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Abstract

We calculate the derivations and the first Hochschild cohomology group of the

quantum grassmannian over a field of characteristic zero in the generic case when

the deformation parameter is not a root of unity. Using graded techniques and two

special homogeneous normal elements of the quantum grassmannian, we reduce the

problem to computing derivations of the quantum grassmannian that act trivially

on these two normal elements. We then use the dehomogenisation equality which

shows that a localisation of the quantum grassmannian is equal to a skew Laurent

extension of quantum matrices. This equality is used to connect derivations of the

quantum grassmannian with those of quantum matrices. More precisely, again using

graded techniques, we show that derivations of the quantum grassmannian that act

trivially on our two normal elements restrict to homogeneous derivations of quantum

matrices. The derivations of quantum matrices are known in the square case and

technical details needed to deal with the general case are given in an appendix. This

allows us to explicitly describe the first Hochschild cohomology group of the quantum

grassmannian.
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1 Introduction

Let K denote a field of characteristic zero and q ∈ K be a nonzero element which is not

a root of unity. The quantum grassmannian Oq(G(k, n)) is a noncommutative algebra

∗This research was partly supported by EPSRC grant EP/R009279/1.
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that is a deformation of the homogeneous coordinate ring of the classical grassmannian of

k-planes in n-space. In this paper, we calculate the derivations and the first Hochschild

cohomology group of the quantum grassmannian.

One of the motivations for this paper is [8] where a connection between the totally non-

negative grassmannian – or rather its cell decomposition into the union of so-called positroid

cells – and Hochschild (co)homology of Oq(G(k, n)) was established. More precisely, a link

between volume form of positroids and Hochschild (co)homology of Oq(G(k, n)) is estab-

lished, allowing the contribution of a positroid cell to the scattering amplitude (in the N

= 4 - supersymmetric Yang-Mills theory) to be q-deformed. The present paper is the first

one in a project to compute the Hochschild (co)homology of quantum positroid varieties.

More precisely, the quantum grassmannian can be viewed as a “quantum positroid variety”

(corresponding to the totally positive grassmannian) thanks to [5], and we compute the

first Hochschild cohomology group of the quantum grassmannian. We will come back to

the general case in future work.

Assume k ≤ n. Recall thatOq(G(k, n)) is the subalgebra of the quantum matrix algebra

Oq(M(k, n)) that is generated by the k × k quantum minors of Oq(M(k, n)). These k × k
quantum minors are the so-called quantum Plücker coordinates of Oq(G(k, n)). They are

indexed by k-subsets of {1, . . . ,m} and denoted by [I] for each k-subset I. The algebra

Oq(G(k, n)) is graded with all quantum Plücker coordinates homogeneous of degree 1.

Quantum Plücker coordinates formed on consecutive columns play a special role: they

are normal and each one generates a completely prime ideal of Oq(G(k, n)). They are

referred to as prime quantum Plücker coordinates. Among the prime quantum Plücker

coordinates, two are special: [u] = [1, ..., k] and [w] = [n− k+ 1, ..., n]. The reason for this

is that [u] (respectively, [w]) q-commutes with every quantum Plücker coordinate [I] with

a nonnegative (respectively, nonpositive) power of q, that is:

[u][I] = q≥0[I][u] and [w][I] = q≤0[I][w].

We exploit this observation and other graded techniques in order to reduce the problem of

computing derivations of Oq(G(k, n)) to computing derivations D of Oq(G(k, n)) that act

trivially on both [u] and [w]; that is, derivations D such that D([u]) = D([w]) = 0.

We then employ the dehomogenisation equality which shows that a localisation of the

quantum grassmannian is equal to a skew Laurent extension of quantum matrices. This

equality is used to connect the set of derivations of the quantum grassmannian acting

trivially on [u] and [w] with that of quantum matrices. More precisely, again using graded

techniques, we show that derivations of the quantum grassmannian that act trivially on

[u] and [w] restrict to homogeneous derivations of quantum matrices. To conclude we use
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our knowledge of derivations of quantum matrices: the set of derivations is known in the

case of square quantum matrices, see [3]. Some technical details that are needed to deal

with the fact that the non-square case has not yet been covered are given in an appendix.

This allow us to to show that the first cohomology group of Oq(G(k, n)) is a K-vector

space of dimension n, with basis given by the cosets of the derivations D1, . . . , Dn, where

Di is the derivation of Oq(G(k, n)) defined by

Di([I]) =

{
[I] if i ∈ I;

0 otherwise.

2 Basic definitions

Throughout the paper, K denotes a field of characteristic zero and q ∈ K is a nonzero

element which is not a root of unity.

The algebra of m × n quantum matrices over K, denoted by Oq(M(m,n)), is the

algebra generated over K by mn indeterminates xij, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, which

commute with the elements of K and are subject to the relations:

xijxil = qxilxij, for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkj = qxkjxij, for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;

xijxkl = xklxij, for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkl − xklxij = (q − q−1)xilxkj, for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

It is well known that Oq(M(m,n)) is an iterated Ore extension over K with the xij added

in lexicographic order. An immediate consequence is that Oq(M(m,n)) is a noetherian

domain.

When m = n, the quantum determinant Dq is defined by;

Dq :=
∑

(−q)l(σ)x1σ(1) . . . xnσ(n),

where the sum is over all permutations σ of {1, . . . , n}.
The quantum determinant is a central element in the algebra of quantum matrices

Oq(M(n, n)).

If I and J are t-element subsets of {1, . . . ,m} and {1, . . . , n}, respectively, then the

quantum minor [I | J ] is defined to be the quantum determinant of the t × t quantum

matrix subalgebra generated by the variables xij with i ∈ I and j ∈ J .
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The quantum matrix algebra Oq(M(m,n)) is a connected N-graded algebra with each

generator xij given degree one. Note that each t× t quantum minor has degree t.

Definition 2.1. Let k ≤ n. The homogeneous coordinate ring of the k×n quantum grass-

mannian, Oq(G(k, n)) (known informally as the quantum grassmannian) is the subalgebra

of the quantum matrix algebra Oq(M(k, n)) that is generated by the k×k quantum minors

of Oq(M(k, n)), see, for example, [2].

A k×k quantum minor of Oq(M(k, n)) must use all of the k rows, and so we can specify

the quantum minor by specifying the columns that define it. With this in mind, we will

write [J ] for the quantum minor [1, . . . , k | J ], for any k-element subset J of {1, . . . , n}.
Quantum minors of this type are called quantum Plücker coordinates. The quantum grass-

mannian Oq(G(k, n)) is a connected N-graded algebra with each quantum Plücker coordi-

nate given degree one. The set of quantum Plücker coordinates inOq(G(k, n)) is denoted by

Π. There is a natural partial order on Π defined in the following way: if I = [i1 < · · · < ik]

and J = [j1 < · · · < jk] then [I] < [J ] if and only if il ≤ jl for each l = 1, . . . , k. A standard

monomial in the quantum Plücker coordinates is an expression of the form [I1][I2] . . . [It]

where I1 ≤ I2 ≤ · · · ≤ It in this partial order. The set of all standard monomials forms a

vector space basis of Oq(G(k, n)) over K, see, for example, [2, Corollary 2.1]. We will re-

fer to the process of rewriting a monomial in terms of standard monomials as straightening.

The quantum grassmannian Oq(G(1, n)) is a quantum affine space, and, as such, its

derivations are known, see [1, 1.3.3 Corollaire]; so we will assume throughout this paper

that k > 1. As Oq(G(n− 1, n)) ∼= Oq(G(1, n)), by [4, Proposition 3.4], we exclude the case

k = n− 1 as well. Thus, we will assume throughout the paper that 2 ≤ k ≤ n− 2, and so

n ≥ 4.

Also, it is shown in [4, Proposition 3.4] that Oq(G(k, n)) ∼= Oq(G(n − k, n)), when

2k ≤ n. In Section 7 we need to assume that 2k ≤ n and the general result is obtained

from this case in Subsection 8.2 by using the isomorphism just mentioned.

3 Derivations for Oq(G(k, n)) inherited from Oq(M(k, n))

We use the following notation for the delta truth function: if P is a proposition then

δ(P ) = 1 if P is true, while δ(P ) = 0 if P is false. As is traditional, we write δij for δ(i = j)
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Recall from [3] that for each column of Oq(M(k, n)) there is a derivation that is the

identity on any quantum minor that contains that column, and is zero on the other quantum

minors. These derivations restrict to the subalgebra Oq(G(k, n)) to give us n derivations

which we denote by Di for i = 1, . . . , n. We refer to these derivations as the column

derivations of Oq(G(k, n)).

