NOTE ON A LOWER BOUND OF THE WEYL SUM IN BOURGAIN’S
NLS PAPER (GAFA ’93)

TADAHIRO OH

1. INTRODUCTION

In this note, we go over Bourgain’s counterexample [2] to the periodic LS-Strichartz
estimate for the Schrodinger equation on T. In [2], Bourgain proved the periodic L°-
Strichartz estimate with a slight loos of derivative:

Z an627ri(nz+n2t)
L6

< Cn|{an}| (1.1)

In|<N T2) In|<N
where the constant C'y is bounded above by
c log N
Cn S eloglosN < N€, for any € > 0. (1.2)

The proof is based on a simple divisor counting argument, and the loss basically comes
from the number of divisors of an integer NNV.

In the same paper, he also showed that some loss of derivative in (1.1) was indeed
necessary. More precisely, it was shown that

Cy 2 (log N)s (1.3)

for the initial condition a, = X[o,x](n). The main part of the argument is based on the

following (lower) bound on the Weyl sum:
N
~— (1.4)

N
Z e27ri(nx+n2t)
n=0 \/(j

for fixed z and ¢ in the major arc My(q, a,b).! See Proposition 3.1 below. Also, see Theorem

2.3. Here, the major arc My(q, a,b) is defined for ¢, a, and b, satisfying

1<a<g<N2, (a,9)=1 0<b<g (1.5)
and is given by
b 1 a 1
,a,b) = ,t 0,12:‘ —f’<7, ‘t—f’<7 . 1.6

1y the application of the Hardy-Littlewood circle method, one often divides the sum into dyadic blocks
and define major and minor arcs for each dyadic block. Here, we do not need such a dyadic decomposition.
1
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2. DIRICHLET’S THEOREM, GAUSS SUM, AND WEYL SUM
Recall the following theorem.

Theorem 2.1 (Dirichlet). Let § € [0,1] and N > 1. Then, there exist integers a and q
satisfying 1 < a < q < N and (a,q) = 1 such that

a 1
9 - - S BENE) (21)
‘ qll — gN
where || - || denotes the distance to the close integer.

Proof. Consider the N + 1 numbers j# (mod 1) for j = 0,1,...,N. By the pigeon hole
principle, there eixts two distinct integers m,n € {0,1,..., N} with m > n such that

Imf —nf —a'| < % (2.2)

for some non-negative integer a’. Let ¢ =m —n>1. If 1 <da’ < ¢ and (d/,¢') =1, then
(2.1) holds with a = @’ and g = ¢ after dividing (2.2) by ¢’. It remains to consider the
following three cases.

(a) If o’ = 0, then it follows from (2.2) that |0] < q,lN < 4. Hence, (2.1) holds with

a=q=1.
(b) If @’ > ¢, then from (2.2), we have + > a’ — ¢'0 > ¢/(1 — 6). Once again, (2.1)
holds with a = ¢ = 1.
(c) If (d/,¢') #1 (but 1 < a’ < ¢ < N), then we can write ' = ka and ¢
k > 2 such that (a,q) = 1. Then, from (2.2), we obtain qiN > q’1]\7 > |0
Hence, (2.1) holds in this case as well.

kq for some
|

!
—2 = 6|2,
O

Next, we recall the estimate of the Gauss sum. Given positive integers a and ¢ with
(a,q) =1, the Gauss sum S(a, q) is defined by

q
S(a,q) = ZeQm%nz. (2.3)
n=1

More generally, for a,q € N and b € Z with (a,q) = 1, we can define the Gauss sum
S(a,b,q) by
q
S(a,b,q) := Z 2T, (2.4)

n=1

Namely, we have S(a,q) = S(a,0,q).

Theorem 2.2 (Gauss sum). Let a,q € N and b € Z with (a,q) = 1. Then, the following
holds for the Gauss sums:
(a) When b is even,

Va4 if q is odd,
|S(a,b,q)] =<0, if ¢ =2 (mod 4), (2.5)
V2q, if¢q=0 (mod 4).
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(a) When b is odd,

Va4 if q is odd,
1S(a,b,9)] = { V24, if ¢ =2 (mod 4), (2.6)
0, if ¢ =0 (mod 4).

