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STOCHASTIC PDES WITH MULTIPLICATIVE NOISE - LECTURE

NOTES

PIERRE DE ROUBIN

1. Introduction and vocabulary

1.1. A bit of vocabulary... In this course, we study the problem of well-posedness for
stochastic partial differential equations (PDEs) with multiplicative noise. Let us first give
some examples of such equations:

• Stochastic nonlinear Schrödinger equation (SNLS):

i∂tu−∆u = N(u) + σ(u)Φξ, (1.1)

• Stochastic nonlinear wave equation (SNLW):

∂2t u−∆u = N(u) + σ(u)Φξ, (1.2)

• Stochastic nonlinear heat equation (SNLH):

∂tu−∆u = N(u) + σ(u)Φξ, (1.3)

Let us come back a bit on these equations, and clarify some vocabulary. First, note that,
in each of these equations, the left-hand side is the part that qualifies the equation as
Schrödinger, wave or heat. More particularly, the left-hand side also make us qualify
(SNLS) and (SNLW) as dispersive equations, while (SNLH) is qualified as dissipative or
parabolic equation. Also, N(u) denotes the nonlinearity and σ(u)Φξ denotes the stochastic
noise. Let us now precise the terms of the noise:

• ξ denotes a space-time white noise, which essentially denotes a space-time process
such that, for any (t, x), ξ(t, x) is a mean 0 Gaussian process with

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y),

• Φ is a smoothing operator in x, namely Φ is a bounded operator in L2(M) with
M = Rd or M = Td = (R/Z)d,

• σ is a function in u. If σ(u) ≡ 1, we say that we have an additive noise. Otherwise,
e.g. σ(u) = u or σ(u) = uk, we say that we have a multiplicative noise.

Let us now introduce the notion of mild solution to an equation. To do so, we focus on
the associated problem for (SNLS):

{
i∂tu = ∆u+N(u) + σ(u)Φξ

u|t=0 = u0.
(1.4)

Suppose, for now, that we only have the linear problem, namely:

{
i∂tu = ∆u,

u|t=0 = u0.
(1.5)

Then, applying Fourier transform for the space variable x ∈ M, our problem becomes
1
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{
i∂tû = −|ξ|2û,
û|t=0 = û0,

which has for solution û(t, ξ) = û0(ξ)e
it|ξ|2 . Therefore, inverse Fourier transform allows us

to say that the solution for (1.5) is u(t) = S(t)u0 where

S(t)f = eit∆f = F−1[eit|ξ|
2
f̂ ]. (1.6)

From this, we say that u is a (mild) solution to (SNLS) if u satisfies the following mild or
Duhamel formulation

u(t) = S(t)u0 − i

� t

0
S(t− t′)N(u)(t′)dt′ − i

� t

0
S(t− t′)σ(u)(t′)ΦdW (t′). (1.7)

In the previous equation, we say that

• S(t)u0 is the linear solution,

•
� t
0 S(t− t′)N(u)(t′)dt′ is the nonlinear part of the equation,

•
� t
0 S(t − t′)σ(u)(t′)ΦdW (t′) is the effect of stochastic forcing. We call it stochastic
convolution and denote it Ψ(t).

Note that the notion of mild solution for the other equations follows from a similar argument
and is easily adaptable.

1.2. Construction of the stochastic convolution. Let us now explain the construction
and the meaning of the stochastic convolution Ψ. First, we define the L2-cylindrical Wiener
process W (t, x). This stochastic process can be essentially understood throughout this
course as a Brownian motion. Indeed, on Rd, we define it by

W (t, x) =
∑

n∈N
βn(t)en(x),

where en is an orthonormal basis of L2(Rd) and (βn)n∈N is a family of independent real-
valued Brownian motions (see below for the definition). Besides, on Td, we define W (t)
by

W (t, x) =
∑

n∈Zd

βn(t)e
2πin·x,

where (βn)n∈Zd are again independent real-valued Brownian motions.

Remark 1.1. Note that, for Schrödinger’s equation, we may choose (βn) to be independent
complex-valued Brownian motions assuming furthermore that, if we write βn = Reβn +
i Imβn, then Reβn and Imβn are independent real-valued Brownian motions.

Suppose from now on, without loss of generality, that M = Rd, since the computations
are essentially the same on the torus. From the previous definition of W , we can write
dW (t′) =

∑
n∈N en(x)dβn(t

′) and, since en ∈ L2(M) for any n, we can apply Φ on en.
Thus, we define the stochastic convolution Ψ(t) as

Ψ(t) =
∑

n∈N

� t

0
S(t− t′)

[
σ(u)(t′)Φ(en)

]
dβn(t

′) (1.8)
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However, then again we stumble onto a new problem since the integral we get is now a
stochastic integral that we need to define. To do so, we will use the so-called Wiener and
Ito integrals. Besides, we will also give a rigorous definition of a Brownian motion.

2. Construction of stochastic integrals

2.1. Brownian motion and Wiener integral. In this subsection, we define the Wiener
integral, but first, we need to rigorously introduce the Brownian motion:

Definition 2.1. A Brownian motion {B(t)}t∈R+ is a stochastic process satisfying

(1) B(0) = 0 almost surely,
(2) B(t)−B(s) ∼ N (0, t−s) for any t > s, where N (0, t−s) denotes a gaussian random

variable, with mean 0 and variance (t− s),
(3) B(t1)−B(s1) and B(t2)−B(s2) are independent, provided that t1 ≥ s1 ≥ t2 ≥ s2.

This definition gives quite useful properties on the Brownian motion:

Proposition 2.2. (1) A Brownian motion is almost surely continuous.
(2) Let B a Brownian motion. For any natural integer k and any t > s, we have

E[|B(t)−B(s)|2k] = (2k)!

2kk!
(t− s)k.

In general, we also have for any p ≥ 1

E[|B(t)−B(s)|p] ∼p |t− s| p2 .
Besides, we also have the following theorem:

Theorem 2.3 (Kolmogorov’s continuity critterion). Let {Xt}t∈R+ a stochastic process with
values in a metric space. Suppose it satisfies

E[d(Xs, Xt)
p] ≤ C0|t− s|1+α

for some p > 1 and α > 0. Then,

P

(
sup
s ̸=t

d(Xs, Xt)

|s− t|
α
p
−ε

≥ λ

)
≤ c1
λp

for any 0 < ε < α
p and λ > 0. Namely, Xt is almost surely

(
α
p − ε

)
-Hölder continuous and,

in particular, continuous.

As an example, let us apply Kolomogorov’s continuity criterion to a Brownian motion B.
Using property 2 of a Brownian motion, we know that for any p > 1

E[|B(t)−B(s)|p] ∼p |t− s| p2 =: |t− s|1+α.

Therefore, Theorem 2.3 tells us that B is
(
α
p − ε

)
-Hölder continuous. The question that

remains is how good can be that α
p ? Observe that

α

p
=

p
2 − 1

p
=

1

2
− 1

p
−→p→∞

1

2
,

so that, taking p large enough, B is
(
1
2 − ε

)
-Hölder continuous.
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Remark 2.4. The idea of being
(
1
2 − ε

)
-Hölder continuous is that our Brownian motion

is γ-Hölder continuous with γ < 1
2 being as close as we want to 1

2 without ever reaching it.

Therefore, we denote this idea 1
2−. We extend this notation to x− for any real number x

to say that we are strictly less than x, but as close to it as we want. We also have the x+
counterpart to say that we are strictly more than x but as close to it as we want. Namely,
x− = x− ε and x+ = x+ ε for ε > 0 small.

From our previous considerations, we then say that a Brownian motion has regularity
1
2−, and we denote it as

B ∼ 1

2
− .

Now, we call white noise the derivative of a Brownian motion, and since taking a derivative
means losing one degree of regularity (this is understandable by using the definition of
differentiation), we can see that a white noise dB has regularity −1

2−, namely

dB ∼ −1

2
− .

Remark 2.5. Note that when we define a space-time white noise ξ = dW , we use the
formula W (t) =

∑
n∈N βn(t)en with βn some Brownian motions. This means that ξ is not

unique, it’s just one space-time white noise among other possible ones. Note also that,
from this formula, we can retrieve the Brownian motion βn with the formula

βn(t) = ⟨1[0,t]en, ξ⟩L2
t,x
.

Indeed, we have by orthonormality of the (em)m∈NB:

⟨1[0,t]en, ξ⟩L2
t,x

=
∑

m∈N
⟨1[0,t]en, emdβm⟩L2

t,x
= ⟨1[0,t], dβn⟩L2

t
= βn(t).

Let us now move onto the construction of the Wiener integral, that roughly allows us to
integrate a deterministic function against a random measure satisfying some conditions. We
want to construct a linear operator I : L2((a, b)) → L2(Ω) such that, for any deterministic
function f ∈ L2((a, b)), we can write

I(f) =

� b

a
f(t)dB(t)

where B is a Brownian motion, and with the following properties:

(1) E[I(f)] = 0,

(2) E[(I(f))2] = ∥f∥2L2((a,b)) =
� b
a |f(t)|2dt.

Namely, we want this operator to be an isometry.
To construct this operator, we start with step functions f(t) =

∑n
j=1 aj−11[tj−1,tj ]. Using

left-endpoints Riemann sum, we define I(f) by

I(f) =
n∑

j=1

aj−1

(
B(tj)−B(tj−1)

)

with B a Brownian motion. Then, we get from the definition of B:
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E[I(f)] =
n∑

j=1

aj−1E
[
B(tj)−B(tj−1)

]
= 0,

and by independence

E[(I(f))2] = E

[ n∑

j=1

n∑

k=1

aj−1ak−1

(
B(tj)−B(tj−1)

)(
B(tk)−B(tk−1)

)]

=
∑

j ̸=k

aj−1ak−1E
[
B(tj)−B(tj−1)

]
E
[
B(tk)−B(tk−1)

]
+
∑

j=k

a2j−1E

[(
B(tj)−B(tj−1)

)2
]

= 0 +
∑

j=k

a2j−1

(
tj − tj−1

)

=

� b

a
|f(t)|2dt

so the properties are satisfied. Now, we can define I(f) for any f ∈ L2(a, b). To do so, we
approximate f by step functions fn, and then we define I(f) = limn→∞ I(fn) in L

2(Ω).

Remark 2.6. (1) If f ∈ C1, we can define I(f) as a Paley-Wiener-Zygmund integral:

I(f) =

� b

a
fdB = −

� b

a
f ′(t)dB(t) + f(b)B(b)− f(a)B(a).

(2) If f ∈ C
1
2
+, we can define I(f) as a Young integral, which is a generalization of the

Riemann-Stieltjes integral.
(3) If B is complex valued, the former definition yields

E[(I(f))2] = 2∥f∥2L2(a,b).

2.2. Ito integral. Let us now explain the construction of the Ito integral, that roughly al-
lows us, under certain conditions, to integrate a random function against a random measure.
To that end, we need to use filtrations.

Definition 2.7 (Filtration). Let (Ω,F , P ) a probability space. A filtration {Ft}t∈R+ is a
sequence of σ-fields such that, for any t1 ≤ t2, we have

Ft1 ⊆ Ft2 ⊆ F .
From this definition, we say that a stochastic process (Xt)t∈R+ is adapted, or non-
anticipating, if, for any t ≥ 0, Xt is Ft-measurable.
Furthermore, we say that a stochastic process X is progressively measurable if the function

X : (t, ω) ∈ [0, T ]× Ω → X(t, ω)

is B[0,T ] ⊗Ft-measurable.
From these definitions, observe that a progressively measurable process is always adapted.
However, an adapted process is not always progressively measurable. But if a process is
adapted and has left (or right) continuity, then it is progressively adapted. For instance,
an adapted and càdlàg1 process is progressively measurable.

1càdlàg stands for “continuité à droite et limite à gauche” and means “right continuity, with a limit from
the left”.
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Now, the idea for constructing the Ito integral is the followiing: assume that a Brownian
motion B satisfies:

• B(t) is Ft-measurable for any t ≥ 0,
• B(t)−B(s) is independent of {Fs}s<t for any t ≥ 0.

Set L2
ad

(
[a, b]× Ω

)
the set of all functions f(t, ω) such that f is adapted to {Ft} and

� b

a
E[f2(t)]dt <∞.

Then, we define the Itô integral on L2
ad

(
[a, b]× Ω

)
so that we can denote it

I(f) =

� b

a
f(t)dB(t)

and it satisfies the following properties:

(1) I(f) is centered

E
[
I(f)

]
= 0,

(2) and we have the Ito isometry:

E
[
(I(f))2

]
=

� b

a
E
[
f2(t)

]
dt.

Step 1: To do so, we use a similar idea as for Wiener integral and start with step
stochastic processes:

f(t, ω) =
n∑

j=1

aj−1(ω)1[tj−1,tj)(t)

with (aj) such that

(1) aj is Ftj -measurable, so that it does not “peek in the future”,

(2)
∑
a2j <∞.

Then, we define the Ito integral as the left endpoint sum:

I(f)(ω) =
n∑

j=1

aj−1(ω)
(
B(tj)−B(tj−1)

)

and we will show our two conditions are satisfied.
But first, we need to recall a few properties about conditional expectation.

Definition 2.8. Let X ∈ L1(Ω,F) and G ⊂ F a sub σ-field. The conditional expectation
of X given G is defined by the unique random variable Y such that

(1) Y is G-measurable,
(2) for any A ∈ G,

�
AXdP =

�
A Y dP .

We denote this random variable Y by E[X|G].
Remark 2.9. In the previous definition, Y is given by the Radon-Nikodym theorem in the
following sense:

Since X ∈ L1(Ω,F), the application

µ : A ∈ G →
�
A
XdP
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is absolutely continuous with respect to P |G . Therefore, Radon-Nikodym theorem gives the
existence of a G-measurable function Y such that

dµ = Y dP |G ⇐⇒ ∀A ∈ G, µ(A) =

�
A
Y dP |G .

Note also that if X ∈ L2(Ω,F), then E[X|G] = PL2(Ω,G)(X).

Proposition 2.10. (1) E
[
E[X|G]

]
= E[X]2,

(2) If X is G-measurable, E[X|G] = X,
(3) If X and G are independent, in the sense that {X ∈ V } and A ∈ G are independent

for any V ∈ BR and A ∈ G, then
E[X|G] = E[X],

(4) if Y is G-measurable and E[XY ] <∞, then

E[XY |G] = Y E[X|G].
Using these properties, we can prove the two conditions needed for the Ito integral:

Proof of the two properties of Ito integral. We prove them separately.
Part 1: the integral is centered. Indeed, using properties (1), (4) and (3) of the condi-

tional expectation, we get, for any j

E
[
aj−1

(
B(tj)−B(tj−1)

)]
= E

[
E
[
aj−1

(
B(tj)−B(tj−1)

)∣∣Ftj−1

]]

= E

[
aj−1E

[(
B(tj)−B(tj−1)

)∣∣Ftj−1

]]

= E

[
aj−1E

[
B(tj)−B(tj−1)

]]
= 0

by definition of the Brownian motion B.
Part 2: the Ito isometry. Let i, j be two integers. Suppose first that i ̸= j and,

without loss of generality, that i < j. Then, we have from propertie (1), (4) and (3) of the
conditional expectation:

E

[
ai−1aj−1

(
B(ti)−B(ti−1)

)(
B(tj)−B(tj−1)

)]

= E

[
ai−1aj−1

(
B(ti)−B(ti−1)

)
E
[
B(tj)−B(tj−1)|Ftj−1

]]
= 0

Now, if we assume that i = j, the same properties give

E
[
a2j−1

(
B(tj)−B(tj−1)

)2]
= E

[
a2j−1E

[(
B(tj)−B(tj−1)

)2|Ftj−1

]]

= E
[
a2j−1

]
(tj − tj−1)

and the result follows by summation over j.
□

2This property is often used in computing an expectation by conditioning.
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Step 2: Now, we can define Ito integral for any function f ∈ L2
ad

(
[a, b] × Ω

)
. Indeed,

for any function f in that space, there exists a sequence {fn} of step stochastic processes
converging to f in L2

ad

(
[a, b]× Ω

)
. Then, we define the Ito integral by

I(f) =

� b

a
f(t)dB := lim

n→∞
I(fn).

Then, we have a few properties that come around naturally:

Proposition 2.11. (1) The operator I is linear.
(2) E[I(f)] = 0 for any f ∈ L2

ad

(
[a, b]× Ω

)
.

(3) There is the so-called Ito isometry: for any f ∈ L2
ad

(
[a, b]× Ω

)
, we have

E
[
(I(f))2

]
=

� b

a
E
[
(f(t))2

]
dt.

(4) For any f, g ∈ L2
ad

(
[a, b]× Ω

)
, we have

E

[� b

a
f(t)dB

� b

a
g(t)dB

]
=

� b

a
E
[
f(t)g(t)

]
dt.

To sum up, the operator I : L2
ad

(
[a, b]× Ω

)
→ L2(Ω) is an isometry.

Using Ito integral, we can also define an equivalent to “Taylor expansion of order 2” for
a stochastic process using the following theorem:

Theorem 2.12 (Ito’s lemma). Let X a stochastic process. Assume X satisfies the following
stochastic differential equation

dX = fdt+ gdB

where f and g are deterministic functions. Then, considering F (X) for F a C2 function,
we have

dF = ∂xFdX +
1

2
∂2xF (dX)2

= ∂xF (fdt+ gdB) +
1

2
∂2xFg

2dt

For instance, we can apply Ito’s lemma on the case where

F (x) =
x2

2
and X = B.

We get then

B2

2
(t) =

� t

0
BdB +

1

2
t ⇐⇒

� t

0
BdB =

B2

2
(t)− 1

2
t.

The term −1
2 t on the righthand side of the previous equation is called Ito correction. We

see then that the behaviour of a stochastic integral can be somewhat different from the
behaviour of deterministic integral.

Remark 2.13. The Ito correction that appears in Ito integral can be removed if we use
a different construction, such as Stratonovich integral. In this case, we define the integral
with the midpoint sum, and it yields, for instance,
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� t

0
B ◦ dB =

B2(t)

2
.



SPDE’S WITH MULTIPLICATIVE NOISE

JACOB ARMSTRONG GOODALL

1. Function Spaces

1.1. Non-Homogeneous Sobolev Spaces. In the study of elliptic and parabolic PDE’s

the Sobolev space W k,p is defined to be the set of measurable functions who, along with

their first k weak derivatives, lie in Lp, where k and p are positive integers. Denote by S
the Schwartz space, that is, the space of rapidly decaying C∞ functions on Rd. Over this

space of functions, the definition of the Sobolev space can be extended to fractional exponents

s ∈ (0, 1). More precisely, this is the space for which the norm,

||f ||W s,p = ||f ||pL +

(∫ ∫ |f(x)− f(y)|p
|x− y|sp+d

)1/p

, (1.1)

is bounded for f ∈ S(Rd). Next, recall the Fourier transform characterisation of the space

Hk = W k,2 wherein, for complex valued functions it is proven that for any function g ∈ L2(Rd)
that g ∈ Hk(Rd) if and only if (1 + |y|s) f̂ ∈ L2(Rd). The Schwartz space has the nice property

that it makes the Fourier transform into an automorphism (an isomorphism from a space to

itself) which allows us to extend the definition of the fractional Sobolev space to all s ∈ R.

Definition 1.1 (Fractional Sobolev Space: Hs(Rd)). For s ∈ R define the the fractional

Sobelov space to be

Hs(Rd) =

{
f ∈ S(Rd) :

∫

Rd
〈ξ〉2s

∣∣∣f̂(ξ)
∣∣∣
2
dξ <∞

}
(1.2)

where f are Schwarz functions and 〈·〉 =
(
1 + | · |2

) 1
2 , what are known as Japanese Brackets.

In addition the space is equipped with the following norm,

||f ||Hs =

(∫

Rd
〈ξ〉2s

∣∣∣f̂(ξ)
∣∣∣
2
dξ

) 1
2

. (1.3)

The above definition corresponds to the case where p = 2, but by using the Bessel Potential

we can go one step further and define the fractional Sobolev space for all 1 < p <∞.

Definition 1.2 (Bessel Potential Space W s,p, or Lps). For s ∈ R and 1 < p <∞, define the

norm of the Bessel potential space by,

||f ||W s,p = ||〈∇〉sf ||Lp , (1.4)

where 〈̂∇〉sf(ξ) = 〈ξ〉sf̂(ξ) denotes the Bessel potential of order −s. Then the Bessel potential

space is the set of Scwhartz functions f for which ||〈∇〉sf ||2Lp <∞.
1
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Remark 1.3. The spaces W s,p and Hs are standard in the study of dispersive PDE’s but

(1.3) and (1.4) are generally different from (1.1), which is used in the study of elliptic and

parabolic PDE’s and is obtained by real interpolation. The spaces defined in (1.4) and (1.1)

are the same when s is an integer and 1 < p <∞ [8][6], in which case the norms correspond

to that in the classical definition of the Sobolev space introduced for instance in [5].