Lemma 3.1. For each i = 1, . . . , n, there is a derivation Di whose action on quantum

Plücker coordinates is given by Di([I]) = δ(i ∈ I)[I].

Proof. This is immediate from the definition of Di as the restriction to Oq(G(k, n)) of a

column derivation of Oq(M(k, n)).

Corollary 3.2.

1

k

(
n∑
i=1

Di

)
([I]) = [I],

for each quantum Plücker coordinate [I] in Oq(G(k, n)).

Proof. This follows immediately from the previous lemma, as there are k occurences of Di

for which Di([I]) = [I], and otherwise Di([I]) = 0.

Our main aim in this paper is to prove the following conjecture.

Conjecture 3.3. Let K be a field of characteristic zero and let q be a nonzero element of

K that is not a root of unity. Then every derivation of Oq(G(k, n)) can be written as a

linear combination of inner derivations and column derivations . Furthermore, the column

derivations are linearly independent modulo the space generated by the inner derivations.

As a consequence of the truth of this conjecture we identify the first Hochschild coho-

mology group of the quantum grassmannian.

4 The dehomogenisation equality for Oq(G(k, n))

In this section, we recall results concerning the dehomogenisation equality that occur in

[4, Section 3]. We refer the reader to that paper for detailed definitions and proofs.

Set u = {1, . . . , k}. Then [u] commutes with all other quantum Plücker coordinates up

to a power of q, by [4, Lemma 3.1]. As Oq(G(k, n)) is generated by the quantum Plücker

coordinates it follows that the element [u] is a normal element and so we may invert [u] to
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obtain the overring T := Oq(G(k, n))[[u]−1].

For 1 ≤ i ≤ k and 1 ≤ j ≤ n− k, set

xij := [1 . . . , ̂k + 1− i, . . . k, j + k][u]−1 ∈ T.

Set p := n − k. The elements xij generate a subalgebra of T that is a quantum matrix

algebra Oq(M(k, p)). In fact, T is generated over Oq(M(k, p)) by [u]±1, so

T = Oq(G(k, n))[[u]−1] = Oq(M(k, p))[[u]±1;σ],

where σ is the automorphism ofOq(M(k, p)) defined by σ(xij) := qxij (since [u]xij = qxij[u]

for all i, j).

When we operate on the right hand side of this equality, we will write y for [u]. Thus,

yxij = σ(xij)y and

T = Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y, y−1;σ] (1)

We refer to this equality as the dehomogenisation equality. We will make extensive use

of the dehomogenisation equality to transfer derivations from Oq(M(k, p)) to Oq(G(k, n))

and vice-versa.

Note that [4, Lemma 3.2] gives the formula for general quantum minors of the algebra

Oq(M(k, p)) when viewed as elements in Oq(G(k, n))[[u]−1], and each quantum Plücker

coordinate, multiplied by [u]−1, occurs in the formula. The formula is

[I|J ] = [{1, . . . , k}\(k + 1− I) t (k + J)][u]−1 .

In the reverse direction, for a quantum Plücker coordinate [L] of Oq(G(k, n)), we have

[L] = [L≤k t L>k] = [I | J ][u] ,

where L≤k := L ∩ {1, . . . , k} and L>k := L ∩ {k + 1, . . . , n}, while I = {(k + 1) −
({1, . . . , k}\L≤k} and J = L>k − k.

5 Derivations arising via dehomogenisation

The n column derivations Di of Oq(G(k, n)) that we have defined in Section 3 satisfy

Di([u]) = [u], for 1 ≤ i ≤ k and Di([u]) = 0, for i < k ≤ n; so they extend to n derivations
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D̃i of T = R[y, y−1;σ] = Oq(G(k, n))[u]−1 with D̃i(y) = y, for 1 ≤ i ≤ k, and D̃i(y) = 0 ,

for i < k ≤ n.

We will show that these derivations D̃i of T coincide with extensions of known deriva-

tions of Oq(M(k, p)) which we now recall from [3].

For 1 ≤ i ≤ k, there are derivations Di∗ of Oq(M(k, p)) defined by Di∗(xrs) := δirxrs,

and for 1 ≤ j ≤ p, there are derivations D∗j of Oq(M(k, p)) defined by D∗j(xrs) := δjsxrs.

In other words, Di∗ fixes row i and kills all the other rows of Oq(M(k, p)), while D∗j fixes

column j and kills all other columns of Oq(M(k, p)). For these observations, see the com-

ment after [3, Corollary 2.8].

Note that the Leibniz formula for derivations shows that Di∗([I | J ]) = δ(i ∈ I)[I | J ]

and that D∗j([I | J ]) = δ(j ∈ J)[I | J ] for any quantum minor [I | J ] of Oq(M(k, p)). The

derivations that we have just defined are not linearly independent: it is easy to check that∑k
i=1Di∗ =

∑p
j=1D∗j.

We will extend these derivations of Oq(M(k, p)) to derivations D̃i∗ and D̃∗j of T =

Oq(M(k, p))[y±1;σ] = Oq(G(k, n))[u]−1 as follows. For each i = 1, . . . , k set D̃i∗(y) = y

and note that by applying the Leibniz formula for derivatives to 1 = yy−1 we obtain

D̃i∗(y
−1) = −y−1. For each j = 1, . . . , p set D̃∗j(y) = D̃∗j(y

−1) = 0. These choices for the

action on y are necessary to obtain Corollary 5.2.

In the next proposition, we calculate the effect of the derivations D̃i∗ and D̃∗j on quan-

tum Plücker coordinates in Oq(G(k, n)).

Proposition 5.1. Let [I] be a quantum Plücker coordinate in Oq(G(k, n)) and let 1 ≤ i ≤ k

and 1 ≤ j ≤ n− k. Then,

(i) D̃i∗([I]) = −δ(k + 1− i ∈ I)[I], and

(ii) D̃∗j([I]) = δ(k + j ∈ I)[I].

Proof. Write I = I≤k t I>k. Then, with A = (k + 1)− ({1, . . . , k}\I≤k) and B = I>k − k,

we see that [I] = [A | B]y.
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In case (i),

D̃i∗([I]) = D̃i∗([A | B]y)

= Di∗([A | B])y + [A | B]Di∗(y)

= δ(i ∈ A)[A | B]y − [A | B]y

= (δ(i ∈ A)− 1)[I]

Notice that A = (k + 1)− ({1, . . . , k}\I≤k) = (k + 1)− ({1, . . . , k}\I).

Hence, i ∈ A if and only if k+ 1− i 6∈ I. It follows that δ(i ∈ A) + δ(k+ 1− i ∈ I) = 1.

Hence, δ(i ∈ A)− 1 = −δ(k + 1− i ∈ I), and the result follows.

In case (ii),

D̃∗j([I]) = D̃∗j([A | B]y)

= D̃∗j([A | B])y + [A | B]D̃∗j(y)

= D∗j([A | B]y + 0

= δ(j ∈ B)[I]

Note that B = I>k − k. Hence, j ∈ B = I>k − k if and only if k + j ∈ I, and the result

follows.

Corollary 5.2. (i) D̃i∗ = −D̃k+1−i, for 1 ≤ i ≤ k, and (ii) D̃∗j = D̃k+j, for 1 ≤ j ≤ n−k.

Example 5.3. For Oq(G(2, 4)), we have D̃1∗ = −D̃2, D̃2∗ = −D̃1 and D̃∗1 = D̃3, D̃∗2 =

D̃4.

Remark 5.4. Note, for later use, that

(D̃1 + · · ·+ D̃k + D̃k+1 + · · ·+ D̃k+p)|Oq(M(k,p)) = −(Dk + · · ·+D1) +Dk+1 + · · ·+Dk+p = 0,

while (D̃1 + · · ·+ D̃k + D̃k+1 + · · ·+ D̃k+p)(y) = ky.