Proof. First, note that the Gauss sum (2.4) is invariant if we shift the range of summation.
Thus, we have

q q
]S(a, b, q)|2 — S(a, b, q)S(a, b, q) _ Z Z eZm{E(mQ,yﬂ)Jrg(mfn)}

a a . a rap2 b
_ Z (Z e27rz(2€q)n> 2mi( 28420
Here, the inner sum is 0 unless
20a = 0 (mod q). (2.7)

If (2.7) holds, the inner sum is equal to q.
e Case 1: Suppose that ¢ is odd. Since (a,q) =1 = (2, q), it follows from (2.7) that £ = q.
Thus, we have

|S(a,b,q)* = q.
e Case 2: Suppose that ¢ = 2 (mod 4). Since (a,q) = 1, we have 2¢ = 0 (mod ¢). Namely,
¢ =1 or q. Thus, we have

0, if bis even,

S(a.b, 2 _ mi( L +b 2mi(qa+b)\ _ .
S(a,b,q)[” = qle te ) 2q, if bis odd.

e Case 3: Lastly, suppose that ¢ = 0 (mod 4). In this case, 4 is an even number. Thus,
we have
. qa . 2q, if bis even
S(a,b,q)* = emI(THb 4 g2milaath)y — ’ "
15(a, 5, q)I” = ol =900, ithis odd.
This proves (2.5) and (2.6). O

Lastly, we state the classical estimate on the Weyl sum.

Theorem 2.3 (Weyl sum). Let z,t € R and a,q € Z such that (a,q) = 1. Moreover,
assume that

a 1
t— = < =, 2.8
' al ~ ¢° (28)
Then, the following bound holds:
N
A N

Z e27rz(nac+n2t) 5 <1 + qé) (log q)% (29)
n=0 qz
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Remark 2.4. (i) In general, let p(n) be a polynomial of degree k such that the leading
coefficient ¢ satisfies (2.8). Then, we have

N
§ : 627mp(n)
n=0

See Theorems 1 and 2 on p.41 in [5].

(ii) Let N € N. Then, given ¢t € R, it follows from Theorem 2.1 that there exists a,q € Z
such that 1 <a < ¢ < N and (a,q) = 1, satisfying (2.8).

1
1+ q 2k _1
S CopN €<N+ +Nk> .

3. LOWER BOUND (1.4)

In this section, we prove the lower bound (1.4) under certain conditions on ¢ and b. The
basic idea is to use the bound on the Gauss sum (Theorem 2.2) after replacing a certain
summation by integration (see (3.3)).

Proposition 3.1. Let q,a, and b be as in (1.5). Then, for (xz,t) € Moy(q,a,b), we have
the following lower bound on the Weyl sum:

N
ZQQﬂi(nern%) z ﬁ’ (31)
n=0 \/a

provided that one of the following conditions holds:
(a) q is odd,
(b) ¢ =0 (mod 4) and b is even, or
(¢) ¢ =2 (mod 4) and b is odd.

Remark 3.2. The following proof does not tell us what happens (i) ¢ = 2 (mod 4) and b
is even, or (ii) ¢ = 0 (mod 4) and b is odd.

Proof. Leta:t—%andﬁzx—g. By writing n = mq + £ with 1 < ¢ < ¢, we have

N (g
. 2 . 2
Z p2mi(natn?t) _ Z e2mi(na+n?t) + 0(q)
n=0 n=1
ﬂ
q q
_ Z 2l (ma+0) (2+8)+(ma+0)° (§ +a)} +0(q)
=1 m=1
, )
PRGOS i P08} 4 O (3.2)
=1 m=1

since mq + £ = £ (mod ¢) and (mq + ¢)? = £? (mod ¢). Note that the error O(q) in (3.2) is
acceptable since O(q) < N 2 < Ni< % under the assumption ¢ < N 2,

The first sum (in ¢) on the right-hand side of in (3.2) is basically the Gauss sum. However,
we can not use Theorem 2.2 since the inner sum also depends on £. Thus, we first need to
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replace the inner sum by an integral and get rid of the /-dependence. (i.e. van der Corput
approximation type argument.) Fix m € Z N [O, [%H Then, for y € [m, m + 1], we have

[{(mq + 0)°a + (mq + )8} — {(yg + 0)°a + (yqg + 0)B}]

= [((m +y)qg +26)(m — y)ga + (m — y)gB| <

20Nz
Hence, by Mean Value Theorem, we have
[%} [X]+1 1
2mi{(matt) 2ot (mg+0)B) _ / T 2mi{ a0 o (w08} gy o(&)

me1 0 q

N 1

_ / ¢ i+t (wa )8} gy, 4 O(E) (3.3)
0 q

1
The error O(%) becomes O(N%) under the /-summation in (3.2). Note that this is an

acceptable error as before. By change of variables z = yq + ¢ (for fixed /), the integral on
the right-hand side of (3.3) becomes

T ) 1 N 1N 0
/ eZm{(yq—l—Z) a+(yq+€)ﬁ}dy _ / 627rz(z2a+zﬁ)dz _ = / 627rz(z2a+zﬁ)dz + O(*)
0 q.Je q.Jo q
—0(1)
N 1 /N .
=24 / (€2m(z2a+z6) —1)dz + O(1)
q q.Jo
N 2N
= - 1 4
- +0(Sp,) +om, (3.4)

where we used Mean Value Theorem in the last inequality. The error O(1) in (3.4) becomes
O(q) under the f-summation in (3.2), which is again acceptable.