1.2. Homogeneous Sobolev Spaces. Next we introduce the Homogeneous analogues to

the above spaces. The homogeneous version of Hs(Rd) is denoted by Ḣs(Rd) and defined as

the completion of S(Rd) under the norm

||f ||Ḣs(Rd) =

(∫

Rd
|ξ|2s

∣∣∣f̂(ξ)
∣∣∣
2
dξ

) 1
2

. (1.5)

Likewise, this extends to all 1 < p < ∞ whence we denote the homogeneous version of

W s,p(Rd) by Ẇ s,p(Rd) and define it as the closure of S(Rd) under the norm

||f ||Ẇ s,p = |||∇|sf ||Lp , (1.6)

where |̂∇|sf(ξ) = |ξ|sf̂(ξ) denotes the Reisz potential of order −s. This space is thus known

as the Reisz potential space.

Remark 1.4. On the Taurus Td the Fourier transform is simply the fourier coefficient and

the frequency ξ would be a member of Zd. However, in Rd the weight of ξ is zero when ξ = 0.

Hence, (1.6) is not a norm but a semi-norm over the Schwartz space. For instance, if f̂ is a

distribution supported at ξ = 0, then

||f ||Ẇ s,p = 0, ∀s > 0.

The only distribution supported at ξ = 0 is the Dirac delta and its derivatives, whose inverse

Fourier transform is the set of all polynomials, since

F−1(δ) = 1,F−1(δ′) = −2iπx, . . . .

In order to make (1.6) a norm we must work in the space of tempered distributions, the dual

of the Schwartz space, denoted S ′. Additionally, to remove zeros, we have to quotient out the

polynomials, hence identifying functions that differ by a polynomial (see definition 1.5 below).

Definition 1.5 (Reisz Potential Space Ẇ s,p, or L̇ps). Let S ′ be the set of tempered distributions,

the set of continuous linear functionals on S, and let P be the set of all polynomials. Then

for s ∈ R and 1 < p <∞, for f ∈ S ′\P define the norm of the Reisz potential space by,

||f ||Ẇ s,p = |||∇|sf ||Lp , (1.7)

where |̂∇|sf(ξ) = |ξ|sf̂(ξ) denotes the Reisz potential of order −s. Here S ′\P means we

quotient out the polynomials. Then the Reisz potential space is the set of tempered distributions

f quotient polynomials for which |||∇|sf ||2Lp <∞.

Definition 1.5 is only included for completeness. In practice, particularly in the study

of PDE’s and SPDE’s, it doesn’t matter since we work in Lp and often L2 which means

that the functions have decay properties in the limit corresponding to the Sobolev order p.

Hence instead of considering tempered distributions as in the formal definition we can work

in Schwartz space and apply boundary conditions that the function be supported on a finite
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domain, this is equivalent to the definitions in (1.5) and (1.6). This pre-empts the need for

the considerations in remark 1.4, which are nonetheless necessary in analysis.

2. Some Results on Sobolev Spaces

First we introduce the fractional extension of the Gagliardo–Nirenberg–Sobolev inequality

which leads us to the Sobolev embedding theorem. Finally we state the algebra property.

Theorem 2.1 (Sobolev Inequality). Let 1 < p < q < ∞ such that s
d = 1

p − 1
q then for

f ∈ S(Rd)
||f ||Lq(Rd) . ||f ||Ẇ s,p(Rs) , (2.1)

while for f ∈ S(Td), ∣∣∣∣f − f̄
∣∣∣∣
Lq(Td)

. ||f ||Ẇ s,p(Td) (2.2)

where f̄ is the average value of f on it’s support.

Theorem 2.2 (Sobolev Embedding). If 1 < p <∞ and sp > d then

||f ||L∞ . ||f ||W s,p . (2.3)

Theorem 2.3 (Algebra Property). If 1 < p <∞ and sp > d then

||fg||W s,p(Rn) . ||f ||W s,p(Rn) ||g.||W s,p(Rn) . (2.4)

for all f, g ∈ S(Rn).

A proof of the embedding theorem can be found in [4], section 4.4. The proof of the Algebra

property of W s,p can be found in [12]. For Hs, which does not require Littlewood-Paley

theory a proof can be found on page 18 of [9]. Yet another proof, without para-products and

credited to Marcinkiewicz and Zygmund can be found in [6], Theorem 5.5.1.

3. Stochastic Convolution Revisited

Consider the linear stochastic Schrödinger equation,

i∂tu−∇u = σ(u)Φξ. (3.1)

The solution to this equation is given by the stochastic convolution,

Ψ(t) =

∫ t

0
S
(
t− t′

) (
σ(u)(t′)Φ dW (t′)

)

=
∑

n∈N

∫ t

0
S
(
t− t′

) (
σ(u)(t′)Φ(en)

)
dβn(t′) (3.2)

where Φ is the ‘smoothing operator’. In the study of Schröodinger’s equation we work in Hs

because it is a Hilbert space, a vector space equipped with a metric which is closed under the

norm induced by the inner product. Hilbert spaces are used in the mathematically rigorous

formulation of quantum mechanics.
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Definition 3.1 (Hilbert-Schmidt Norm). Given any operator T : X → Y , with X and Y

Hilbert spaces we say that T is Hilbert-Schmidt if, for any orthonormal basis en of X, it holds

that

||T ||HS(X,Y ) =

(∑

n

||Ten||2Y

) 1
2

<∞. (3.3)

||T ||HS(X,Y ) is known as the Hilbert-Schmidt norm.

3.1. Additive Case. Although this is a course on SPDE’s with multiplicative noise, first we

will focus on the easier case, where the multiplicative factor is just be one i.e. where σ(u) ≡ 1

and we have what is known as the additive case. Hence the stochastic convolution in this case

becomes

Ψ(t) =

∫ t

0
S(t− t′)Φ dW (t′). (3.4)

We want to find out the regularity of this equation, which is the space that it’s sample paths

will belong to almost surely.

Proposition 3.2. On Rd for Φ ∈ HS
(
L2, Hs

)
, and s ∈ R we have that

(1) Ψ ∈ CtHs
x, almost surely.

(2) Let 1 ≤ q <∞ and d ≥ 3 then for finite 2 ≤ r ≤ 2d
d−2 we have

Ψ ∈ LqTW s,r
x = Lq

(
[0, T ];W s,r(Rd)

)
(3.5)

almost surely for any T > 0.

Part (1) says that Ψ is continuous in time and Hs in x if the smoothing operator is

Hilbert-Schmidt. That is sometimes enough to prove well posedness but for rougher initial

data we need (2) in which we have the addition of integrability up to r over x, as well as

differentiability up to s because

||f ||W s,r = ||〈∇〉sf ||Lrx .

Note that the upper bound on r above is precisely the index required for the (non-homogeneous)

Sobolev embedding, i.e. it is the largest r for which it holds that ||·||Lr ≤ ||·||H1 . It is also the

maximum r for which the Strichartz estimate hold, and as you will see, this is used in the

proof.

Notation 3.1. When capital letters are used in the subscript then we are referring to the

interval from zero to the value indicated by the subscript. For example, the T in LqT refers to

the interval [0, T ].

Remark 3.3. On Td part (1) of proposition 3.2 holds true and we also have Ψ ∈
CtW

s−ε,∞
x (Td), ∀ε > 0. This holds because the taurus is a bounded domain and in that

case it follows from Hölder’s inequality that L∞ is the strongest norm in terms of the integra-

bility of a function. This implies that the L∞ norm controls all other norms, a statement that

also true in Rd for low dimensions d = 1, 2 but not for d > 2 because in higher dimensions the

decay of the functions are not sufficient to determine integrability.
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Proof of Proposition 3.2 (1). For part one, we begin by proving that Ψ ∈ Ct almost surely.

First we have,

〈∇〉sΨ(t) =
∑

n∈N

∫ t

0
S(t− t′)〈∇〉sΦ(en)dβn(t′) (3.6)

which can be rewritten in the L2 norm with s derivatives as,

E
[
||Ψ(t)||2Hs

]
= E

[
||〈∇〉sΨ(t)||2L2

]
=

∫ ∫
· · · dxdP. (3.7)

It follows that,

E
[
||Ψ(t)||2Hs

]
=

∫ ∑

n∈N

∑

m∈N
E

[∫ t

0
· · · dβn(t1)

∫ t

0
· · · dβm(t2)

]
dx

= 2
∑

n∈N

∫ t

0

∣∣∣∣S(t− t′)Φ(en)
∣∣∣∣2
Hs dt

′

= 2t ||Φ||2HS(L2;H2) ,

where S(t− t′) = e−i(t−t
′)|ξ|2 on the Fourier side and can be dropped as it is a unitary operator,

see (4.4) on the next page. We now move on to continuity, which we want to prove for a

fixed T . For this T we want to show that Ψ ∈ CtHs
x almost surely. We cannot show that it

holds everywhere since the set of T is uncountable, hence we can’t say that there is a set of

probability one for which this holds for all T . To proceed we use Kolmogorov’s continuity

criterion. First we rewrite in the L2 norm as before, and note that for h > 0,

E

[∫ t+h

0
· · · dβn(t1)

∫ t

0
· · · dβm(t2)

]
∼ 2t

since the second integral only goes up to the shorter timescale t, which implies that

E
[
||Ψ(t+ h)−Ψ(t)||2Hs

]
= 〈∇〉s(Ψ(t+ h)Ψ(t+ h)−Ψ(t+ h)Ψ(t)

−Ψ(t)Ψ(t+ h) + Ψ(t)Ψ(t))

∼ 2(t+ h) ||Φ||2HS − 2t ||Φ||2HS − 2t ||Φ||2HS + 2t ||Φ||2HS
= 2h ||Φ||2HS

for h > 0. Note that Ψ is Gaussian, hence an homogeneous Wiener chaos of order one,

meaning that we can apply order hypercontractivity to get

E
[
||Ψ(t+ h)−Ψ(t)||pHs

]
≤ Cp

(
E
[
||Ψ(t+ h)−Ψ(t)||2Hs

])p/2

. |h|p/2 ||Φ||p
HS(L2;Hs)

, for p >> 1.

Then by Kolmogorov’s continuity criterion it follows that Ψ ∈ CtHs
x, almost surely. �

4. Properties of the Solution to Schrödinger’s Equation

Firstly, recall the linear Schrödinger equation
{
i∂tu = ∇u
u|t=0 = u0,

(4.1)
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which has the solution

u(t) = S(t)u0, where S(t) = e−it∆, (4.2)

and

Ŝ(t)f(ξ) = eit|ξ|f. (4.3)

This last term introduces oscillation which, for large ξ diverges as time goes by. The solution

(4.2) implies the conservation of homogeneous Sobolev norms, i.e. that S(t) is unitary in Ḣs

which can be written

||S(t)f ||Ḣs = ||f ||Ḣs ∀s ∈ R. (4.4)

Further, the Fourier transform (4.3) can be used to prove the dispersive estimate for ξ ∈ Rd,
which can be written as:

||S(t)f ||L∞
x
. 1

|t|d/2 ||f ||L1
x
, t 6= 0. (4.5)

This is in a sense a smoothing off over long time scales, since large (unbounded) peaks will be

eliminated by t in the denominator on the right hand side which bounds the infinity norm on

the left.

Proposition 4.1 (Strichartz Estimate). Let 2 ≤ q, r ≤ ∞ and (q, r, d) 6= (2,∞, 2).We say

that the ordered pair (g, r) is admissible if

2

q
+
d

r
=
d

2
.

For admissible pairs (g, r), (g̃, r̃) we have the following estimates:

(1) The Homogeneous Case. For x ∈ Rd and t ∈ R,

||S(t)f ||LqtLrx . ||f ||L2
x

(4.6)

Note that if d = 1 then r ≤ ∞, if d = 2 then r <∞ and if d ≤ 3 then r ≤ 2d
d−2 .

(2) The Dual Case. ∣∣∣∣
∣∣∣∣
∫

R
S(−t)F (t)dt

∣∣∣∣
∣∣∣∣
L2
x

. ||F ||
Lq

′
t L

r′
x

(4.7)

where 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1.

(3) Non-homogeneous/Retarded Case.
∣∣∣∣
∣∣∣∣
∫ t

0
S(t− t′)F (t′)dt′

∣∣∣∣
∣∣∣∣
LqtL

r
x

. ||F ||
Lq̃

′
t L

r̃′
x

(4.8)

If f ∈ L2
x then S(t)f ∈ LqtLrx and in particular, S(t)f ∈ Lrx, almost surely for t ∈ R. On Rd

the proof uses the unitary and dispersive estimated along with the Sobeolov inequality (4.4),

(4.5) and (2.1) respectively. Some Strichartz estimates extend to Td, details of which can be

found in the work by Jean Bourgain [1] and collaboratively with Ciprian Demeter in [2], the

latter being particularly influential. The proof of the non-endpoint case can be found in [11]

and [13], while that for the endpoint estimates can be found in [7] for Schrödinger’s equation

in d ≥ 3 and the wave equation in d ≥ 4. There are other kinds of Strichartz estimates for

the wave equation in specific cases, such as in [3] for critically decaying potentials. Finally for

the heat equation there is the analogous result known as the Schauder estimate,

||P (t)f ||W s,q . t−
d
2

( 1
p
− 1
q

)− s
2 ||f ||Lpx , for t > 0. (4.9)
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We are now in a position to prove the rest of Proposition 3.2.

Proof of Proposition 3.2 (2). Recall again that Ψ(t) =
∫ t

0 S(t − t′)ΦdW (t′) and we assume

that Φ ∈ HS(L2;Hs). Additionally we have

ΦW =
∑

n∈N
βn(t)φ(en), where {en}n∈N = O.N.B of L2(Rd).

Like previously in (3.7) we can rewrite the Hs norm as the L2 norm by taking s derivatives.

Further, independence of the Gaussians, order hypercontractivity and Ito’s isometry followed

by the change of variables t− t′ = τ , we have that,

||〈∇〉sΨ(t, x)||L2(Ω) =

∣∣∣∣∣

∣∣∣∣∣

(∫ t

0
|S(t− t′)〈∇〉sΦ(en)(x)|2dt′

)1/2
∣∣∣∣∣

∣∣∣∣∣
l2n

(4.10)

= ||S(τ)〈∇〉sΦ(en)(x)||l2nL2
τ ([0,t]) . (4.11)

From this, for all p ≥ 2, we get

||〈∇〉sΨ(t, x)||Lp(Ω) . p1/2 ||〈∇〉sΨ(t, x)||L2(Ω) (4.12)

∼ p1/2 ||S(τ)〈∇〉sΨ(en)(x)||l2nL2
τ ([0,t]) . (4.13)

Next, for q < ∞ and r ≤ 2d
d−2 (the admissibility condition), for finite T > 0 it follows from

the Minkowski integral inequality that∣∣∣
∣∣∣||Ψ||LqTW s,r

x

∣∣∣
∣∣∣
Lp(Ω)

≤
∣∣∣
∣∣∣||〈∇〉sΨ(t, x)||Lp(Ω)

∣∣∣
∣∣∣
LqTL

r
x

(4.14)

≤ Cp
∣∣∣
∣∣∣||S(τ)〈∇〉sΦ(en)||l2nL2

τ ([0,t])

∣∣∣
∣∣∣
LqTL

r
x

(4.15)

for p ≥ q ∨ r = max{q, r}. Now if we replace ([0, t]) by ([0, T ]) and apply Minkowski’s

inequality again we get

Cp

∣∣∣
∣∣∣||S(τ)〈∇〉sΦ(en)||l2nL2

τ ([0,t])

∣∣∣
∣∣∣
LqTL

r
x

≤ CpT 1/q
∣∣∣
∣∣∣||S(τ)〈∇〉sΦ(en)||L2

τ ([0,t];Lrx)

∣∣∣
∣∣∣
l2n
. (4.16)

Given 2 ≤ r ≤ ∞, let (q̃, r) be admissible for some q̃ ≥ 2 then we can apply Hölder’s inequality

to obtain

CpT
1/q
∣∣∣
∣∣∣||S(τ)〈∇〉sΦ(en)||L2

τ ([0,t];Lrx)

∣∣∣
∣∣∣
l2n
≤ CpT θ

∣∣∣
∣∣∣||S(τ)〈∇〉sΦ(en)||

Lq̃τ ;Lrx

∣∣∣
∣∣∣
l2n
. (4.17)

Then by applying Strichartz estimate we get

CpT
θ
∣∣∣
∣∣∣||S(τ)〈∇〉sΦ(en)||

Lq̃τ ;Lrx

∣∣∣
∣∣∣
l2n
≤ CpT θ ||||Φ(en)||Hs ||l2n (4.18)

= ||Φ||HS(L2;Hs) (4.19)

<∞
This shows, for finite T , that Ψ ∈ LqTW

s,r
x almost surely. �

Remark 4.2. To be more rigorous in the proof above one would consider a sequence of

operators Φk converging to Φ but with stronger smoothing properties, then consider the

corresponding sequence Ψk. The result of the subsequent calculations would be a Cauchy

sequence converging to Ψ and having the correct properties. Details can be found in [10],

lemma 2.1.
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1. Lecture 3 (Part II)

1.1. Local Well-Posedness for SNLS with additive noise. Let us first recall the sto-

chastic non-linear Schröndiger equation (SNLS) with additive noise on Rd is defined as
{
i∂tu−∆u = |u|2ku+ ϕξ,

u|t=0 = u0 ∈ Hs,
(1.1)

where ξ is a space-time white noise on Rd and ϕ ∈ HS
(
L2;Hs

)
with s ∈ R and k ∈ N. Let

us also recall that S(t)f := F−1(e−it|·|2 f̂(·)), t ∈ R, so that if we denote by Ψ the stochastic

convolution defined as

Ψ(t) :=

t∫

0

S(t− t′)ϕdW (t′), t ≥ 0 (1.2)

then Ψ ∈ CTH
s
x ∩ Lq

TW
s,r
x , P-a.s. for any given finite q ≥ 1 and r ≥ 2 satisfying the following

condition {
r < +∞, d = 1, 2

r ≤ d
d−2 , d ≥ 3.

We refer interested readers to [1] or [2] for the proofs of those facts. To prove the local

well-posedness of (1.1) we first need to state what we mean by a solution to (1.1).

Definition 1.1. A Hs-valued stochastic process u(t), t ∈ [0, T ], is said to be a mild solution

to (1.1) if the following integral equality is satisfied P-a.s.

u(t) = S(t)u0 − i

t∫

0

S(t− t′)|u(t′)|2ku(t′)dt′ − iΨ(t), t ∈ [0, T ].

Our goal is to prove the local well-posedness (LWP) for SNLS when s > d
2(i.e. when H

s

has an algebra structure). We aim to show that there exists a local mild solution to (1.1) and,

moreover, we look to prove the stability under perturbations with respect to both the initial

datum u0 ∈ Hs and the noise ϕ ∈ HS(L2;Hs). To achieve this, we apply the Banach fixed

point theorem to the map Γu0,ϕ : Hs × CTH
s → CTH

s defined as

Γu0,ϕ(t) := S(t)u0 − i

t∫

0

S(t− t′)|u(t′)|2ku(t′)dt′ − iΨ(t), t ∈ [0, T ]. (1.3)

1.1.1. Local existence and uniqueness for SNLS with additive noise. To prove local existence

and uniqueness for SNLS, we first need to recall some estimates involving the addends in the

RHS of (1.3).

i) Let us first note that from the unitarity of {S(t)}t∈R we have

∥S(t)u0∥Hs = ∥u0∥Hs , ∀t ∈ R,

so that we infer

∥S(t)u0∥CTHs = ∥u0∥Hs .
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ii) As for the non-linear term, from Minkowski’s inequality for multiple integrals, the

unitarity of {S(t)}t∈R and the algebra property of Hs(which we know it holds since

s > d
2) we obtain

∥∥∥∥∥∥

t∫

0

S(t− t′)|u(t′)|2ku(t′)dt′
∥∥∥∥∥∥
Hs

≤
t∫

0

∥|u(t′)|2ku(t′)∥Hs dt′

≤
t∫

0

∥u(t′)∥2k+1
Hs dt′ ≤ T∥u∥2k+1

CTHs , for all t ∈ [0, T ], P-a.s.

iii) To conclude, we recall that the stochastic convolution Ψ satisfies the following
∥∥∥∥Ψ∥CTHs

∥∥∥
L2(Ω)

≤ C(T ) ∥ϕ∥HS(L2;Hs) (1.4)

where C(T ) is a suitable constant depending on T . From this we infer the existence

of a random variable ω → C(T, ∥ϕ∥HS(L2;Hs), ω) such that

∥Ψ∥CTHs ≤ C(T ; ∥ϕ∥HS(L2;Hs), ω) <∞, P-a.s.

