TWO COMPLEXES WHICH ARE HOMEO MORPHIC BUT
COMBINATORIALLY DISTINCT

BY JOHN MILNOR

(Received March 14, 1961)

Let L_q denote the 3-dimensional lens manifold of type $(7, q)$, suitably
triangulated (see § 1), and let σ^n denote an n-simplex. A finite simplicial
complex X_q is obtained from the product $L_q \times \sigma^n$ by adjoining a cone over
the boundary $L_q \times \partial \sigma^n$. The dimension of X_q is $n + 3$.

THEOREM 1. For $n + 3 \geq 6$ the complex X_1 is homeomorphic to X_7.

THEOREM 2. No finite cell subdivision of the simplicial complex X_1 is
isomorphic to a cell subdivision of X_7. In particular there is no piece-wise
linear homeomorphism from X_1 to X_7.

The proof of Theorem 1 will be based on a recent result of B. Mazur.
For the special case $n = 3$ (which is somewhat more difficult) the proof
will make use of theorems of A. Haefliger and J. Stallings.

The proof of Theorem 2 will be based on the concept of "torsion" as
defined by Reidemeister, Franz, and de Rham.

These two theorems show that the Hauptvermutung\(^2\) for simplicial com-
plexes of dimension ≥ 6 is false. On the other hand Papakyriakopoulos
[10] has proved the Hauptvermutung for complexes of dimension ≤ 2.

The Hauptvermutung for manifolds remains open. However Moise [8]
has proved the Hauptvermutung for manifolds of dimension ≤ 3; and
Smale [13] has proved it for triangulations of the sphere S^n, $n \neq 4, 5, 7$,
which look locally like the usual triangulation. A weak form of the
Hauptvermutung for cells and spheres has been proved by Gluck [4].

As bi-products of the argument, two other curious phenomena appear.

The symbols

$$S^{n-1} \subset D^n \subset R^n$$

will always denote the unit sphere bounding the unit disk in euclidean
n-space.

THEOREM 3. The manifold-with-boundary $L_1 \times D^6$ is not diffeomor-
phic to $L_7 \times D^6$. However the interiors of these two manifolds are
diffeomorphic.

\(^1\) The author wishes to thank the Sloan Foundation for its support.

\(^2\) See, for example, Alexandroff and Hopf [1, p. 152]. I do not know who originated the
term "Hauptvermutung". The problem was clearly formulated by Tietze [18, pp. 13-14] in
1908. See also Steinitz [15, p. 23].
Two closed manifolds \(M_1 \) and \(M_2 \) will be called \(h \)-cobordant (ignoring orientation) if their disjoint sum \(M_1 + M_2 \) bounds a compact differentiable manifold \(W \) such that both \(M_1 \) and \(M_2 \) are deformation retracts of \(W \). (The term "\(J \)-equivalent" has previously been used for this concept. Compare Thom [17], Smale [13].)

Theorem 4. The manifold \(L_1 \times S^1 \) is \(h \)-cobordant to \(L_2 \times S^1 \); but these two manifolds are not diffeomorphic.

1. **Mazur's theorem and lens manifolds**

Let \(M_1 \) and \(M_2 \) be two closed differentiable manifolds of dimension \(k \) which are parallelizable\(^8\) and have the same homotopy type.

Theorem of Mazur [6]. If \(n > k \) then \(M_1 \times R^n \) is diffeomorphic to \(M_2 \times R^n \).

An outline of the proof is given in §2.

The *lens manifold* \(L = L(p, q) \) can be constructed as follows. Let \(p > q \) be relatively prime positive integers. Identify \(S^3 \) with the unit sphere in the complex plane, consisting of all \((z_1, z_2)\) with \(|z_1|^2 + |z_2|^2 = 1 \). Let \(\omega \) denote the complex number \(\exp(2\pi i/p) \). Then the cyclic group \(\Pi \) of order \(p \) acts differentiably on \(S^3 \) without fixed points by the rule

\[
T(z_1, z_2) = (\omega z_1, \omega^q z_2),
\]

where \(T \) denotes a generator of \(\Pi \). The quotient manifold \(S^3/\Pi \) is the required lens manifold.

This manifold \(L \) can be considered as a CW-complex with only four cells, namely the images \(\tilde{e}_m \) in \(L \) of:

1. The point \(e_0 = (1, 0) \),
2. The set \(e_1 \) of \((e^{i\theta}, 0) \),
3. The set \(e_2 \) of \((z_1, \sqrt{1 - |z_1|^2}) \), and
4. The set \(e_3 \) of \((z_1, e^{i\theta} \sqrt{1 - |z_1|^2}) \);

where \(0 < \theta < 2\pi/p \) and \(|z_1| < 1 \). (Compare de Rham [12].)