Finally, the estimate (3.1) follows from Theorem 2.2 with (3.2), (3.3), and (3.4), provided
one of the following conditions holds: (a) ¢ is odd, (b) ¢ =0 (mod 4) and b is even, or (c)
g =2 (mod 4) and b is odd. O

4. PROOF OF (1.3)

In this section, we complete the construction of the counterexample to the periodic LS-
Strichartz estimate. Define fy by
N

f( 1) = 3 et
n=0
1
Then, [[fn(,0)[z2(r) = N=.
Fix ¢, a, and b, satisfying (1.5). Then, from Proposition 3.1, we have

N3
[ o asd 2 T (4.1)
Mo(g,a,b) q

provided that q and b satisfies the conditions in Proposition 3.1.
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Lemma 4.1 (Disjointness of the major arcs). Let N > 1. The major arcs defined in (1.6)
are disjoint. More precisely, let q,a,b and ¢',a’, b satisfy (1.5), respectively. Suppose that
Mo(gq,a,b) N Mo(q',a',b') #0. Then, Mo(q,a,b) = Mo(¢',d', V), i.e. ¢q=¢, a=ad, and
b=1".

Proof. Suppose that (z,t) belongs to two major arcs, i.e. (z,t) € Mo(q,a,b)NMo(q,ad’, V'),
where ¢,a,b and ¢/, d’, b’ satisfy (1.5), respectively.
If % # Z—/’, then we have

a al| _ lag" —d'q| 1 1
R MR Ty TS s
50N q q qq’ q¢ =~ N

This is clearly a contradicition. Now, suppose that i.e.q = ¢, a = a/, but b # V.

+e-

1 - b‘+ b’>\b—b’|>1> 1
—— > |r— - rT——|>—>- .
50N q q q ¢ N2
This is again a contradiction. g
By Lemma 4.1 and (4.1), we have
NZ g g1
JRIEEEIRETED SIS S TN I
T2 q:1 a=1 b=1 Mo(q7a7b)
(a,9)=1
2 ola)
3 Ll
RN T
q=1 q

where the summation in b is over (a) b=0,...q — 1, if ¢ is odd, (b) even b, if ¢ = 0 (mod
4), and (c) odd b, if ¢ =2 (mod 4). Here, ¢(q) is Euler’s totient function, representing the
number of positive integers < ¢ that are relatively prime to ¢. Finally, (1.3) follows once

we prove the following lemma.?

Lemma 4.2. Let n € N. Then, we have

2L > 1og N. (4.2)

Proof. Let 7 > 0. Then, we have

elg) _ 1
> e ¥ et (43
27 <q<2i+1 q 27 <q<29+1

2In the previous version, in summing over only odd ¢, we simply used Theorem 328 in Hardy-Wright [3]:
liminf £M1081087
n— o0 n

where v is Euler’s constant given by 7 := lim, 00 (ZZ:I % — log n) = 0.5772.... Or rather, the following

lower bound on ¢:
n

eYloglogn + @'

p(n) >

This was not efficient and introduced a loglog N loss.
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Here, we used the fact that >°_; ¢(q) = 37%2%—0(11 logn). See Theorem 3.7 in [1]. Summing
(4.3) over j =0,1,...,log N yields (4.2). O

Remark 4.3. (i) The same proof basically works to show that the L*-Strichartz estimate
on T* fails with

Cy > (log N)1. (4.4)
Note that Takaoka-Tzvetkov [6] summed only over ¢ prime, thus yielding only Cny 2
(loglog N )i
(ii) Recently, Kishimoto [4] gave a different proof of (1.3) for the periodic LS-Strichartz
estimate when d = 1 and (4.4) for the periodic L*-Strichartz estimate when d = 2. When
d = 2, he also showed that the periodic L*-Strichartz estimate fails on almost all irrational
tori. See [4].

(iii) In fact, one can derive a more precise asymptotic formula for N > 2:
N

o(n) 1 Y log N
b _@log]\f—i—@—A—FO( x ) (4.5)

where v denotes Euler’s constant and A = "7, “("T)l#.

function, while p(-) denotes the Mébius function. See Exercise 6 on p. 71 in [1].
The proof of (4.5) is based on

ﬁﬂ(n):nzu(dd) and C(ls_zlu(z)’ s> 1.

din ) "

See Theorem 2.3 in [1] and Theorem 287 in [3].

n=1

Here, ((+) is the Riemann zeta
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