Torus invariant primes in the quantum grassmannian

Tom Lenagan

Porto, June 2015

• Joint work at various times with: Karel Casteels, Ann Kelly, Stéphane Launois, Laurent Rigal, Ewan Russell

• Supported by Leverhulme Grant EM-2014-019

The quantum grassmannian $\mathcal{O}_q(G(k,n))$

- The quantum grassmannian $\mathcal{O}_q(G(k,n))$ is the subalgebra of $\mathcal{O}_q(\mathcal{M}(k,n))$ generated by the maximal $k \times k$ quantum minors.
- Denote by [I] the quantum minor $[1 \dots k|I]$.
- There is a torus action of $\mathcal{H} = \mathbb{C}^n$ given by column multiplication.

Example $\mathcal{O}_q(G(2,4))$ is generated by the six quantum minors

[12], [13], [14], [23], [24], [34]

Most quantum minors q^{\bullet} -commute, for example,

$$[12] [13] = q [13] [12], \quad [12] [34] = q^2 [34] [12]$$

However,

$$[13] [24] = [24] [13] + (q - q^{-1}) [14] [23]$$

and there is a quantum Plücker relation

$$[12] [34] - q [13] [24] + q^2 [14] [23] = 0.$$

Problem: Describe \mathcal{H} -Spec $(\mathcal{O}_q(G(k, n)))$

Snag: Goodearl-Letzter theory can't be used directly since $\mathcal{O}_q(G(k, n))$ is not usually an iterated Öre extension (or a factor of one) Nevertheless, one might hope to prove:

- \bullet There are only finitely many $\mathcal H\text{-}\mathsf{primes}$
- All \mathcal{H} -primes are completely prime
- We can specify the quantum minors in a given \mathcal{H} -prime
- \bullet Each $\mathcal H\text{-}\mathsf{prime}$ is generated by the quantum minors that it contains
- \bullet Describe the containments between $\mathcal H\text{-}\mathsf{primes}$

Launois, Lenagan and Rigal There is a bijection between $\mathcal{H}-\text{Spec}(\mathcal{O}_q(G(k,n)))$ (ignoring the irrelevant ideal) and Cauchon diagrams on Young diagrams that fit inside a $k \times (n-k)$ array

The theorem is proved by defining quantum algebras with a straightening law, quantum Schubert varieties, quantum Schubert cells, partition subalgebras of quantum matrices and using a non-commutative version of dehomogenisation.

Cauchon diagrams

A Young diagram with entries coloured black or white is said to be a **Cauchon diagram** if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Cauchon diagrams

A Young diagram with entries coloured black or white is said to be a **Cauchon diagram** if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Quantum Schubert variety corresp to [135]

Schubert cell: use noncommutative dehomogenisation at [135]

Schubert cell for [135]

\mathcal{H} -prime in Schubert cell [135]

There is a vertex disjoint set of paths from $\{1,3\}$ to $\{2,4\}$ so [245] is not in the prime.

There is no vertex disjoint set of paths from $\{1,3\}$ to $\{4,6\}$ so [456] is in the prime. The *i*-order: $i \leq_i i+1 \leq_i \ldots \leq_i n \leq_i 1 \leq_i \ldots \leq_i i-1$

The four orderings on $\mathcal{O}_q(G(2,4))$

• The quantum grassmannian is a quantum algebra with a straightening law with respect to each of the n orderings Fix an invariant prime P in $\mathcal{O}_q(G(k,n))$

• For each *i*-order there is a unique quantum minor $[I_i]$ such that $[I_i] \notin P$ but $[J] \in P$ for each $J \geq_i I_i$

Let Π_i denote $\{[J] \mid J \geq_i I_i\}$. Then

$$\Pi(P) := \bigcup_{i=1}^n \Pi_i \subseteq P$$

Conjecture $\Pi(P)$ is the set of quantum minors belonging to P, and P is generated as an ideal by $\Pi(P)$

• We hope to prove this conjecture by using the path methods that Karel Casteels will describe in his talk

Continuing with the notation on the previous slide:

- The quantum minors I₁, I₂, ..., I_n form a Grassmann neck lace, Neck(P)
- Given a Cauchon diagram for an invariant prime P, we can construct Neck(P)
- If $P' \subseteq P$ then $Neck(P') \leq Neck(P)$

Conjecture The converse is true

• In $\mathcal{O}_q(G(2,4))$ consider the Grassmann necklace

 $(I_1, I_2, I_3, I_4) = (12, 12, 14, 14)$

• Grassmann necklace: $(I_1, I_2, I_3, I_4) = (12, 12, 14, 14)$

- The \mathcal{H} -prime P with this necklace is $P = \langle [13], [23], [24], [34] \rangle$
- Note that $\mathcal{O}_q(G(2,4))/P \cong \mathbb{C}[[12], [14]]$ is a quantum plane, so P is prime.