Alternatively \(L \) can be considered as a simplicial complex. Here is an example of a triangulation of \(L \) which is compatible both with the above cell subdivision and with the differentiable structure. Consider the convex polyhedron \(P \) spanned by the \(2p \) points \((\omega^i, 0)\) and \((0, \omega^x)\) in the complex plane. The boundary \(\partial P \) is a simplicial complex which is homeomorphic

\(^8\)Instead of parallelizability, it suffices to assume that the stable tangent bundles of \(M_1 \) and \(M_2 \) are compatible under some homotopy equivalence \(M_1 \to M_2 \).
to S^3 under radial projection from the origin. Taking two successive barycentric subdivisions of ∂P, and then collapsing under the action of Π, we obtain the required simplicial complex.

These complexes were discovered by Tietze [18, p. 110] in 1908. Tietze computed the fundamental group

$$\pi_1(L) \cong \Pi$$

and the homology of L. In particular he showed that the integer p is a topological invariant of $L = L(p, q)$.

In 1935 Reidemeister [11] classified the lens manifolds combinatorially. He showed that $L(p, q)$ is combinatorially equivalent to $L(p, q')$ if and only if either

$$q' \equiv \pm q \text{ or } \pm qq' \equiv 1 \pmod{p}.$$

(According to Moise [8] or Brody [2] two lens manifolds are homeomorphic if and only if they are combinatorially equivalent. This fact will not be needed in the present paper.)

In 1941 J. H. C. Whitehead [20] classified the lens manifolds up to homotopy type. (For a more recent version see Olum [9].) Whitehead showed that $L(p, q)$ has the homotopy type of $L(p, q')$ if and only if $\pm qq'$ is a quadratic residue modulo p. As an example, for $p = 7$, we obtain two distinct combinatorial manifolds $L(7, 1)$ and $L(7, 2)$; but only one homotopy type; since $1 \cdot 2 \equiv 3^2$ is a quadratic residue modulo 7.

All lens manifolds are parallelizable. This follows from the theorem of Stiefel [16] and Whitney that all orientable 3-manifolds are parallelizable. (For p odd the proof is quite easy since the obstructions to parallelizability lie in groups $H^n(L; \pi_m - (SO_3))$ which are zero.)

Hence we can apply Mazur's theorem and conclude that:

Lemma 1. If $\pm qq'$ is a quadratic residue modulo p, and if $n > 3$, then $L(p, q) \times R^n$ is diffeomorphic to $L(p, q') \times R^n$.

Proof of Theorem 1 for $n > 3$. Recall the definition:

$$X_q = L_q \times \sigma^n \cup \text{Cone } (L_q \times \partial \sigma^n),$$

where $L_q = L(7, q)$. Let x_0 denote the vertex of the cone. The complement $X_q - x_0$ is homeomorphic to the product $L_q \times R^n$. In fact a specific homeomorphism $f: X_q - x_0 \to L_q \times R^n$ can be given as follows. Let $h: \sigma^n \to D^n$ be a homeomorphism, and define

$$f(y, z) = (y, h(z))$$

$$f(t(y, z') + (1 - t)x_0) = (y, h(z')/t)$$

for $y \in L_q$, $z \in \sigma^n$, $z' \in \partial \sigma^n$, and $0 < t \leq 1$.

Therefore X_q is homeomorphic to the single point compactification of $L_q \times \mathbb{R}^n$. Using Lemma 1, this implies that X_1 is homeomorphic to X_2; which completes the proof of Theorem 1 for $n > 3$.

2. h-cobordism

First let me outline a proof of Mazur’s theorem. Given a homotopy equivalence $f : M_1 \to M_2$, choose a differentiable imbedding:

$$f' : M_1 \to \text{Interior } (M_2 \times D^n)$$

which approximates the function $x \to (f(x), 0)$. This is certainly possible if n is greater than the dimension k of M_k. Since both M_1 and M_3 are parallelizable, it follows that the normal bundle of $f'(M_1)$ is trivial providing that $n > k$. (See for example Milnor [7, Lemma 5].) Thus a tubular neighborhood of $f'(M_1)$ in $\text{Interior } (M_2 \times D^n)$ is diffeomorphic to $M_1 \times D^n$.

This gives an imbedding $i : M_1 \times D^n \to M_2 \times D^n$. Similarly, using a homotopy inverse to f, one obtains an imbedding $j : M_2 \times D^n \to M_1 \times D^n$. The main step in the proof is now the following.

Lemma 1. If $n > k > 1$ then any imbedding

$$h : M_1 \times D^n \to \text{Interior } M_1 \times D^n$$

which is homotopic to the identity can be extended to a diffeomorphism of the pair $(M_1 \times 2D^n, M_1 \times D^n)$ onto the pair $(M_1 \times D^n, h(M_1 \times D^n))$. In particular this applies to the imbedding $h = ji$.