6 Adjusting derivatives

In cohomology calculations, we can adjust our original derivation by adding or subtracting

derivations that arise as inner derivations. In this section, we consider what can happen

when we do this, or when adjusting by column derivations.
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Let [u] = [1, . . . , k] and [w] = [n − k + 1, . . . , n] denote the leftmost and rightmost

quantum Plücker coordinates of Oq(G(k, n)), respectively. For any quantum Plücker co-

ordinate [I], set d(I) := # (I\(I ∩ u)) and e(I) := # (I\(I ∩ w)). This notation is fixed

for the rest of the paper. We will use the commutation relations for [u] and [w] with other

quantum Plücker coordinates that are described in the following lemma without comment

throughout the paper.

Lemma 6.1. (i) [u][I] = qd(I)[I][u], and

(ii) [w][I] = q−e(I)[I][w].

Proof. (i) is proved in [4, Lemma 3.1] and (ii) is proved in [2, Lemma 1.5].

If S = [I1] . . . [Im] is a standard monomial, then set d(S) :=
∑
d(Ii) and note that each

d(Ii) ≥ 0 with d(Ii) = 0 if and only if [Ii] = [u]. Then, S[u] = qd(S)[u]S, and so Su = uS

if and only if d(S) = 0 (in which case S = [u]m).

In any case, note that [u]S is a standard monomial, as [u] is the unique minimal quan-

tum Plücker coordinate.

Recall from Section 2 that Oq(G(k, n)) is a graded algebra with each quantum Plücker

coordinate having degree one.

Lemma 6.2. Let D be a derivation of Oq(G(k, n)) and suppose that D([I]) = b0 + · · ·+ bt

is the homogeneous decomposition of D([I]). Then b0 = 0.

Proof. Suppose that [I] 6= [u] and suppose that D([u]) = a0 + · · ·+ as is the homogeneous

decomposition of D([u]). Let d = d([I]) and note that d > 0 so that qd 6= 1. By applying

D to the equation [u][I] = qd[I][u], we obtain

D([u])[I] + [u]D([I]) = qdD([I])[u] + qd[I]D([u]).

Examination of the terms in degree one in this equation reveals that

a0[I] + b0[u] = qdb0[u] + qda0[I],

from which it follows that a0 = qda0 and b0 = qdb0. Then a0 = b0 = 0, as qd 6= 1.

The following lemma is deduced from results in [5]. In the proof of the lemma, we use

the notation developed in that paper without further explanation.
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Lemma 6.3. Let v = {1, . . . , k−1, k+1} and let [α] > [v] in the standard order on quantum

Plücker coordinates. Set t := |α\(v∩α)| and note that t > 0. Then [v][α] = qt[α][v] modulo

〈u〉.

Proof. There is an isomorphism

Ψ :
Oq(G(k, n))

〈u〉
[[v]−1] −→ Oq−1(Yλ))[Y

±1;σ]

where σ(xij) = qxij for the generators xij of the partition subalgebra Yλ, see [5, Theorem

9.17]. If [I | J ]q−1 is a t× t pseudo quantum minor in Yλ then Y [I | J ]q−1 = qt[I | J ]q−1Y .

Let α ∈ Π\{u, v} and set t := |α\v|. Then

Ψ(α v−1) = β[I | J ]q−1

for some β ∈ K, and t× t pseudo quantum minor [I | J ]q−1 , by [5, Theorem 9.17].

Hence,

Ψ(v α) = Ψ(v)Ψ(α v−1)Ψ(v)

= Y β[I | J ]q−1Y

= qtβ[I | J ]q−1Y 2

= qtΨ(α v−1)Ψ(v2)

= qtΨ(α v)

and so v α = qtα v, as required.

Definition 6.4. Suppose that a =
∑s

i=1 aiSi is an expression for an element a ∈ Oq(G(k, n))

in terms of standard monomials Si and that each ai is nonzero. Then the support of a,

written Supp(a), is defined to be {Si | i = 1, . . . , s}.

Lemma 6.5. Let D be a derivation on Oq(G(k, n)). Then,

(i) there are no standard monomials of the form [I1]
a1 [I2]

a2 . . . [Im]am, with I1 6= u and∑
ai > 0, occurring in Supp(D[u]);

(ii) there are no standard monomials of the form [I1]
a1 [I2]

a2 . . . [Im]am, with Im 6= w and∑
ai > 0, occurring in Supp(D[w]).

Proof. (i) The proof is by contradiction, so suppose that such a standard monomial exists.

Without loss of generality, we may assume that I1 = v = {1, . . . , k − 1, k + 1} as we are
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allowing the possibility that some ai = 0. As u and v differ only in one value, we know

that [u][v] = q[v][u].

Apply D to the equation [u][v] = q[v][u] to obtain

D([u])[v] + [u]D([v]) = qD([v])[u] + q[v]D([u]).

Suppose that D([u]) =
∑

i αiSi +
∑

i α
′
iS
′
i where αi ∈ K and the Si, S

′
i are standard

monomials such that [u] does not occur in the Si, but does occur in the S
′
i . Also, suppose

that D([v]) =
∑

j βjTj where βj ∈ K and the Ti are standard monomials. Then∑
i

αiSi[v] +
∑
i

α
′

iS
′

i [v] +
∑
j

βj[u]Tj =
∑
j

qβjTj[u] +
∑
i

qαi[v]Si +
∑
i

qα
′

i[v]S
′

i

Now, Si[v] = q−ti [v]Si modulo 〈u〉 for some ti ≥ 0, by Lemma 6.3 (we allow zero as it

might be that Si is a power of [v].).

The image of the above equation in Oq(G(k, n))/ 〈[u]〉 gives∑
i

q−tiαi[v]Si =
∑
i

qαi[v]Si

or, ∑
i

(q−ti − q)αi[v]Si = 0.

Now, Oq(G(k, n))/ 〈[u]〉 is the quantum Schubert variety determined by the quantum

Plücker coordinate [v] (see [6] for the definition of quantum Schubert varieties in the

quantum grassmannian). As such, Oq(G(k, n))/ 〈[u]〉 has a basis consisting of the images

of the standard monomials in Oq(G(k, n)) that do not involve [u], see [6, Example 2.1.3].

Consequently, each (q−ti − q)αi in the equation above is equal to zero. As at least one αi

is nonzero, this gives q−ti − q = 0, for that i, which is a contradiction as q is not a root of

unity and ti ≥ 0.

(ii) Follows in a similar fashion.

The next corollary follows immediately from the previous lemma.

Corollary 6.6. Let D be a derivation of Oq(G(k, n)). Suppose that D([u]) = a1+· · ·+as is

the homogeneous decomposition of D([u]) and that D([w]) = b1+· · ·+bt is the homogeneous

decomposition of D([w]). Then a1 is a scalar multiple of [u] and b1 is a scalar multiple of

[w].
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In order to prove Conjecture 3.3, we will start by showing that we can adjust an ar-

bitrary derivation D by adding or subtracting derivations coming from the derivations

mentioned in the conjecture (column derivations and inner derivations) so that the ad-

justed derivation, which we will continue to denote by D, satisfies D([u]) = D([w]) = 0.

This will enable us to transfer the study of D into a quantum matrix problem by using

the dehomogenisation equality. We show that we can make this adjustment in a number

of steps that demonstrate how to remove standard monomials that occur in D([u]) (and

D([w])).

As a result of Lemma 6.5, any standard monomial that occurs in the support of D([u])

must start with [u]. Similarly, any standard monomial that occurs in the support of D([w])

must finish with [w].

The next lemma shows that, by adjusting D by suitable inner derivations, we can re-

move terms of D([u]) that are not of the form α[u]a for values of a ≥ 1.

Lemma 6.7. Suppose that S = [u]a[I1]
b1 [I2]

b2 . . . [Im]bm is a standard monomial with [v] ≤
[I1] and

∑
i bi > 0, while a ≥ 1. Let D be a derivation of Oq(G(k, n)) and suppose

that S occurs in the support of D([u]) with nonzero scalar coefficient α. Set d := d(S) =

b1d(I1)+· · ·+bmd(Im) and set z := α
q−d−1 [u]a−1[I1]

b1 [I2]
b2 . . . [Im]bm. Also, set D′ := D−adz.

Then

Supp(D′([u])) = Supp(D([u]))\{S}.

