LTCC Intensive Course:
 From quantum algebras to total non-negativity

Stéphane Launois and Tom Lenagan Kent, 28/29 May 2009

References

K R Goodearl and R B Warfield, Jr, An introduction to noncommutative noetherian rings, LMS student texts, Vol 61

K A Brown and K R Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag

The quantum world

Recall that a ring R is right noetherian if each of the following three equivalent conditions hold:

- Each right ideal is finitely generated
- There is no infinite ascending chain of right ideals
- Each nonempty set of right ideals has a maximal member

All the rings in this course will be (two-sided) noetherian.

An ideal P is a prime ideal of R if either $A \subseteq P$ or $B \subseteq P$ for ideals A, B with $A B \subseteq P$, and is completely prime if $a b \in P$ implies that $a \in P$ or $b \in P$ whenever $a, b \in R$.

Example The zero ideal of $M_{2}(\mathbb{Z})$ is prime but not completely prime.

All prime ideals in this course will be completely prime.

Recall the Ore condition for the existence of localisations in (noncommutative) rings.

Let S be a set of nonzerodivisors in R.

Then there is a ring of right quotients of the form

$$
R S^{-1}:=\left\{r s^{-1} \mid r \in R, s \in S\right\}
$$

provided that the right ore condition holds for S; that is, for any $a \in R$ and $c \in S$, there exist $b \in R$ and $d \in S$ with $a d=c b$

Goldie's Theorem in the case of a noetherian domain says that the right Ore condition holds for the set of nonzero elements in the ring and that the resulting ring of fractions is a division ring.

Proof Assume that $a, c \neq 0$ and that the Ore condition fails; so that $a R \cap c R=0$.

Exercise show that the sum

$$
a R+c a R+c^{2} a R+c^{3} a R+\ldots
$$

is a direct sum.
From this one easily constructs an infinite ascending chain of right ideals, contradicting the noetherian condition.

An element u of R is a normal element of R provided that $u R=$ $R u$.

When u is a normal nonzerodivisor, the Ore conditions holds for the set $S:=\left\{u^{n}\right\}$, and the resulting localisation is

$$
R\left[u^{-1}\right]:=\left\{r u^{-n} \mid r \in R, n \in \mathbb{N}\right\} .
$$

If $I \triangleleft R\left[u^{-1}\right]$ then $I=(I \cap R) R\left[u^{-1}\right]$ and it follows that $R\left[u^{-1}\right]$ is noetherian whenever R is noetherian.

In forming polynomial rings over a noncommutative ring R, the requirement that the indeterminate x commutes with elements of R is too restrictive.

However, to have a notion of degree, if we agree to write polynomials with powers of x at the right side:

$$
r_{n} x^{n}+r_{n-1} x^{n-1}+\cdots+r_{1} x+r_{0}
$$

then, for each $r \in R$, we must have

$$
x r=s x+t
$$

for some $s, t \in R$.

Write $\sigma(r):=s$ and $\delta(r):=t$.

In order to get an associative ring, the following conditions must be satisfied:

The map σ should be an automorphism of R and δ should be a (left) σ-derivation; that is,

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b
$$

In this case, one can form the ring

$$
R[x ; \sigma, \delta]:=\left\{\sum_{i=0}^{n} r_{i} x^{i} \mid i \in \mathbb{N}\right\}
$$

where

$$
x r=\sigma(r) x+\delta(r)
$$

The ring $R[x ; \sigma, \delta]$ is a skew polynomial extension of R.

Hilbert's Basis Theorem If R is noetherian then so is $R[x ; \sigma, \delta]$.

There are two special cases:

Case 1 The map $\delta=0$. In this case, we write $R[x ; \sigma]$.
Case 2 The map σ is the identity map. In this case, we write $R[x ; \delta]$.

Example Let $R=k[y]$ where k is a field.
Choose a nonzero element $q \in k$ and let $\sigma(y):=q y$.

Then $A_{q}:=R[x ; \sigma]$ is the quantum plane.

Then

$$
A_{q}=\left\{\sum_{i, j} c_{i j} y^{i} x^{j} \mid c_{i j} \in k, i, j \in \mathbb{N}\right\}
$$

and

$$
x y=q y x .
$$

Note that both x and y are normal elements in A_{q} so that one can form the algebra of skew Laurent polynomials

$$
\left.T_{q}:=k\left[x^{ \pm 1}, y^{ \pm 1}\right]=\sum_{i, j} c_{i j} y^{i} x^{j} \mid c_{i j} \in k, i, j \in \mathbb{Z}\right\}
$$

where

$$
x y=q y x .
$$

The algebra T_{q} is a quantum torus.

Theorem Suppose that q is not a root of unity. Then the quantum torus $T_{q}:=k\left[x^{ \pm 1}, y^{ \pm 1}\right]$ is a simple noetherian ring.

Sketch proof Let I be a nonzero ideal in T_{q}. Choose an element $0 \neq f \in I$ with

$$
f=f_{0}+f_{1} x+\cdots+f_{n} x^{n}
$$

with $f_{i} \in k\left[y^{ \pm 1}\right], f_{0} \neq 0$ and n minimal. Suppose $n>0$. Then consider the element $a:=q^{n} y f-f y \in I$. The x^{n} term in a is

$$
q^{n} y f_{n} x^{n}-f_{n} x^{n} y=q^{n} y f_{n} x^{n}-q^{n} f_{n} y x^{n}=0
$$

while the constant term is

$$
q^{n} y f_{0}-f_{0} y=\left(q^{n}-1\right) y f_{0} \neq 0
$$

this produces $0 \neq a \in I$ with a smaller n. Thus, $n=0$ and $I \cap k\left[y^{ \pm 1}\right] \neq 0$. Now play same trick with a and x to get $I \cap k \neq 0$, giving a unit in I so that $I=T_{q}$.

Quantum Plane k a field, $0 \neq q \in k$, not a root of unity.

$$
A:=k\langle x, y \mid x y=q y x\rangle
$$

Problem Describe $\operatorname{Spec}(A)$, the set of prime ideals
Torus action: $\mathcal{H}:=\left(k^{*}\right)^{2}$

$$
\begin{aligned}
& (\alpha, \beta) \circ x \\
& (\alpha, \beta) \circ y
\end{aligned}:=\beta x y
$$

Subproblem Find $\mathcal{H}-\operatorname{Spec}(A)$; that is, primes P with $P^{\mathcal{H}}=P$

Note that x and y are \mathcal{H}-eigenvectors.
There are four obvious \mathcal{H}-primes:

$$
0, \quad\langle x\rangle, \quad\langle y\rangle, \quad\langle x, y\rangle
$$

and we claim that these are the only \mathcal{H}-primes.
If $P \in \mathcal{H}-\operatorname{Spec}(A)$ and either $x \in P$ or $y \in P$ then it is easy to see that P is one of

$$
\langle x\rangle, \quad\langle y\rangle, \quad\langle x, y\rangle
$$

Suppose that $P \in \mathcal{H}-\operatorname{Spec}(A)$ and $x, y \notin P$.
Recall that the quantum torus $T=k\left[x^{ \pm 1}, y^{ \pm 1}\right]$ is a simple ring.