Here $2D^n$ denotes the disk of radius 2. The key step in the proof is to show that h restricted to $M_1 \times 0$ is differentiably isotopic to the standard inclusion map $M_1 \times 0 \to M_1 \times D^n$. For $n > k + 1$, this follows from a well known theorem of Whitney [23]. For the case $n = k + 1 > 2$, it follows from a recent theorem of A. Haefliger [5].

Now consider the infinite direct sequence

$$M_1 \times D^n \xrightarrow{i} M_2 \times D^n \xrightarrow{j} M_1 \times D^n \xrightarrow{i} \cdots .$$

The “limit” or “union” of this sequence is non-compact manifold V. Using the lemma it is seen that V is diffeomorphic to the union $M_1 \times \mathbb{R}^n$ of

$$M_1 \times D^n \subset M_1 \times 2D^n \subset M_1 \times 4D^n \subset \cdots .$$

But a similar proof shows that V is diffeomorphic to $M_2 \times \mathbb{R}^n$. Hence $M_1 \times \mathbb{R}^n$ is diffeomorphic to $M_2 \times \mathbb{R}^n$. For details the reader is referred to Mazur's paper.

Now consider the region

$$W = M_2 \times D^n - \text{Interior } i(M_1 \times D^n) .$$
This is a compact differentiable manifold bounded by \(M_2 \times S^{n-1} \) and \(i(M_1 \times S^{n-1}) \).

Lemma 2. If \(n \geq 3 \) then both \(M_2 \times S^{n-1} \) and \(i(M_1 \times S^{n-1}) \) are deformation retracts of \(W \).

Proof. It will be convenient to denote the boundaries of \(W \) by \(W_2 \) and \(W_1 \) respectively. By a dimensional argument, any map of a 2-dimensional complex into \(M_2 \times D^n \) can be deformed off \(f'(M_1) \), and hence can be pushed into \(W \).

This implies that

\[
\pi_1(W) \cong \pi_1(M_2 \times D^n)
\]

and hence that

\[
\pi_1(W_q) \cong \pi_1(W) \quad \text{for } q = 1, 2.
\]

Given any system \(S \) of local coefficients on \(M_2 \times D^n \) we have

\[
H_*(W, W_1; S) \cong H_*(M_2 \times D^n, i(M_1 \times D^n); S)
\]

by excision. But \(i \) is a homotopy equivalence, hence these groups are zero. Using Whitehead [21, Theorem 3] it follows that \(W_1 \) is a deformation retract of \(W \).

The group \(H_*(W, W_2; S) \) is isomorphic by Poincaré duality to \(H^{n+k-*}(W, W_1; S) \), and therefore is zero. This implies that \(W_2 \) is a deformation retract of \(W \), which completes the proof of Lemma 2.

Thus: if \(M_1 \) and \(M_2 \) are closed parallelizable \(k \)-manifolds with the same homotopy type, and if \(n > k > 1 \), then \(M_1 \times S^{n-1} \) is \(h \)-cobordant to \(M_2 \times S^{n-1} \).

In particular this shows that \(L_1 \times S^4 \) is \(h \)-cobordant to \(L_2 \times S^4 \); which proves half of Theorem 4.

Next we will see that most of the above arguments still work for the case \(n = k = 3 \). According to Haefliger [5], any homotopy equivalence

\[
L_1 \to \text{Interior} \, (L_2 \times D^3)
\]

is homotopic to an imbedding \(f' \). The normal bundle of \(f'(L_i) \) will be trivial, since the obstructions to triviality lie in groups

\[
H^m(L_i; \pi_{m-1}(SO_3))
\]

which are zero. Hence, according to Lemma 2, both \(L_2 \times S^2 \) and \(i(L_1 \times S^2) \) are deformation retracts of the region

\[
W = L_2 \times D^3 - \text{Interior} \, i(L_1 \times D^3).
\]
Thus $L_1 \times S^2$ is h-cobordant to $L_2 \times S^2$.

According to Stallings [14, Theorem 7.4] the space W, with the boundary $L_2 \times S^2$ removed, is homeomorphic to $i(L_1 \times S^2) \times [0, \infty)$. Filling in the region $i(L_1 \times D^3)$ it follows that $(L_2 \times D^3) - (L_2 \times S^2)$ is homeomorphic to

$$(L_1 \times D^3) \cup (L_1 \times S^2 \times [0, \infty))$$

where the two sets are matched along the boundary $L_1 \times S^2$. Therefore $L_n \times R^3$ is homeomorphic to $L_1 \times R^3$.

It follows that X_n is homeomorphic to X_1 for $n \geq 3$. This completes the proof of Theorem 1.

3. Torsion

This section will describe the torsion invariant of Reidemeister [11], Franz [3] and de Rham [12]. The presentation will be close to that of de Rham.