Proof. Note that d > 0, so q−d − 1 6= 0. We calculate

adz([u]) = zu− uz
=

α

q−d − 1

(
[u]a−1[I1]

b1 [I2]
b2 . . . [Im]bm [u]− [u]a[I1]

b1 [I2]
b2 . . . [Im]bm

)
=

α

q−d − 1

(
q−d[u]a[I1]

b1 [I2]
b2 . . . [Im]bm − [u]a[I1]

b1 [I2]
b2 . . . [Im]bm

)
=

α

q−d − 1

(
(qd − 1)[u]a[I1]

b1 [I2]
b2 . . . [Im]bm

)
= αS

It follows that Supp(D′([u])) = Supp(D([u]))\{S}, as required.

Corollary 6.8. Let D be a derivation of Oq(G(k, n)). Then there is a derivation D′ such

that D′−D is a sum of inner derivations and such that the homogeneous terms of D′([u])

are of the form λa[u]a for a ≥ 1 and αa ∈ K.
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Proof. Lemma 6.5 shows that Supp(D([u])) has no terms whose standard monomials do

not begin with [u]. By using Lemma 6.7 an appropriate number of times, we can remove

terms in Supp(D([u])) that involve [u] and at least one other quantum Plücker coordinate

by adjusting by suitable inner derivations. What remains is a derivation D′ whose support

only involves terms of the form [u]a.

Our next task is to show that we can adjust further, if necessary, to see that we can

reduce to a = 1 being the only possibility.

Lemma 6.9. Suppose that D is a derivation of Oq(G(k, n)) such that [u]a−1[w] occurs in

Supp(D([w])) with a > 1. Then there is a derivation D′ of Oq(G(k, n)) such that D′−D is

an inner derivation and D′([u]) = D([u]) while Supp(D′([w])) = Supp(D([w]))\[u]a−1[w].

Proof. Suppose that [u]a−1[w] occurs in Supp(D([w]), say with nonzero coefficient β. Now,

ad[u]a−1([w]) = [u]a−1[w]−[w][u]a−1 = (1−q−d(w)(a−1))[u]a−1[w], and note that 1−q−d(w)(a−1) 6=
0, as both d(w) and a − 1 are nonzero and q is not a root of unity. Set D′ := D −
β(1 − q−d(w)(a−1))−1ad[u]a−1 . Then D′([u]) = D([u]), as ad[u]a−1([u]) = 0. Also, D′([w]) =

D([w])− β(1− q−d(w)(a−1))−1ad[u]a−1([w]) = D([w])− β[u]a−1[w], so that Supp(D′([w])) =

Supp(D([w]))\[u]a−1[w], as required.

The following corollary now follows by applying the previous lemma an appropriate

number of times.

Corollary 6.10. Let D be a derivation of Oq(G(k, n)). Then there is a derivation D′ of

Oq(G(k, n)) such that D′ − D is a sum of inner derivations, D′([u]) = D([u]) and such

that there are no terms of the form [u]a−1[w] with a > 1 occuring in Supp(D([w])).

Lemma 6.11. Let D be a derivation of Oq(G(k, n)) such that D([u]) =
∑
λi[u]i for some

λi ∈ K and suppose that no terms of the form [u]a−1[w] with a > 1 occur in Supp(D([w])).

Then D([u]) = λ1[u].

Proof. Suppose that D([w]) =
∑
βiSi for some standard monomials Si and 0 6= βi ∈ K

and note that there is no Si such that Si = [u]a−1[w] for any a > 1, by assumption. Apply

D to the equation [u][w] = qd(w)[w][u] to obtain

D([u])[w] + [u]D([w]) = qd(w)D([w])[u] + qd(w)[w]D([u]).

Hence, ∑
λi[u]i[w] +

∑
βi[u]Si =

∑
qd(w)βiSi[u] +

∑
qd(w)λi[w][u]i

13



and so ∑
λi[u]i[w] +

∑
βi[u]Si =

∑
qd(w)−d(Si)βi[u]Si +

∑
qd(w)−i·d(w)λi[u]i[w].

The terms in this equation are all scalar multiples of standard monomials. Consider the

occurences of the standard monomial [u]a[w] for a given a > 1. If [u]Si = [u]a[w] then

Si = [u]a−1[w], which does not occur, by assumption. Hence, the second term on the

left side of this equation and the first term on the right side do not contain [u]a[w]. It

follows that λa[u]a[w] = q(1−a)d(w)λa[u]a[w], and this forces λa(1 − q(1−a)d(w)) = 0. Now,

(1 − a)d(w) 6= 0, as a 6= 1 so (1 − q(1−a)d(w)) 6= 0. Hence, λa = 0. As this is true for all

a > 1, we obtain the required result.

Recall from Lemma 3.1 that D1 is the column derivation defined by D1([I]) = δ(1 ∈
I)[I] for each quantum Plücker coordinate [I].

Corollary 6.12. Let D be a derivation of Oq(G(k, n)) such that D([u]) = λ[u] for some

λ ∈ K and suppose that no terms of the form [u]a−1[w] with a > 1 occur in Supp(D([w])).

Then there is a derivation D′ of D such that the following hold:

(i) D′([u]) = 0;

(ii) D′ −D = λD1;

(iii) there are no terms of the form [u]a−1[w] with a > 1 that occur in Supp(D′([w])).

Proof. Note that D1([u]) = D1([1, . . . , k]) = [u] and D1([w]) = D1([n− k + 1, . . . , n]) = 0,

as 1 < n− k+ 1. Set D′ = D−λD1 so that D′([u]) = D([u])−λD1([u]) = λ[u]−λ[u] = 0.

Also, D′([w]) = D([w])− λD1([w]) = D([w]); so no terms of the form [u]a−1[w] with a > 1

occur in Supp(D([w])).

Lemma 6.13. Let D be a derivation of Oq(G(k, n)) with the following properties:

(i) D([u]) = 0,

(ii) Supp(D([w])) contains no term of the form [u]a−1[w] for a > 1.

Then D([w]) = α[w] for some α ∈ K.

Proof. Recall, from Lemma 6.5, that [w] must occur in any standard monomial contained in

Supp(D([w])). Suppose that S = [u]a[I1]
a1 . . . [Im]am [w]b ∈ Supp(D([w])) with u < I1 and

Im < w while a, ai ≥ 0, b > 0. Suppose that S occurs in D([w]) with nonzero coefficient

α ∈ K. Note that d(Ii) > 0 for each i. Apply D to the equation [u][w] = qd(w)[w][u],

remembering that D([u]) = 0, to obtain

[u]D([w]) = qd(w)D([w])[u]

14



Examination of the standard monomials of the form [u]S in this equation reveals that

α[u]a+1[I1]
a1 . . . [Im]am [w]b = αqd(w)[u]a[I1]

a1 . . . [Im]am [w]b[u]

= αqd(w)−(d(w)b+a1d(I1)+···+amd(Im))[u]a+1[I1]
a1 . . . [Im]am [w]b.

As q is not a root of unity, the only possibility is that the power of q on the right hand side

is q0, and this is only possible for b = 1 and a1 = · · · = am = 0. Thus the only possible

terms in Supp(D[w]) are of the form [u]a[w]. Taking into account condition (ii) in the

statement of the lemma, we see that a > 0 is not allowed, so D[w] = α[w], as required.

Recall from Lemma 3.1 that there are column derivations Di, for i = 1, . . . , n such that

Di([I]) = δ(i ∈ I)[I] for each quantum Plücker coordinate [I]. The results of this section

are summarised in the following proposition.

Proposition 6.14. Let D be a derivation of Oq(G(k, n)). Then there is a derivation D′

of Oq(G(k, n)) with D′([u]) = D′([w]) = 0 and such that (D′ −D) is a linear combination

of derivations of the form adz, with z ∈ Oq(G(k, n)), and column derivations Di for i =

1, . . . , n.

Proof. We know the following facts hold for any derivation D of Oq(G(k, n)) and so will

hold for the any derivation that occurs when we adjust a given derivation by adding or

subtracting inner derivations and scalar multiples of the Di: (i) the degree zero parts of

D([u]) and D([w]) are both zero, see Lemma 6.2; (ii) the degree one part of D([u]) is a

scalar multiple of [u] and, similarly, the degree one part of D([w]) is a scalar multiple of

[w], see Corollary 6.6; (iii) any standard monomial occurring in the support of D([u]) must

start with at least one occurrence of [u] and, similarly, any standard monomial occurring

in the support of D([w]) must end with at least one occurrence of [w], see Lemma 6.5.