Now, $P T \triangleleft T$; so either $P T=T$ or $P T=0$.

If $P T=T$ then either $x \in P$ or $y \in P$, a contradiction.

Thus, $P T=0$ and so $P=0$.

$$
\mathcal{H}-\text { Spec }=\{0,\langle x\rangle,\langle y\rangle,\langle x, y\rangle\}
$$

Example Let's determine all prime ideals in the quantum plane A_{q} at a nonroot of unity when k is algebraically closed.

$$
\mathcal{H}-\text { Spec }=\{0,\langle x\rangle,\langle y\rangle,\langle x, y\rangle\}
$$

¿ Other primes? eg. $x \in P, y \notin P$

$$
\left(\frac{P}{\langle x\rangle}\right)\left[y^{-1}\right] \in \operatorname{Spec}\left(\frac{k[x, y]}{\langle x\rangle}\left[y^{-1}\right]\right) \cong k\left[y, y^{-1}\right]
$$

¿ This leaves $x \notin P, y \notin P$.
As above, using the fact that the quantum torus is simple, $P=0$.

Here is the picture of the prime spectrum of the quantum plane

Quantum affine n-space

$$
\begin{aligned}
& \quad A:=k\left\langle x_{1}, \ldots, x_{n} \mid i<j, x_{i} x_{j}=p_{i j} x_{j} x_{i}, p_{i j}^{m} \neq 1\right\rangle \\
& \mathcal{H}=\left(k^{*}\right)^{n} \text { acts: }\left(\alpha_{1}, \ldots, \alpha_{n}\right) \circ x_{i}:=\alpha_{i} x_{i} \\
& \text { Set } P_{I}:=\left\langle x_{i}\right\rangle_{i \in I} \text { for each subset } I \subseteq\{1, \ldots, n\} \\
& \mathcal{H}-\operatorname{Spec}(A)=\left\{P_{I}\right\}
\end{aligned}
$$

$$
|\mathcal{H}-\operatorname{Spec}(A)|=2^{n}<\infty
$$

Exercise Calculate $(x+y)^{n}$ for the quantum plane
$(x+y)^{2}=$
$(x+y)^{3}=$

Define $[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}$
Note that $[m]_{1}=m$ and that for $q \neq 1$,

$$
[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}=\frac{q^{m}-1}{q-1}
$$

Define $[m]_{q}!:=[m]_{q} \times[m-1]_{q}$!, and

$$
\binom{m}{r}_{q}:=\frac{[m]_{q}!}{[m-r]_{q}![r]_{q}!} .
$$

The quantum binomial theorem

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r}_{q} y^{r} x^{n-r}
$$

Exercise The construction of Pascal's triangle is justified by the identity

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

Find the corresponding identity for q-binomial coefficients (there are two versions)

A good reference for such calculations is the book:

Victor Kac and Pokman Cheung, Quantum Calculus, Springer

Exercise Quantum Weyl algebra
Let $\sigma: k[y] \longrightarrow k[y]$ be given by $\sigma(y):=q y$
Is there a σ-derivation with $\delta(y):=1 ?$
$\delta\left(y^{2}\right)=\sigma(y) \delta(y)+\delta(y) y=$
$\delta\left(y^{3}\right)=$
$\delta\left(y^{n}\right)=$

The Quantum Weyl Algebra is $k[x, y]$ with $x y-q y x=1$.

Exercise The element $z:=x y-y x$ is normal; so the quantum Weyl algebra is not simple.

Quantum matrices

$\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$, the quantised coordinate ring of 2×2 matrices

$$
\mathcal{O}_{q}\left(\mathcal{M}_{2}\right):=k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

with relations

$$
\begin{gathered}
a b=q b a \quad a c=q c a \quad b c=c b \\
b d=q d b \quad c d=q d c \quad a d-d a=\left(q-q^{-1}\right) b c .
\end{gathered}
$$

The quantum determinant is $D_{q}:=a d-q b c$
Exercise Check that the quantum determinant is a central element and that b and c are normal elements.

Note that

$$
\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)=k[a]\left[b ; \tau_{2}\right]\left[c ; \tau_{3}\right]\left[d ; \tau_{4}, \delta_{4}\right]
$$

where

$$
\begin{gathered}
\tau_{2}(a)=q^{-1} a \\
\tau_{3}(a)=q^{-1} a \quad \tau_{3}(b)=b
\end{gathered}
$$

and

$$
\tau_{4}(a)=a \quad \tau_{4}(b)=q^{-1} b \quad \tau_{4}(c)=q^{-1} c
$$

while δ_{4} is the k-linear τ_{4}-derivation such that

$$
\delta_{4}(b)=\delta_{4}(c)=0 \quad \delta_{4}(a)=\left(q^{-1}-q\right) b c
$$

So, $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ is a noetherian domain and has a vector space basis consisting of monomials $a^{i} b^{j} c^{l} d^{m}$.

Overall problem Describe $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right), q$ generic $\left(q^{m} \neq 1\right)$

Set $\mathcal{H}:=\left(k^{*}\right)^{4}$.

There is an action of \mathcal{H} on $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ given by

$$
(\alpha, \beta ; \gamma, \delta) \circ\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]:=\left[\begin{array}{cc}
\alpha \gamma a & \alpha \delta b \\
\beta \gamma c & \beta \delta d
\end{array}\right] ;
$$

that is, by row and column multiplications.

Subproblem Identify all of the prime ideals of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ that are \mathcal{H}-invariant.

- Overall problem: describe $\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)$, when q is not a root of unity.

Theorem (Goodearl-Letzter) Let $P \in \operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)$. Then $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right) / P$ is an integral domain; that is, all primes are completely prime.

Theorem (Goodearl-Letzter)

$$
\left|\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)\right| \leq 2^{4}=16<\infty
$$

- Sub-problem: describe $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)$

For $P \in \operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)$ set $\mathcal{H}(P):=\cap_{h \in \mathcal{H}} P^{h}$. Then $\mathcal{H}(P)$ is an \mathcal{H}-invariant prime ideal.

For any \mathcal{H}-prime Q set

$$
\operatorname{Spec}_{Q}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right):=\{P \text { prime } \mid \mathcal{H}(P)=Q\}
$$

The Goodearl-Letzter Stratification Theorem

For any $Q \in \mathcal{H}-\operatorname{Spec}, \operatorname{Spec}_{Q}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)$ is homeomorphic to

$$
\operatorname{Spec}\left(k\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\right)
$$

for some d.
Further, the primitive ideals of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ are precisely the maximal elements of Spec_{Q} for $Q \in \operatorname{Spec}\left(\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)\right)$.

Claim The following $14 \mathcal{H}$-invariant ideals are all prime and these are the only \mathcal{H}-prime ideals in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$.

To justify the claim, we need to show that each of the 14 ideals is a prime ideal and that there are no other \mathcal{H}-prime ideals.