Let Π be a discrete group which acts freely on a CW-complex K, and let

$$h : \Pi \rightarrow P$$

be a multiplicative homomorphism from Π to a commutative ring P. If

1. the quotient complex K/Π has only finitely many cells, and
2. the equivariant homology groups $H_i(P \otimes_\Pi C_*(K; Z))$ are all zero; then the torsion $\Delta_h(K)$, will be defined. The torsion is a unit of P which is well defined up to multiplication by elements of the form $\pm h(\pi)$. We will use the notation

$$\Delta = \Delta_h(K) \in U/\pm h(\Pi),$$

where $U \subset P$ denotes the group of units. This element Δ is invariant under equivariant subdivision of K.

In practice K is taken to be the universal covering space of a finite cell complex, and $\Pi = \pi_1(K)$ the group of covering transformations. In particular, letting $K = \tilde{L}(p, q)$ be the universal covering space of a lens manifold, and letting P be the field of complex numbers, the $\Delta_h L(p, q)$ were used by Reidemeister to give the complete combinatorial classification of the lens manifolds.

The proof of Theorem 2 will be based on a more general concept of torsion in which the CW-complex K is replaced by a cw-pair (K, L). The group Π must act cellularly on K and freely on $K - L$. The resulting torsion
\[\Delta_h(K, L) \in U/\pm h(\Pi) \]

is still a combinatorial invariant. That is:

Theorem A. If the cw-pair \((K', L')\) is a \(\Pi\)-equivariant subdivision of \((K, L)\), and if \(\Delta_h(K, L)\) is defined, then

\[\Delta_h(K', L') = \Delta_h(K, L). \]

The proof will be given in § 4.

In this generality, the torsion is definitely not a topological invariant: it depends on the cell structure of \((K, L)\). However in the classical case, with \(L\) vacuous, it is not known whether or not \(\Delta_h(K)\) really depends on the cell structure of \(K\). (If \(K/\Pi\) is a compact differentiable manifold then \(\Delta_h(K)\) can also be defined. See [12], [19].)

For the definition of torsion, it will be convenient to assume that \(P\) is a principal ideal domain. The more general case is considered in the appendix.

Definition. Let \(F\) be a free \(P\)-module of finite rank \(q\). A volume \(v\) in \(F\) will mean a generator for the \(q\)th exterior power \(\wedge^q F\). If \(q > 0\), then any volume can be written in the form \(b_1 \wedge \cdots \wedge b_q\) where \(b_1, \ldots, b_q\) form a basis for \(F\). If \(q = 0\) then a volume is defined to be a unit of \(P\).

Now let \(0 \to F' \to F \to F'' \to 0\) be a short exact sequence of free, finitely generated modules. Let \(v' = b'_1 \wedge \cdots \wedge b'_r\) and \(v'' = b''_1 \wedge \cdots \wedge b''_r\) be volumes in \(F'\) and \(F''\) respectively. Then each basis element \(b''_i\) can be lifted to an element \(b'_i\) of \(F\). Thus we obtain a well defined volume

\[v = b_1 \wedge \cdots \wedge b_r \wedge b'_1 \wedge \cdots \wedge b'_r \]

in \(F\). It is clear that any two of the volumes \(v', v, v''\) determine the third uniquely. In particular we will write

\[v'' = v/v' \]

to indicate the dependence of \(v''\) on \(v\) and \(v'\). If \(F'\) or \(F''\) is zero then this notation, suitably interpreted, still makes sense. For example if

\[0 \to F' \to F \to F'' \to 0 \]

then \(v'\) and \(v\) can be considered as generators of the same module. Their ratio \(v/v'\) is a unit of \(P\).

Now consider an exact sequence

\[0 \to C_n \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots \to C_1 \xrightarrow{\partial} C_0 \to 0 \]

of free \(P\)-modules, and suppose that a volume \(v_i\) is given in each \(C_i\). Since \(P\) is assumed to be a principal ideal domain, it follows that each
submodule \(\partial C_i \subset C_{i-1} \) is free. Using the exact sequence
\[
0 \rightarrow C_n \rightarrow C_{n-1} \rightarrow \partial C_{n-1} \rightarrow 0 ,
\]
the volumes \(v_n \) and \(v_{n-1} \) give rise to a volume \(v_{n-1}/v_n \) in \(\partial C_{n-1} \). Now using the sequence
\[
0 \rightarrow \partial C_{n-1} \rightarrow C_{n-2} \rightarrow \partial C_{n-2} \rightarrow 0 ,
\]
the volumes \(v_{n-1}/v_n \) and \(v_{n-2} \) give rise to a volume
\[
v_{n-2}/(v_{n-1}/v_n)
\]
in \(\partial C_{n-2} \). Continuing by induction we obtain a volume
\[
v_1/(v_2/\cdots/(v_{n-1}/v_n))\cdots)
\]
in \(\partial C_1 = C_0 \). Comparing this with the given volume \(v_0 \) in \(C_0 \) the ratio
\[
v_0/(v_1/(v_2/\cdots/(v_{n-1}/v_n))\cdots))
\]
is a well defined unit of \(P \). The unit obtained in this way will be denoted briefly by
\[
[v_0v_1^{-1}v_2^{-1}\cdots v_n^{\pm 1}] \in U \subset P .
\]

Now consider a \(CW \)-complex \(K \) on which the group \(\Pi \) operates.