Let D be an arbitrary derivation of Oq(G(k, n)). By Corollary 6.8 there is a derivation

D(1) of Oq(G(k, n)) such that D(1) − D is a sum of inner derivations and such that the

homogeneous terms of D(1)([u]) are of the form λa[u]a for a ≥ 1 and αa ∈ K.

By Corollary 6.10 there is a derivation D(2) of Oq(G(k, n)) such that D(2) − D(1) is a

sum of inner derivations, the homogeneous terms of D(2)([u]) = D(1)([u]) are of the form

λa[u]a for a ≥ 1 and αa ∈ K and such that there are no terms of the form [u]a−1[w] with

a > 1 occur in Supp(D(2)([w])). By Lemma 6.11, D(2)([u]) = λ[u] for some λ ∈ K.

Set D(3) := D(2) − λD1. Then D(3)([u]) = 0 while D(3)([w]) = D(2)([w]) − λD1([w]) =

D(2)([w]), as D1([w]) = 0. Hence, there are no terms of the form [u]a−1[w] with a > 1 in

D(3)([w]). It follows from Lemma 6.13 that D(3)([w]) = α[w] for some α ∈ K.
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Finally, set D′ := D(3)−αDn. Then D′([u]) = D(3)[u] = 0, as Dn([u]) = 0 and D′([w]) =

D(3)([w]) − αDn([w]) = 0. The passage from D to D′ via D(1), D(2), D(3) only involves

adjustments by adding or subtracting derivations of the form adz, with z ∈ Oq(G(k, n)),

and Di for i = 1, . . . , n at each stage, so the required result follows.

7 Transferring derivations of Oq(G(k, n)) to Oq(M(k, p))

Throughout this section, we assume that 2k ≤ n.

Recall the dehomogenisation equality from Section 4

T = Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y, y−1;σ].

Given a derivation D of Oq(G(k, n)) with D([u]) = D([w]) = 0, we may extend D

to T by setting D([u]−1) = 0 and then transfer, via the dehomogenisation equality, to

Oq(M(k, p))[y, y−1;σ]. We then know that D(y) = D([u]) = 0. We retain the notation D

for this extension to T .

Recall that in Section 4 we set R := Oq(M(k, p)) where p = n − k. The quantum

matrix generators xij of R were defined in Section 4:

xij := [1 . . . , ̂k + 1− i, . . . k, j + k][u]−1 ∈ T.

Our aim in this section is to show that D(R) ⊆ R for such a derivation D. We will use

a pair of gradings of T that were developed in [4, Section 6] to discuss a similar result for

certain automorphisms of Oq(G(k, n)).

As 2k ≤ n, we know that k ≤ n − k = p and so R has at least k columns and

the quantum minor [I | J ] := [1 . . . k | p + 1 − k, . . . , p] ∈ R is defined (we are using

all the rows of R = Oq(M(k, p)) and the last k columns). As noted in [4, Lemma 6.1],

xij[I | J ] = q[I | J ]xij when j < p+ 1− k while xij[I | J ] = [I | J ]xij when j ≥ p+ 1− k.

As a consequence, [I | J ] is a normal element in R and also in T .

Lemma 7.1. Let D be a derivation of Oq(G(k, n)), where 2k ≤ n, with D([u]) = D([w]) =

0. Let [I | J ] be defined as in the previous paragraph. Then D([I | J ]) = 0.

Proof. The discussion at the end of Section 4 shows that

[I | J ] = [p+ 1 . . . n][1 . . . k]−1 = [w][u]−1;

and so D([I | J ]) = D([w][u]−1) = 0.
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Also, we can calculate how [I | J ] commutes with [u] = [1 . . . k]. Note that k <

n − k + 1 = p + 1, as 2k ≤ n. Thus the index sets {1, . . . , k} and {p + 1, . . . , n} do not

overlap, and

[u][I | J ] = [u][w][u]−1 = qk[w][u][u]−1 = qk[w][u]−1[u] = qk[I | J ] [u],

where the second equality comes from Lemma 6.1.

The two gradings that were used in [4, Section 6] are defined by considering how ele-

ments of T commute with y = [u] and with [I | J ].

We set Ti := {a ∈ T | yay−1 = qia} and T (i) := {a ∈ T | [I | J ]a[I | J ]−1 = q−ia}.

Lemma 7.2. (i) T =
⊕∞

i=1 Ti

(ii) T =
⊕

i=Z T
(i)

(iii) (T (0) ∪ T (1)) ∩ T1 ⊆ Oq(M(k, p)) = R

Proof. These results are established in [4, Lemma 6.2(i), Lemma 6.3(i), Lemma 6.4]

Theorem 7.3. Suppose that 2k ≤ n and that D is a derivation of Oq(G(k, n)) such that

D([u]) = D([w]) = 0. Then D(R) ⊆ R.

Proof. It is enough to show that D(xij) ∈ R for each generator xij of R.

Note that xij ∈ (T (0) ∪T (1))∩T1. This claim follows from the commutation rules given

in [4, Lemma 6.1] and the fact that yxij = qxijy.

Let a ∈ T1. Then ya = qay. Apply D to this equation, noting that D(y) = 0,

to obtain yD(a) = qD(a)y so that D(T1) ⊆ T1. Similar calculations, using the fact

that D([I | J ]) = 0 show that D(T (0)) ⊆ T (0) and D(T (1)) ⊆ T (1). It follows that

D(xij) ⊆ D((T (0) ∪ T (1)) ∩ T1) ⊆ (T (0) ∪ T (1)) ∩ T1 ⊆ R.

As D takes each generator xij of R into R, we see that D(R) ⊆ R, as required.

8 The main theorem

Recall that we are assuming that K is a field of characteristic zero and that q ∈ K is a

nonzero element that is not a root of unity. We are also assuming that k 6= 1, as in this

case the quantum grassmannian is a quantum affine space, where the results are known,

see [1]. As Oq(G(n − 1, n)) ∼= Oq(G(1, n)), we exclude this case as well. Thus, we are

assuming that 2 ≤ k ≤ n− 2.
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In this section, we prove Conjecture 3.3. The proof proceeds by first analysing the case

where 2k ≤ n. The general case is then obtained by using the isomorphism Oq(G(k, n)) ∼=
Oq(G(n− k, n)). In order to avoid breaking the flow of the main result, we relegate to an

appendix a discussion concerning homogeneous derivations on non-square quantum matri-

ces that we use in obtaining the truth of the conjecture in the case where 2k < n.

In this section, in order to make reading easier, we will use δ to denote an arbitrary

derivative.

8.1 The case where 2k ≤ n

In this subsection we consider Oq(G(k, n)) in the case that 2k ≤ n. In this case, the

dehomogenisation equality is:

Oq(G(k, n))[[u]−1] = T = Oq(M(k, p))[y, y−1;σ],

where p = n− k. We set R := Oq(M(k, p)).

When 2k = n so that R = Oq(M(k, k)), it is well known that the centre of R is K[Dq],

where Dq is the quantum determinant of Oq(M(k, k)). It is also well known that when

2k < n, so that R is non-square, the centre of R is K. We also recall that the centre of

Oq(G(k, n)) is always reduced to scalars. This follows easily from the basis of standard

monomials by first observing that an element is central in Oq(G(k, n)) if and only if all

the standard monomials in its support are central, and next by noting that there are no

nontrivial central standard monomials since the only standard monomial commuting with

both [u] and [w] are scalars by Lemma 6.1.

Proposition 8.1. Assume that 2k ≤ n. Then any derivation δ of Oq(G(k, n)), is equal,

modulo inner derivations, to a linear combination of D1, . . . , Dn. Furthermore, these n

derivations are linearly independent modulo the inner derivations.

Proof. We use the same notation δ for the extension to T . After possibly adjusting δ

by inner derivations and linear combinations of D1, . . . , Dn we may assume that δ(y) =

δ([u]) = δ([w]) = 0, by Proposition 6.14, and then δ(R) ⊆ R, by Theorem 7.3. Apply δ to

the equation yxij = qxijy to obtain

yδ(xij) = qδ(xij)y.
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Given this equation and the fact that δ(R) ⊆ R, we conclude that δ(xij) is homogeneous

of degree one.

In order to prove the first claim, we consider the two cases (i) 2k = n and (ii) 2k < n

separately in order to show the subclaim that δ|R can be written as a linear combination

of the row and column derivations Di∗, D∗j of the quantum matrix algebra R introduced

in Section 5.