Once this is in place, from i), ii) and iii) we obtain for 0 ≤ T ≤ 1 and for any given u0 ∈ Hs,

ϕ ∈ HS(L2;Hs) and u ∈ CTH
s the following

∥Γu0,ϕ(u)∥CTHs ≤ ∥u0∥Hs + ∥Ψ∥C([0,1];Hs) + C1T∥u∥2kCTHs . (1.5)

Similarly, from the algebra property of Hs we obtain for u, v ∈ CTH
s and any given u0 ∈ Hs,

ϕ ∈ HS(L2;Hs) the following

∥Γu0,ϕ(u)− Γu0,ϕ(v)∥CTHs ≤
t∫

0

∥∥∥|u(t′)|2ku(t′)− |v(t′)|2kv(t′)
∥∥∥
CTHs

dt′

≤ C2T
(
∥u∥2kCTHs + ∥v∥2kCTHs

)
∥u− v∥CTHs , (1.6)

where the second inequality follows form the fact that the term |u|2ku−|v|2kv can be rearranged

in the following way |u|2ku− |v|2kv = P2k(u, ū, v, v̄)(u− v) +Q2k(u, ū, v, v̄)(u− v) where P2k

and Q2k are polynomials of degree 2k. If we now set R = Rω := 2
(
∥u0∥Hs + ∥Ψ∥C([0,1];Hs)

)

and if u, v ∈ B̄R ⊂ CTH
s then it follows that

∥Γu0,ϕ(u)∥CTHs ≤
1

2
R+ C1TR

2k+1,

∥Γu0,ϕ(u)− Γu0,ϕ(v)∥CTHs ≤ 2C2TR
2k ∥u− v∥CTHs .

Therefore, by choosing T = Tω = T (Rω) small enough so that C1TR
2k+1 ≤ 1

2R and

2C2TR
2k ≤ 1

2 we obtain that for any given u0 ∈ Hs and ϕ ∈ HS(L2;Hs) the fixed point map

Γu0,ϕ : B̄R → B̄R is a contraction. Henceforth, from the Banach fixed point theorem we infer

the existence of a unique u = u(ω) ∈ B̄R such that u = Γu0,ϕ(u) on [0, Tω].
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1.1.2. Stability under perturbations for SNLS with additive noise. Let u0,1, u0,2 ∈ Hs, ϕ1, ϕ2 ∈

HS(L2;Hs) and let be their stochastic convolutions Ψ1,Ψ2 defined as Ψj(t) =
t∫
0

S(t −
t′)ϕj dW (t′), t ∈ [0, T ], j = 1, 2, respectively. Let uj(t), t ∈ [0, T ], j = 1, 2 be the corresponding

solutions to (SNLS): {
i∂tuj −∆uj = |uj |2kuj + ϕjξ,

uj |t=0 = u0,j .

By eventually choosing T = Tω even smaller we have that u1 = Γu0,1,ϕ1(u1) and u2 =

Γu0,2,ϕ2(u2) for all t ∈ [0, Tω], P-a.s. Hence, we infer

∥u1 − u2∥CTHs =
∥∥Γu0,1,ϕ1(u1)− Γu0,2,ϕ2(u2)

∥∥
CTHs

≤ ∥u0,1 − u0,2∥Hs + ∥Ψ1 −Ψ2∥CTHs

+

∥∥∥∥∥∥

.∫

0

S(· − t′)
(
|u1(t′)|2ku1(t′)− |u2(t′)|2ku2(t′)

)
dt′

∥∥∥∥∥∥
CTHs

≤ ∥u0,1 − u0,2∥Hs + ∥Ψ1 −Ψ2∥CTHs +
1

2
∥u1 − u2∥CTHs . (1.7)

Where the above chain of inequalities holds for T = Tω sufficiently small. Hence, by moving

the third addend in (1.7) to the LHS we obtain

∥u1 − u2∥CTHs ≤ 2
(
∥u0,1 − u0,2∥Hs + ∥Ψ1 −Ψ2∥CTHs

)
. (1.8)

To conclude, it is enough to recall that from exponential Chebyshev’s inequality we know that

the stochastic convolution satisfies

∥Ψ1 −Ψ2∥C([0,1];Hs) ≤ K∥ϕ1 − ϕ2∥HS(L2;Hs), (1.9)

outside a set of probability less than ce−cK2
. Indeed, once we know this, it follows that there

exists a non-negative random variable M such that M < +∞, P-a.s. and

∥Ψ1 −Ψ2∥C([0,1];Hs) ≤M∥ϕ1 − ϕ2∥HS(L2;Hs), P-a.s. (1.10)

Hence, in (1.8) we obtain

∥u1 − u2∥CTHs ≤ 2
(
∥u0,1 − u0,2∥Hs +M ∥ϕ1 − ϕ2∥HS(L2;Hs)

)
, P-a.s.

which shows the stability under perturbation on the initial datum and the noise.

Remark 1.2. • We emphasize that the same proof works on Td in place of Rd.

• So far we have proven uniqueness of the solution only in B̄R ⊂ CTH
s. For the sake of

clarity, uniqueness in fact holds in the entire space CTH
s(unconditional uniqueness).

To achieve this, two different methods can be implemented.

Method 1: Let us first note that if u ∈ CTH
s then from the continuity in time of the solution

we know that lim
t→0+

∥u(t)∥Hs = ∥u0∥Hs ≤ 1
2R. Therefore, by shrinking the time we

can apply the uniqueness in B̄R for small times. To make sure that the uniqueness

holds over the whole time interval [0, T ] we need to show that the same local

existence time(up to a constant factor) can be kept. This can be done by using a

continuity/bootstrap argument.
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Method 2: The second method consists of applying Gronwall’s lemma to the difference of two

given solutions to (SNLS).

1.2. Appendix. In this part we prove (1.4) and (1.10). Let us begin with (1.4). To this end,

let F (t) := Ψ(t)
∥ϕ∥HS(L2;Hs)

, t ∈ [0, T ], where T ≤ 1. By proceeding as in the computation of page

14 in Lec.2, since F is a Gaussian process, we obtain

∥F (t1)− F (t2)∥Lp(Ω;Hs) ≲ p
1
2 ∥F (t1)− F (t2)∥L2(Ω;Hs) ≲ p

1
2 |t1 − t2|

1
2 . (1.11)

Hence, from the Kolmogorv’s continuity criterion we have

P

(
sup

0<t≤T

∥F (t)− F (0)∥Hs

|t|
α
p
−ε

≥ λ

)
≤ c1
λp

(1.12)

where p≫ 1, α = p
2 −1 and c1 is a suitable constant. Therefore, from the Layer-Cake theorem

we infer

∥F∥L2(Ω;CTHs) =

+∞∫

0

λP (∥F∥CTHs ≥ λ) dλ

=

∞∫

0

λP
(∥F∥CTHs

T
α
p
−ε

≥ T
ε−α

p λ

)
dλ ≤ 1 +

∞∫

1

λP

(
sup

t∈[0,T ]

∥F (t)− F (0)∥Hs

|t|
α
p
−ε

≥ λ

)
dλ

≤ 1 + c1

∞∫

1

λ1−p dλ < +∞, provived p≫ 1.

Thus, we have ∥F∥L2(Ω;CTHs) < +∞ which implies (1.4). We now turn our attention to

proving (1.9). Let Ψ1,Ψ2 be the stochastic convolutions with noise ϕ1 and ϕ2, respectively.

From the linearity with respect to ϕ of the stochastic convolution, by proceeding as in the

previous computation we obtain for any finite p ≥ 1 the following
∥∥∥∥Ψ1 −Ψ2∥C([0,1];Hs)

∥∥∥
Lp(Ω)

≤ Cp ∥ϕ1 − ϕ2∥HS(L2;Hs) , (1.13)

where Cp is a positive constant depending on p. What we are wondering next is: can Cp ≃ p
1
2 ?

The answer is yes but it takes more work to do. In what follows, for convenience we set

Ψ := Ψ1−Ψ2 and ϕ := ϕ1−ϕ2. To achieve this, for any given k ∈ N, let
{
tl,k : l = 0, 1, · · · , 2k

}

be 2k +1 equally spaced points in [0, 1]. That is, t0,k = 0 and tl,k − tl−1,k = 1
2k
, for 1 ≤ l ≤ 2k.

Once this is in place, we obtain

Ψ(t) =

+∞∑

k=1

Ψ(tlk,k)−Ψ(tlk−1,k−1) (1.14)

for some lk = lk(t) ∈ {0, 1, · · · , 2k}. Such an expansion holds since any given t ∈ [0, 1] can

be expanded into its binary expansion as follows t =
∞∑
j=1

bj
2j
, where bj ∈ {0, 1} for all j ∈ N.

Hence, as tlk,k we can take the binary expansion of t up to order k. Namely, tlk,k =
k∑

j=1

bj
2j
,
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k ∈ N. Therefore, by taking the Hs-norm in (1.14) we obtain

sup
t∈[0,1]

∥Ψ(t)∥Hs ≤
+∞∑

k=1

max
0≤lk≤2k

∥∥Ψ(tlk,k)−Ψ(tlk−1,k−1)
∥∥
Hs .

Once we have this, if we fix p≫ 1 and let {qk}k∈N be a sequence of real numbers such that

qk ≥ p, for all k ∈ N, then we have

∥∥∥∥Ψ∥C([0,1];Hs)

∥∥∥
Lp(Ω)

≤
+∞∑

k=1

∥∥∥∥ max
0≤lk≤2k

∥∥Ψ(tlk,k)−Ψ(tlk−1,k−1)
∥∥
Hs

∥∥∥∥
Lp(Ω)

≤
+∞∑

k=1



∫

Ω

2k∑

lk=0

∥∥Ψ(tlk,k)−Ψ(tlk−1,k−1)
∥∥qk
Hs dP




1
qk

≤
+∞∑

k=1

(
1 + 2

k
qk

)
max

0≤lk≤2k

∥∥Ψ(tlk,k)−Ψ(tlk−1,k−1)
∥∥
Lqk (Ω;Hs)

≲
+∞∑

k=1

2−
k
2 2

k
qk q

1
2
k ∥ϕ∥HS(L2;Hs) .

If we let qk = p+ k, for all k ∈ N then we obtain

∥∥∥∥Ψ∥C([0,1];Hs)

∥∥∥
Lp(Ω)

≲
+∞∑

k=1

2−
k
2 2

k
p+k (p+ k)

1
2 ∥ϕ∥HS(L2;Hs)

≲
+∞∑

k=1

2−
k
2 p

1
2k

1
2 ∥ϕ∥HS(L2;Hs) ≲ p

1
2 ∥ϕ∥HS(L2;Hs) .

This shows that (1.13) holds. Once this is in place, by applying the exponentital Chebyshev

inequality we obtain (1.9) from which we infer the validity of (1.10). Indeed, if (1.9) holds

then (1.10) is equivalent to requiring that

P
(
ω ∈ Ω : ∃K ∈ R s.t. ∥Ψ1(ω)−Ψ2(ω)∥C([0,1];Hs) ≤ K∥ϕ1 − ϕ2∥HS(L2;Hs)

)
= 1.

Hence, we deduce that

P
(
ω ∈ Ω : ∃K ∈ (0,+∞) s.t. ∥Ψ1(ω)−Ψ2(ω)∥C([0,1];Hs) ≤ K∥ϕ1 − ϕ2∥HS(L2;Hs)

)

= 1− P
(
ω ∈ Ω : ∀n ∈ N it holds ∥Ψ1(ω)−Ψ2(ω)∥C([0,1];Hs) ≥ n∥ϕ1 − ϕ2∥HS(L2;Hs)

)

= 1− lim
n→+∞

P
(
ω ∈ Ω : ∥Ψ1(ω)−Ψ2(ω)∥C([0,1];Hs) ≥ n∥ϕ1 − ϕ2∥HS(L2;Hs)

)
= 1.

Where the last equality is a consequence of Chebyshev’s inequality. Indeed, we have

P
(
ω ∈ Ω : ∥Ψ1(ω)−Ψ2(ω)∥C([0,1];Hs) ≥ n∥ϕ1 − ϕ2∥HS(L2;Hs)

)

≲ e−cn2 −−−−−→
n→+∞

0.
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1. Lecture 4 15/02/2022 (Billy Sumners)

We continue to consider the stochastic nonlinear Schrödinger equation (SNLS) with additive
noise on Rd

i
∂u

∂t
−∆u = |u|p−1u+Φξ

u|t=0 = u0 ∈ Hs(Rd),

where Φ ∈ HS(L2;Hs) is a Hilbert-Schmidt “smoothing” operator. In the previous lecture,
we established local well-posedness in the simple case s > d

2 which let us use the property that
Hs(Rd) is an algebra. Here, we consider more general s. As usual, we define the stochastic
convolution to be

Ψ =

∫ t

0
S(t− t′)ΦdW (t′),

where S(t) = eit∆. Two simple properties of Ψ determined in previous lectures (in particular,
a proposition stated in Lecture 2) are that

Proposition 1.1. Let s ∈ R. Then
(1) Ψ ∈ CtH

s
x = C([0,∞);Hs(Rd)) a.s.,

(2) For all q ∈ [1,∞) and r ∈
[
2, 2d

d−2

)
for d ≥ 3, r ∈ [2,∞) for d = 1, 2, we have that

Ψ ∈ Lq
TW

s,r
x = Lq([0, T ];W s,r(Rd)) a.s. for all T > 0.

We use these properties voraciously going forward.

Example 1. Consider the case d = 1, p = 3, and s = 0. Define the nonlinear “Duhamel
formulation” operator Γ by

Γ(u)(t) = Γu0,Φ(u)(t) = S(t)u0 − i

∫ t

0
S(t− t′)(|u(t′)|p−1u(t′)) dt′ − iΨ(t).

Recall that a pair of indices (q, r) ∈ [2,∞]2 is admissible if
2

q
+
d

r
=
d

2
and (q, r, d) 6= (2,∞, 2),

the importance being that we may use the Strichartz estimates (introduced in Lecture 3) for
admissible pairs of indices. Since we will be applying the nonhomogeneous Strichartz estimate
to |u|2u, we would like (for notational cleanliness) to be sure that r′ = r

r−1 has 3 in its
denominator, where r is the index of spatial integrability, so that we may push the power of
|u|3 outside of the norm and obtain a whole number for Lr

x. This therefore gives us r = 4.
The corresponding q for the admissible pair is then 8. Similarly, since u0 ∈ L2, we want u to
retain this spatial integrability, and an admissible pair satisfying this is (q, r) = (∞, 2). Define
the space

X(T ) = CTL
2
x ∩ L8

TL
4
x,

with norm given by the sum of the component norms (although we could always take the
norm to be the `p sum of the two norms without affecting anything since all these norms are
equivalent). Note that the norm on CT is the same as that on L∞

T , which lets us use the
appropriate Strichartz estimates on this space.

We establish local existence in the usual way through Picard iteration. First, by the triangle
inequality, the homogeneous Strichartz estimate applied to the norm of S(t)u0, and the

1



2

nonhomogeneous Strichartz estimate for the admissible pair (8, 4) applied to the norm of the
nonlinearity, we have

‖Γ(u)‖X(T ) . ‖u0‖L2 + ‖|u|2u‖
L
8/7
T L

4/3
x

+ ‖Ψ‖X(T ).

As a small subtlety, we note that we cannot directly apply the nonhomogeneous Strichartz
estimate to the norms ‖ · ‖C([0,T ];L2(Rd)) and ‖ · ‖L8([0,T ];L4(Rd)), as the estimate applies to the
whole time interval (i.e. to the norms ‖ · ‖C([0,∞);L2(Rd)) and ‖ · ‖L8([0,∞);L4(Rd)) respectively).
This is resolved by noting that, say,

∥∥∥∥
∫ t

0
S(t− t′)F (t′, x) dt′

∥∥∥∥
Lq
TLr

x

=

∥∥∥∥
∫ t

0
S(t− t′)(1[0,T ](t

′)F (t′, x)) dt′
∥∥∥∥
Lq
tL

r
x

,

so we may simply apply the estimate to the right hand side.
To deal with the norm of the nonlinearity, we write 7

8 = 3
8 + 4

8 and extract a power of T
using Hölder’s inequality:

‖|u|2u‖
L
8/7
T L

4/3
x

= ‖1[0,T ]|u|2u‖L8/7
T L

4/3
x

≤ ‖1[0,T ]‖L2
T
‖|u|2u‖

L
8/3
T L

4/3
x

= T
1
2 ‖u‖3L8

TL4
x

≤ T
1
2 ‖u‖3X(T ).

Fix some T ≤ 1. Then, using this estimate, we get

‖Γ(u)‖X(T ) . (c0‖u0‖L2 + ‖Ψ‖X(1)) + c1T
1
2 ‖u‖3X(T ). (1.1)

Also, in a similar manner to Lecture 3, we may find homogeneous polynomials p(u, u, v, v)
and q(u, u, v, v) of degree 2 such that

|u|2u− |v|2v = p(u, u, v, v)(u− v) + q(u, u, v, v)(u− v),

Therefore, by noting we are in the additive noise case (so that the stochastic convolution Ψ is
independent of u) and using the nonhomogeneous Strichartz estimate, the triangle inequality,
Young’s inequality, and Hölder’s inequality, we obtain

‖Γ(u)− Γ(v)‖X(T ) =

∥∥∥∥
∫ t

0
S(t− t′)(|v|2v − |u|2u) dt′

∥∥∥∥
X(T )

≤ c2‖|u|2u− |v|2v‖
L
8/7
T L

4/3
x

≤ c2T
1
2 ‖|u|2u− |v|2v‖

L
8/3
T L

4/3
x

≤ c2T
1
2 (‖p‖

L
8/2
T L

4/2
x

+ ‖q‖
L
8/2
T L

4/2
x

)‖u− v‖L8
TL4

x

≤ c2T
1
2 (‖u‖2L8

TL4
x
+ ‖v‖2L8

TL4
x
)‖u− v‖L8

TL4
x

≤ c2T
1
2 (‖u‖X(T ) + ‖v‖X(T ))‖u− v‖X(T ),

(1.2)

where the constant c2 may change from line to line.
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Let R = 2(c0‖u0‖L2 + ‖Ψ‖X(1)), which is finite a.s. by Proposition 1.1. Then, proceeding as
in Lecture 3, we see by Eq. 1.1 that Γ maps the ball B(0, R) ⊆ X(T ) to itself for T satisfying

R

2
+ c1R

3T
1
2 ≤ R,

and by Eq. 1.2, Γ is a contraction on the ball for T satisfying

2c2T
1
2R2 ≤ 1

2
.

This establishes local existence and uniqueness. The argument of Lecture 3 carries over
effectively verbatim to establish local stability, with the slight modification that we must
again use the nonhomogeneous Strichartz estimate to bound the nonlinearity by something
of the form seen on the right hand side of Eq. 1.2, as well as using the explicit bounds on
the L8([0, 1];L4(Rd)) norm of Ψ (used to show Ψ ∈ Lq

TW
s,r
x a.s.) in addition to those of

C([0, 1];L2(Rd)). This gives us local well-posedness.

Remark 1.2. If u0 ∈ Hs(Rd) and Φ ∈ HS(L2;Hs) for some s ≥ 0, then the fractional
Leibniz rule

‖fg‖Ẇ s,r . ‖f‖Ẇ s,p1‖g‖Lq1 + ‖f‖Lp2‖g‖Ẇ s,q2

for all s ∈ (0, 1) and r, pj , qj ∈ (1,∞) such that

1

r
=

1

pj
+

1

qj
, j = 1, 2

may be used to show that such regularity persists for all time, namely u ∈ CTH
s
x. Indeed, a

simple generalization of the fractional Leibniz rule is
∥∥∥∥∥∥

n∏

j=1

fj

∥∥∥∥∥∥
Ẇ s,r

.
n∑

j=1

‖fj‖Ẇ s,pj,j

∏

i 6=j

‖fi‖Lpj,i

where
∑n

i=1
1

pj,i
= 1

r . Then, noting that 3
4 = 1

8 + 1
8 + 1

2 , we have that

‖|u|2u‖Ẇ s,4/3 . ‖u‖Ḣs‖u‖2L8

for all u ∈ Ḣs ∩ L8. The nonhomogeneous Strichartz estimate (applied to |∇|s(|u|2u)) then
implies

∥∥∥∥
∫ t

0
S(t− t′)(|u|2u) dt′

∥∥∥∥
CT Ḣs

. ‖|u|2u‖
L
8/7
T Ẇ

s,4/3
x

. ‖‖u‖Ḣs
x
‖u‖2L8

x
‖
L
8/7
T

≤ T
1
2 ‖‖u‖Ḣs

x
‖u‖2L8

x
‖
L
16/6
T

≤ T
1
2 ‖u‖CT Ḣ2

x
‖u‖2

L
16/3
T L8

x

.