Hypothesis 1. \(\Pi \) permutes the cells of \(K \) freely. The quotient complex \(K/\Pi \) has only finitely many cells.

Thus the integral chain groups \(C_*(K; Z) \) can be considered as free modules of finite rank over the integral group ring \(Z\Pi \). In fact each \(i \)-cell of \(K/\Pi \) gives rise to a basis element of \(C_*(K; Z) \) which is well defined up to sign, and up to multiplication, by elements of \(\Pi \).

Using the homomorphism \(h : \Pi \rightarrow U \subset P \) we can form the chain complex
\[
C_* = P \otimes_{\Pi} C_*(K; Z)
\]
where the subscript \(\Pi \) indicates that
\[
\rho h(\pi) \otimes c - \rho \otimes \pi_*(c)
\]
is set equal to zero for each \(\rho \in P, \pi \in \Pi \), and \(c \in C_*(K; Z) \). Thus \(C_i \) is a free \(P \)-module of finite rank with one basis element for each \(i \)-cell of \(K/\Pi \). Taking the exterior product of these basis elements, we obtain a volume \(v_i \) in \(C_i \) which is well defined up to multiplication by elements of the form \(\pm h(\pi) \).

Hypothesis 2. The homology groups \(H_*(P \otimes_{\Pi} C_*(K; Z)) \) are all zero, so that the sequence
is exact.

Then the torsion $\Delta_h(K)$ can be defined as the residue class of
\[[v_0v_1^{-1}v_2v_3^{-1} \cdots v_n^{\pm 1}] \in U \]
modulo the multiplicative subgroup $\pm h(\Pi)$.

The definition of torsion for a cw-pair (K, L) is similar. In this case one assumes that Π is a group of automorphisms of the pair; that Π operates freely on the cells of $K - L$; that $(K - L)/\Pi$ has only finitely many cells; and that
\[H_i(P \otimes_n C_\ast(K, L; Z)) = 0 \quad \text{for all } i. \]
(The group Π is definitely allowed to have fixed points in L.) The torsion
\[\Delta_h(K, L) \in U/\pm h(\Pi) \]
is defined just as above; using the chain complex $C_\ast = P \otimes_n C_\ast(K, L; Z)$.

As an example let K be the 3-sphere considered as the universal covering space \tilde{L} of $L(p, q)$ and let Π be the cyclic group of covering transformations. As described in §1, \tilde{L} has a Π-equivariant cell structure with $4p$ cells; so that $L(p, q) = \tilde{L}/\Pi$ has only 4 cells. Thus $C_\ast(\tilde{L}; Z)$ is a free $\mathbb{Z}_p\Pi$-module with 4 generators: e_0, e_1, e_2 and e_3. The boundary relations are easily seen to be as follows:
\[\partial e_1 = (T - 1)e_0 \]
\[\partial e_2 = (1 + T + T^2 + \cdots + T^{p-1})e_1 \]
\[\partial e_3 = (T^r - 1)e_2 , \]
where r is determined by the congruence $qr = 1 \pmod{p}$.

A homomorphism h from Π to the complex numbers P takes the generator T into some p^{th} root of unity τ. If $\tau \neq 1$ then
\[1 + \tau + \tau^2 + \cdots + \tau^{p-1} = 0 ; \]
so that the boundary relations in
\[C_\ast = P \otimes_\Pi C_\ast(\tilde{L}; Z) \]
become
\[\partial e_1 = (\tau - 1)e_0 , \quad \partial e_2 = 0 , \quad \partial e_3 = (\tau^r - 1)e_2 . \]
Clearly the chain complex C_\ast is acyclic. The torsion
\[\Delta_h(\tilde{L}) = [e_0e_1^{-1}e_3e_3^{-1}] \in U/\pm h(\Pi) \]
is defined; and is equal to $(\tau - 1)^{-1}(\tau^r - 1)^{-1}$. This complex number is
well defined up to multiplication by numbers of form \(\pm \tau^k \). Taking the absolute value of \(\Delta_h(\tilde{L}) \) we obtain a well defined real number \(|\Delta| \).

Applying this construction to \(L(7, 1) \) we obtain \(|\Delta| = 1.33 \) or 0.41 or 0.26 (to two decimal places) depending on the choice of \(h \). On the other hand for \(L(7, 2) \) we obtain \(|\Delta| = 0.74 \) or 0.59 or 0.33. Thus the torsion invariant distinguishes \(L(7, 1) \) from \(L(7, 2) \). Together with Theorem A, it follows that no cw-subdivision of \(L(7, 1) \) is isomorphic to a cw-subdivision of \(L(7, 2) \).