It is easy to check that 13 of the ideals are prime.
For example, let P be the ideal generated by b and d. Then

$$
\frac{\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)}{P} \cong k[a, c]
$$

and $k[a, c]$ is a quantum plane.

The only problem is to show that the determinant generates a prime ideal.

This was originally proved by Jordan, and, independently, by Levasseur and Stafford.

However, we will prove this in a different way and also show that there are no other \mathcal{H}-invariant prime ideals.

Consider the poset on the left.

Note that elements are in the poset are normal modulo lower elements.

We can use the commutation rules to bring a and d together in any monomial, and then use the straightening law

$$
a d \rightsquigarrow q c b+D_{q}
$$

to get a spanning set of the form

$$
\left\{D_{q}^{i} c^{j} a^{l} b^{m}, D_{q}^{i} c^{j} d^{l} b^{m}\right\}
$$

In fact, this is a basis of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$, the preferred basis

Cauchon's theory of deleting derivations

Recall

$$
\mathcal{O}_{q}\left(\mathcal{M}_{2}\right):=k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

with relations

$$
\begin{gathered}
a b=q b a \quad a c=q c a \quad b c=c b \\
b d=q d b \quad c d=q d c \quad a d-d a=\left(q-q^{-1}\right) b c
\end{gathered}
$$

Set $a^{\prime}:=a-b d^{-1} c=(a d-q b c) d^{-1}=D_{q} d^{-1}$

Calculate

$$
\begin{aligned}
& a^{\prime} b=q b a^{\prime} \quad a^{\prime} c=q c a^{\prime} \quad b c=c b \\
& b d=q d b \quad c d=q d c \quad a^{\prime} d=d a^{\prime}
\end{aligned}
$$

All calculations take place in the division ring of fractions of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$.

Note that $\widehat{A}:=k\left[a^{\prime}, b, c\right] \cong k[a, b, c]=: A$ and that

$$
\widehat{R}:=k\left[a^{\prime}, b, c, d\right] \cong \widehat{A}[d ; \sigma]
$$

whereas

$$
R:=\mathcal{O}_{q}\left(\mathcal{M}_{2}\right) \cong A[d ; \sigma, \delta]
$$

There is an induced action of \mathcal{H} on \widehat{R} and, as \widehat{R} is a quantum affine 4 -space, we know that \widehat{R} has $16 \mathcal{H}$-primes, corresponding to the subsets of $\left\{a^{\prime}, b, c, d\right\}$.

We will relate the \mathcal{H}-prime ideals of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ with a subset of the \mathcal{H}-prime ideals of \widehat{R}.

Exercise Show that the set $S:=\left\{d^{n}\right\}$ is a right (and left) ore set in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$; so that one can form the localisation $R\left[d^{-1}\right]$.

As d is a normal element of \widehat{R}, we can form $\widehat{R}\left[d^{-1}\right]$.

Check that $\widehat{R}\left[d^{-1}\right]=R\left[d^{-1}\right]$.

Note that $\left\langle a^{\prime}\right\rangle$ is a prime ideal in \hat{R}.

Claim:

$$
\left\langle a^{\prime}\right\rangle \hat{R}\left[d^{-1}\right] \cap R=\left\langle D_{q}\right\rangle .
$$

This will show that $\left\langle D_{q}\right\rangle$ is a prime ideal of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$.

Claim: $\quad\left\langle a^{\prime}\right\rangle \widehat{R}\left[d^{-1}\right] \cap R=\left\langle D_{q}\right\rangle$
Sketch proof Note that

$$
\left\langle a^{\prime}\right\rangle \hat{R}\left[d^{-1}\right] \cap R=a^{\prime} \hat{R}\left[d^{-1}\right] \cap R=a^{\prime} R\left[d^{-1}\right] \cap R
$$

Let $r \in\left\langle a^{\prime}\right\rangle \hat{R}\left[d^{-1}\right] \cap R$. Then, there exists $s \in R$ such that $r=a^{\prime} s d^{-n}$ for some n.

Now, there exists $t \in R$ with $d^{-1} s=t d^{-m}$ for some m; so

$$
r=a^{\prime} s d^{-n}=a^{\prime} d d^{-1} s d^{-n}=D_{q} t d^{-(n+m)}
$$

and $r d^{(n+m)}=D_{q} t$.
Writing r and t in terms of the preferred basis

$$
\left\{D_{q}^{i} c^{j} a^{l} b^{m}, D_{q}^{i} c^{j} d^{l} b^{m}\right\}
$$

leads to $r \in\left\langle D_{q}\right\rangle$

Given an \mathcal{H}-prime P in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$, we associate an \mathcal{H}-prime in \hat{R} in the following way.

Case 1 Suppose that $d \notin P$. Then

$$
P \quad \mapsto \quad P R\left[d^{-1}\right]=P \hat{R}\left[d^{-1}\right] \quad \mapsto \quad P \hat{R}\left[d^{-1}\right] \cap \hat{R} .
$$

For example,

$$
\left\langle D_{q}\right\rangle \quad \mapsto \quad\left\langle D_{q}\right\rangle\left[d^{-1}\right]=\left\langle D_{q} d^{-1}\right\rangle\left[d^{-1}\right]=\left\langle a^{\prime}\right\rangle\left[d^{-1}\right] \quad \mapsto \quad\left\langle a^{\prime}\right\rangle .
$$

Any \mathcal{H}-prime in \widehat{R} is specified by a subset of the four elements

$$
\begin{array}{|l|l|}
\hline a^{\prime} & b \\
\hline c & d \\
\hline
\end{array} .
$$

We will record a subset by putting taking a two-by-two array and filling in a square with black if the corresponding element is in the subset. For example, the \mathcal{H}-prime generated by a^{\prime} and d is denoted

There are 16 possible fillings, corresponding to the $16 \mathcal{H}$-prime ideals in \widehat{R}

Given an \mathcal{H}-prime P in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$, we associate such a diagram to it in the following way.

Case 1 Suppose that $d \notin P$. Then

$$
P \quad \mapsto \quad P R\left[d^{-1}\right]=P \widehat{R}\left[d^{-1}\right] \quad \mapsto \quad P \hat{R}\left[d^{-1}\right] \cap \hat{R} .
$$

Now, $P \hat{R}\left[d^{-1}\right] \cap \hat{R}$ is an \mathcal{H}-prime in \hat{R} and so corresponds to a diagram.

For example,

$$
\left\langle D_{q}\right\rangle \mapsto\left\langle D_{q}\right\rangle\left[d^{-1}\right]=\left\langle D_{q} d^{-1}\right\rangle\left[d^{-1}\right]=\left\langle a^{\prime}\right\rangle\left[d^{-1}\right] \mapsto\left\langle a^{\prime}\right\rangle \mapsto
$$

\square

We know $8 \mathcal{H}$-prime ideals in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ that do not contain d, and so make the following associations:
$\langle 0\rangle \mapsto$

$\langle a, b\rangle \quad \mapsto \quad \square$

$\langle c\rangle \mapsto \square$

Case 2 Suppose that $d \in P$.
We find an \mathcal{H}-prime Q in \hat{R} such that $\hat{R} / Q \cong R / P$ and then associate to P the diagram of Q.