Subclaim: Case (i). First, suppose that 2k = n, so that k = n − k. In this case,

R = Oq(M(k, k)), and so R is a square quantum matrix algebra and the centre of R is

K[Dq], where Dq is the quantum determinant of Oq(M(k, k)).

By [3, Theorem 2.9], there are polynomials P1, . . . , Pk, Q1, . . . , Qk ∈ K[Dq] and an

element z ∈ R such that

δ|R = adz +
k∑
i=1

PiDi∗ +
n−k∑
j=1

QjD∗j,

where Di∗, D∗j are the row and column derivations of R introduced in Section 5.

Let ai be the constant term in Pi and bj be the constant term in Qj. Then

δ(xrs)−

(
k∑
i=1

aiDi∗(xrs) +
n−k∑
j=1

bjD∗j(xrs)

)

= zxrs − xrsz +
k∑
i=1

(Pi − ai)Di∗(xrs) +
n−k∑
j=1

(Qj − bj)D∗j(xrs)

for all r, s. The terms on the left side of this equation all have degree one, whereas the

terms on the right hand side have degree greater than one, because zxrs − xrsz has no

degree zero or degree one terms.

It follows that both sides are zero, and so δ|R =
∑k

i=1 aiDi∗ +
∑n−k

j=1 bjD∗j, which es-

tablishes the subclaim in the case that 2k = n.

Subclaim: Case (ii). Next, suppose that 2k < n. In this case, R = Oq(M(k, p)),

where p = n−k > k and so R is a non-square quantum matrix algebra with more columns

than rows, and the centre of R is K. The proof of this case is substantially more compli-

cated than that of Case (i) due to the fact that [3, Theorem 2.9] only covers derivations for
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square quantum matrices. To avoid disturbing the flow of the proof of this Proposition, the

proof of this subclaim is treated in the appendix and finally established in Proposition A.6.

Having established the subclaim, we revert to the condition that 2k ≤ n.

By using Corollary 5.2 we see that

δ|R =
k∑
i=1

aiDi∗ +
n−k∑
j=1

bjD∗j = (−
k∑
i=1

aiD̃i +
n−k∑
j=1

bjD̃k+j)|R .

Set δ̃ = −
∑k

i=1 aiD̃i +
∑n−k

j=1 bjD̃k+j, so that δ|R = δ̃|R. Note that δ̃(y) = −(
∑k

i=1 ai)y, as

D̃i(y) = y for i = 1, . . . , k, while D̃k+j(y) = 0 for j = 1, . . . , n− k. Recall from Remark 5.4

that
∑n

i=1 D̃i acts trivially on R, while
∑n

i=1 D̃i(y) = ky.

Set δ̂ :=
(

1
k

∑k
i=1 ai

)(∑n
i=1 D̃i

)
. Then, for all r and s, we have

(
δ̃ + δ̂

)
(xrs) = δ̃(xrs)+

δ̂(xrs) = δ̃(xrs)+0 = δ(xrs), while
(
δ̃ + δ̂

)
(y) = δ̃(y)+ δ̂(y) = −(

∑
ai)y+

(
1
k

∑
ai
)

(ky) =

0 = δ(y). As δ and δ̃ + δ̂ agree on the generating set xij, y, they are equal as derivatives.

For the proof of the second part, suppose that

adz +
n∑
i=1

aiDi = 0

for some z ∈ Oq(G(k, n)) and ai ∈ K. Thus, adz([I]) +
∑n

i=1 aiδ(i ∈ I)[I] = 0 for each

quantum Plücker coordinate [I] ∈ Oq(G(k, n)). The first term has no components in de-

gree one and the other terms are all in degree one, so we deduce that adz([I]) = 0 for each

quantum Plücker coordinate [I] ∈ Oq(G(k, n)) so that adz = 0. Thus
∑n

i=1 aiDi = 0.

For r = 1, . . . , n+ 1− k set [Ir] := [1, . . . , k − 1, k − 1 + r], and observe that

0 =
n∑
i=1

aiDi[Ir] = ((a1 + · · ·+ ak−1) + ak−1+r) [Ir]

Thus, (a1+· · ·+ak−1)+ak−1+r = 0 for each of these values of r. It follows that ak = ak+1 =

· · · = an. In a similar manner, set [Jr] := [n−k+1−r, n−k+2, . . . , n] for r = 0, . . . , n−k
to observe that an−k+1−r + (an−k+2 + · · · + an) = 0 for these values of r. It follows that

a1 = · · · = an−k+1. These two ranges of values must overlap, or else n− k + 1 < k so that

n + 1 < 2k ≤ n, a contradiction. Thus, a1 = a2 = · · · = an and from this and Corollary

3.2 it follows that each ai = 0.
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8.2 The general case

We have now proved our conjecture for Oq(G(k, n)) in the case where 2k ≤ n. In order to

remove this restriction, we use the fact that Oq(G(k, n)) ∼= Oq(G(n− k, n)), see, for exam-

ple, [4, Proposition 3.1]. We will use D to distinguish derivations of Oq(G(n− k, n)) from

derivations of Oq(G(k, n)). Let ψ : Oq(G(k, n)) −→ Oq(G(n− k, n)) be the automorphism

of [4, Proposition 3.1]; so that ψ([I]) = [w0( Î )] for each quantum Plücker coordinate [I] of

Oq(G(k, n)), where Î := {1, . . . , n}\I and w0 is the longest element of the symmetric group

Sn. Let D be a derivation of Oq(G(k, n)). It is easy to check that ψDψ−1 is a derivation

of Oq(G(n − k, n)). Similarly, if D is a derivation of Oq(G(n − k, n)) then ψ−1Dψ is a

derivation of Oq(G(k, n)).

Recall that we have the derivations Di of Oq(G(k, n)) for i = 1, . . . , n, with Di([I]) =

δ(i ∈ I)[I], and similarly we have derivations Dj of Oq(G(n− k, n)) for j = 1, . . . , n.

For each i, we need to see how ψDiψ
−1 acts as a derivation on Oq(G(n−k, n)) in terms

of the Dj.

Note from Corollary 3.2 that 1
n−k

(∑n
j=1Dj

)
([J ]) = [J ] for each quantum Plücker

coordinate [J ] ∈ Oq(G(n− k, n))

Lemma 8.2.

ψDiψ
−1 =

1

n− k

(
n∑
j=1

Dj

)
− Dw0(i)

Proof. Let [J ] be a quantum Plücker coordinate in Oq(G(n − k, n)) and suppose that

[J ] = ψ([I]) = [w0(Î)] for a quantum Plücker coordinate [I] of Oq(G(k, n)).

Before we do the calculation of ψDiψ
−1, note the following evaluation of a truth func-

tion:

δ(i ∈ I) = 1− δ(i ∈ Î) = 1− δ(w0(i) ∈ w0(Î)) = 1− δ(w0(i) ∈ J).

We obtain

ψDiψ
−1([J ]) = ψDi([I]) = ψ(δ(i ∈ I)[I]) = δ(i ∈ I)[J ]

= (1− δ(w0(i) ∈ J))[J ] = [J ]−Dw0(i)([J ])

=

{
1

n− k

(
n∑
j=1

Dj

)
− Dw0(i)

}
([J ]),

as required.
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We can now obtain our main theorem without any restriction other than 1 < k < n−1.

Given that we have proved the conjecture in the case that 2k ≤ n, it is enough to prove

the result for Oq(G(n− k, n)) when 2k ≤ n.

Proposition 8.3. Assume that 2k ≤ n. In Oq(G(n−k, n)) any derivation is equal, modulo

inner derivations, to a linear combination of D1, . . . , Dn. Furthermore, these n derivations

are linearly independent modulo the inner derivations.

Proof. LetD be a derivation onOq(G(n−k, n)). Then ψ−1Dψ is a derivation onOq(G(k, n)).

Hence,

ψ−1Dψ = adz +
n∑
i=1

aiDi

for some z ∈ Oq(G(k, n)) and ai ∈ K, by Proposition 8.1.

Therefore,

D = adψ(z) +
n∑
i=1

aiψDiψ
−1 = adψ(z) +

n∑
i=1

ai

{
1

n− k

(
n∑
j=1

Dj

)
− Dw0(i)

}
,

and the first claim follows.

The proof of the second part follows in the same way as for the second part of Propo-

sition 8.1.

We are now ready to state and prove our main result.