This indicates that we may proceed as in the example, working instead in the space X(T ) =

CTH
s ∩ L8

TL
4
x ∩ L16/3

T L8
x.
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1.1. Scaling symmetry in the nonlinear Schrödinger equation. Consider the nonlinear
Schrödinger equation

i
∂u

∂t
−∆u = |u|p−1u (1.3)

A function u is a solution to Eq. 1.3 with initial data u|t=0 = u0 if and only if, for all λ > 0,
the scaled solution

uλ(t, x) :=
1

λ
2

p−1

u

(
t

λ2
,
x

λ

)
(1.4)

is a solution to Eq. 1.3 with initial data uλ|t=0 = u0,λ := λ
− 2

p−1u0. Indeed, this follows from
the formal equalities

∂uλ
∂t

=
∂

∂t

1

λ
2

p−1

u

(
t

λ2
,
x

λ

)
=

1

λ
2p
p−1

∂u

∂t

(
t

λ2
,
x

λ

)
,

the spatial derivative

∆uλ =
1

λ
2p
p−1

∆u

(
t

λ2
,
x

λ

)
,

and

|uλ|p−1uλ =
1

λ2

∣∣∣∣u
(
t

λ2
,
x

λ

)∣∣∣∣
p−1 1

λ
2

p−1

u

(
t

λ2
,
x

λ

)
=

1

λ2
(|u|p−1u)

(
t

λ2
,
x

λ

)

Now, for any s ∈ R, we have
‖u0,λ‖Ḣs = ‖|ξ|sû0,λ(ξ)‖L2

= λ
d− 2

p−1 ‖|ξ|sû0(λξ)‖L2

= λ
−s+ d

2
− 2

p−1 ‖u0‖Ḣs

= λscrit−s‖u0‖Ḣs ,

(1.5)

where scrit =
d
2 − 2

p−1 is the (scaling-)critical Sobolev regularity index. Note that if s = scrit,
we have

‖u0,λ‖Ḣscrit = ‖u0‖Ḣscrit

for all λ > 0.
The nonlinear Schrödinger equation conserves several quantities. Namely, the mass

M(u) :=

∫

Rd

|u|2 dx = ‖u‖L2 ,

the momentum
P (u) := Im

∫

Rd

∇u · udx,

and the energy
E(u) :=

1

2

∫

Rd

|∇u|2 dx∓ 1

p+ 1

∫

Rd

|u|p+1 dx.

We say Eq. 1.3 is mass- or L2-critical if scrit = 0, and energy- or H1-critical if scrit = 1.
Given initial data u0 ∈ Hs(Rd), the Cauchy problem for Eq. 1.3 is subcritical if s > scrit,

critical if s = scrit, and supercritical if s < scrit.The scaling symmetry may be used to
determine if Eq. 1.3 is well-posed in each case. For the subcritical case, the Ḣs norm of u0,λ,
given in Eq. 1.5, shrinks as λ increases. At the same time, the expression of Eq. 1.4 indicates
that a scaled solution uλ to the Cauchy problem will exist for a longer period of time as
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λ increases. This lets us infer that in the subcritical case, smaller initial data corresponds
to existence over a longer period of time, and so we may expect the Cauchy problem to be
well-posed. The supercritical case can be seen to have the opposite effect: the Ḣs norm of the
scaled initial data grows as λ increases, and so larger initial data is required for existence over
longer times. This means we can expect ill-posedness in the supercritical regime.

Example 2. Let p = 3. If d = 1, then the critical index is scrit =
d
2 − 2

p−1 = −1
2 . Example 1

was therefore a subcritical problem (if we were to remove the stochastic term).
If p = 3 and d = 2, then the critical index is scrit = 0. Let’s consider this problem. Take

initial data u0 ∈ L2(R2) and smoothing operator Φ ∈ HS(L2;L2). In this case, two admissible
pairs of indices are (q, r) = (4, 4) and (∞, 2). Then, with Γ the Duhamel formulation operator
as usual (cf. Example 1), we have, by the nonhomogeneous Strichartz estimate,

‖Γ(u)‖L4
TL4

x
≤ ‖S(t)u0‖L4

TL4
x
+ ‖Ψ‖L4

TL4
x
+ c‖|u|2u‖

L
4/3
T L

4/3
x

= ‖S(t)u0‖L4
TL4

x
+ ‖Ψ‖L4

TL4
x
+ c‖u‖3L4

TL4
x
.

Note that unlike in previous examples, we cannot use Hölder’s inequality to extract a term of
the form T θ. In the case s > d

2 , we can extract this term using the product estimate in the
Sobolev space Hs, and in Example 1, we do this using a clever discrepancy between the indices
q and r. This allows us to have the radius of the ball on which we apply Picard iteration to
depend on the norms of u0 and Ψ, then pick T sufficiently small so that everything lies in
that ball. In this instance, we must choose the radius to depend on T , then pick T sufficiently
small such that everything lies in the ball, and this is why we do not immediately apply the
homogeneous Strichartz estimate to the norm of S(t)u0 like we have done previously.

Define the radius
R := 2(‖S(t)u0‖L4

TL4
x
+ ‖Ψ‖L4

TL4
x
)

Then, for u ∈ B(0, R) ⊆ L4
TL

4
x, we have

‖Γ(u)‖L4
TL4

x
≤ 1

2
R+ cR3,

which we can take to be less than R by taking R sufficiently small. Also,

‖Γ(u)− Γ(v)‖L4
TL4

x
≤ c′R2‖u− v‖L4

TL4
x
,

which comes from a similar calculation to Eq. 1.2. Again, we may choose c′R2 to be less than
1
2 by choosing R sufficiently small. Now, we see that

∫ 1

0
2(‖S(t)u0‖4L4

x
+ ‖Ψ‖4L4

x
) dt ≤ 2(‖S(t)u0‖4L4

tL
4
x
+ ‖Ψ‖4L4

1L
4
x
)

. 2(‖u0‖4L2
x
+ ‖Ψ‖4L4

1L
4
x
),

which is almost surely finite by Proposition 1.1. It follows then from the dominated convergence
theorem applied to the function 1[T,1](t)f(t), where f(t) is the above integrand, that

lim
T↓0

R = lim
T↓0

∫ T

0
2(‖S(t)u0‖4L4

x
+ ‖Ψ‖L4

x
) dt = 0

almost surely, so we can choose T sufficiently small such that R is small enough to satisfy the
above conditions.
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We have seen that Γ is a contraction on B(0, R) ⊆ L4
TL

4
x, so there exists a unique local

solution u ∈ B(0, R). We also want our solution to lie in CTL
2
x. To see this, we write

u(t) = S(t)u0 − i

∫ t

0
S(t− t′)(|u|2u)(t′) dt′ − iΨ(t).

Now, Ψ is in CtL
2
x a.s. by Proposition 1.1, and S(t)u0 is in CtL

2
x by the theory of linear

PDEs. We therefore just need to check the nonlinear term lies in CTL
2
x. Note that it suffices

to check boundedness of the norm - continuity arises naturally from the integration from 0 to
t. By the nonhomogeneous Strichartz estimate,

∥∥∥∥
∫ t

0
S(t− t′)(|u|2u)(t′) dt′

∥∥∥∥
CTL2

x

. ‖|u|2u‖
L
4/3
T L

4/3
x

= ‖u‖3L4
TL4

x
,

which is of course finite a.s.
Note that we don’t have uniqueness in CTL

2
x - we have to intersect it with the space L4

TL
4
x

to establish uniqueness (shown at least for the ball B(0, R) above). This property is known as
conditional uniqueness. In fact, unconditional uniquness never holds in CTL

2
x, since in order

for the nonlinear term above to make sense, we need |u|2u to lie in L1
loc, x, i.e. for u to lie in

L3
loc, x. Being in L2 is not enough to gain L3

loc integrability.

1.2. Stochastic nonlinear Schrödinger equation with multiplicative noise. Consider
the SPDE

i
∂u

∂t
−∆u = N(u) + σ(u)Φξ (1.6)

In all of our results, we will take the nonlinearity to be N(u) = |u|p−1u, and the variance of
the noise to be σ(u) = |u|γ−1u. The stochastic convolution in this instance depends on u:

Ψ[u](t) :=

∫ t

0
S(t− t′)σ(u)ΦdW (t′).

In contrast with the additive case, it is not sufficient that Φ ∈ HS(L2;Hs) for the important
Proposition 1.1 to hold. Indeed, when we proved these properties, we wrote the cylindrical
Wiener process W as

W (x, t) =
∞∑

n=1

βn(t)en(x)

for some independent Brownian motions βn and an orthonormal basis en of L2. Then the
stochastic integrals ∫ t

0
S(t− t′)〈∇〉sΦ(en) dβn(t′)

were independent, which allowed us to use the Ito isometry and collapse everything into the
Hilbert-Schmidt norm of Φ. This does not suffice in the multiplicative case as we are dealing
with the stochastic integrals

∫ t

0
S(t− t′)(〈∇〉s(σ(u)Φ(en))) dβn(t′)

which, owing to the presence of σ(u), are not independent in general.
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We will introduce (somewhat informally) the notion of γ-radonifying operators, which are a
certain generalization of Hilbert-Schmidt operators to the Banach space regime. To motivate
this, let H be a separable Hilbert space. We would like for the set function

µ(dx) := e−
1
2
‖x‖H dx

to be a measure on H, the canonical “Gaussian measure”. In general, however, this is not
countably additive if dimH = ∞. Heuristically, countable unions of sets in H are somehow
too large for the Gaussian measure to make sense. We must embed H in some larger Banach
space so that these countable unions of sets in H are sufficiently small for the Gaussian
measure to make sense when considered as subsets of B. Informally, then, an abstract Wiener
space is a triple (H,B, µ) consisting of a Hilbert space H, a Banach space B into which H is
continuously and densely imbedded, and the above Gaussian set function µ on H such that µ
is a measure when pushed forward onto B under the imbedding. More information on abstract
Wiener spaces can be found in the books [2, 3, 4], along with the original definition in [1].

Example 3. Let H = Hs(Td), and let µs be the set function given by

µs(du) = e−
1
2
‖u‖2Hs du

In some sense, the Hs(Td)-valued random variable

u =
∑

n∈Zd

gn
〈n〉s e

in·x (1.7)

has distribution µs, where the gn are i.i.d. complex-valued standard Gaussian random variables.
Indeed, if u ∈ Hs(Td), we may formally derive

e−
1
2
‖u‖2Hs du = e−

1
2

∑
n∈Zd 〈n〉2s|û(n)|2 du

=
∏

n∈Zd

e−
1
2
〈n〉2s|û(n)|2 dû(n),

where dû(n) is Lebesgue measure on C. From this expression, we see that 〈n〉sû(n) must be
distributed as a standard complex-valued Gaussian random variable, which leads to Eq. 1.7.

Also, if u is the random variable defined in Eq. 1.7, we may compute

E[‖u‖2Hσ ] =
∑

n∈Zd

E[|gn|2]
〈n〉2s−2σ

,

which is finite if and only if σ < s− d
2 . Therefore, the random variable u is well-defined a.s.

in Hσ(Td) - as, say, the Hσ limit of the truncated random variables

uN :=
∑

|n|≤N

gn
〈n〉s e

in·x

- if and only if σ < s− d
2 . Since Hs is a dense subspace of Hσ in this case, we may conclude

that (Hs,Hσ, µs) is an abstract Wiener space.
A similar derivation may be done to show that (Hs,W σ,p, µs) is an abstract Wiener space

for any p ∈ [1,∞].
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Let’s return to the cylindrical Wiener process

W (t) =
∑

n∈Zd

βn(t)en

For fixed t, βn(t) is a Gaussian random variable. A Hilbert-Schmidt operator Φ ∈ HS(L2;Hs)

pushes this process to Hs. That is, ΦW (t) =
∑

n∈Zd βn(t)Φen is a certain stochastic process
in Hs. In a similar way, given a Banach space B, a γ-radonifying operator Φ from L2 to B
pushes W (t) to B. More concretely, let H be a separable Hilbert space and B a Banach space.
A bounded linear map Φ: H → B is a γ-radonifying operator if the norm

‖Φ‖γ(H;B) :=


E



∥∥∥∥∥

∞∑

n=1

gnΦen

∥∥∥∥∥

2

B






1
2

is finite, where {en}n∈N is an orthonormal basis of H, and gn are independent standard
complex-valued Gaussian random variables. The space of all γ-radonifying operators from H

to B is denoted γ(H;B) (in some other texts, M(H;B) or R(H;B)). If B is a Hilbert space,
then the spaces γ(H;B) and HS(H;B) coincide. Indeed, this can be seen from the calculation

‖Φ‖2γ(H;B) = E



∥∥∥∥∥

∞∑

n=1

gnΦen

∥∥∥∥∥

2

B




= E

[ ∞∑

n=1

∞∑

m=1

gngm(Φen,Φem)B

]

=

∞∑

n=1

∞∑

m=1

E[gngm](Φen,Φem)B

=
∞∑

n=1

‖Φen‖2B

= ‖Φ‖2HS(H;B).

A certain extension of the Kahane-Khintchine inequality to Gaussian sums [6, 5] allows us to
choose any index for the norm. That is,

‖Φ‖γ(H;B) ∼
([∥∥∥∥∥

∞∑

n=1

gnΦen

∥∥∥∥∥

p]) 1
p

for any p ∈ (1,∞).

Notes. A more formal definition of an abstract Wiener space is as follows: let µ be the
Gaussian set function on a Hilbert space H as defined before. A seminorm | · | on H is said to
be measurable with respect to µ if, for all ε > 0, there exists a finite-dimensional orthogonal
projection Pε on H such that

µ(|Px| > ε) < ε

for all finite-dimensional orthogonal projections P on H such that P (H) is orthogonal to
Pε(H). We then let B be the completion of H under the seminorm | · |, and call (H,B, µ) an
abstract Wiener space.
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1. SPDEs with Multiplicative Noise Lecture 5 (Typed by Erik Sätterqvist)

In this lecture we start by generalizing the definition of the space γ(H,B) from last lecture.
We then state the Burkholder-David-Gundy (BDG) inequality for stochastic integrals and
then apply this to study the stochastic convolution for the SNLS.

1.1. The space γ(H,B). We start by giving a more general definition of the space γ(H,B)

from the last lecture. Let µH be such that dµH ∼ e−
1
2
‖u‖2Hdu. The function Φ : H → B is

γ-radonifying (i.e. Φ ∈ γ(H,B)) if and only if the pushforward

Φ#µH = µH ◦ Φ−1

has an extension to a countably additive (Gaussian probability) measure µΦ on B. By the
Fernique theorem we then have that, for some c > 0,

∫

B
ec‖u‖

2
BµΦ(du) <∞,

or equivalently

µΦ(‖u‖B > λ) ≤ Ce−cλ2 , ∀λ > 0.

This implies that

‖Φ‖γ(H;B) =
(∫

B
‖u‖2BµΦ(du)

)1/2
,

is finite.

1.2. Burkholder-Davis-Gundy inequality. Before we can state the BDG inequality we
need some definitions.

Definition 1.1. We say that a Banach space B is of type p if for any finite sequence

ε1, . . . , εN : Ω→ {−1, 1}
of symmetric i.i.d. random variables and any finite sequence u1, . . . , uN ∈ B there exists a
K > 0 such that

E
∥∥∥

N∑

n=1

εnun

∥∥∥ ≤ K
N∑

n=1

‖un‖.

Next recall that {fn}∞n=0 is a martingale with respect to a filtration {Fn}∞n=0 ⊂ F if
E[fn|Fm] = fm for m ≤ n. Note that this implies E[dfn|Fm] = 0 for all m < n.

Definition 1.2. Let 1 ≤ p ≤ 2. We say that a Banach space B is of martingale type p
(M-type p) if

‖fN‖Lp(Ω;B) ≤ C
( N∑

n=0

‖fn − fn−1‖pLp(Ω;B)

)1/p

for any B-valued Lp-martingales {fn}Nn=0, (here f−1 ≡ 0).

1



2

Definition 1.3. We say that a Banach space B is has the unconditional martingale difference
property (alternatively that it is a UMD space) if for any p ∈ (1,∞), any B-valued martingale

difference {ξn}∞n=1 (i.e.
∑N

j=n ξn is a martingale), any ε : N→ {−1, 1} and any n ∈ N

E
∣∣∣
N∑

n=1

εnξn

∣∣∣
p
.p,B E

∣∣∣
N∑

n=1

ξn

∣∣∣
p
.

Note that M-type p implies type p. For the other direction we have that type p plus UMD
implies M-type p. By [1] UMB is equivalent to Hilbert transforms of B-valued functions being
bounded in L2(S;B).

Let us give some examples of Type p spaces. If B has M-type p (for some 1 ≤ p ≤ 2) and
A is a measure space, then Lr(A;B) has M-type p ∧ r for 1 < r < ∞. Because Hilbert
spaces are M-type 2 this implies that Lr(Rd;C) is of M-type 2 for 2 ≤ r < ∞. Thus
Lq(R, Lr(Rd;C)) = LqtL

r
x is of M-type 2 for 2 ≤ q, r <∞.

Finally we need the notion of an accessible stopping time.

Definition 1.4. We say that a stopping time τ is accessible if there exists an increasing
sequence {τn}n∈N such that

τn < τ and lim
n→∞

τn = τ, a.s.

Theorem 1.5 (BDG inequality for stochastic integrals). Let 1 < p < ∞ and let B be a
Banach space of M-type 2 (this is also called 2-smooth). Then there exits a C = C(p,B) > 0
such that

E
[

sup
0<t<τ

∥∥∥
∫ t

0
F (t′)dW (t′)

∥∥∥
p

B

]
≤ CE

[( ∫ τ

0
‖F (t)‖2γ(K;B)dt

)p/2]

for any accessible stopping time τ and γ(K;B)-valued progressively measurable F .

Here W denotes a K-cylindrical Wiener process and for us K = L2(Rd) or K = L2(Td). For
proofs see [4], [5], [7] (optimal constant), [2] (stronger assumption: UMD & type 2). The
BDG inequality will also be proved later in these notes.

1.3. Back to SNLS with multiplicative noise. Recall the stochastic convolution for the
SNLS

Ψ(t) = Ψ[u](t) =

∫ t

0
S(t− t′)

(
σ(u)ΦdW (t′)

)
,

where

σ(u) = |u|γ−1u, γ ≥ 1.

Suppose that γ ∈ 2N + 1 so that σ(u) is algebraic, we then have the following proposition.

Proposition 1.6. Let s > d
2 and Φ ∈ HS(L2, Hs). Then, for any u ∈ L2γ

ad(Ω;CTH
s
x), we

have Ψ = Ψ[u] ∈ CTHs
x a.s..

Proof. To prove the above proposition we will use the factorization method (Lemma 2.7 in [6])
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Lemma 1.7. Let 0 < α < 1 and q > 1
α and suppose that f ∈ LqTHs

x for some T > 0. Then
the function F : [0, T ]→ C given by

F (t) =

∫ t

0
S(t− t′)(t− t′)α−1f(t′)dt′

belongs to CTH
s
x. Moreover, we have

sup
0≤t≤T

‖F (t)‖Hs
x
. ‖f‖Lq

TH
s
x
.

Let 0 < α < 1 and 0 ≤ µ ≤ t ≤. Note that

B(α, 1− α) =

∫ t

µ
(t− t′)α−1(t′ − µ)−α,

where B is the beta function. Moreover we know for a fact that

B(α, 1− α) =
π

sin(πα)
.

Hence

Ψ(t) =

∫ t

0
S(t− µ)σ(u)(µ)ΦdW (µ)

=
sin(πα)

π

∫ t

0

[ ∫ t

µ
(t− t′)α−1(t′ − µ)−αdt′

]
S(t− µ)σ(u)(µ)ΦdW (µ)

=
sin(πα)

π

∫ t

0
S(t− t′)(t− t′)α−1

[ ∫ t′

0
S(t′ − µ)(t′ − µ)−ασ(u)(µ)ΦdW (µ)

]
dt′

=
sin(πα)

π

∫ t

0
S(t− t′)(t− t′)α−1f(t′)dt′,

where

f(t′) =

∫ t′

0
S(t′ − µ)(t′ − µ)−ασ(u)(µ)ΦdW (µ).

Thus in view of Lemma 1.7, it suffices to show f ∈ LqTHs
x, for some 1

α < q <∞. We want to
show

E
[ ∫ T

0
‖f(t′)‖qHs

x
dt′
]
≤ C(T, q,Φ) <∞. (1.1)

By the BDG inequality 1.5 we have, for 1 ≤ q <∞,

E
[
‖f(t′)‖qHs

x

]
. E

[( ∫ t′

0
‖S(t′ − µ)(t′ − µ)−ασ(u)(µ)Φ‖2HS(L2;Hs)dµ

)q/2]

Letting en be an orthonormal basis for L2 we have for 0 < α < 1
2 and s > d

2
∫ t′

0
‖S(t′ − µ)(t′ − µ)−ασ(u)(µ)Φ‖2HS(L2;Hs)dµ =

∫ t′

0
(t′ − µ)−2α‖σ(u)(µ)Φ(en)‖2l2nHs

x
dµ

. ‖σ(u)‖2CTHs
x
‖Φ‖2HS(L2;Hs),

whence
E
[
‖f(t′)‖qHs

x

]
. E

[
‖u‖γqCTHs

x
‖Φ‖q

HS(L2;Hs)

]
<∞.