Consider the two maps

$$
\rho: \widehat{R}=k\left[a^{\prime}, b, c\right][d ; \sigma] \quad \rightarrow \quad k\left[a^{\prime}, b, c\right] \quad \cong[a, b, c]
$$

and

$$
\eta_{P}: k[a, b, c] \quad \rightarrow \quad k[a, b, c, d] / P \quad=\mathcal{O}_{q}\left(\mathcal{M}_{2}\right) / P
$$

Then

$$
P \quad \rightsquigarrow \quad \operatorname{ker}\left(\eta_{P} \circ \rho\right)
$$

Note that $\left(q-q^{-1}\right) b c=a d-d a \in P$ so that either $b \in P$ or $c \in P$ (or both).

So, it is impossible to associate the two diagrams

to any \mathcal{H}-prime ideal of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$.

We know $6 \mathcal{H}$-prime ideals in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ that do contain d, and so make the following associations:

The diagrams that can be associated to \mathcal{H}-primes in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ are known as Cauchon Diagrams.

We've seen that 14 of the possible 16 black-white fillings of the 2×2 array are Cauchon diagrams; so there are $14 \mathcal{H}$-prime ideals in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$.

2×2 Cauchon Diagrams

All of this works for quantum $m \times p$ matrices where there is an action of $\mathcal{H}=\left(k^{*}\right)^{m+p}$ and Cauchon shows that the \mathcal{H}-prime ideals are in bijection with $m \times p$ Cauchon diagrams:

Cauchon Diagrams

The rule for a Cauchon diagram is that if a square is black then either each square to the left of it is black, or each square above it is black.

The Poisson world

Lie algebra: definition

A Lie algebra is a \mathbb{C}-vector space V with a "Lie bracket" $[-,-]$:
$V \times V \rightarrow V$ such that

1. skew-symmetry: $[v, w]=-[w, v]$ for all $v, w \in V$;
2. Jacobi identity:

$$
[[u, v], w]+[[v, w], u]+[[w, u], v]=0
$$

for all $u, v, w \in V$.

Example. Let A be a \mathbb{C}-algebra. Set $[a, b]:=a b-b a$. Then $(A,[-,-])$ is a Lie algebra.

Poisson algebra: definition

A Poisson algebra is a commutative finitely generated \mathbb{C}-algebra A with a "Poisson bracket" $\{-,-\}: A \times A \rightarrow A$ such that

1. $(A,\{-,-\})$ is a Lie algebra;
2. for all $a \in A$, the linear $\operatorname{map}\{a,-\}: A \rightarrow A$ is a derivation, that is:

$$
\{a, b c\}=b\{a, c\}+\{a, b\} c \quad \forall a, b, c \in A
$$

Example. $\mathbb{C}[X, Y]$ is a Poisson algebra with Poisson bracket given by:

$$
\{P, Q\}:=\frac{\partial P}{\partial X} \cdot \frac{\partial Q}{\partial Y}-\frac{\partial P}{\partial Y} \cdot \frac{\partial Q}{\partial X}
$$

Poisson algebra: brief history

1807: the classical Poisson bracket (Poisson).

1875: general Poisson brackets on the ring of smooth functions on a manifold (Lie).

1960s: Poisson brackets on symmetric algebra of a Lie algebra and its quotient field; informal use of the term "Poisson algebra (Dixmier et al). First steps in quantization (Berezin).

1977: first (?) formal definition of Poisson algebra (Braconnier).
current: much used in quantum algebra and integrable systems.

Poisson algebra: example

$S=\mathbb{C}\left[X_{1}, X_{2}, \ldots, X_{n} ; Y_{1}, Y_{2}, \ldots, Y_{n}\right]$, the symmetric algebra on $2 n$ dimensional symplectic space, is a Poisson algebra with

$$
\left\{X_{i}, X_{j}\right\}=0=\left\{Y_{i}, Y_{j}\right\} \text { and }\left\{X_{i}, Y_{j}\right\}=\delta_{i j} .
$$

Note that

$$
\left\{X_{i},-\right\}=\frac{\partial}{\partial Y_{i}} \text { and }\left\{-, Y_{i}\right\}=\frac{\partial}{\partial X_{i}}
$$

and

$$
\{P, Q\}=\sum_{i}\left(\frac{\partial P}{\partial X_{i}} \cdot \frac{\partial Q}{\partial Y_{i}}-\frac{\partial P}{\partial Y_{i}} \cdot \frac{\partial Q}{\partial X_{i}}\right) .
$$

Here $\{-,-\}$ extends the antisymmetric bilinear form.

Poisson algebra: generators

Let A be a Poisson algebra. Assume that A is generated (as a \mathbb{C}-algebra) by $g_{1}, g_{2}, \ldots, g_{n}$.

Then one can retrieve $\{-,-\}$ from $\left\{g_{i}, g_{j}\right\}$ by using the skewsymmetry of $\{-,-\}$ together with the Leibniz rule.

That is why we often define the Poisson bracket on a commutative algebra A just by giving its values on the generators.

Exercise. Show that for all $P \in \mathbb{C}[X, Y]$, the rule $\{X, Y\}=P$ defines a Poisson bracket on $\mathbb{C}[X, Y]$.

Poisson algebra: generators 2

Be careful however, defining all brackets $\left\{g_{i}, g_{j}\right\}$ does not ensure that you will get a Poisson bracket. For instance, one is able to define a Poisson bracket on $A=\mathbb{C}[X, Y, Z]$ via

$$
\{X, Y\}=R, \quad\{Y, Z\}=P \quad \text { and } \quad\{Z, X\}=Q
$$

if and only if

$$
(P, Q, R) \cdot \operatorname{curl}(P, Q, R)=0
$$

where

$$
\operatorname{curl}(P, Q, R)=\left(\frac{\partial R}{\partial Y}-\frac{\partial Q}{\partial Z}, \frac{\partial P}{\partial Z}-\frac{\partial R}{\partial X}, \frac{\partial Q}{\partial X}-\frac{\partial P}{\partial Y}\right)
$$

Semiclassical limit

Let A_{λ} be a finitely generated $\mathbb{C}[\lambda]$-algebra, and assume that A_{λ} is a noetherian domain. Assume also that $A:=A_{\lambda} / \lambda A_{\lambda}$ is commutative.

We define a Poisson bracket on A as follows. Let $a, b \in A$, and choose $u, v \in A_{\lambda}$ so that $u+\lambda A_{\lambda}=a$ and $v+\lambda A_{\lambda}=b$. As A is abelian, one has $[u, v] \in \lambda A_{\lambda}$.

Hence there exists a unique $w \in A_{\lambda}$ such that $[u, v]=\lambda w$. We set

$$
\{a, b\}:=w+\lambda A_{\lambda} .
$$

Informally, we write $\{a, b\}=\left.\frac{[a, b]}{\lambda}\right|_{\lambda=0}$.
Exercise. Check that $(A,\{-,-\})$ is a Poisson algebra.