Theorem 8.4. Let 2 ≤ k ≤ n − 2. Then any derivation of Oq(G(k, n)) is equal, modulo

inner derivations, to a linear combination of D1, . . . , Dn. Furthermore, these n derivations

are linearly independent modulo the inner derivations.

Proof. The result in the case that 2k ≤ n has been established in Proposition 8.1; so

suppose that 2k > n. Set k′ := n − k then 2k′ < n and n − k′ = k. As 2k′ < n,

the result holds for Oq(G(k′, n)). It then follows that the result holds for Oq(G(k, n)) =

Oq(G(n− k′, n)), by using Proposition 8.3.

Recall that the Hochschild cohomology group in degree one of a ring R denoted by

HH1(R), is defined by:

HH1(R) := Der(R)/InnDer(R),
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where InnDer(R) := {adz | z ∈ R} is the Lie algebra of inner derivations of R. It is well

known that HH1(R) is a module over HH0(R) := Z(R).

The following corollary is immediate from the above theorem.

Corollary 8.5. Let 2 ≤ k ≤ n− 2. The first Hochschild cohomology group of the quantum

grassmannian, HH1(Oq(G(k, n))) is an n-dimensional vector space over K with basis (the

cosets of) D1, . . . , Dn.

A Derivations on non-square quantum matrices

In this appendix, we prove Case (ii) of the Subclaim in the proof of Proposition 8.1.

To be more specific, in Case (ii) of the Subclaim, we are dealing with a derivation of

Oq(M(k, p)), where k < p, that arises, via the dehomogenisation equality, from a derivation

D of Oq(G(k, n)) that has the following properties: (i) D([u]) = D([w]) = 0; (ii) D is a

homogeneous derivative ofOq(M(k, p)). As a consequence of Lemma 7.1, the first condition

implies that the derivative D acts trivially on the rightmost quantum minor ofOq(M(k, p)).

Hence, with a change of notation, throughout this appendix, we assume that we are

considering derivations on Oq(M(m,n)) where m < n and that we have a derivation D

acting on Oq(M(m,n)) with the following properties:

(i) the derivation D is homogeneous; that is, all terms appearing non-trivially in D(xrs)

have degree one.

(ii) D([1, . . . ,m | n+ 1−m, . . . , n]) = 0.

The aim in this appendix is to show that such a derivation can be written as a lin-

ear combination of the row and column derivations Di∗ and D∗j that were introduced in

Section 5. With this in mind, we fix the following notation.

Notation A.1. Throughout the appendix, B denotes the quantum matrix subalgebra of

Oq(M(m,n)) generated by xrs in the first n−m columns of Oq(M(m,n)) and C denotes

the square quantum matrix subalgebra of Oq(M(m,n)) generated by the xrs in the final

m columns. The quantum determinant of C is [I | J ] := [1, . . . ,m | n−m+ 1, . . . , n] and

[I | J ] is in the centre of C.
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A.1 Action of derivations on first m columns of Oq(M(m,n))

Lemma A.2. Use Notation A.1. Let D be a derivation on Oq(M(m,n)) such that D(xij)

is homogeneous of degree one for all xij and suppose that D([I | J ]) = 0. Then D(B) ⊆ B

Proof. It is enough to show that D(xij) ∈ B for j ≤ m. For such an xij suppose that

D(xij) =
∑

r≤m
s≤n

arsxrs with ars ∈ K. Now, xij[I | J ] = q[I | J ]xij, by [4, Lemma 6.1(ii)].

Apply D to this equation, noting that D([I | J ]) = 0, to obtain∑
1≤r≤m
1≤s≤n

arsxrs[I | J ] = q[I | J ]
∑

1≤r≤m
1≤s≤n

arsxrs.

As xrs[I | J ] = q[I | J ]xrs when s ≤ m, and xrs[I | J ] = [I | J ]xrs for s > m, this gives∑
r≤m
s>m

(1− q)arsxrs[I | J ] = 0

and it follows that ars = 0 when s > m, so that D(xij) ∈ B, as required.

A.2 We can adjust D so that D is trivial on C

Lemma A.3. Use Notation A.1. Let D be a derivation on Oq(M(m,n)) such that D(xik)

is homogeneous of degree one for all xik and suppose that D([I | J ]) = 0. Then D(C) ⊆ C.

Proof. This is proved in a similar manner to the proof of Lemma A.2, using the fact that

xik commutes with [I | J ] for xik in C.

We now show that we can adjust D by row and column derivations so that the adjusted

derivation acts trivially on C.

Lemma A.4. Use Notation A.1. Let D be a derivation on Oq(M(m,n)) such that D(xrs)

is homogeneous of degree one for all xrs and suppose that D([I | J ]) = 0. There is a

homogeneous derivation D′ of Oq(M(m,n)) with D′|C = 0 and D′(B) ⊆ B such that

D′ −D is a linear combination of Di∗, for i = 1, . . . ,m, and D∗j, for n−m+ 1 ≤ j ≤ n,

the row and column derivations of Oq(M(m,n)) introduced in Section 5.

Proof. Note that D(C) ⊆ C, by Lemma A.3. Set Y := [I | J ], the quantum determinant

of C. By [3, Theorem 2.9], there are polynomials P1, . . . , Pm, Qn−m+1, . . . , Qn ∈ K[Y ] and

24



an element z ∈ C such that

D|C = adz +
m∑
i=1

PiDi∗|C +
n∑

j=n−m+1

QjD∗j|C .

Let s ≥ n−m+ 1 so that xrs ∈ C. Then

D|C(xrs) = adz(xrs) +
m∑
i=1

PiDi∗|C(xrs) +
n∑

j=n−m+1

QjD∗j|C(xrs)

Let ai be the constant term in Pi and bj be the constant term in Qj so that

D|C(xrs)−
m∑
i=1

aiDi∗|C(xrs) +
n∑

j=n−m+1

bjD∗j|C(xrs)

= zxrs − xrsz +
m∑
i=1

(Pi − ai)Di∗|C(xrs) +
n∑

j=n−m+1

(Qj − bj)D∗j|C(xrs).

As D(xrs) is homogeneous of degree one, the terms on the left hand side of the equation all

have degree one, whereas the nonzero terms on the right hand side all have degree greater

than one. It follows that both sides are zero and so

D|C(xrs) =
m∑
i=1

aiDi∗|C(xrs) +
n∑

i=n−m+1

bjD∗j|C(xrs)

Set

D′ := D −
m∑
i=1

aiDi∗ +
n∑

i=n−m+1

bjD∗j.

Then D′|C = 0. Note that D′ is a homogeneous derivation as D, Di∗ and D∗j are all

homogeneous. Lemma A.2 shows that D′(B) ⊆ B.

A.3 Derivatives column by column

Let ε1, . . . , εm and ε′1, . . . , ε
′
n be the standard bases for Zm and Zn, respectively. The quan-

tum matrix algebra Oq(M(m,n)) has a natural Zm × Zn bigrading defined by giving each

xrs bidegree, also called bicontent, (εr, ε
′
s). Observe that any quantum minor [U | V ] is

homogeneous of bidegree (χU , χ
′
V ), where χS (respectively χ′S) stands for the characteris-

tic function of a subset S of {1, . . . ,m} (respectively, of {1, . . . , n}). If the bidegree of a

homogeneous element is (χr, χc), we refer to χr as the row content of the element and χc
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as the column content of the element. The main use of the notion of content will be that

in any equation of the form P = Q, the terms of the same bicontent on each side of the

equation must be equal.

We consider Oq(M(m,n)) with m < n and assume that we have a homogeneous deriva-

tion D that acts trivially on C and that D(B) ⊆ B.

Lemma A.5. Use Notation A.1. Let D be a derivation on Oq(M(m,n)) such that D(xik)

is homogeneous of degree one for all xik and that D(C) = 0.Then D is a linear combination

of D∗k, for k = 1, . . . , n−m.

Proof. Let xik ∈ B, so that 1 ≤ i ≤ m and 1 ≤ k ≤ n−m. As D(B) ⊆ B, by Lemma A.2,

we can write

D(xik) =
∑

1≤r≤m
1≤s≤n−m

a(ik)rs xrs.

for some a
(ik)
rs ∈ K. Our first aim is to show that a

(ik)
rs = 0 whenever r 6= i so that

D(xik) =
∑

1≤s≤n−m

a
(ik)
is xis.