Now integrating from t′ = 0 to T , (1.1) follows for any 1 ≤ q <∞, and in particular q > 1
α .

Thus by Lemma 1.7, Ψ ∈ CTHs
x a.s.. We need α < 1

2 so we can take any 1
α < q <∞. �
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We end this section with two remarks:

(1) In proving (1.1) we viewed S(t′ − µ)(σ(u)ΦdW (t′)) as S(t− t′) ◦Mσ(u)(µ) ◦ Φ applied
to dW (t′), where MF denotes multiplication by a function F .

(2) With σ(u) = |u|γ−1u we need

‖σ(u)‖Hs . ‖u‖γHs , for s >
d

2
.

Hence we need the fact that γ ∈ 2N + 1 so that σ(u) is algebraic (i.e. a product).

When γ /∈ 2N+ 1, we cannot consider s� 1 due to the lack of smootheness of σ(·). In
general, given s > d

2 (so that Hs ↪→ L∞), we need σ ∈ Ck(C ∼= R2;C) with k ≥ [s] + 1.
For example see Lemma A.9 in [8] or Lemma 4.10.2 in [3] (also see the fractional chain
rule).
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LECTURE 6

YOUNES ZINE

We define the stochastic convolution Ψ = Ψ[u] by

Ψ(t) :=

∫ t

0
S(t− t′)σ(u)ΦdW (t′). (0.1) YZconv

with S(t) = e−it∆ and σ(u) = |u|γ−1u for γ ∈ 2N + 1.

YZPROP:1 Proposition 0.1. Let s > d
2 and Φ ∈ HS(L2;Hs). Then for u ∈ L2γ

ad

(
Ω;CTH

s
x

)
, we have

Ψ = Ψ[u] ∈ CTHs
x,

almost surely. Moreover, if u ∈ Lqγad
(
Ω;CTH

s
x

)
for some finite q ≥ 2, we have

E
[
‖Ψ‖qCTHs

x

]
≤ C(s, q)T θ E

[
‖u‖qγCTHs

x

]
‖Φ‖HS(L2;Hs)

for some θ > 0 and some constant C(s, q) > 0.

We will apply Proposition
YZPROP:1YZPROP:1
0.1 to solve a fixed point argument for the following linear

stochastic equation: {
i∂tu = ∆u+ uΦξ

u|t=0 = u0 ∈ Hs.
(0.2) YZeq1

for s > d
2 . By the Duhamel principle, u is said to solve (

YZeq1YZeq1
0.2) if u verifies the following integral

equation:

u(t) = S(t)u0 − iΨ[u](t)

=: Γu0,Φ(u)(t)
(0.3) YZ100

where Ψ[u] is given by (
YZconvYZconv
0.1) with σ(u) = u.

We prove the following result.

YZLEM:1 Lemma 0.2. Fix s > d
2 . The map u 7→ Γu0,Φ defined in (

YZ100YZ100
0.3) is a contraction on a ball in

L2
(
Ω;CTH

s
x

)
for any T > 0 small enough..

Proof. By Proposition
YZPROP:1YZPROP:1
0.1, we estimate

‖Γ(u)‖L2
ωCTHs

x
≤ ‖u0‖Hs

x
+ CT θ‖u‖L2

ωCTHs
x

‖Γ(u)− Γ(v)‖L2
ωCTHs

x
≤ CT θ‖u‖L2

ωCTHs
x
.

(0.4) YZ1

Let BR ⊂ L2
(
Ω;CTH

s
x

)
for R ∼ ‖u0‖Hs

x
be a closed ball of center 0 and radius R. Then,

(
YZ1YZ1
0.4) show that Γ is a contraction on BR by choosing T > 0 small enough. �

We now look at the following nonlinear equation:{
i∂tu = ∆u+ |u|k−1u+ |u|γ−1uΦξ

u|t=0 = u0 ∈ Hs.
(0.5) YZeq2

1
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for s > d
2 and k, γ ∈ 2N + 1.

Again, a solution u to (
YZeq2YZeq2
0.5) verifies the following integral equation:

u(t) = S(t)u0 − i
∫ t

0
S(t− t′)|u|k−1u(t′)dt′ − iΨ[u](t). (0.6) YZ2

with Ψ[u] given by (
YZconvYZconv
0.1) for σ(u) = |u|γ−1u.

We want to construct u ∈ L2
(
Ω;CTH

s
x

)
but in view of the high degree of σ(u) we would a

priori need u ∈ L2γ
(
Ω;CTH

s
x

)
. In order to circumvent this issue we will use the truncation

method. See
DD
[1].

Let η be a smooth cutoff function such that η ≡ 1 on [0, 1] and η ≡ 0 on [2,∞). For R > 0,

we define ηR(u) by

ηR(u)(t) = η
(‖u‖C([0,t];Hs

x

R

)
(0.7) YZ3

We modify the integral equation to integrate the cutoff ηR(u),

u(t) = S(t)u0 − i
∫ t

0
S(t− t′)ηR(u)(t′)|u|k−1u(t′)dt′

− i
∫ t

0
S(t− t′)ηR(u)(t′)|u|γ−1uΦdW (t′)

=: S(t)u0 + I[u] + II[u] := ΓR[u].

(0.8) YZ4

YZPROP:2 Proposition 0.3. Fix s > d
2 and R > 0. The map u 7→ ΓR[u] defined in (

YZ4YZ4
0.8) is a contraction

on a ball in L2
(
Ω;CTH

s
x

)
for T > 0 small enough.

Proof. We aim at showing that Γ = ΓR is a contraction on some ball. We now estimate the

different terms I[u] and II[u]. We have for any function u ∈ CTHs
x,

‖I[u]‖CTHs
x
≤
∥∥∥
∫ t

0
ηR(u)(t′)‖|u|k−1u(t′)‖Hs

x
dt′
∥∥∥
CT

. TRk.
(0.9) YZ5

Fix two functions u1, u2 ∈ CTHs
x. We want to estimate the difference I[u1]− I[u2] in CTH

s
x.

To this end, we introduce the stopping times tj,R (j = 1, 2) by

tj,R = sup{t ∈ [0, T ] : ‖uj‖C([0,t];Hs
x) ≤ 2R}. (0.10) YZ6

Without loss of generality, we may assume t1,R ≤ t2,R. We now bound

∥∥I[u1]− I[u2]
∥∥
CTHs

x
≤
∥∥∥
∫ t

0
S(t− t′)ηR(u1)(t′)

(
N(u1)−N(u2)

)
(t′)dt′

∥∥∥
CTHs

x

+
∥∥∥
∫ t

0
S(t− t′)

(
ηR(u1)− ηR(u2)

)
(t′)N(u2)(t′)dt′

∥∥∥
CTHs

x

= I1 + I2.

(0.11) YZ7

In the above, we used the shorthand notation N(u) = |u|k−1u for convenience.

• Estimate of I2: By the mean value theorem, we have the following bound:

|ηR(u1)(t′)− ηR(u2)(t′)| ≤ ‖η
′‖L∞

R
‖u1 − u2‖CTHs

x
, (0.12) YZ8
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for any 0 ≤ t′ ≤ T . Using (
YZ6YZ6
0.10) and (

YZ8YZ8
0.12), we estimate the term I2,

‖I2‖CTHs
x
≤ T ‖(ηR(u1)− ηR(u2))N(u2)‖CTHs

x

= T ‖(ηR(u1)− ηR(u2))N(u2)‖Ct2,R
Hs

x

. TRk−1‖u1 − u2‖CTHs
x
.

(0.13) YZ9

• Estimate of I1: Similarly, by (
YZ6YZ6
0.10), we bound

‖I1‖CTHs
x
≤ T ‖ηR(u1)(N(u1)−N(u2))‖CTHs

x

= T ‖ηR(u1)(N(u1)−N(u2))‖Ct1,R
Hs

x

. TRk−1‖u1 − u2‖CTHs
x
,

(0.14) YZ10

where we used the bound

|N(u1)−N(u2)| . max(|u1|k−1, |u2|k−1)|u1 − u2|,
in the above.

Combining (
YZ9YZ9
0.13) and (

YZ10YZ10
0.14), we get

‖I[u1]− I[u2]‖CTHs
x
. TRk−1‖u1 − u2‖CTHs

x
. (0.15) YZ11

We now turn our attention to II. By applying BDG inequality/a modification of Proposition
YZPROP:1YZPROP:1
0.1 (see Lecture 5), one can show

‖II[u]‖L2
ωCTHs

x
. T θ‖Φ‖HS(L2;Hs)R

γ

‖II[u1]− II[u2]‖L2
ωCTHs

x
. T θ‖Φ‖HS(L2;Hs)R

γ−1‖u1 − u2‖L2
ωCTHs

x
.

(0.16) YZ12

for any u, u1, u2 ∈ L2(Ω;CTH
s
x). Putting everything together, we get the following bounds on

Γ from (
YZ4YZ4
0.8), (

YZ5YZ5
0.9), (

YZ11YZ11
0.15) and (

YZ12YZ12
0.16), for 0 < T ≤ 1,

‖Γ[u]‖L2
ωCTHs

x
≤ ‖u0‖Hs

x
+ C1

(
R, ‖Φ‖HS(L2;Hs)

)

‖Γ[u1]− Γ[u2]‖L2
ωCTHs

x
≤ C2T

θ
(
1 + ‖Φ‖HS(L2;Hs)

)
Rmin(k,γ)−1‖u1 − u2‖L2

ωCTHs
x
,

(0.17) YZ13

for any u, u1, u2 ∈ L2(Ω;CTH
s
x).

Let R0 = ‖u0‖Hs
x

+ C1

(
R, ‖Φ‖HS(L2;Hs)

)
and BR0 be the ball in L2(Ω;CTH

s
x) of center 0

and radius R0. Then from (
YZ13YZ13
0.17), Γ is a contraction on BR0 by choosing T > 0 small enough.

More precisely, it suffices to choose T such that

T �
((

1 + ‖Φ‖HS(L2;Hs)

)
Rmin(k,γ)−1

)−θ
. (0.18) YZ101

�

We can globalize the solutions to (
YZ4YZ4
0.8) constructed in Proposition

YZPROP:2YZPROP:2
0.3. This is the purpose

of the next result.

YZLEM:2 Lemma 0.4. Fix s > d
2 and R > 0. The solutions to (

YZ4YZ4
0.8) constructed in Proposition

YZPROP:2YZPROP:2
0.3

exist globally in time. More precisely, for any T > 0, there exists uR ∈ L2(Ω;CTH
s
x) which

solves (
YZ4YZ4
0.8).

Proof. Let T and uR be the (random) time and the solution to (
YZ4YZ4
0.8) given by Proposition

YZPROP:2YZPROP:2
0.3.

We consider the problem (
YZ4YZ4
0.8) on [T, 2T ] with initial data uR(T ) where uR solves (

YZ4YZ4
0.8) on

[0, T ]. It reads
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u(t) = S(t− T )uR(T )− i
∫ t

T
S(t− t′)ηR(u)(t′)|u|k−1u(t′)dt′

− i
∫ t

0
S(t− t′)ηR(u)(t′)|u|γ−1uΦdW T (t′)

:= ΓT [u],

(0.19) YZ14

for any T ≤ t ≤ 2T . In (
YZ14YZ14
0.19), W T denotes the shifted process W T (·) := W (·+ T ). Note that

Law(W T ) = Law(W ).

It is then clear that ΓT [u] satisfies the same bounds (
YZ13YZ13
0.17) as Γ[u] defined in (

YZ4YZ4
0.8) with u0

replaced by uR(T ). Hence, we have

‖ΓT [u]‖L2
ωCI2

Hs
x
≤ ‖uR(T )‖L2

ωH
s
x

+ C1

(
R, ‖Φ‖HS(L2;Hs)

)
(0.20) YZ15

‖ΓT [u1]− ΓT [u2]‖L2
ωCI2

Hs
x
≤ C2T

θ
(
1 + ‖Φ‖HS(L2;Hs)

)
Rmin(k,γ)−1‖u1 − u2‖L2

ωCI2
Hs

x
, (0.21) YZ16

for any u, u1, u2 ∈ L2(Ω;CI2H
s
x), with Ij = [(j − 1)T, jT ] for any j ∈ N. By plugging the

bound (
YZ13YZ13
0.17) into (

YZ15YZ15
0.20), we get

‖ΓT [u]‖L2
ωCI2

Hs
x
≤ ‖u0‖Hs

x
+ 2C1

(
R, ‖Φ‖HS(L2;Hs)

)
(0.22) YZ17

Since T verifies (
YZ101YZ101
0.18), one can show, upon choosing R1‖u0‖Hs

x
+ 2C1

(
R, ‖Φ‖HS(L2;Hs)

)
, that

ΓT in a contraction on the closed ball BR1 ⊂ L2(Ω;CI2H
s
x) of center 0 and radius R1. By

iterating this argument, we can construct solutions on Ij for any j ≥ 3. �

Remark 0.5. The solutions uR that we constructed in Proposition
YZPROP:2YZPROP:2
0.3 and Lemma

YZLEM:2YZLEM:2
0.4 are

adapted. Indeed, since we used a contraction argument to construct uR, we can show by

standard arguments that uR is the limit (in L2
(
Ω;CTH

s
x

)
, for any T > 0) of the Picard

iterates which are adapted processes.
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Lecture 7

Last time, we constructed global solutions uR to the truncated equations (SNLSR).

Recall

ηR(uR)(t) = η

(‖uR‖C([0,t];Hs
x)

R

)
, η ≡

{
1 on [0, 1]

0 on [2,∞)
(0.1)

Let tR = inf{t ≥ 0 : ‖uR‖C([0,t];Hs) ≥ R}, which is a stopping time. Then, u = uR on [0, tR],

where u is the solution to (SNLS).

Observe that tR is non-decreasing in R (given R < R
′
, we have uR = uR′ = u on [0, tR]).

Set t∗ = lim
R→∞

tR, which is random, and define u on [0, t∗] by setting u = uR on [0, tR]. Thus,

u is a solution to (SNLS) on [0, t∗].

Blow-up alternative: If t∗ < ∞, then by (0.1) and in light of the definition of t∗, we get

lim
t↗t∗
‖u(t)‖Hs =∞.

On the algebra property of Hs and smoothness of a non-linearity.

Let N(u) be a non-linearity in u and ū, which is homogeneous of degree p.

By the fundamental theorem of calculus, we have

N(u(x))−N(u(y)) =

∫ 1

0
[ ∂zN(u(y) + θ (u(x)− u(y))) (u(x)− u(y))

+ ∂z̄N (u(y) + θ (u(x)− u(y))) (u(x)− u(y)) ] dθ,

where 



∂f
∂z = 1

2

(
∂f
∂x − i

∂f
∂y

)

∂f
∂z̄ = 1

2

(
∂f
∂x + i∂f∂y

) with z = x+ iy.

Thus, we have

|N(u(x))−N(u(y))| .
∥∥N ′(u)

∥∥
L∞x︸ ︷︷ ︸

.
↑

assume

‖u‖p−1
L∞x

|u(x)− u(y)|. (0.2)

Hence, for 0 < s < 1

‖N(u)‖Ḣs =

(∫

M

∫

M

|N(u(x))−N(u(y))|2
|x− y|d+2s

dx dy

) 1
2

M = Rd orTd

by(0.2)

. ‖u‖p−1
L∞x

(∫

M

∫

M

|u(x)− u(y)|2
|x− y|d+2s

dx dy

) 1
2

︸ ︷︷ ︸
=‖u‖Ḣs

Sobolev

.
if s> d

2

‖u‖pHs .

1



2

For further studying when M = Rd mentioned in the first line above, see the book by Stein

[7].

Then, assuming N(u) behaves like up and the derivative of N(u) behaves like up−1, we have

‖N(u)‖L2 .
↑

assume

‖u‖p
L2p

Sobolev

. ‖u‖pHs s ≥ d(
1

2
− 1

p
).

Since Hs = L2 ∩ Ḣs, we conclude

‖N
↑
C1

(u)‖Hs . ‖u‖pHs ,
0 < s < 1

s > d
2

}
⇒ d = 1.

In order to study a non-linear PDE, say SNLS, we need to estimate the difference N(u)−
N(v).

Once again, by FTC, we write

N(u)−N(v) =

∫ 1

0

[
↙︷ ︸︸ ︷

∂zN(v + θ (u− v))

product

↘︷ ︸︸ ︷
(u− v) + ∂z̄N (v + θ(u− v)) (u− v)

]
dθ.

For s > d
2 , by Minkowski inequality, making use of some algebra properties, and then using

previous computation and the triangle inequality, we have

‖N(u)−N(v)‖Hs

Mink.

.
∫ 1

0

∥∥N ′(v + θ (u− v))
∥∥
Hs︸ ︷︷ ︸

.‖v+θ(u−v)‖p−1
Hs

.‖u‖p−1
Hs

+‖v‖p−1
Hs

‖u− v‖Hs dθ, 0 < s < 1 and N ∈ C2.

where we used the notation N ′ for the relevant terms ∂zN and ∂z̄N in the previous lines.

Note that in the above computation, we needed N ∈ C2 and we used the condition s < 1,

which is not very useful except for one dimension.

What if s > 1?

· Write s = [s] + {s}, [·] : integer part, {·} : fractional part.

· First, compute ∂
[s]
x N(u).

· Then, repeat the previous computation to compute the H{s}-norm of ∂
[s]
x N(u), for

which we need N ∈ C [s]+1.

· Then, for the difference estimate, we need N ∈ C [s]+2.

Stochastic non-linear wave equation (SNLW) with multiplicative space-time white

noise on Td
↓

As we see later, d = 1.

(on Rd, spacial white noise W (t) is ”unbounded”).

Consider

(SNLW)

{
∂2
t u−∆u = N(u) + σ(u)ξ

(u, ∂tu) |t=0 = (u0, u1),



3

where ξ is the space-time white noise.

Duhamel formulation (= mild formulation):

u(t) = cos(t|∇|)u0 +
sin(t|∇|)
|∇| u1+

∫ t

0

sin ((t− t′)|∇|)
|∇| N(u)(t′)dt′

+

∫ t

0

sin ((t− t′)|∇|)
|∇|

(
σ(u)(t′) dW (t′)

)
.

With S(t) = sin(t|∇|)
|∇| , |∇| =

√
−∆, Ŝ(t)f(n) =

{
sin(t|n|)
|n| f̂(n), n 6= 0

tf̂(0), n = 0
, we have

u(t) = ∂tS(t)u0 + S(t)u1 +

∫ t

0
S(t− t′)N(u)(t′)dt′ +

∫ t

0
S(t− t′)σ(u)(t′)dW (t′)

︸ ︷︷ ︸
=:Ψ[u](t)

.

Write S(t) = S+(t)−S−(t) (No need to do this at the zeroth frequency), where S±(t) = e±it|∇|
2i|∇| .

Now, write Ψ[u] = Ψ+[u]−Ψ−[u].

Then, by BDG inequality,

E

[
sup

0≤t≤T
‖Ψ±[u](t)‖pHs

]
. E

[(∫ T

0

∥∥S±(−t′)σ(u)(t′)
∥∥2

HS(L2;Hs)
dt′
) p

2

]

When is this finite?

Compute

∥∥S±(−t′)σ(u)(t′)
∥∥
HS(L2;Hs)

=

(∑

k

∥∥S±(−t′) ◦Mσ(u)(t′)(ek)
∥∥2

Hs

) 1
2

ek = e2πik·x

∼
( ∑

k∈Zd

∑

n∈Zd
〈n〉2s−2

∣∣∣∣
∑

n=n1+n2

σ̂(u)(n1)δn2k

∣∣∣∣
2

︸ ︷︷ ︸
∣∣∣σ̂(u)(n−k)

∣∣∣
2

) 1
2

Sum in k,−→
then in n.

∼ ‖σ(u)‖L2 .

In the above, Mσ(u)(t) is multiplication by σ(u)(t), and we replaced S±(−t′) by |∇|−1 (we do

not care about the oscillation part because of unitarity). Furthermore, note that considering

the term 〈n〉2s−2, for obtaining convergence, we need 2s− 2 < −d meaning that s < −d
2 + 1.

On the other hand, we want the solution to be in Hs, so we want s > 0 or s = 1
2 − ε. Thus,

we should have d = 1.

This computation shows that we can make sense of the stochastic convolution in one dimension.

Now, in the case d = 1, take s = 1
2 − ε for small ε > 0. Then

‖σ(u)‖L2

q
uγ

= ‖u‖γ
L2γ

Sobolev

. ‖u‖γHs , (s ≥ 1

2
− 1

2γ
).
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And also, as for the non-linear part,
∥∥∥∥
∫ t

0
S(t− t′)N(u)

↑
uk

(t′)dt′
∥∥∥∥
CTHs

x

. T ‖N(u)‖
CTH

s−1(<0)
x

Sobolev

. T ‖N(u)‖CTLrx 1−s≥ 1
r
− 1

2
⇒− 1

r
≥s− 3

2
(∗)

N(u)=uk

= T‖u‖kCTLkrx s≥ 1
2
− 1
kr
⇒ ks− k

2
≥− 1

r
(∗∗)

Sobolev

. T‖u‖kCTHs
x

ks− k
2

(∗),(∗∗)
≥ s− 3

2
⇒ s≥ k−3

2(k−1)
(< 1

2
)

Use the truncation method and construct global solutions (uR, ∂tuR) ∈ C(R+;Hmin(s, 1
2
−ε)(T)),

where Hs(T) = Hs(T)×Hs−1(T).