Next consider the complexes \(X_1 \) and \(X_2 \) defined in the beginning of this paper. Each \(X_q \) is a manifold except at one exceptional point \(x_0 \). Removing this point we obtain a space \(X_q - x_0 \) which is homeomorphic to \(L(7, q) \times R^n \). The fundamental group \(\Pi \) of \(X_q - x_0 \) is cyclic of order 7.

Let \(K_q \) denote the single point compactification of the universal covering space of \(X_q - x_0 \). Thus the fundamental group \(\Pi \) of \(X_q - x_0 \) operates on \(K_q \) with a single fixed point. The quotient space \(K_q/\Pi \) is equal to \(X_q \). Any cell structure on the pair \((X_q, x_0) \) gives rise to \(\Pi \)-equivariant cell structure on \(K_q \).

The simplest cell structure on \(X_q \) has five cells: namely the four cells \(\tilde{e}_i \times R^n \) of \(L(7, q) \times R^n \approx X_q - x_0 \); together with the vertex \(x_0 \). The corresponding cell structure on \(K_q \) has 28 cells of the form \(T^r e_i \times R^n \); together with one vertex which will be denoted by \(k_0 \).

Consider the chain complex \(C_\ast(K_q, k_0; Z) \). This complex is free over the group ring \(Z\Pi \) with 4 preferred generators \(e_i \times R^n \). It is isomorphic to the chain complex \(C_\ast(\tilde{L}(7, q); Z) \) except for a shift in dimension. Hence the torsion \(\Delta_h(K_q, k_0) \) is defined and is equal to \(\Delta_h(\tilde{L}(7, q))^{\pm 1} \). (The exponent is +1 or -1 according as \(n \) is even or odd.) Therefore the torsion invariant distinguishes \((K_q, k_0; \Pi) \) from \((K_2, k_0; \Pi) \). It follows that no cw-subdivision of the cw-complex \(X_q \) is isomorphic to a cw-subdivision of \(X_2 \). Since the simplicial structure on \(X_q \) defined in § 1 is a subdivision of the above cell structure, this completes the proof of Theorem 2; except for the verification that torsion is invariant under subdivision (Theorem A).

4. Invariance under subdivision

The proof of Theorem A will be based on three lemmas.

First consider a commutative diagram of short exact sequences.
The $F_{i,j}$ are to be free P-modules of finite rank.

Lemma 3. Given volumes $v_{i,j}$ in $F_{i,j}$ for $i, j \leq 2$ the identity

$$(v_{22}/v_{12})(v_{21}/v_{11}) = \pm (v_{22}/v_{21})(v_{12}/v_{11})$$

is satisfied.

Proof. Choose a basis $\{b_1, \ldots, b_{p}, \ldots, b_{q}, \ldots, b_r, \ldots, b_s\}$ for F_{22} so that $\{b_1, \ldots, b_p\}$ forms a basis for F_{11}, so that $\{b_1, \ldots, b_q\}$ forms a basis for F_{12} and so that $\{b_1, \ldots, b_p, b_{q+1}, \ldots, b_s\}$ forms a basis for F_{21} (using the same symbol for corresponding elements in different groups). Set

$$v_{11} = u_{11}b_1 \wedge \cdots \wedge b_p \quad v_{12} = u_{12}b_1 \wedge \cdots \wedge b_q$$

$$v_{21} = u_{21}b_1 \wedge \cdots \wedge b_p \wedge b_{q+1} \wedge \cdots \wedge b_r \quad v_{22} = u_{22}b_1 \wedge \cdots \wedge b_s,$$

where the $u_{i,j}$ are units. Then it is easily verified that both $(v_{22}/v_{12})(v_{21}/v_{11})$ and $(v_{22}/v_{21})(v_{12}/v_{11})$ are equal to $\pm (u_{22}u_{12}^{-1}u_{21}^{-1}u_{11})b_{r+1} \wedge \cdots \wedge b_s$. This proves Lemma 3.

Lemma 4. Suppose that Π operates cellularly on a CW-triple (K, L, M). Then

$$\Delta_h(K, M) = \Delta_h(K, L)\Delta_h(L, M).$$

To be more precise: if two of these three invariants are defined, then the third is also defined and equality holds.