Example 1: the first Weyl algebra

- Heisenberg algebra $A_{\lambda}=\mathbb{C}[\lambda, x, y]$ with $x y-y x=\lambda$, that is, $A_{\lambda}=\mathbb{C}[\lambda][x]\left[y ; i d, \lambda \frac{\partial}{\partial x}\right]$.
- Weyl algebra $A_{1}(\mathbb{C})=\mathbb{C}[x, y]$ with $x y-y x=1$.

where $A=\mathbb{C}[X, Y]$
and $\{P, Q\}=\left.\frac{[P, Q]}{\lambda}\right|_{\lambda=0}$

Exercise. Compute $\{X, Y\}$ and $\{X Y, X+Y\}$.
$A_{1}(\mathbb{C})$ is a (noncommutative) deformation of the Poisson algebra ($A,\{.,$.$\}).$

Example 2: quantum plane

We need to adapt the construction and work over $\mathbb{C}\left[\lambda^{ \pm 1}\right]$ rather than over $\mathbb{C}[\lambda]$.

Recall that $\mathbb{C}_{\lambda}[x, y]:=\mathbb{C}[\lambda, x, y]$ with $x y=\lambda y x$.

Let $q \in \mathbb{C}^{*}$, not a root of unity.

Exercise. Show that $\{P, Q\}:=X Y\left(\frac{\partial P}{\partial X} \frac{\partial Q}{\partial Y}-\frac{\partial P}{\partial Y} \frac{\partial Q}{\partial X}\right)$.

Semiclassical limit of $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$

Recall that $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right):=\mathbb{C}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is generated by four indeterminates a, b, c, d subject to the following rules:

$$
\begin{gathered}
a b=q b a, \quad c d=q d c \\
a c=q c a, \quad b d=q d b \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) c b .
\end{gathered}
$$

The quantum determinant $a d-q b c$ is a central element.
Exercise. What is the semiclassical limit of $\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$?

Symplectic leaves

Let A be the algebra of complex-valued C^{∞} functions on a smooth affine variety V.

- Hamiltonian derivations: $H_{a}:=\{a,-\}$ with $a \in A$.
- A Hamiltonian path in V is a smooth path $c:[0,1] \rightarrow V$ such that there exists $H \in C^{\infty}(V)$ with

$$
\frac{d}{d t}(f \circ c)(t)=\{H, f\} \circ c(t)
$$

for all $0<t<1$.

- It is easy to check that the relation "connected by a piecewise Hamiltonian path" is an equivalence relation.
- The equivalence classes of this relation are called the symplectic leaves of V; they form a partition of V.

Symplectic leaves in \mathbb{C}^{2}

We consider $\mathbb{C}[X, Y]$ with the Poisson bracket defined by $\{X, Y\}=$ $X Y$; this Poisson bracket on $\mathbb{C}[X, Y]=\mathcal{O}\left(\mathbb{C}^{2}\right)$ extends uniquely to a Poisson bracket on $\mathcal{C}^{\infty}\left(\mathbb{C}^{2}\right)$, so that \mathbb{C}^{2} can be viewed as a Poisson manifold. Hence \mathbb{C}^{2} can be decomposed as the disjoint union of its symplectic leaves.

Let $a, b \in \mathbb{C}$. Then

- $c(t)=\left(a, b e^{a t}\right)$ is a flow of H_{X}.
- $c(t)=\left(b e^{a t}, a\right)$ is a flow of H_{-Y}.

Symplectic leaves in \mathbb{C}^{2}

\mathcal{H}-orbits of symplectic leaves in \mathbb{C}^{2}

At the geometric level, the action of $\mathcal{H}=\left(\mathbb{C}^{*}\right)^{2}$ on \mathbb{C}^{2} (by Poisson automorphisms) is given by:

$$
(\alpha, \beta) \cdot\binom{x}{y}=\binom{\alpha x}{\beta y}
$$

This action of \mathcal{H} on \mathbb{C}^{2} induces an action of \mathcal{H} on the set Sympl($\left.\mathbb{C}^{2}\right)$ of symplectic leaves in \mathbb{C}^{2}.

We view the \mathcal{H}-orbit of a symplectic leaf \mathcal{L} as the set-theoretic union

$$
\bigcup_{h \in \mathcal{H}} h \cdot \mathcal{L} \subseteq \mathbb{C}^{2}
$$

rather than as the family $\{h . \mathcal{L} \mid h \in \mathcal{H}\}$.
\mathcal{H}-orbits of symplectic leaves in \mathbb{C}^{2}

Poisson prime ideals

A Poisson ideal of a Poisson algebra A is an ideal of A both in the associative and in the Lie sense. That is, I is an additive subgroup of A such that:

$$
a . x \in I \quad \forall a \in A, x \in I
$$

and

$$
\{a, x\} \in I \quad \forall a \in A, x \in I
$$

An ideal I which is both Poisson and prime is called a Poisson prime ideal.

Exercise. Compute the Poisson prime ideals of $\mathbb{C}[X, Y]$ with Poisson bracket defined by $\{X, Y\}=X Y$.

Poisson \mathcal{H}-primes in $A=\mathbb{C}[X, Y]$

The torus $\mathcal{H}=\left(\mathbb{C}^{*}\right)^{2}$ acts by Poisson automorphisms on A via:

$$
(\alpha, \beta) \cdot\binom{X}{Y}=\binom{\alpha X}{\beta Y}
$$

Exercise. Describe the Poisson \mathcal{H}-primes.

Poisson \mathcal{H}-primes in A

Let A be a Poisson algebra, and assume that the torus $\mathcal{H}:=\left(\mathbb{C}^{*}\right)^{l}$ acts rationally by Poisson automorphisms on A.

Theorem: (Goodearl)

Assume there are only finitely many \mathcal{H}-orbits of symplectic leaves in V, and that these are locally closed subvarieties of V. Then there is a $1: 1$ correspondence between the set of \mathcal{H}-orbits of symplectic leaves in V and the set of prime Poisson \mathcal{H}-ideals in $\mathcal{O}(V)$.

Matrix Poisson varieties: 2×2

The coordinate ring of 2×2 matrices
$\mathcal{O}\left(\mathcal{M}_{2}(\mathbb{C})\right):=\mathbb{C}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\mathbb{C}\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right]$ is a Poisson algebra:

$$
\begin{array}{rrr}
\{a, b\}=a b, & & \{c, d\}=c d \\
\{a, c\}=a c, & & \{b, d\}=b d \\
\{b, c\}=0, & \{a, d\}=2 b c .
\end{array}
$$

Exercise. Show that the Poisson algebra $\mathcal{O}\left(\mathcal{M}_{2}(\mathbb{C})\right)$ is the semiclassical limit of the algebra of 2×2 quantum matrices.