Thus, we get LWP of (SNLW) in Hs(T), s ≥ max
(

1
2 − 1

2γ ,
k−3

2(k−1)

)
.

(i.e. given (u0, u1) ∈ Hs(T), ∃! solution (u, ∂tu) to (SNLW) in C([0, t∗);Hs0(T)), where

s0 = min(s, 1
2 − ε)).

Comment: We talked about local well-posedness. Now, the question is about global well-

posedness.

• Set N(u) ≡ 0 and consider

∂2
t u−∆u = σ(u)ξ, on T.

−GWP? Yes. when σ(u) is locally Lipschitz and if |σ(u)| . 〈u〉 log(2 + |u|), it does

not grow very fast, then global well-posedness is known. This is done by Mueller

(Ann Prob ‘97, see [4]).

−Open question: |σ(u)| ∼ |u|γ for γ > 1. finite time blow-up with positive probability?

• Similar question for stochastic heat equation:

∂tu−∆u = σ(u)ξ, on T σ(u) ∼ uγ .

− Finite time blow-up for γ � 1 and γ > 3
2 is known (for the former, see also [5] by

Mueller-Sowers, PTRF ‘93, and for the latter, see [6] by Mueller, Ann Prob ‘00).

− GWP for γ < 3
2 is known by Mueller, PTRF ‘91 (see [3]).

Lecture 8, pages 1-10

Stochastic non-linear heat equation with multiplicative space-time white noise

(SNLH)

{
∂tu−∆u = N(u) + σ(u)ξ

u|t=0 = u0
on Td,

where ξ is space-time white noise, i.e. Φ = Id.
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Duhamel formulation (= mild formulation):

u(t) = P (t)u0 +

∫ t

0
P (t− t′)N(u)(t′)dt′ +

∫ t

0
P (t− t′)σ(u)(t′)dW (t′)

︸ ︷︷ ︸
=:Ψ[u](t)

, P (t) = et∆.

Schauder estimate: For 1 ≤ p ≤ q ≤ ∞, s ≥ 0,

‖P (t)f‖W s,q . t
− d

2

(
1
p
− 1
q

)
− s

2 ‖f‖Lp (0.3)

holds for any t > 0 on Rd and for any 0 < t ≤ 1 on Td. For P̂ (t) = et(∆−1), then (0.3) holds

for any t > 0 even on Td.

Besov spaces and Hölder-Besov spaces:

Consider the classical Hölder spaces defined via the Hölder norm:

‖u‖Cs = sup
x 6=y

|u(x)− u(y)|
|x− y|s , 0 < s < 1.

Note that this is not a norm (because this is equal to zero for constant functions). In fact,

this is a semi-norm.

Now, we want to introduce a different function space. To this end, we consider Littlewood-

Paley frequency projector:

Let Pj = ”smooth” frequency projection onto frequencies

{
{|n| ∼ 2j}, j ≥ 1

{|n| . 1}, j = 0
.

Take a smooth function ϕ ∈ C∞c (R; [0, 1]) with
{
ϕ(ξ) ≡ 1, for |ξ| ≤ 1
ϕ(ξ) ≡ 0, for |ξ| ≥ 2

(the numbers used to define the cut-off function do not really matter, and if you like to get

more useful numbers, see chapter 6 of the book [2] by Grafakos or the book by Bahouri-

Chemin-Danchin [1]. These books are written for the analysis essentially on Rd. On (T )d,

sometimes, you need to do something.)

Now, set

ϕj(ξ) =

{
ϕ(|ξ|), j = 0,

ϕ( |ξ|
2j

)− ϕ( |ξ|
2j−1 ), j ≥ 1.

(
≡
{

1 for |ξ| ∼ 2j ,

0 for |ξ| � 2j or |ξ| � 2j .

)

Then, we set P̂ju(n) = ϕj(n)û(n).

Theorem 0.1. (Littlewood-Paley Theorem) Consider 1 < p <∞. We have

∥∥∥∥∥



∞∑

j=0

|Pj(u)|2



︸ ︷︷ ︸
square function

1
2
∥∥∥∥∥
Lp

∼ ‖u‖Lp .



6

Here, note that although the definition of the projector depends on the cut-off function ϕ, the

result holds for any such cut-off function, but the constant depends on the choice of ϕ.

Littlewood-Paley characterization of Hs:

‖u‖Hs ∼
∥∥∥2js ‖Pj(u)‖L2

x

∥∥∥
`2j≥0

, s ∈ R.

Besov space Bs
p,q (or Bs,p

q ):

‖u‖Bsp,q =
∥∥∥2js ‖Pj(u)‖Lpx

∥∥∥
`qj≥0

, 1 ≤ p, q ≤ ∞, s ∈ R.

On Rd, by setting ψj(ξ) = ϕ( |ξ|
2j

)− ϕ( |ξ|
2j−1 ), j ∈ Z and Q̂ju(ξ) = ψj(ξ)û(ξ), we can define the

homogeneous Besov space Ḃs
p,q by

‖u‖Ḃsp,q(Rd) =
∥∥∥2js ‖Qj(u)‖Lpx

∥∥∥
`qj∈Z

, 1 ≤ p, q ≤ ∞, s ∈ R.

Then, we have ‖u‖Cs = ‖u‖Ḃs∞,∞ , 0 < s < 1.

If we set Λs = Cs ∩ L∞, then, we have ‖u‖Λs = ‖u‖Bs∞,∞ , 0 < s < 1, on Rd and Td (on Td,
we need to modify a bit about the distance between elements on the torus).

Note also that Λs is a Lipschitz space, and Cs = Λ̇s. Furthermore, note that the right-hand

side of the relation ‖u‖Cs = ‖u‖Bs∞,∞makes sense for any s ∈ R, which we now make use of

for extending the definition.

Hölder-Besov spaces: Cs = Bs
∞,∞, s ∈ R,

• ‖u‖Cs = ‖u‖Bs∞,∞ = sup
j≥0

2js‖Pj(u)‖L∞x ,

• Cs ⊃W s,∞,

• s > 0, Cs is an algebra,

• Schauder: ‖P (t)f‖Cs2 . t−
s2−s1

2 ‖f‖Cs1 , s2 ≥ s1.

We want to study the stochastic convolution

Ψ[u](t) =

∫ t

0
P (t− t′)σ(u)(t′)dW (t′)

via BDG inequality in CTCsx (since we want to construct the stochastic convolution as an

object which is continuous in time and takes values in Csx).

Ideal property of γ-radonifying operator:

B1
S−→ B2

Φ−→ B3
T−→ B4

Φ ∈ γ (B2, B3) is γ-radonifying operator, and S ∈ L (B1, B2) and T ∈ L (B3, B4) are linear

and bounded operators.

Then T ◦ Φ ◦ S ∈ γ (B1, B4) with ‖T ◦ Φ ◦ S‖γ(B1,B4) . ‖T‖L(B3,B4)‖Φ‖γ(B2,B3)‖S‖L(B1,B2).
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Now, we want to use BDG inequality for continuos functions with values in Cs on the torus.

Cs(Td) ⊃
Young

W s,∞(Td) ⊃
Sobolev

W s+ε,r(Td), εr > d. Take r � 1 s.t. ε = 0 + .

Fix t ≥ 0. Then, by Burkholder-Davis-Gundy inequality,

E
[
‖Ψ[u](t)‖pCsx

]
≤ E

[
sup

0≤t0≤t

∥∥∥∥
∫ t0

0
P (t− t′)σ(u)(t′)dW (t′)

∥∥∥∥
p

W s+ε,r
x

]

BDG

. E

[(∫ t

0

∥∥P (t− t0) ◦Mσ(u)(t′)
∥∥2

γ(L2;W s+ε,r)
dt′
) p

2

]

When is this finite?

.

Note: Id ∈ γ(L2;Wα,r) iff α < −d
2 . 1 ≤ r ≤ ∞.

1) σ(u) ≡ 1 (i.e. additive case)
∥∥P (t− t′) ◦ Id

∥∥
γ(L2;W s+ε,r)

.
∥∥P (t− t′)

∥∥
L(W−

d
2−ε,r,W s+ε,r)

‖Id‖
γ(L2;W−

d
2−ε,r)︸ ︷︷ ︸

.1

Schauder

.
(
t− t′

)− s+ d2+2ε

2 .

Thus, we have
∫ t

0

∥∥P (t− t′) ◦ Id
∥∥2

γ(L2;W s+ε,r)
dt′ .

∫ t

0

(
t− t′

)−(s+ d
2

+2ε)
dt′

<∞ ⇐⇒ s+
d

2
+ 2ε < 1 ⇐⇒ s < 1− d

2
− 2ε.

On the other hand, we need s > 0 (s.t. Cs is an algebra) to handle the non-linearity N(u) = uk.

Hence, 0 < s < 1− d
2 − 2ε⇒ d = 1.

Remark 0.2. (i) In the additive case (σ(u) ≡ 1), we do not need to work in L2(Ω;CTCsx)

with the BDG inequality and the truncation method. Instead, we can directly prove path-wise

local well-posedness.

(ii) We imposed the condition s > 0 s.t. u is a function (in x). In the additive case,

the solution theory can be built for higher dimensions (d = 2, 3) even when u(t) is only a

distribution (in x). In this case, we need to introduce a renormalization to give a proper

meaning to the non-linearity N(u). See my course note from Spring 2021.
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Lecture 8, pages 11-29

Recall the stochastic non-linear heat equation with multiplicative space-time white noise:

(SNLH)

{
∂tu−∆u = N(u) + σ(u)ξ

u|t=0 = u0,

where ξ is space-time white noise, i.e. Φ = Id.

Duhamel formulation (or mild formulation) is given by:

u(t) = P (t)u0 +

∫ t

0
P (t− t′)N(u)(t′)dt′ +

∫ t

0
P (t− t′)σ(u)(t′)dW (t′),

where P (t) = et∆. We define Ψ[u](t) as the stochastic convolution:

Ψ[u](t) :=

∫ t

0
P (t− t′)σ(u)(t′)dW (t′).

2) General case σ(u) = uγ .

Correction: In this case, we can Not close the argument in CTCsx, simply using the BDG

inequality. We instead work in CTW
s,r
x for some s ≥ 0, 2 ≤ r <∞.

By BDG inequality, we need to study

∥∥∥P (t− t′) ◦Mσ(u)(t′)

∥∥∥
γ(L2;W s,r)

∼
(

E′
↑

for{gk}

[∥∥∥
∑

k

gk〈∇〉sP (t− t′) ◦Mσ(u)(t′)(ek)
∥∥∥

2

Lrx

]) 1
2

,

where E′ is the expectation with respect to {gk}, and ek = e2πikx. Also, note the solution u

on Ω and {gk} on Ω′ are independent.

∥∥P (t− t′) ◦Mσ(u)(t′)
∥∥
γ(L2;W s,r)

∼
∥∥∥∥
∥∥∥
∑

k

gk〈∇〉sP (t− t′) ◦Mσ(u)(t′)(ek)
∥∥∥
Lrx

∥∥∥∥
Lr(Ω′)

=

∥∥∥∥
∥∥∥
∑

k

gk〈∇〉sP (t− t′) ◦Mσ(u)(t′)(ek)
∥∥∥
Lr(Ω′)

∥∥∥∥
Lrx

∼
∥∥∥∥
∥∥∥
∑

k

gk〈∇〉sP (t− t′) ◦Mσ(u)(t′)(ek)
∥∥∥
L2(Ω′)

∥∥∥∥
Lrx

∼
∥∥∥∥
(∑

k

∣∣〈∇〉sP (t− t′) ◦Mσ(u)(t′)(ek)
∣∣2
) 1

2

∥∥∥∥
Lrx

.

In the above, we first replace the second moment by the rth moment (since it’s Gaussian,

every moments are equivalent) and then, after switching the order, we replace the rth moment

by the second moment.

In general, ‖Φ‖γ(L2;Lr) ∼
∥∥ (∑

k |Φ(ek)|2
) 1

2
∥∥
Lrx

.

1



2

We have
∥∥∥∥
(∑

k

∣∣〈∇〉sP (t− t′) ◦Mσ(u)(t′)(ek)
∣∣2
) 1

2

∥∥∥∥
Lrx

=

∥∥∥∥
(∑

k

∣∣∣
∑

n∈Zd
e−(t−t′)|n|2〈n〉s ̂σ(u)(t′)(n− k)en(x)

∣∣∣
2) 1

2

∥∥∥∥
Lrx

Minkowski
≤
r≥2

∥∥∥∥
∥∥∥
∑

n∈Zd
e−(t−t′)|n|2〈n〉s ̂σ(u)(t′)(n− k)en(x)

∥∥∥
Lrx

∥∥∥∥
`2k

Hausdorff-Young
≤

∥∥∥∥
∥∥∥e−(t−t′)|n|2〈n〉s ̂σ(u)(t′)(n− k)

∥∥∥
`r′n

∥∥∥∥
`2k

, (r′ ≤ 2)

Minkowski
≤

∥∥∥∥e−(t−t′)|n|2〈n〉s
∥∥∥ ̂σ(u)(t′)(n− k)

∥∥∥
`2k︸ ︷︷ ︸

=‖σ(u)(t′)‖
L2
x

∥∥∥∥
`r′n

.

Now, we estimate
∥∥e−(t−t′)|n|2〈n〉s

∥∥
`r′n

, by using the bound

e−r
′(t−t′)|n|2 . min

( 1

(t− t′)|n|2 , 1
)α
, for any α ≥ 0.

We have

∥∥e−(t−t′)|n|2〈n〉s
∥∥
lr′n

=
( ∑

n∈Zd
e−r

′(t−t′)|n|2〈n〉sr′
) 1
r′

.
( ∑

n∈Zd

1

(t− t′)α〈n〉2α−sr′
) 1
r′

. 1

(t− t′) αr′
, provided that 2α− sr′ > d⇔ s <

2

r′
α− d

r′

Under s < 2
r′α− d

r′ , we then have

∫ t

0

∥∥P (t− t) ◦Mσ(u)(t′)
∥∥2

γ(L2;W s,r)
dt′

.
∫ t

0

1

(t− t′) 2α
r′
dt′

︸ ︷︷ ︸
.1 iff 2α<r′

×‖σ(u)‖2CTL2
x
, 0 ≤ t ≤ T

. ‖σ(u)‖2CTL2
x
.

If we put all conditions together, we get
{
s < 2

r′α− d
r′

2α < r′
⇒ 0 ≤ s < 1− d

r′
(
⇔ 0 ≤ s < 1

r
when α = 1

)
, 1 < r′ ≤ 2 (0.1)

which shows d = 1.
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With σ(u) = uγ , we have

‖σ(u)‖CTL2
x

= ‖u‖γ
CTL

2γ
x

. ‖u‖γ
CTW

s,r
x

,
s ≥ 0 if r ≥ 2γ
otherwise, by Sobolev (d = 1), s ≥ 1

r − 1
2γ

(
< 1

r

)

Note: The BDG inequality with the computations above shows

E
[
‖Ψ[u](t)‖pW s,r

]
. E

[
‖u(t)‖γp

CTW
s,r
x

]
,

for any fixed 0 ≤ t ≤ T . But, we need to insert sup
0<t<T

under the expectation on LHS (see

pages below).

As for the non-linear part, we have
∥∥∥∥
∫ t

0
P (t− t′)N(u)(t′)dt′

∥∥∥∥
CTW

s,r
x

≤
∥∥∥∥
∫ t

0

∥∥P (t− t′)N(u)(t′)
∥∥
W s,r dt

′
∥∥∥∥
CT

(by Minkowski’s integral inequality)

Schauder
≤

∥∥∥∥
∫ t

0
(t− t′)− s2− 1

2
(1− 1

r
)
∥∥N(u)(t′)

∥∥
L1
x
dt′
∥∥∥∥
CT

Considering N(u) = uk, we have

∥∥N(u)(t′)
∥∥
L1
x
≤ ‖u‖kCTLkx . ‖u‖

k
CTW

s,r
x

for

{
s ≥ 0, if r ≥ k
s ≥ 1

r − 1
k (< 1

r )

Also, note that s
2 + 1

2(1− 1
r ) < 1 since 0 < s < 1

r < 1. Thus, we have
∥∥∥∥
∫ t

0
P (t− t′)N(u)(t′)dt′

∥∥∥∥
CTW

s,r
x

. T θ‖u‖kCTW s,r
x
.

With a truncation, we can perform a contraction argument in Lpad(Ω;CTW
s,r
x ) to construct

uR (p� 1, see (0.3)) by choosing

1) 0 ≤ s ≤ 1
r

2) r ≥ 2γ or s ≥ 1
r − 1

2γ

3) r ≥ k or s ≥ 1
r − 1

k

Then, we have LWP of (SNLH) in W s,r
x (T).

Back to E
[

sup
0<t<T

‖Ψ[u](t)‖pW s,r

]
, set T = 1. We repeat the argument in lecture 3.

Let tl,k = l
2k
, l = 0, 1, 2, . . . , 2k, and write

Ψ[u](t) =
∞∑

k=1

(
Ψ[u](tlk,k)−Ψ[u](tlk−1,k−1)

)
(0.2)

for some lk = lk(t) ∈ {0, 1, . . . , 2k}.
Note: In (0.2) we used continuity (in t) of Ψ[u] (which we want to show). Strictly speaking,

we perform the following argument to ΠNu in place of u and take N →∞ (ΠN = smooth
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frequency projection onto frequencies {‖n‖ ≤ N}).
We then have

sup
0≤t≤1

‖Ψ[u](t)‖W s,r
x
≤
∞∑

k=1

max
0≤lk≤2k

∥∥∥Ψ[u](tlk,k)−Ψ[u](tl′k−1,k−1)
∥∥∥
W s,r
x

where |tlk,k − tl′k−1,k−1| ≤ 2−k. Thus,
∥∥ sup

0≤t≤1
‖Ψ[u](t)‖W s,r

∥∥
Lp(Ω)

≤
∞∑

k=1

∥∥∥Ψ[u](tlk,k)−Ψ[u](tl′k−1,k−1)
∥∥∥
Lp(Ω;`plk

W s,r
x )

.
∞∑

k=1

2
k
p max

0≤lk≤2k

∥∥∥Ψ[u](tlk,k)−Ψ[u](tl′k−1,k−1)
∥∥∥
Lp(Ω;W s,r

x )

Claim 0.1.

sup
0≤t1<t2≤T

∥∥Ψ[u](t2)−Ψ[u](t1)‖Lp(Ω;W s,r
x ) . (t2 − t1)θ‖σ(u)

∥∥
Lp(Ω;CTL2

x)

for some θ > 0 independent of p.

By assuming Claim, we have
∥∥∥∥ sup

0≤t≤1
‖Ψ[u](t)‖W s,r

∥∥∥∥
Lp(Ω)

.
∞∑

k=1

2
k
p 2−kθ

︸ ︷︷ ︸
.1

by choosing p�1

‖σ(u)‖Lp(Ω;C([0,1];L2
x)) (0.3)

Proof of Claim. For 0 ≤ t1 < t2 ≤ T , we have

Ψ[u](t2)−Ψ[u](t1) =

∫ t2

t1

P (t2 − t′)σ(u)(t′)dW (t′)

+

∫ t1

0

[
P (t2 − t′)− P (t1 − t′)

]
σ(u)(t′)dW (t′)

=: I(t1, t2) + II(t1, t2).

By BDG inequality and repeating the computations on previous pages

‖I(t1, t2)‖Lp(Ω;W s,r
x ) .

(∫ t2

t1

1

(t2 − t′)1− 2θ
p

dt′
) p

2

︸ ︷︷ ︸
∼(t2−t1)θ

‖σ(u)‖Lp(Ω;CTW
s,r
x ),

for some small θ > 0.

As for II, first note that
∣∣Fx

([
P (t2 − t′)− P (t1 − t′)

]
f
)

(n)
∣∣ =

∣∣∣e−(t2−t1)|n|2 − 1
∣∣∣ e−(t1−t′)|n|2 |f̂(n)|

MVT

. (t2 − t1)θ|n|2θe−(t1−t′)|n|2 |f̂(n)|. (0.4)
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Using (0.4), we repeat similar previous computation
∥∥∥
(
e−(t2−t′)|n|2 − e−(t1−t′)|n|2

)
〈n〉s

∥∥∥
`r′n

. (t2 − t1)θ
( ∑

n∈Zd

1

(t1 − t′)α
1

〈n〉2α−sr′−2θ

)

. (t2 − t1)θ
1

(t1 − t′)
α
r′
, if 2α− sr′ − 2θ > d (A)

Also note
∫ t1

0

1

(t1 − t′)
2α
r′
dt′ . 1 , if

2α

r′
< 1 (B)

By choosing θ > 0 sufficiently small, the conditions (A) and (B) are satisfied in view of the

conditions (0.1). �

Remark 0.2. In the argument LWP of (SNLH), we put σ(u)(t′) in L2
x when this term has

more regularity. Thus, we can improve the argument a bit but it seems that we can not close

the argument in CTCsx via the BDG inequality used in the additive case (since we would get

two contradictory conditions s > 1
2 − 1

r >
εr>1

1
2 − ε and s < 1

2 − ε. (This ε comes from the

embedding W s+ε,r ↪→ Cs)).