Proof. If two of the three invariants are defined, then certainly Π permutes the cells of $K - M$ freely; and $(K - M)/\Pi$ has only finitely many cells. Let

$$C'_* = P \otimes_\pi C_* (L, M; Z)$$

$$C_* = P \otimes_\pi C_* (K, M; Z)$$

$$C''_* = P \otimes_\pi C_* (K, L; Z).$$

Then there is an exact sequence

$$0 \to C'_* \to C_* \to C''_* \to 0$$
of chain mappings. Since two of these three chain complexes are acyclic, it follows that the third is also. Let v'_i, v_i, v''_i denote the preferred volumes in C'_i, C_i, C''_i which are determined by the preferred bases. Each of these is well defined up to multiplication by elements of the form $\pm h(\pi)$. Furthermore it is clear that

$$v_i/v'_i = \pm h(\pi)v''_i$$

for some π. Applying Lemma 3 to each of the diagrams

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \partial C'_{i+1} & \partial C'_i \\
\downarrow & \downarrow & \downarrow \\
0 & C'_i & C_i \\
\downarrow & \downarrow & \downarrow \\
0 & \partial C'_i & \partial C_i \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 \\
\end{array}
\]

it follows by induction on i that

$$\frac{(v_i/\ldots/v_n\ldots)}{(v'_i/\ldots/v'_n\ldots)} = \pm h(\pi)(v''_i/\ldots/v''_n\ldots)$$

for some π_i. This completes the proof of Lemma 4.

Lemma 5. If Π permutes the components of $K - L$ freely, and if $H_*(K, L; Z) = 0$, then $\Delta_h(K, L) = 1$.

Proof. Let K_0 denote the union of L with one component of $K - L$. Then the injection

$$P \otimes C_*(K_0, L; Z) \rightarrow P \otimes C_*(K, L; Z)$$

is an isomorphism. Thus the torsion

$$\Delta_h(K, L) \in U/\pm h(\Pi)$$

is the image in $U/\pm h(\Pi)$ of the torsion invariant

$$\Delta_t(K_0, L) \in U/\pm 1,$$

where the subscript 1 denotes the homomorphism from the trivial group to U. But this is in turn the image of a corresponding invariant with the ring P replaced by the ring Z of integers. Since the only units in Z are ± 1, it follows that $\Delta_t(K, L)$ is trivial.

Proof of Theorem A (following Whitehead [22]). Choose a sequence

$$L = K_0 \subset K_1 \subset \cdots \subset K_r = K$$
of subcomplexes of K so that each $K_{i+1} - K_i$ consists a single cell, together with its translates under Π. Let I denote the unit interval considered as cw-complex, with Π acting trivially.

Given a subdivision K' of K let (A, B) denote the CW-pair formed from $(K \times I, L \times I)$ by subdividing $K \times 1$ only. Let A_i denote the subcomplex of A formed from

$$(K \times 0) \cup (K_i \times I)$$

by subdividing $K_i \times 1$.

The inclusion $C_*(K \times 0, L \times 0) \to C_*(A_0, B)$ is an excision isomorphism, and hence

$$\Delta_*(A_0, B) = \Delta_*(K, L).$$

Each pair (A_{i+1}, A_i) clearly satisfies the conditions of Lemma 5. Hence by Lemma 4

$$\Delta_*(A_0, B) = \Delta_*(A_1, B) = \cdots = \Delta_*(A_r, B),$$

where $A_r = A$. Thus $\Delta_*(A, B)$ is equal to $\Delta_*(K, L)$.

Now let \bar{A}_i denote the subcomplex of A formed from $(K \times 1) \cup (K_i \times I)$ by subdividing $K \times 1$. Then by a similar argument

$$C_*(K' \times 1, L' \times 1) \xrightarrow{\cong} C_*(\bar{A}_0, B)$$

hence $\Delta_*(K', L') = \Delta_*(\bar{A}_0, B)$, and

$$\Delta_*(\bar{A}_0, B) = \Delta_*(\bar{A}_1, B) = \cdots = \Delta_*(\bar{A}_r, B)$$

where $\bar{A}_r = A$. Therefore

$$\Delta_*(K', L') = \Delta_*(A, B) = \Delta_*(K, L),$$

which completes the proof of Theorem A.

In conclusion, here is a theorem concerning the torsion of a product.

Let A be a finite cw-complex with Euler characteristic $\chi(A)$. Assume that Π acts trivially on A.

Theorem B. If $\Delta_*(K)$ is defined then $\Delta_*(K \times A)$ is defined and is equal to $\Delta_*(K)^{\chi(A)}$.

Proof. Choose subcomplexes $A_0 \subset A_1 \subset \cdots \subset A_r = A$ so that A_0 is vacuous and each $A_{i+1} - A_i$ consists of a single cell. The chain complex

$$C_*(K \times A_{i+1}, K \times A_i; Z)$$

is isomorphic to $C_*(K; Z)$ except for a shift in dimension; hence

$$\Delta_*(K \times A_{i+1}, K \times A_i) = \Delta_*(K)^{\pm 1}$$
where the exponent is exactly the difference $\chi(A_{i+1}) - \chi(A_i)$. Now by Lemma 4,
\[
\Delta_h(K \times A) = \Pi_{i=1}^{n-1} \Delta_h(K \times A_{i+1}, K \times A_i) = \Delta_h(K)^{\chi(A)};
\]
which completes the proof.

Corollary 1. For any n the differentiable manifold $L_1 \times D^n$ is not diffeomorphic with $L_2 \times D^n$.