Torus action

$\mathcal{H}:=\left(\mathbb{C}^{*}\right)^{4}$ acts on $\mathcal{O}\left(\mathcal{M}_{2}(\mathbb{C})\right)$ by Poisson automorphisms via:

$$
\left(a_{1}, a_{2}, b_{1}, b_{2}\right) . Y_{i, \alpha}=a_{i} b_{\alpha} Y_{i, \alpha}
$$

At the geometric level, this action of the algebraic torus \mathcal{H} comes from the left action of \mathcal{H} on $\mathcal{M}_{2}(\mathbb{C})$ by Poisson isomorphisms via:

$$
\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \cdot M:=\operatorname{diag}\left(a_{1}, a_{2}\right) \cdot M \cdot \operatorname{diag}\left(b_{1}, b_{2}\right)
$$

We denote the set of \mathcal{H}-orbits by \mathcal{H}-Sympl $\left(\mathcal{M}_{2}(\mathbb{C})\right)$.

Exercise (hard). Describe \mathcal{H}-Sympl $\left(\mathcal{M}_{2}(\mathbb{C})\right)$.

Torus orbits

Proposition.

1. There is a 1:1 correspondence between

$$
\mathcal{S}=\left\{w \in S_{4} \mid-2 \leq w(i)-i \leq 2 \text { for all } i=1,2,3,4\right\}
$$ and \mathcal{H}-Sympl $\left(\mathcal{M}_{2}(\mathbb{C})\right)$.

2. Each \mathcal{H}-orbit is defined by some rank conditions.

Exercise. Compute $|\mathcal{S}|$.

Matrix Poisson varieties: general case

$\mathcal{O}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)=\mathbb{C}\left[\begin{array}{lll}Y_{1,1} & \ldots & Y_{1, p} \\ \vdots & \ldots & : \\ Y_{m, 1} & \ldots & Y_{m, p}\end{array}\right]$ is a Poisson algebra via

$$
\left.\begin{array}{ll}
\left\{Y_{i, \alpha}, Y_{i, \beta}\right\}=Y_{i, \alpha} Y_{i, \beta} &
\end{array}\right)
$$

Exercise. Show that the Poisson algebra $\mathcal{O}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ is the semiclassical limit of the algebra of $m \times p$ quantum matrices.

Torus action

$\mathcal{H}:=\left(\mathbb{C}^{*}\right)^{m+p}$ acts on $\mathcal{O}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ by Poisson automorphisms via:

$$
\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{p}\right) \cdot Y_{i, \alpha}=a_{i} b_{\alpha} Y_{i, \alpha}
$$

At the geometric level, this action of the algebraic torus \mathcal{H} comes from the left action of \mathcal{H} on $\mathcal{M}_{m, p}(\mathbb{C})$ by Poisson isomorphisms via:

$$
\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{p}\right) \cdot M:=\operatorname{diag}\left(a_{1}, \ldots, a_{m}\right) \cdot M \cdot \operatorname{diag}\left(b_{1}, \ldots, b_{p}\right)
$$

We denote the set of \mathcal{H}-orbits by \mathcal{H}-Sympl $\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.
Exercise (very hard). Describe \mathcal{H}-Sympl $\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.

Torus orbits

The orbits \mathcal{H}-Sympl $\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ have been described by Brown, Goodearl and Yakimov.

We set

$$
\mathcal{S}=\left\{w \in S_{m+p} \mid-p \leq w(i)-i \leq m \text { for all } i=1,2, \ldots, m+p\right\} .
$$

Theorem.

1. There is an explicit $1: 1$ correspondence between \mathcal{S} and \mathcal{H}-Sympl $\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.
2. Each \mathcal{H}-orbit is defined by some rank conditions.

Restricted permutations versus Cauchon diagrams

Replace \square by + and \square by

Exercise

What are the restricted permutations associated to the 2×2 Cauchon diagrams?

What is the restricted permutation associated to

Additional exercises

1. Let $A=C^{\infty}(V)$ be a Poisson algebra and z be a Casimir element of A, that is, $\{z, f\}=0$ for all $f \in A$. Show that z is constant on a symplectic leaf.
2. Let $\alpha \in \mathbb{C} \backslash \mathbb{Q}$. Check that one defines a Poisson structure on $\mathcal{O}\left(\mathbb{C}^{3}\right)=\mathbb{C}[X, Y, Z]$ via

$$
\{X, Y\}=0, \quad\{X, Z\}=\alpha X \text { and }\{Y, Z\}=-Y .
$$

Prove that $\left\{(a, b, c) \in \mathbb{C}^{3} \mid a b^{\alpha}=1\right\}$ is a symplectic leaf of \mathbb{C}^{3}.
3. One defines a Poisson bracket on $\mathcal{O}\left(\mathbb{R}^{3}\right)=\mathbb{R}[X, Y, Z]$ via

$$
\{X, Y\}=Z, \quad\{X, Z\}=-Z \text { and }\{Y, Z\}=X
$$

Compute the symplectic leaves.
4. Describe the semiclassical limit of the quantum special linear group $\mathcal{O}_{q}\left(S L_{2}(\mathbb{C})\right):=\mathcal{O}_{q}\left(M_{2}(\mathbb{C})\right) /\left\langle\operatorname{det}_{q}-1\right\rangle$. Compute the symplectic leaves of $S L_{2}(\mathbb{C})$.

The non-negative world

- A matrix is totally positive if each of its minors is positive.
- A matrix is totally non-negative if each of its minors is nonnegative.

History

- Fekete (1910s)
- Gantmacher and Krein, Schoenberg (1930s): small oscillations, eigenvalues
- Karlin and McGregor (1950s): statistics, birth and death processes
- Lindström (1970s): planar networks
- Gessel and Viennot (1985): binomial determinants, Young tableaux
- Gasca and Peña (1992): optimal checking
- Lusztig (1990s): reductive groups, canonical bases
- Fomin and Zelevinsky (1999/2000): survey articles (eg Math Intelligencer)
- Postnikov (2007): the totally non-negative grassmannian

Examples

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4
\end{array}\right) \quad\left(\begin{array}{llll}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

¿ How much work is involved in checking if a matrix is totally positive?

Eg. $n=4$:
$\#$ minors $=\sum_{k=1}^{n}\binom{n}{k}^{2}=$ \approx
by using Stirling's approximation

$$
n!\approx \sqrt{2 \pi n} \frac{n^{n}}{e^{n}}
$$

2×2 case

The matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

has five minors: $a, b, c, d, \Delta=a d-b c$.

If $b, c, d, \Delta=a d-b c>0$ then

$$
a=\frac{\Delta+b c}{d}>0
$$

so it is sufficient to check four minors.

Theorem (Fekete, 1913)

A matrix is totally positive if each of its solid minors is positive.

Theorem (Gasca and Peña, 1992)

A matrix is totally positive if each of its initial minors is positive.

Theorem (Gasca and Peña, 1992)

A totally nonnegative matrix is totally positive if each of its corner minors is positive.

Planar networks Consider an directed graph with no directed cycles, n sources and n sinks.

$$
\begin{aligned}
& M=\left(m_{i j}\right) \text { where } m_{i j} \\
& \text { is the number of paths } \\
& \text { from source } s_{i} \text { to sink } t_{j} .
\end{aligned}
$$

$$
\left(\begin{array}{llll}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

Edges directed left to right.
(Skandera: Introductory notes on total positivity)

Notation The minor formed by using rows from a set I and columns from a set J is denoted by $[I \mid J]$.

