Torus invariant primes in the quantum grassmannian

Tom Lenagan

Porto, June 2015

- Joint work at various times with: Karel Casteels, Ann Kelly,

Stéphane Launois, Laurent Rigal, Ewan Russell

- Supported by Leverhulme Grant EM-2014-019

The quantum grassmannian $\mathcal{O}_{q}(G(k, n))$

- The quantum grassmannian $\mathcal{O}_{q}(G(k, n))$ is the subalgebra of $\mathcal{O}_{q}(\mathcal{M}(k, n))$ generated by the maximal $k \times k$ quantum minors.
- Denote by $[I]$ the quantum minor $[1 \ldots k \mid I]$.
- There is a torus action of $\mathcal{H}=\mathbb{C}^{n}$ given by column multiplication.

Example $\mathcal{O}_{q}(G(2,4))$ is generated by the six quantum minors
[12], [13], [14], [23], [24], [34]

Most quantum minors q^{\bullet}-commute, for example,

$$
[12][13]=q[13][12], \quad[12][34]=q^{2}[34][12]
$$

However,

$$
[13][24]=[24][13]+\left(q-q^{-1}\right)[14][23]
$$

and there is a quantum Plücker relation

$$
[12][34]-q[13][24]+q^{2}[14][23]=0 .
$$

Problem: Describe $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}(G(k, n))\right)$

Snag: Goodearl-Letzter theory can't be used directly since $\mathcal{O}_{q}(G(k, n))$ is not usually an iterated Öre extension (or a factor of one)

Nevertheless, one might hope to prove:

- There are only finitely many \mathcal{H}-primes
- All \mathcal{H}-primes are completely prime
- We can specify the quantum minors in a given \mathcal{H}-prime
- Each \mathcal{H}-prime is generated by the quantum minors that it contains
- Describe the containments between \mathcal{H}-primes

```
Launois, Lenagan and Rigal There is a bijection between
H}-\operatorname{Spec}(\mp@subsup{\mathcal{O}}{q}{}(G(k,n)))\mathrm{ (ignoring the irrelevant ideal) and Cau-
chon diagrams on Young diagrams that fit inside a k\times(n-k)
array
```

The theorem is proved by defining quantum algebras with a straightening law, quantum Schubert varieties, quantum Schubert cells, partition subalgebras of quantum matrices and using a non-commutative version of dehomogenisation.

Cauchon diagrams

A Young diagram with entries coloured black or white is said to be a Cauchon diagram if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Cauchon diagrams

A Young diagram with entries coloured black or white is said to be a Cauchon diagram if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Quantum Schubert variety corresp to [135]

Schubert cell: use noncommutative dehomogenisation at [135]

Schubert cell for [135]

\mathcal{H}-prime in Schubert cell [135]

There is a vertex disjoint set of paths from $\{1,3\}$ to $\{2,4\}$ so [245] is not in the prime.

There is no vertex disjoint set of paths from $\{1,3\}$ to $\{4,6\}$ so [456] is in the prime.

The i-order: $i \leq_{i} i+1 \leq_{i} \ldots \leq_{i} n \leq_{i} 1 \leq_{i} \ldots \leq_{i} i-1$

The four orderings on $\mathcal{O}_{q}(G(2,4))$

- The quantum grassmannian is a quantum algebra with a straightening law with respect to each of the n orderings

Fix an invariant prime P in $\mathcal{O}_{q}(G(k, n))$

- For each i-order there is a unique quantum minor $\left[I_{i}\right]$ such that $\left[I_{i}\right] \notin P$ but $[J] \in P$ for each $J \not ¥_{i} I_{i}$

Let Π_{i} denote $\left\{[J] \mid J \not \searrow_{i} I_{i}\right\}$. Then

$$
\Pi(P):=\cup_{i=1}^{n} \Pi_{i} \subseteq P
$$

Conjecture $\Pi(P)$ is the set of quantum minors belonging to P, and P is generated as an ideal by $\Pi(P)$

- We hope to prove this conjecture by using the path methods that Karel Casteels will describe in his talk

Continuing with the notation on the previous slide:

- The quantum minors $I_{1}, I_{2}, \ldots, I_{n}$ form a Grassmann necklace, $\operatorname{Neck}(P)$
- Given a Cauchon diagram for an invariant prime P, we can construct $\operatorname{Neck}(P)$
- If $P^{\prime} \subseteq P$ then $\operatorname{Neck}\left(P^{\prime}\right) \leq \operatorname{Neck}(P)$

Conjecture The converse is true

- In $\mathcal{O}_{q}(G(2,4))$ consider the Grassmann necklace

$$
\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(12,12,14,14)
$$

- Grassmann necklace: $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(12,12,14,14)$

- The \mathcal{H}-prime P with this necklace is $P=\langle[13],[23],[24],[34]\rangle$
- Note that $\mathcal{O}_{q}(G(2,4)) / P \cong \mathbb{C}[[12],[14]]$ is a quantum plane, so P is prime.