In the following, we directly show Ψ[u] in CTCs0x for some s0 > 0, where u ∈ LpadCTH
1
2
−

x ,

p� 1.

In view of Kolmogorov’s continuity criterion, it suffices to show

E
[
|Ψ[u](t1, x1)−Ψ[u](t2, x2)|p

]
. |(t1, x1)− (t2, x2)|1+θ for some θ > 0 and p� 1

We have

Ψ[u](t1, x1)−Ψ[u](t2, x2) =
(
Ψ[u](t1, x1)−Ψ[u](t2, x1)

)

+
(
Ψ[u](t2, x1)−Ψ[u](t2, x2)

)
.

For the first term on the right-hand side, we can use the ideas from the proof of Claim . So

we focus only on

E
[
|Ψ[u](t, x1)−Ψ[u](t, x2)|p

]
.

We have

Ψ[u](t, x1)−Ψ[u](t, x2)

=
∑

n∈Zd

∑

k∈Zd

∫ t

0
e−(t−t′)|n|2 ̂σ(u)(t′)(n− k)dβk(t

′)
(
en(x1)− en(x2)

)

=
∑

k∈Zd

∫ t

0

∑

n∈Zd
e−(t−t′)|n|2 ̂σ(u)(t′)(n− k)

(
en(x1)− en(x2)

)
dβk(t

′).
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By the BDG inequality for scalar martingales, we have

E
[
|Ψ[u](t, x1)−Ψ[u](t, x2)|p

]

. E

[( ∑

k∈Zd

∫ t

0

∣∣∣
∑

n∈Zd
e−(t−t′)|n|2 ̂σ(u)(t′)(n− k)

(
en(x1)− en(x2)

)∣∣∣
2
dt′
) p

2

]
.

By mean value theorem, we have |en(x1)− en(x2)| . |n|δ|x1 − x2|δ, for any 0 ≤ δ ≤ 1. Thus,

∑

k∈Zd

∫ t

0

∣∣∣
∑

n∈Zd
e−(t−t′)|n|2 ̂σ(u)(t′)(n− k)

(
en(x1)− en(x2)

)∣∣∣
2
dt′

. |x1 − x2|2δ
∫ t

0
‖an ∗ bn‖2`2ndt

′,

where an = e−(t−t′)|n|2 |n|δ, bn = ̂σ(u)(t′)(n), and we have an .
1

(t− t′)2θ〈n〉2θ−δ ,
Young

. |x1 − x2|2δ
∫ t

0

1

(t− t′)2θ
dt′

︸ ︷︷ ︸
.1

for θ< 1
2

×
∥∥∥ 1

〈n〉2θ−δ
∥∥∥

2

`1+n︸ ︷︷ ︸
.1

by choosing θ=1
2−, δ>0 small

∥∥ ̂σ(u)(t′)(n)
∥∥2

`2−n
( 1
2

+1= 1
1+

+ 1
2− )

Hölder

. |x1 − x2|2δ
∥∥σ(u)

∥∥2

CTHα
x
, α = 0 + .

Lastly, by the fractional Leibniz rule with σ(u) = uγ
∥∥σ(u)

∥∥
CTHα

x
. ‖u‖γ

CTW
α,2γ
x

Sobolev

. ‖u‖γCTHs
x
, s ≥ α

q
0+

+
1

2
− 1

2γ
(<

1

2
).

Hence, we proved

E
[
|Ψ[u](t, x1)−Ψ[u](t, x2)|p

]
. |x1 − x2|δp E

[
‖u‖γpCTHs

x

]

. |x1 − x2|1+θ E
[
‖u‖γpCTHs

x

]
, by choosing p� 1.

As for the non-linear part,
∥∥∥∥
∫ t

0
P (t− t′)N(u)(t′)dt′

∥∥∥∥
CT Cs0x

.
∥∥∥∥
∫ t

0

∥∥P (t− t′)N(u)(t′)
∥∥
W
s0,∞
x

dt′
∥∥∥∥
CT

schauder

.
∥∥∥∥
∫ t

0
(t− t′)− 1

2
− s0

2 dt′
∥∥∥∥
CT︸ ︷︷ ︸

.T θ

‖N(u)‖CTL1
x︸ ︷︷ ︸

≤‖u‖k
CT L

k
x

. T θ‖u‖kCTHs , s ≥ 1

2
− 1

k
(<

1

2
).
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2 USAMA NADEEM

1. Back to SNLS with multiplicative noise

Recall that the Stochastic Non-linear Schrödinger equation with multiplicative noise:

{
i∂tu−∇u = N (u) + σ(u)Φξ
u|t=0 = u0 ∈ Hs(Rd) (SNLS)

In analysing (SNLS) we will require the following ”stochastic” Strichartz estimate ([1] and
[2]):

Proposition 1.1 (Stochastic Strichartz Estimates). Let F : R+ → HS(L2;Hs), τ an accessible
stopping time (i.e. it is covered by by a sequence of predictable times), and (q, r) an admissible
pair in the sense that: 2

q + d
r = d

2 and (q, r, d) 6= (2,∞, 2). Then the stochastic integral,

I[0,τ)F (t) =

∫ t

0
1[0,τ)(t)S(t− t′)F (t′)dW (t′)

admits the following bound, except for r =∞⇒ d = 1:

∥∥∥‖I[0,τ)F‖LqTW s,r
x (Rd)

∥∥∥
Lp(Ω)

≤ C(p, q, r, T )

∥∥∥∥∥

(∫ τ

0
||F (t)||2HS(L2;Hs)dt

) 1
2

∥∥∥∥∥
Lp(Ω)

Remark 1.2. The above result is only for finite times.

Remark 1.3. Compare with the usual deterministic Strichartz estimate on the non-
homogeneous part is given:

∥∥∥∥
∫ t

0
S(t− t′)N (t′)dt′

∥∥∥∥
LqtW

s,r
x (R×Rd)

. ‖N‖
Lq̃
′
t W

s,r̃′
x (R×Rd)

where (q, r), (q̃, r̃) are admissible and by the primes we mean the Hölder conjugates.

Proof. Let 0 ≤ t ≤ T

I[0,τ)F (t) =

∫ T

0
1[0,τ)(t

′)Gt′(t)dW (t′)

=:

(∫ T

0
1[0,τ)(t

′)Gt′dW (t′)
)

(t)

where Gt′ : [0, T ] 3 t 7→ 1[t′,T ](t)S(t− t′)F (t′) with t′ ∈ [0, T ]. Notice that the second step is
nothing but repurposing the integral as a function of t, with which we write:

∥∥I[o,τ)F
∥∥
LqTW

s,r
x

=

∥∥∥∥
∫ T

0
1[0,τ)(t

′)Gt′dW (t′)

∥∥∥∥
Lqt ([0,T ];W s,r

x )

(1.1)

Assume now that q < ∞ and r < ∞. This we want to do because the space LqTW
s,r
x for

2 ≤ q, r <∞ is M-type 2 and hence with the BDG inequality and (1.1):

∥∥∥‖I[0,τ)F‖LqTW s,r
x (Rd)

∥∥∥
Lp(Ω)

BDG

.
∥∥∥∥∥

(∫ T

0
1[0,τ ](t

′)‖Gt′‖2γ(L2:LqTW
s,r
x )dt

′
)1/2

∥∥∥∥∥
Lp(Ω)

(1.2)
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To bound the above quantity then we first establish the following bound

‖Gt′‖qγ(L2;LqTW
s,r
x )
∼ E

∫ T

0

∥∥∥
∑

n

gnGt′(en)(t)
∥∥∥
q

W s,r
x

dt

= E
∫ T

t′

∥∥∥∥∥
∑

n

gn
(
S(t− t′) ◦ F (t′)

)
(en)(t)

∥∥∥∥∥

q

W s,r
x

dt

= E
∫ T

t′

∥∥∥∥∥S(t) ◦ S(−t′)
(∑

n

gnF (t′)(en)

)∥∥∥∥∥

q

W s,r
x

dt

≤ E
[
‖S(t)(· · · )‖q

Lqt (R;W s,r
x )

]

(�)
. E

[
∥∥∑

n

gnF (t′)(en)
∥∥q
Hs

]

∼ ‖
∑

n

gnF (t′)(e)n)‖q
L2(Ω;Hs)

= ‖F (t′)‖q
γ(L2;Hs = ‖F (t′)‖2HS(L2;Hs)

where {en} is an orthonormal basis of L2(Rd). The initial steps are just from the norm on
our space and the definition of Gt′ , the bound (�) is from the usual strichartz estimate, and
the last two equalities are again just by definition. The required bound is then achieved by
putting the above bound into (1.2).

Consider now the case q =∞ for which we know that r = 2. The quantity of interest then
is:

∥∥‖I[0,τ)F‖L∞T Hs
x

∥∥
Lp(Ω)

=

∥∥∥∥∥ sup
0≤t≤T

∥∥∥∥
∫ t

0
1[0,τ)](t′)S(−t′)F∗t′)dW (t′)

∥∥∥∥
Hs

∥∥∥∥∥
Lp(Ω)

BDG

. ‖
(∫ τ

0
‖S(−t′)F (t′)‖2HS(L2;Hs)dt

′
)1/2

‖Lp(Ω)

The first equality is gotten by recalling the definition of I[0,τ)F (t), the fact S(t − t′) =
S(t)◦S(−t′) and the unitarity of S(t) in Hs

x. Notice that the BDG is now applied on Hs space
and not spacetime as we did in the previous case. Recall then that ‖S(−t′)F (t′)‖2HS(L2;Hs) =

‖S(t′)F (t′)(en)‖`2nHs
x

and hence it too we are able to drop. The result follows. �

Remark 1.4. The first paper that handles the (SNLS) in a modern way is [3], and then in
[4] they handle the H1 subcritical case. To handle the stochastic convolution they used first
the BDG inequality and then the dispersive estimate (which is an ingredient to the strichartz
estimate that we have used).

‖S(t)f‖Lrx .
1

|t| d2− dr
‖f‖L2

x
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2. Stochastic Convolution

As is usual, we have to handle the stochastic convolution first:

Ψ[u](t) =

∫ t

0
S(t− t′)σ(u)(t′)ΦdW (t′) (2.1)

where σ(u) ∼ uγ , γ ≥ 1.
As we are interested in studying the (SNLS) in L2 setting we assume that:

Φ ∈ HS(L2;L2) ∩ γ(L2;L∞)

and then to bound (2.1), in light of Proposition 1.1 (with F (t′) chosen to be σ(u)(t′)Φ), we
only need the bound:

‖σ(u)Φ‖L2
THS(L2;L2) =

∥∥∥∥∥
(∑

n

‖σ(u)(t)Φ(en)‖2L2
x

)1/2
∥∥∥∥∥
L2
T

≤ ‖σ(u)‖L2
TL

2
x
‖Φ‖γ(L2;L∞)

where for the inequality we use Hölder’s inequality on the normed quantity in the summand,
independence of σ(u)(t) from n, and then just the definition of γ(L2;L∞). By our assumption
on Φ, the second term in the last inequality is finite. Also:

‖σ(u)‖L2
TL

2
x

= ‖uγ‖L2
TL

2
x

= ‖u‖γ
L2γ
T L2γ

x

?

. ‖u‖γ
LqTL

r
x

The inequality marked by (?) is what we would like to see for some admissible pair (q, r).
By applying Hölder’s in time we can take q ≥ 2γ but in this setup (with L∞ used in the
previous step) the only viable choice is r = 2γ. For admissibility we require that:

d

2
=

2

q
+
d

r
≤ 1

γ
(d+ 2)

but the upper bound on in terms of the γ and d comes from our choice of q and r. Hence the
condition to be satisfied for all our requirements to be met is given by γ ≤ 1 + 2

d .

Remark 2.1. For the non-linear part N (u) = |u|k−1u, we need the L2-(sub)criticality:
scrit ≥ 0 in order to study SNLS with u0 ∈ L2

x. This condition translates to k ≤ 1 + 4
d .

Now equipped with Proposition 1.1, we get for any admissible pair (q̃, r̃) with r̃ <∞:

∥∥∥‖Ψ[u](t)‖
Lq̃TL

r̃
x

∥∥∥
Lp(Ω)

.
∥∥∥‖σ(u)Φ‖L2

THS(L2;L2)

∥∥∥
Lp(Ω)

. ‖Φ‖γ(L2;L∞)

∥∥∥‖u‖LqTLrx
∥∥∥
Lp(Ω)

(2.2)

where r = 2γ, 1 ≤ γ ≤ 1 + 2
d and (q, r) admissible.

Remark 2.2. Notice that while we require r̃ <∞, q̃ can be very well be infinite, and in this
case we would have r̃ = 2. In particular the argument works with q̃ = q and r̃ = r.

Now by a truncation argument we can prove the local well-posedness of the (SNLS) in

L(Rd) when 1 ≤ γ ≤ 1 + 2
d and 1 < k ≤ 1 + 4

d . One has to be careful that now we are working
in the intersection of two spaces and hence the truncation will depend on the two respective
norms. The cutoff we will use now has the following form:
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ηR(u)(t) = η

(‖u‖C([0,t];L2x) + ‖u‖Lq([0,t];Lrx)

R

)

and (2.1) is handled via Proposition 1.1. Everything else should carry over from the additive
case.

Example 1. Take d = 1, k = 3, γ = 2, that is the 1-d cubic (SNLS). This implies that
(q, r) = (8, 4), which is the same pair as the additive case in Lecture 4.

Remark 2.3. When γ < 1 + 2
d , we can relax the condition Φ ∈ γ(L2;L∞). In (2), if we

check the L2
TL

α
x-norm (with α > 2):

‖σ(u)‖L2
TL

α
x

= ‖u‖γ
L2γ
T Lαγx

for r = αγ and q ≥ 2γ. Then, we put Φ in γ(L2;L
2α
α−2 ) instead of γ(L2;L∞). Notice that

1
2 = 1

α + α−2
2α

Now for r and q as before and admissible, we get:

d

2
=

2

q
+
d

r
≤ 1

γ
+
d

r
⇒ 1

α
=
γ

r
≥ γ

2
− 1

α

⇒ 1

β
=

1

2
− 1

α
≤ 1

2
− γ

2
+

1

α
=

1

2

(
1 +

2

d
− γ
)

and hence it is enough to assume Φ ∈ γ(L2;Lβ), with β ≥ 2
1+ 2

d
−γ ∨ 2.

3. Blowup Alternative

If the maximal time of existence (which is random) Tmax = Tmax(ω) <∞, then:

lim
t↗Tmax

(
‖u‖C([0,t];Hs

x) + ‖u‖Lq([0,t];Lrx)

)
=∞ (3.1)

In some cases we are able to reduce this to:

lim
t↗Tmax

‖u‖C([0,t];Hs
x) + ‖u‖Lq([0,t];Lrx) =∞ (3.2)

Of course (3.2) is not automatic and requires a proof.

Example 2. Let d = 1, k = 3, γ = 1. The solution is then constructed in CTL
2
x ∩ L8

TL
4
x.

Indeed by using Strichartz, followed by Hölder’s inequality, one has:
∥∥∥∥
∫ t

0
S(t− t′)|u|2u(t′)dt′

∥∥∥∥
L8
TL

4
x

.
∥∥|u|2u

∥∥
L
4/3
t L1

x

≤ T 1/2‖u‖L∞T L2
x
‖u‖2L8

TL
4
x

From the Duhamel formulation then we have the following:

‖u‖L8
TL

4
x
≤ C‖u0‖L2 + CT 1/2‖u‖L∞T L2

x
‖u‖2L8

TL
4
x

+ ‖Ψ[u]‖L8
TL

4
x

�
≤ C0

(
1 + ‖u‖L∞T L2

x

)2
+ ‖Ψ[u]‖L8

TL
4
x

+ C1T‖u‖4L8
TL

4
x

where � is from Cauchy’s inequality (ab ≤ a2

2 + b2

2 ). We assume that the ‖u‖L∞τ L2
x

is finite.
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Fixing a stopping time τ < Tmax = Tmax(ω), we get:

‖u‖L8
IL

4
x
≤ C0

(
1 + ‖u‖L∞τ L2

x

)2
+ ‖Ψ[u]‖L8

τL
4
x

+ C1|I|‖u‖4L8
IL

4
x

(3.3)

for any interval I ⊂ [0, τ).
Through a continuity argument with |I| � 1 (which we spell out in Subsection 3.1) we

have:

‖u‖L8
IL

4
x
≤ 2C0

(
1 + ‖u‖L∞τ L2

x

)2
+ 2‖Ψ[u]‖L8

τL
4
x

=: K(w) (3.4)

3.1. Continuity Argument. Suppose that a continuous function X(t) satisfies: X(t) ≤
A+ BεX4(t) for any t ∈ [t0, t1] and X(t0) ≤ A. Then a ε < 0 can be chosen such that the
initial condition is not violated and X(t) ≤ 2A for any t ∈ [t0, t1].

Figure 1. Continuity Argument

Essentially the argument is that in the above plot there are two disjoint regions depicted in
red where the line is dominated by the degree 4 polynomial. The additional condition assures
us that it actually must be in the left region and not the other unbounded region. Due to
continuity we know that it cannot ’jump’ and hence it must stay there.

Instead of making this more rigorous we prefer to get the same conclusion from a bootstrap
argument:

Proposition 3.1. For a continuous function X(t) if the following is true:

X(t0) ≤ A
X(t) ≤ A+BεX4(t)

then for a sufficiently small choice of ε and for all t ∈ I = [t0, t1], one has:

X(t) ≤ 2A

∀t ∈ I.

Proof. The proof is inductive in nature. We begin with X(t0) ≤ A and use the continuity
of X to conclude that X(t) ≤ 10A, for all t ∈ [t0, t0 + δ1]. Putting this into the second
part of the hypothesis and then choosing ε sufficiently small (say ε ∼ A−3) yields: X(t) ≤
A+Bε(10A)4 ≤ 2A, for all t ∈ [t0, t0 + δ1], and so in particular X(t0 + δ1) ≤ 2A.

Again by continuity we are able to push a bit forward, in the sense that X(t) ≤ 10A, for
all t ∈ [t0, δ1, t0 + δ1 + δ2], which as before implies that X(t) ≤ A+Bε(10A)4 ≤ 2A, for all
t ∈ [t0 +δ1, to+δ1 +δ2]. We repeat this algorithm until the whole of the interval is covered. �
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Figure 2. Bootstrapping the bound

With this proposition in hand, if one chooses |I| ∼ K(ω)−3 (which comes from how we
chose ε in the proof), then (3.3) implies (3.4).

Fix now some T? � 1. By writing [0, T? ∧ τ ] = ∪Ij , where |Ij | = I (except for the last
interval), and τ is any reasonable stopping time like say Tmax − δ for δ small, we have:

‖u‖L8([0,T?∧τ ];L4
Xx

=


∑

j

‖u‖8L8
Ij
L4
x




1/8

.
(
T?
|I|

)1/8

K(w)

< T
1/8
? K5/8(ω)

(3.5)

where the first inequality is from the fact that we know each summand to be less than 2K
and the number of such summand (or intervals) is given by fraction. For the second inequality
above we have used the choice of |I|.

Our goal now is to show that (3.2) holds. Assume for contradiction that it does not. Then
we have:

P

(
sup

t≤Tmax

‖u(t)‖L2 <∞ and Tmax <∞
)
> 0

By chosing T? � 1 and the fact that the blow-up time is finite, we get:

P

(
sup

t≤Tmax

‖u(t)‖L2 <∞ and Tmax <∞
)
> 0

For some given R� 1, we define the stopping time:

tR = inf{t0 ∈ [0, T?) : ‖u(t0)‖]}L2 ≥ R or t0 ≥ Tmax

Which gives us:

P
(
tR = Tmax︸ ︷︷ ︸

=:AR

)
> 0 (3.6)

by choosing R >> 1.
We also see from (3.5) and τ = tR:

E
[
‖u‖p

L8
tR
L4
x

]
. T 1/8

? E
[
K(w)3p/8

]

Further (3.4) can be put together with tR, do give:

K(w) ≤ 2C0 (1 +R)2 + ‖Ψ[u]‖L8
tR
L4
x
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.
And from (2.2), we have:

∥∥∥‖Ψ[u]‖L8
tR
L4
x

∥∥∥
Lp(Ω)

. ‖Φ‖γ(L2;L∞)

∥∥∥‖u‖L∞tRL2
x︸ ︷︷ ︸

≤R

∥∥∥
Lp(Ω)

One see that by use of the stopping time we have finiteness for the RHS in the last inequality,
which feeds into the penultimate inequality, which further feeds into the antepenultimate
inequality.