Theorem (Lindström)
The path matrix of any planar network is totally non-negative. In fact, the minor $[I \mid J]$ is equal to the number of families of non-intersecting paths from sources indexed by I and sinks indexed by J.

If we allow weights on paths then even more is true.

Theorem

Every totally non-negative matrix is the weighted path matrix of some planar network.

$M=\left(m_{i j}\right)$ where $m_{i j}$ is the number of paths from source s_{i} to sink t_{j}.

$$
\left(\begin{array}{llll}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

Edges directed left to right.

Let $\mathcal{M}_{m, p}^{\mathrm{tnn}}$ be the set of totally non-negative $m \times p$ real matrices.
Let Z be a subset of minors. The cell S_{Z}^{o} is the set of matrices in $\mathcal{M}_{m, p}^{\mathrm{tnn}}$ for which the minors in Z are zero (and those not in Z are nonzero).

Some cells may be empty. The space $\mathcal{M}_{m, p}^{\mathrm{tnn}}$ is partitioned by the non-empty cells.

A trivial example In $\mathcal{M}_{2,1}^{\mathrm{tn}}$ every cell is non-empty. There are 4 cells:

$$
\begin{gathered}
S_{\{\emptyset\}}^{\circ}=\left\{\left.\binom{x}{y} \right\rvert\, x, y>0\right\} \quad S_{\{[1,1]\}}^{\circ}=\left\{\left.\binom{0}{y} \right\rvert\, y>0\right\} \\
S_{\{[2,1]\}}^{\circ}=\left\{\left.\binom{x}{0} \right\rvert\, x>0\right\} \quad S_{\{[1,1],[2,1]\}}^{\circ}=\left\{\binom{0}{0}\right\}
\end{gathered}
$$

Example In $\mathcal{M}_{2}^{\text {tnn }}$ the cell $S_{\{[2,2]\}}^{\circ}$ is empty.
For, suppose that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is tnn and $d=0$.
Then $a, b, c \geq 0$ and also $a d-b c \geq 0$.

Thus, $-b c \geq 0$ and hence $b c=0$ so that $b=0$ or $c=0$.

Note This is meant to jog your memory. Recall the proof that a prime in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ that contains d must contain either b or c !

Exercise There are 14 non-empty cells in $\mathcal{M}_{2}^{\mathrm{tnn}}$.

Postnikov (arXiv:math/0609764) defines Le-diagrams: an $m \times p$ array with entries either 0 or 1 is said to be a Le-diagram if it satisfies the following rule: if there is a 0 in a given square then either each square to the left is also filled with 0 or each square above is also filled with 0 .

An example and a non-example of a Le-diagram on a 5×5 array

1	1	0	1	0
0	0	0	1	0
1	1	1	1	0
0	0	0	1	0
1	1	1	1	0

1	1	0	1	0
0	0	1	0	1
1	1	1	0	1
0	0	1	1	1
1	1	1	1	1

Note Le-diagrams are Cauchon diagrams with $0=$ black and 1
$=$ white!

- Postnikov (arXiv:math/0609764) There is a bijection between Le-diagrams on an $m \times p$ array and non-empty cells S_{Z}° in $\mathcal{M}_{m, p}^{\text {tnn }}$.

For 2×2 matrices, this says that there is a bijection between Cauchon/Le-diagrams on 2×2 arrays and non-empty cells in $\mathcal{M}_{2}^{\text {tnn }}$.
2×2 Le-diagrams

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 1 & 1
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 1 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 1 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 1 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 0 & 1 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 1 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 1 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 1 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 0 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Postnikov's Algorithm starts with a Cauchon/Le-Diagram and produces a planar network from which one generates a totally non-negative matrix which defines a non-empty cell.

Example

Perform Postnikov's algorithm on the following examples:

The Grand Unifying Theory

Reminder

- Cauchon diagrams.
- Restricted permutations.
- \mathcal{H}-primes: generated by families of q-minors.
- (Closure of) \mathcal{H}-orbits of leaves: defined by the vanishing of families of minors.
- TNN cells: defined by vanishing of families of minors.
- A family of minors is admissible if the associated TNN cell is non-empty.
- In the 2×2 case, we get the same families of (quantum) minors. What about the general case?

Cauchon Diagrams

A Cauchon Diagram on an $m \times p$ array is an $m \times p$ array of squares filled either black or white such that if a square is coloured black then either each square to the left is coloured black, or each square above is coloured black. Here are an example and a nonexample

2×2 Cauchon Diagrams

Restricted permutations

$w \in S_{m+p}$ with

$$
-p \leq w(i)-i \leq m \text { for all } i=1,2, \ldots, m+p
$$

When $m=p=2$, there are 14 of them.

Restricted permutations versus Cauchon diagrams

Replace \square by + and \square by

Generators of \mathcal{H}-primes in quantum matrices.

Theorem (Launois): Assume that q is transcendental.
Then \mathcal{H}-primes of $\mathcal{O}_{q}(\mathcal{M}(m, p))$ are generated by quantum minors.

Question: which families of quantum minors?

The following $14 \mathcal{H}$-invariant ideals are all prime and these are the only \mathcal{H}-prime ideals in $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$.

Matrix Poisson varities

\mathcal{H}-orbits of symplectic leaves are algebraic, and are defined by rank conditions. In other words, they are defined by the vanishing and non-vanishing of some families of minors.

Question: which families of minors?

Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families of minors. Some of the TNN cells are empty.

We denote by S_{Z}^{0} the TNN cell associated to the family of minors Z.

A family of minors is admissible if the corresponding TNN cell is non-empty.

Question: what are the admissible families of minors?

Conjecture

Let Z_{q} be a family of quantum minors, and Z be the corresponding family of minors.
$\left\langle Z_{q}\right\rangle$ is a \mathcal{H}-prime ideal iff the cell S_{Z}^{0} is non-empty.

An algorithm to rule them all

Deleting derivations algorithm:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a-b d^{-1} c & b \\
c & d
\end{array}\right)
$$

Restoration algorithm:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a+b d^{-1} c & b \\
c & d
\end{array}\right)
$$

An algorithm to rule them all

If $M=\left(x_{i, \alpha}\right) \in \mathcal{M}_{m, p}(K)$, then we set

$$
f_{j, \beta}(M)=\left(x_{i, \alpha}^{\prime}\right) \in \mathcal{M}_{m, p}(K),
$$

where

$$
x_{i, \alpha}^{\prime}:= \begin{cases}x_{i, \alpha}+x_{i, \beta} x_{j, \beta}^{-1} x_{j, \alpha} & \text { if } x_{j, \beta} \neq 0, i<j \text { and } \alpha<\beta \\ x_{i, \alpha} & \text { otherwise } .\end{cases}
$$

We set $M^{(j, \beta)}:=f_{j, \beta} \circ \cdots \circ f_{1,2} \circ f_{1,1}(M)$.