Proof. The triangulation of L_q described in §1 is a C^1-triangulation in the sense of Whitehead [19]. Choosing any C^1-triangulation of D^n, consider the resulting product triangulation of $L_q \times D^n$. According to Theorem B
\[
\Delta_h(\tilde{L}_q \times D^n) = \Delta_h(\tilde{L}_q)^1
\]
hence $L_1 \times D^n$ (in this triangulation) is not combinatorially equivalent to $L_2 \times D^n$. But, according to Whitehead, if two manifolds are diffeomorphic then any C^1-triangulation of one is combinatorially equivalent to any C^1-triangulation of the other. Therefore $L_1 \times D^n$ is not diffeomorphic to $L_2 \times D^n$. This proves Corollary 1, and (together with Lemma 1) completes the proof of Theorem 3.

Corollary 2. For n even the manifold $L_1 \times S^n$ is not diffeomorphic to $L_2 \times S^n$

(I do not know what happens for n odd.) The proof is similar except that
\[
\Delta_h(\tilde{L}_q \times S^n) = \Delta_h(\tilde{L}_q)^2,
\]
since the Euler characteristic of an even dimensional sphere is $+2$. The absolute value of the torsion distinguishes L_1 from L_2, hence its square will also distinguish L_1 from L_2. This completes the proof of Corollary 2, and hence of Theorem 4.

Appendix: Torsion and simple homotopy type

The definition of torsion in §3 can be extended to the case where P is an arbitrary commutative ring with unit as follows. Call a P-module M quasi-free of rank r if the direct sum of M with a free module of rank n is free of rank $r + n$ for large n. It follows easily that $\Lambda^r M$ is free on one generator, so that volumes can be defined as before. Furthermore, using the exact sequences
\[
0 \to \partial C_{i+1} \to C_i \to \partial C_i \to 0,
\]
it follows by induction on i that each ∂C_i is quasi-free. The definition of
torsion now proceeds as in § 3.

In his study of simple homotopy types, Whitehead has defined a sharper torsion invariant which makes sense even over a non-commutative ring. In this construction the group U of units is replaced by an abelian group $W(P)$ which is defined as follows.

Let G_n denote the group of all non-singular $n \times n$ matrices over P. Using the standard imbeddings

$$U = G_1 \subset G_2 \subset G_3 \subset \cdots,$$

one can form the union G: the infinite general linear group of P. Let E denote the subgroup of G generated by all elementary matrices (i.e., all matrices which coincide with the identity matrix except for one off-diagonal element). Whitehead shows that E is exactly the commutator subgroup of G. Define the Whitehead group $W(P)$ to be the quotient G/E. Thus each non-singular matrix $A \in G_n$ determines an element of $W(P)$ which will be denoted by $w(A)$. (Note that $w(A)$ behaves very much like a determinant of A.)

EXAMPLES. If P is an euclidean domain then $W(P) = U$; however I do not know whether or not this is true for a principal ideal domain. In general, if P is a commutative ring, then $W(P)$ splits as the direct sum of U and a second group $W_0(P)$. If P is a skew-field, then $W(P)$ is the commutator quotient group of the multiplicative group U.

The definition of torsion using $W(P)$ in place of U can be carried out as soon as one has a suitable concept of "volume". Let M be a quasi-free left P-module of rank r and let F denote the free P-module generated by countably many elements b_1, b_2, b_3, \cdots. A quasi-basis for M will mean an ordered basis (m_1, m_2, m_3, \cdots) for the free module $M \oplus F$, which satisfies the condition $m_{r+i} = b_i$ for large i. An elementary transformation of such a quasi-basis will mean the operation of adding a left multiple of m_i to m_j, $i \neq j$. Define a volume in M to be an equivalence class of quasi-bases, where two quasi-bases are equivalent if and only if one can be obtained from the other by a finite sequence of elementary transformations. For the special case $M = 0$, note that a volume in M can be considered as an element of the Whitehead group $W(P)$.

Proceeding just as in § 3 one can now define the torsion invariant

$$\Delta_s(K, L) \in W(P)/w(\pm h)\$.$

The hypotheses are the same as those of § 3 except that the ring P need not be commutative.

As a case of particular interest suppose that II operates freely on the simply connected complexes $K \supset L$, and suppose that $H^s(K, L; Z) = 0$.
Let $i: \Pi \to Z\Pi$ denote the inclusion homomorphism. Then the torsion

$$\Delta(K, L) \in W(Z\Pi)/w(\pm \Pi)$$

is defined. This invariant plays a fundamental role in Whitehead's theory. It vanishes if and only if the inclusion map

$$L/\Pi \to K/\Pi$$
is a simple homotopy equivalence.

PRINCETON UNIVERSITY

REFERENCES

20. ———, On incidence matrices, nuclei and homotopy types, Ann. of Math, 42 (1941), 1197-1239.