is the Thom construction and Δ is the diagonal map.

4. Kervaire invariant and cobordism. Suppose $\{MG_k\}$ are the Thom spaces for some cobordism theory and $\chi(Sq^{n+1})U=0$, where U is the Thom class of MG_k . Taking $Y = \{MG_k\}$ (and choosing λ as above) we obtain a Kervaire invariant for each G manifold of dimension 2n.

THEOREM 4.1. K defines a homomorphism

$$K:\Omega_{2n}(G)\to Z_8$$
.

PROOF. The proof of this is somewhat tedious but straightforward.

Example 1. $MG_k = S^k$. λ is unique.

THEOREM 4.2. $K: \Omega_{2n}(framed) \rightarrow Z_8$ has its image in $\{0,4\}$ and is the Kervaire invariant.

Example 2. $MG_k = M \operatorname{Spin}_k$, $n \equiv 1 \mod 4$. For certain choices of λ , Kis the Kervaire invariant defined by Brown-Peterson.

Example 3. $MG_k = MSU_k$, $n \equiv 1 \mod 4$. λ is unique.

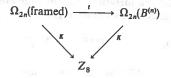
Example 4. $MG_k = MSO_k$, n even.

Conjecture. For a certain choice of λ , $\varphi:H^n(M)\to Z_4$ is the Pontrjagin

square and K is the index mod 8.

Example 5. $MG_k = S^{k-1}RP_{\infty}$. λ is unique. $\Omega_2(G)$ is the cobordism group of surfaces immersed in R^3 and K is an isomorphism. $\varphi(u)$ may be obtained as follows: Suppose $i: S \to R^3$ is an immersion of a surface S. Represent the Poincaré dual of u by an embedded circle (or disjoint circles). Let $\varphi(u) =$ number of half twists (in R3) of a tubular neighborhood of this circle (Mobius band has one half twist).

EXAMPLE 6. Let $v_{n+1} \in H^{n+1}(BO_k)$ be the Wu class given by $v_{n+1}U =$ $\chi(Sq^{n+1})U$ in $H^*(MO_k)$. Let $B_k^{(n)} \xrightarrow{p} BO_k$ be the fibration with k-invariant v_{n+1} . Let $MB_k^n = T(p^*\zeta_k)$, where ζ_k is the canonical k-plane bundle. This is the cobordism theory utilized by Browder to deal with the Kervaire-Milnor conjecture. One has a commutative diagram



Browder shows that t = 0 if $n \neq 2^{i} - 1$ by constructing a Postnikov system for MB_{k}^{n} up to dimension 2n.

Suppose Y is a spectrum as in §3, $\chi(Sq^{n+1})U = 0$ and suppose λ has been chosen. Let X be a 1-connected Poincaré space of dimension 2n, n odd, ξ its Spivak normal bundle, V a Y orientation of ξ and $\alpha \in \pi_{2n+k}(T(\xi))$ an element representing the top homology class of $T(\xi)$. The methods of §3 give an invariant

 $K(X, \xi, \alpha, V) \in Z_8$. Suppose

$$\begin{array}{c|c}
\nu_M & \xrightarrow{g} & \xi \\
\downarrow & & \downarrow \\
M & \xrightarrow{f} & X
\end{array}$$

is as in §1. Let $\beta \in \pi_{2n+k}(T(v_M))$ be the element obtained from the Thom construction.

THEOREM 4.3. $\sigma(M, g) = K(M, \nu_M, \beta, g^*V) - K(X, \xi, T(g)_*(\beta), V)$.

REFERENCES

- 1. C. T. C. Wall, Surgery on non-simply connected manifolds, Ann. of Math. (2) 84 (1966), 217-276.
- 2. M. Kervaire, A manifold which does not admit any differentiable structure, Comment Math. Helv. 34 (1960), 257-270. MR 25 # 2608.
- 3. E. H. Brown and F. S. Peterson, Kervaire invariant of (8k + 2) manifolds, Bull. Amer. Math. Soc. 71 (1965), 190-193, MR 30 #584.
- 4. W. Browder, Kervaire invariant and its generalizations, Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963.

BRANDEIS UNIVERSITY