An example

$$
\begin{gathered}
\text { Set } M=\left(\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) . \text { Then } \\
M^{(2,2)}=M^{(2,1)}=M^{(1,3)}=M^{(1,2)}=M^{(1,1)}=M \\
M^{(3,1)}=M^{(2,3)}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right), \quad M^{(3,2)}=\left(\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{gathered}
$$

and

$$
M^{(3,3)}=\left(\begin{array}{lll}
3 & 2 & 1 \\
3 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Exercise. Is this matrix TNN?

Exercises

Perform the restoration algorithm for each of the following matrices and compute the minors of the resulting matrices. Are the resulting matrices TNN?

1. $M=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$.
2. $M=\left(\begin{array}{rrr}-1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
3. $M=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.

TNN Matrices and restoration algorithm

Theorem (Goodearl-Launois-Lenagan 2009).

- If the entries of M are nonnegative and its zeros form a Cauchon diagram, then $M^{(m, p)}$ is TNN.
- Let M be a matrix with real entries. We can apply the deleting derivation algorithm to M. Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros form a Cauchon diagram.

Exercise. Use the deleting derivation algorithm to test whether the following matrices are TNN:

$$
M_{1}=\left(\begin{array}{rrrr}
11 & 7 & 4 & 1 \\
7 & 5 & 3 & 1 \\
4 & 3 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) \text { and } M_{2}=\left(\begin{array}{llll}
7 & 5 & 4 & 1 \\
6 & 5 & 3 & 1 \\
4 & 3 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Another example

Let C be a Cauchon diagram and $T=\left(t_{i, \alpha}\right)$ with $t_{i, \alpha}=0$ iff (i, α) is a black box of C.

We set $T_{C}:=f_{m, p} \circ \cdots \circ f_{1,2} \circ f_{1,1}(T)$.

Here $m=p=3$ and

$$
C=\square
$$

We set $T=\left(\begin{array}{ccc}0 & t_{1,2} & 0 \\ 0 & 0 & t_{2,3} \\ t_{3,1} & t_{3,2} & t_{3,3}\end{array}\right)$ and $T^{(j, \beta)}:=f_{j, \beta} \circ \cdots \circ f_{1,1}(T)$.

> Recall that $f_{j, \beta}\left(x_{i, \alpha}\right)=\left(x_{i, \alpha}^{\prime}\right) \in \mathcal{M}_{m, p}(K)$, where $x_{i, \alpha}^{\prime}:= \begin{cases}x_{i, \alpha}+x_{i, \beta} x_{j, \beta}^{-1} x_{j, \alpha} & \text { if } x_{j, \beta} \neq 0, i<j \text { and } \alpha<\beta \\ x_{i, \alpha} & \text { otherwise. }\end{cases}$

- $T^{(3,1)}=T^{(2,3)}=T^{(2,2)}=T^{(2,1)}=T^{(1,3)}=T^{(1,2)}=T$.
- $T^{(3,2)}=\left(\begin{array}{ccc}t_{1,2} t_{3,2}^{-1} t_{3,1} & t_{1,2} & 0 \\ 0 & 0 & t_{2,3} \\ t_{3,1} & t_{3,2} & t_{3,3}\end{array}\right)$.
- $T_{C}=T^{(3,3)}=\left(\begin{array}{ccc}t_{1,2} t_{3,2}^{-1} t_{3,1} & t_{1,2} & 0 \\ t_{2,3} t_{3,3}^{-1} t_{3,1} & t_{2,3} t_{3,3}^{-1} t_{3,2} & t_{2,3} \\ t_{3,1} & t_{3,2} & t_{3,3}\end{array}\right)$.

Results

- If $K=\mathbb{R}$ and T is nonnegative, then T_{C} is TNN.
- If $K=\mathbb{C}$ and the nonzero entries of T are algebraically independent, then the minors of T_{C} that are equal to zero are exactly those that vanish on the closure of a given \mathcal{H}-orbit of symplectic leaves.
- If $K=\mathbb{C}$ and the nonzero entries of T are the generators of a certain quantum affine space, then the quantum minors of T_{C} that are equal to zero are exactly those belonging to a given \mathcal{H}-prime in $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.
- The families of (quantum) minors we get depend only on C in these three cases. And if we start from the same Cauchon diagram in these three cases, then we get exactly the same families.

Main Result

Theorem. (GLL) Let \mathcal{F} be a family of minors in the coordinate ring of $\mathcal{M}_{m, p}(\mathbb{C})$, and let \mathcal{F}_{q} be the corresponding family of quantum minors in $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$. Then the following are equivalent:

1. The totally nonnegative cell associated to \mathcal{F} is non-empty.
2. \mathcal{F} is the set of minors that vanish on the closure of a torusorbit of symplectic leaves in $\mathcal{M}_{m, p}(\mathbb{C})$.
3. \mathcal{F}_{q} is the set of quantum minors that belong to torus-invariant prime in $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.

Consequences of the Main Result

The TNN cells are the traces of the \mathcal{H}-orbits of symplectic leaves on $\mathcal{M}_{m, p}^{\mathrm{tnn}}$.

The sets of minors that vanish on the closure of a torus-orbit of symplectic leaves in $\mathcal{M}_{m, p}(\mathbb{C})$ can be explicitely described thanks to results of Fulton and Brown-Goodearl-Yakimov. So, as a consequence of the previous result, the sets of minors that define non-empty totally nonnegative cells are explicitely described.

On the other hand, when the deformation parameter q is transcendental over the rationals, then the torus-invariant primes in $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ are generated by quantum minors, and so we deduce from the above result explicit generating sets of quantum minors for the torus-invariant prime ideals of $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$.

Explicit descriptions of the families of minors

For $w \in \mathcal{S}$, define $\mathcal{M}(w)$ to be the set of minors $[I \mid \wedge]$, with $I \subseteq \llbracket 1, m \rrbracket$ and $\wedge \subseteq \llbracket 1, p \rrbracket$, that satisfy at least one of the following conditions.

1. $I \not \subset w_{\circ}^{m} w(L)$ for all $L \subseteq \llbracket 1, p \rrbracket \cap w^{-1} \llbracket 1, m \rrbracket$ such that $|L|=|I|$ and $L \leq \wedge$.
2. $m+\wedge \not \leq w w_{\circ}^{N}(L)$ for all $L \subseteq \llbracket 1, m \rrbracket \cap w_{\circ}^{N} w^{-1} \llbracket m+1, N \rrbracket$ such that $|L|=|\wedge|$ and $L \leq I$.
3. There exist $1 \leq r \leq s \leq p$ and $\Lambda^{\prime} \subseteq \wedge \cap \llbracket r, s \rrbracket$ such that $\left|\Lambda^{\prime}\right|>\left|\llbracket r, s \rrbracket \backslash w^{-1} \llbracket m+r, m+s \rrbracket\right|$.
4. There exist $1 \leq r \leq s \leq m$ and $I^{\prime} \subseteq I \cap \llbracket r, s \rrbracket$ such that $\left|I^{\prime}\right|>\left|w_{\circ}^{N} \llbracket r, s \rrbracket \backslash w^{-1} w_{\circ}^{m} \llbracket r, s \rrbracket\right|$.