Set l := n−m + 1. Choose any j < i. Note that xikxjl = xjlxik. As xjl ∈ C we know

that D(xjl) = 0 so that when we apply the derivative D to this equation, we obtain∑
1≤r≤m
1≤s<l

a(ik)rs xrsxjl =
∑

1≤r≤m
1≤s<l

a(ik)rs xjlxrs

or, ∑
1≤r≤m
1≤s<l

a(ik)rs (xrsxjl − xjlxrs) = 0.

Consider terms in this equation with bicontent (2εj; εs + εl) (which from now on we also

denote by (j, j; s, l) to ease notation) to see that∑
1≤s<l

a
(ik)
js (xjsxjl − xjlxjs) = 0.

As s < l this gives ∑
1≤s<l

a
(ik)
js (q − 1)xjlxjs = 0,
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From which it follows that a
(ik)
js = 0 for all s when j < i.

Next, choose any j > i. As D(xjk) ∈ B, write

D(xjk) =
∑

1≤r≤m
1≤s<l

a(jk)rs xrs.

Apply D to the equation xikxjl − xjlxik = q̂ xilxjk (where q̂ := q − q−1), noting that

D(x∗l) = 0 as x∗l ∈ C, to obtain

∑
1≤r≤m
1≤s<l

a(ik)rs xrsxjl −
∑

1≤r≤m
1≤s<l

a(ik)rs xjlxrs = q̂

 ∑
1≤r≤m
1≤s<l

a(jk)rs xilxrs

 (2)

Look at terms with bicontent (j, j; s, l) in Equation (2). There are no such terms on the

right hand side, as i occurs as a row index and i 6= j, while on the left hand side we get

such terms when r = j. Hence, a
(ik)
js xjsxjl − a

(ik)
js xjlxjs = 0, for each s. As s < l this gives

(q − 1)a
(ik)
js xjsxjl = 0 and so a

(ik)
js = 0, for all s and each j > i. As we already know that

a
(ik)
js = 0 for all s when j < i this gives

D(xik) =
∑
1≤s<l

a
(ik)
is xis,

for 1 ≤ i ≤ m as required.

Fix k, with 1 ≤ k < l, and j > 1. Apply the derivative D to the equation x1kxjl −
xjlx1k = q̂ x1lxjk, using the expressions we have just derived, to obtain∑

1≤s<l

a
(1k)
1s x1sxjl −

∑
1≤s<l

a
(1k)
1s xjlx1s = q̂

∑
1≤s<l

a
(jk)
js x1lxjs (3)

Look at terms with content (1, j; s, l) in Equation (3) for fixed s. On the left hand side we

have a
(1k)
1s x1sxjl − a(1k)1s xjlx1s and this is equal to q̂ a

(1k)
1s x1lxjs. On the right hand side we

have q̂ a
(jk)
js x1lxjs. It follows that a

(jk)
js = a

(1k)
1s for each s with 1 ≤ s < l, so that

D(xjk) =
∑
1≤s<l

a
(1k)
1s xjs,

for each j with 1 ≤ j ≤ m.

Hence,

D


x1k

x2k
...

xmk

 = a
(1k)
11


x11

x21
...

xm1

+ a
(1k)
12


x12

x22
...

xm2

+ · · ·+ a
(1k)
1,l−1


x1,l−1

x2,l−1
...

xm,l−1

 . (4)
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For each k = 1, . . . , l − 1, we want to show that a
(1k)
1r = 0 when r 6= k, so that

D


x1k

x2k
...

xmk

 = a
(1k)
1k


x1k

x2k
...

xmk

 = a
(1k)
1k D∗k


x1k

x2k
...

xmk

 .

Fix k with 1 ≤ k ≤ l−1. First, we show that a
(1k)
1r = 0 for each r such that k < r ≤ l−1.

If k = l−1, there is no such r to consider, so assume that k < l−1, in which case k+1 < l

and x1,k+1 ∈ B. Apply D to the equation x1kx1,k+1 = qx1,k+1x1k for k + 1 < l to obtain

D(x1k)x1,k+1 + x1kD(x1,k+1) = qD(x1,k+1)x1k + qx1,k+1D(x1k),

which gives∑
1≤s<l

a
(1k)
1s x1sx1,k+1 +

∑
1≤s<l

a
(1,k+1)
1s x1kx1s =

∑
1≤s<l

qa
(1,k+1)
1s x1sx1k +

∑
1≤s<l

qa
(1k)
1s x1,k+1x1s. (5)

Consider terms in this equation with content (1, 1; k + 1, r) for r > k. These occur in the

first and fourth sums when s = r and do not occur in the second and third sums because k is

in the column content of the terms in these sums. Hence, a
(1k)
1r x1rx1,k+1 = qa

(1k)
1r x1,k+1x1r.

If r = k + 1, then we get a
(1k)
1,k+1x1,k+1x1,k+1 = qa

(1k)
1,k+1x1,k+1x1,k+1 and so a

(1k)
1,k+1 = 0. If

r > k + 1 then x1rx1,k+1 = q−1x1,k+1x1r so we see that q−1a
(1k)
1r x1,k+1x1r = qa

(1k)
1r x1,k+1x1r

and so a
(1k)
1r = 0. Hence, a

(1,k)
1,r = 0 for all r > k.

Next, we show a
(1k)
1r = 0 when r < k. If k = 1 then there is no such r to consider, so

assume that k > 1, in which case k − 1 ≥ 1 so that x1,k−1 exists and is in B. Apply D to

the the equation x1,k−1x1,k = qx1,kx1,k−1

D(x1,k−1)x1,k + x1,k−1D(x1,k) = qD(x1,k)x1,k−1 + qx1,kD(x1,k−1),

which gives∑
1≤s<l

a
(1,k−1)
1s x1sx1,k +

∑
1≤s<l

a
(1,k)
1s x1,k−1x1s =

∑
1≤s<l

qa
(1k)
1s x1sx1,k−1 +

∑
1≤s<l

qa
(1,k−1)
1s x1kx1s. (6)

Consider terms in this equation with content (1, 1; r, k− 1) with r < k. There are no such

terms in the first and fourth terms, as k is in the column content of the terms in these sums,

and such terms occur in the second and third terms when s = r. Hence, a
(1,k)
1r x1,k−1x1r =
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qa
(1,k)
1r x1rx1,k−1. When r = k−1 we see that a

(1,k)
1,k−1x1,k−1x1,k−1 = qa

(1,k)
1,k−1x1,k−1x1,k−1 so that

a
(1,k)
1,k−1 = 0. When r < k−1 then x1,k−1x1r = q−1x1rx1,k−1 so we see that q−1a

(1,k)
1,r x1rx1,k−1 =

qa
(1,k)
1,r x1,rx1,k−1 and so a

(1,k)
1,r = 0. Hence, a

(1,k)
1,r = 0 for all r < k. Thus, a

(1k)
1r = 0 whenever

r 6= k so that D(xik) = a
(1k)
ik xik for each 1 ≤ i ≤ m, as required to show that

D


x1k

x2k
...

xmk

 = a
(1k)
1k


x1k

x2k
...

xmk


for each 1 ≤ k < l. As we already know that D acts trivially on columns n+ 1−m up to

n, this gives

D = a
(1,1)
11 D∗1 + a

(1,2)
12 D∗2 + · · ·+ a

(1,l−1)
1,l−1 D∗,l−1,

as required.

A.4 Conclusion of appendix

The preceding analysis proves the following Proposition.

Proposition A.6. Suppose that m < n and that we have a derivation D of Oq(M(m,n))

such that

(i) the derivation D is homogeneous; that is, all terms appearing non-trivially in D(xij)

have degree one.

(ii) D([1, . . . ,m | n+ 1−m, . . . , n]) = 0.

Then

D =
m∑
i=1

aiDi∗ +
n∑
k=1

bkD∗k

for some ai, bk ∈ K.

Proof. By Lemma A.4, there is a homogeneous derivation D(1) such that D(1)−D is a linear

combination of the Di∗, with 1 ≤ i ≤ m, and D∗j, with n−m+ 1 ≤ j ≤ n, and such that

D(1)|C = 0. By Lemma A.5, D(1) is a linear combination of the D∗k with 1 ≤ k ≤ n−m.

Writing D = D(1) −
(
D(1) −D

)
gives the required result.
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