Putting these three together then we get:

E
[
‖u‖p

L8
tR
L4
x

]
≤ C(T?, R)

Finally, from (3.6), and the inequality above, we get:

E
[
1{AR}‖u‖

p
L8
tR
L4
x

]
≤ C(T?, R)

Which implies on AR, that:

‖u‖L∞
TmaxL

2
x

+ ‖u‖L8
TmaxL

4
x

<∞

But Tmax <∞, which is contradictory to (3.1).
We can conlude from this discussion that for d = 1, k = 3, r = 1, if Tmax < ∞, then

limt↗Tmax ‖u(t)‖L2 =∞
Hence, global well-posedness follows once we prove:

sup
0≤t≤Tmax

‖u(t)‖L2 <∞

which we will prove by applying Ito’s lemma to the mass M(u) =
∫
|u|2dx which is conserved

under the deterministic NLS (i.e. Φ ≡ 0)):

i∂tu−∆u = |u|k−1u

For smooth solutions, the proof of conservation of mass is straightforward:

∂tM(u) = 2Re

∫
u ∂tu dx

IBP
= −2Rei

∫
|∇u|2dx+ 2Rei

∫
|u|k+1dx = 0

For (SNLS) we do not expect this to be conserved but we will hope to get some control via
Ito’s lemma.

Finally we collect some references for the (SNLS):

• GWP of the (SNLS) with multiplicative noise:
– de Bouard-Debusshe [3], [4] (γ = 1)
– Hormung [2] (k < 1 + 4

d , 1 ≤ γ ≤ γk).
– mass-critical case (γ = 1). In the case of d = 1 and k = 5, we cannot conclude

that if the solution blows up then the L2 norm blows up. The argument for this,
as in Fan-Xu [5] is more subtle, like as in [6]. The idea is to write the Duhamel
formula with a linear, non-linear, and stochastic convolution part. You try to
view the stochastic convolution as a perturbation and one can use the GWP of
the deterministic NLS and combine it with a perturbation argument to conclude.

• Well-posedness on Πd:
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– Need to use the Fourier restriction norm method
– Cheung-Mosincat [7]
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1. Burkholder-Davis-Gundy Inequality

1.1. Introduction. We first define B for Banach space, K for separable (real) Hilbert space

and (Ω,A,P) as the probability space.

Definition 1.1 (H-isonormal process). Given a (real) separable Hilbert space H, we say

W : H → L2(Ω,A,P;R) is a H-isonormal process if {W (h) : h ∈ H} is a centred (jointly)

Gaussian family indexed by H, with

E[W (h1)W (h2)] = ⟨h1, h2⟩ ∀h1, h2 ∈ H

Remark 1.2. Uncorrelation within a jointly Gaussian family implies independence.

Example 1 (Jointly Gaussian family). We illustrate the above remark with this example.

G ∼ N(0, 1)

where ϵ is a symmetric Rademacher random variable, i.e. ±1 with probability 1
2 . We can

see that G and ϵ are independent and ϵG ∼ N(0, 1) is uncorrelated with G but ϵG is not

independent of G.

Example 2 (Wiener integral (see Lecture 1)). Let (Yt : t ≥ 0) follow a standard real

Brownian motion in a separable Hilbert space H = L2(R+;R). {W (h) =
∫∞
0 h(t)dYt, h ∈ H}

is L2(R+;R)-isonormal(i.e. H-isonormal).

Definition 1.3 (K-cylindrical Wiener process). W is a K-cylindrical Wiener process if W

is L2(R+;K)-isonormal. Then, we have Wt(h) ≡ W (I[0,t] ⊗ h) is a centred Gaussian with

variance (i.e. second moment) ||I[0,t] ⊗ h)||2 = t||h||2K . And,

E[Wt(h1)Ws(h2)] = ⟨I[0,t] ⊗ h1, I[0,t] ⊗ h2⟩L2(R+;K) = (s ∧ t)⟨h1, h2⟩K ∀t, s ∈ R+∀h1, h2 ∈ K.

That is, {Wt(h) : t ≥ 0} is a multiple of Brownian motion [1, 2].

Remark 1.4. If either (s, t]∪(s′, t′] = ϕ or ⟨h1, h2⟩k = 0, we have W (I(s,t]⊗h1) is independent
of W (I(s′,t′] ⊗ h2).

Definition 1.5 (γ-Radonifying operators). .

(i)

K ⊗B = {
N∑

j=1

hj ⊗ bj

︸ ︷︷ ︸
finite-rank
operator

from K to B

: hj ∈ K, bj ∈ B,N ∈ N}.

where (h⊗ b)(φ) = ⟨h, φ⟩Kb ∈ B, in which h ∈ K, b ∈ B and φ ∈ K

(ii) γ(K,B), the space of γ-Radonifying operators from K to B, is the completion of

K ⊗B under the norm

||
N∑

n=1

hn ⊗ bn||γ(K,B) :=
(
E
[
||

N∑

n=1

G(hn)bn||2
]) 1

2
,
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where G is K-isonormal or equivalently, by assuming {hn}Nn=1 is an orthonormal

system in K,

LHS =
(
E
[
||

N∑

n=1

gnbn||2
]) 1

2

with (gn)n iid real N(0, 1). We say T ∈ L(K,B) is γ-Radonifying if ||T ||γ(K,B) is

finite.

Remark 1.6. When B is a Hilbert space, γ(K,B) = HS(K,B), i.e. the space of

Hilbert–Schmidt operators from K to B.

Definition 1.7. For p ∈ (0, 2], a Banach space B is of type p if ∃µ ∈ (0,∞) s.t.

E[||
N∑

n=1

ϵnbn||PB] ≤ µ
N∑

n=1

||bn||PB (1.1)

for any finite sequence (bn) in B, where (ϵn)n is iid symmetric Rademacher random variables,

i.e. ±1 with probability 1
2 . In the case of cotype p for p ∈ [2,∞] [10],

E[||
N∑

n=1

ϵnbn||PB] ≥ µ̃
N∑

n=1

||bn||PB.

Remark 1.8. We consider other cases of p.

(i) For p > 2, we can take b1 = · · · = bN ̸= 0 in 1.1.

N
p
2 = (E[|

N∑

n=1

ϵn|2])
p
2 ≤ E[|

N∑

n=1

ϵn|p] (by Jensen’s inequality)

≤ µN

However, this fails for N >> 1 due to contradiction.

(ii) Every Banach space is of type 1.

(iii) Type p implies Type q for q ≤ p. Indeed,

(E[||
N∑

n=1

ϵnbn||qB])
1
q ≤ E[||

N∑

n=1

ϵnbn||pB]
1
p (by Jensen’s inequality)

≤ µ
1
p (||

N∑

n=1

bn||pB)
1
p (Type p)

≤ µ
1
p (||

N∑

n=1

bn||qB)
1
q ,

since ||(an)||Lp
n
≤ ||(an)||lqn for p ≥ q.

Remark 1.9. We have further remarks.

(i) Banach space of type p and cotype q measures ”how far” it is from being Hilbert

space.

(ii) Von Neumann stated that parallelogram law only holds on Hilbert spaces

||x+ y||2B + ||x− y||2B = 2||x||2B + 2||y||2B ∀x, y ∈ B

⇔ B is a Hilbert space
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(iii) ’72 Kwapién proved that B cotype 2 and type 2 B is isometrically a Hilbert space [4].

(iv) K
γ→ B implies true Radon probability on B (see Lecture 4) [5, 6].

1.2. K-cylindrical Wiener process. Now we fix W to be a K-cylindrical Wiener process.

Definition 1.10. We say ϕ : R+ → K ⊗B is (deterministic) simple if

ϕ = linear combination of I(s,t] ⊗ (h⊗ b).

Define
∫ ∞

0
ϕ dW := linear combination of W (I(s,t] ⊗ h)b,

where W (I(s,t] ⊗ h) is real Gaussian random variable. This is a Banach space B-valued

Gaussian random variable [7, 8].

Lemma 1.11. (i) (B type 2 and ϕ (deterministic) simple) Then,

E
[
||
∫ ∞

0
ϕ dW ||2B

]
≲
∫ ∞

0
||ϕ||2γ(K,B)dt (1.2)

Remark 1.12. After obtaining 1.2, one can extend
∫∞
0 ϕ dW for deterministic ϕ ∈

L2(R+; γ(K,B)) by a standard density argument and 1.2 is still valid for such general inte-

grand.

Proof. Without loss of generality, consider

ϕ =

N∑

n=1

I(tn−1,tn] ⊗
k∑

j=1

hj ⊗ bjn,

where (hj) is orthonormal in K, bjn ∈ B, 0 = t0, < t1 < · · · < tN <∞. By definition,

∫ ∞

0
ϕ dW =

N∑

n=1

k∑

j=1

W (I(tn−1,tn] ⊗ hj)︸ ︷︷ ︸
=:

√
tn−tn−1gjn

where (gj,n)j,n∼
iid N(0,1)

bjn

=
N∑

n=1

k∑

j=1

√
tn − tn−1gjnbjn

Note that the variance (tn − tn−1)||hj ||2K = tn − tn−1 and gjn is independent of gj′,n′ for

(j, n) ̸= (j′, n′).
Therefore, LHS of 1.2= E

[
||∑N

n=1

∑k
j=1

√
tn − tn−1gjnϵnbjn||2B

]
, where (ϵn) is iid symmetric

Rademacher independent of (gjn)jn. Adding (ϵn) does not change the law of random object
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inside || · ||2B. Hence, first integrate out the randomness of (ϵn) and use type 2 definition,

E
[
||

N∑

n=1

k∑

j=1

√
tn − tn−1gjnϵnbjn||2B

]
≲

N∑

n=1

E
[
||

k∑

j=1

√
tn − tn−1gjnbjn||2B

]

=
N∑

n=1

(tn − tn−1)E
[
||

k∑

j=1

gjnbjn||2B
]

=
N∑

n=1

(tn − tn−1)||
k∑

j=1

hj ⊗ bjn||2γ(K,B)

=

∫ ∞

0
||ϕ(t)||2γ(K,B)dt

□

Definition 1.13. For p ∈ [1, 2], we say B has martingale type p [denote MTp for short]. If

∃µp ∈ (0,∞) s.t.

E
[
||

N∑

n=1

dn||2B
]
≤ µp

N∑

n=1

E
[
||dn||pB

]

for any finite sequence {dn}Nn=1 of martingale difference, i.e. E[dn|d1, . . . , dn−1] = 0 ∀n ≥ 1,

in Lp(ω,A,P;B).

Remark 1.14. Digression to martingale [9].

(i) Fin(B) = {random variable on Ω that take only finitely many values}
(ii) We say f : Ω → B is (Bochner) measurable if ∃fn ∈ Fin(B) s.t.

fn(ω)
n↑∞−→ f(ω) ∀w ∈ ω

for f ∈ Fin(B), ||f ||Lp(Ω;B) =
( ∫

Ω ||f(w)||PB
) 1

p is well-defined. When p = ∞, it is

essential supremum norm. Lp(Ω;B) refers to completion of Fin(B) under Lp(Ω;B)-

norm

(iii) For X ∈ L1(Ω,A,P;R) and G ⊆ A σ-algebra, EG [X] is the conditional expectation of

X given G defines a norm-1 operator on Lp(Ω,A,P;R) and positive EG [X] ≥ 0 for

x ≥ 0 a.s.. Then [see section 1.2 in Pisier 2016 book [10]], (EG ⊗ IB)(X ⊗ b) = EG [X]b

extends to a bounded linear operator on Lp(Ω,A,P;B) where X ∈ Lp(Ω,A,P;R) and
b ∈ B.

(iv) Useful property: For p ∈ [1,∞],

EG [XY ] = Y EG [X] (1.3)

for any X ∈ Lp(Ω,A,P;B), Y ∈ Lp(Ω,A,P;R), G ⊆ A.

1.3. Filtration F generated by the K-cylindrical Wiener process W . F = {Ft : t ≥ 0}
where Ft = σ-algebra generated by {W (I[0,s] ⊗ h) : s ≤ t, h ∈ k}. Clearly Ft ⊆ Ft′ ∀t ≤ t′.

Definition 1.15. We say (a random time) τ : Ω → [0,∞] is a F-stopping time if

{τ ≤ t} = {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, ∀t ≥ 0.

We call τ predictable if ∃ τn F-stopping times s.t. τn < τn+1 < τ ∀n and τn ↑ τ as n ↑ ∞.
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Definition 1.16. We say ϕ : R+ × Ω → K ⊗B is a F-adapted and simple process if ϕ(s) is

Fs-measurable ∀s ∈ R+ and ϕ(ω) is a simple function.

⇔ ϕ = linear combination of I(s,t]×A ⊗ (h⊗ b)

where s < t, h ∈ K, b ∈ B, and the event A ∈ Fs. Define∫ ∞

0
ϕ dW = linear combination of IAW (I(s,t] ⊗ h)b,

where IA and W (I(s,t] ⊗ h) are independent because A ∈ Fs is independent over disjoint

interval.

Lemma 1.17 (B has MT2 and ϕ is simple F-adapted.). Then

E
[
||
∫ ∞

0
ϕ dW ||2 −B

]
≲ E

∫ ∞

0
||ϕ(t)||2γ(K,B)dt (1.4)

Proof. Consider ϕ =
∑N

n=1 1(tn−1,tn]

∑M
m=1 IFmn ⊗∑k

j=1 hj ⊗ bjmn where 0 = t0 < · · · < tN <

∞, hj orthonormal in K and bjmn ∈ B.

For each n ∈ {1, . . . , N}, the events {Fmn}Mm=1 are mutually disjoint and in Ftn−1 (1.5)

∫ ∞

0
ϕ dW =

N∑

n=1

M∑

m=1

k∑

j=1

IFmnW (I(tn−1,tn] ⊗ hj)bjmn

=
N∑

n=1

M∑

m=1

k∑

j=1

IFmn(tn−1 − tn)
1
2 gjnbjmn =:

N∑

n=1

dn

with dn = (tn−1 − tn)
1
2
∑N

n=1

∑k
j=1 IFmngjnbjmn is Ftn-measurable, in which IFmn is Ftn−1-

measurable and gjn is independent of Ftn−1 .

Remark 1.18. d1, . . . , dn adapted to Ft1 , . . . ,Ftn is a martingale difference. Using 1.3, one

has E[dn|Ft1 ] = E[gjn|Ft1 ] = 0.

Therefore,

LHS of 1.4 = E
[
||

N∑

n=1

dn]||2B
]

≲
N∑

n=1

[
||dn||2B

]

=
N∑

n=1

(tn−1 − tn)E
[
||

M∑

m=1

IFmn

k∑

j=1

gjnbjmn||2B
]

(by MT2)

=
N∑

n=1

M∑

m=1

E[IFmn ]E
[
||

k∑

j=1

gjnbjmn||2B
]

(by 1.5)

=
N∑

n=1

M∑

m=1

E[IFmn ]||
k∑

j=1

hj ⊗ bjmn||2γ(K,B) = RHS of 1.4

□
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1. Lecture 11 - BDG inequality in martingale type 2 space

1.1. Dool’s maximal inequality. We continue with the notation from Lecture 10, and we

recall Lemma ?? (Lemma 2 from Lecture 10). Therefore, let K be a separable (real) Hilbert

space and B a Banach space. Let W be a K−Cylindrical Wiener process that gives rise to

a filtration F = {Ft; t ≥ 0} with the ”usual conditions”, i.e. Ft = Ft+ := ∩ε>0Ft+ε and F0

contains all P null sets. Furthermore, recall that if ϕ : R+ × Ω → K ⊗ B is F-adapted and

simple, we can write

ϕ = lin.Comb.
s<t,A∈Fs,h∈K,b∈B

I(s,t]×A ⊗ (h⊗ b).

For such ϕ we also have ∫ ∞

0
ϕdW := lin. Comb. IAW (I(s,t] ⊗ h)b.

Lemma ?? (Lemma 2 from Lecture 10) now states that if B has martingale type 2 and ϕ is

simple F-adapted, then

E
[∥∥
∫ ∞

0
ϕdW

∥∥2
B

]
≲ E

∫ ∞

0
∥ϕ∥2γ(K,B)dt. (1.1)

This lemma can be improved to the following Theorem (1.2). Before being able to state

the theorem we need the next definition.

Definition 1.1. We say {ϕ(s, ω)}s∈R+,ω∈Ω is a progressively measurable process, if for all

T ∈ (0,∞)

(s, ω) ∈ [0, T ]× Ω 7→ ϕ(s, ω) ∈ γ(K,B) is B([0, T ])⊗FT measurable.

Theorem 1.2. [Doob’s maximal inequality in the MT2 setting]

(1) For a simple and F-adapted ϕ it holds:

E
[
sup
t≥0

∥∥
∫ t

0
ϕdW

∥∥2
B

]
≲ E

∫ ∞

0
∥ϕ∥2γ(K,B)dt. (1.2)

1
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(2) For a progressively measurable process with E
∫∞
0 ∥ϕ∥2γ(K,B)dt <∞ we also have that

inequality (1.2) holds, and hence

Mt :=

∫ t

0
I[0,t]ϕdW ∈ L2(Ω;C(R+;B)).

Remark 1.3. • Simple, F-adapted processes are progressively measurable. To see this,

note that they generate the so-called predictable σ-algebra that is equivalent to the

one generated by all adapted and left-continuous processes (more information in

[4]). Since left-continuous processes are a dense subset of the set of progressivly-

measurable processes, simple, F-adapted processes are also a sense subset. To be

precise here, we have that simple, F-adapted processes are dense in L2(prog) =

{progressively measurable process with E
∫∞
0 ∥ϕ∥2γ(K,B)dt <∞}.

• The first part of Theorem 1.2 can be considered as an improvement of Lemma (??)

(Lemma 2 from Lecture 10) to the inequality (1.2), while the second part is an extension

of this inequality to the wider class of progressively measurable processes.

• Later we will use this theorem to prove Theorem (1.5). In fact, this theorem is already

the BDG inequality in Theorem (1.5) for the special case p = 2.

Proof. First we proof (i). From the proof of Lemma (??) (Lemma 2 from Lecture 10) we get

that we can write ∫ ∞

0
ϕdW =

N∑

n=1

dn,

where d1, ..., dN is a martingale difference with respect to the filtration generated by themselves,

i.e. E[dk;σ{d1, ..., dk−1}] = 0. Then, by definition of
∫∞
0 ϕdW for simple, adapted processes,

we can see that ∫ ∞

0
ϕdW =

∫ ∞

0
I[0,t](s)ϕ(s)dW (s) =

Nt∑

n=1

dn,

where Nt is some integer that is nondecreasing in t. Hence, if we can show that there exists a

constant C independent of N such that for each N ≥ 1

E sup
n≤N

∥
n∑

k=1

dk∥2B ≤ C

N∑

k=1

E[∥dk∥2B] (1.3)

holds, we can conclude

E
[
sup
t≥0

∥∥
∫ t

0
ϕdW

∥∥2
B

]
= E

[
sup
t≥0

∥
Nt∑

k=1

dk∥2B
]

= lim
N→∞

E
[
sup
n≤N

∥
n∑

k=1

dk∥2B
]

≲ lim
N→∞

N∑

k=1

E[∥dk∥2B]

= E
[ ∫ ∞

0
∥ϕ∥2γ(K,B)dt

]
.
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To show (1.3) we notice first that

{Xn := ∥
n∑

i=1

dk∥B : n ≥ 1}

is a real-valued sub-martingale. To see this we can calculate

E
[
Xn+1|d1, ..., dn

]
= E

[
∥
n+1∑

i=1

dk∥B|d1, ..., dn
]

≥
∥∥∥E
[ n+1∑

i=1

dk|d1, ..., dn
]∥∥∥

B
= Xn

The inequality we used here is from page 8 of [1]. Then, we can apply Theorem 26.3 from [2],

Doob’s L2-inequality, and we get

E[max
n≤N

X2
n] ≤

( 2

2− 1

)2E[Xn]
2,

which implies using the martingale type 2 property

E
[
sup
n≤N

∥
n∑

k=1

dk∥2B
]
≤ 4E

[
∥

N∑

k=1

dk∥2B
]
≲

N∑

k=1

E[∥dk∥2B].

Let us now proof (ii). We are using a ”localization” or ”truncation” approach to

use the density of simple, adapted processes. Let ϕ be progressively measurable with∫∞
0 ∥ϕ(t)∥2γ(K,B)dt <∞ almost surely.

(1) Define the stopping time

τn = inf
{
t ≥ 0 :

∫ t

0
(1 + ∥ϕ(t)∥2γ(K,B))dt ≥ n

}
<∞.

Due to our assumption we have that τn ↑ ∞ almost surely for n→ ∞.

(2) Define ∫ T

0
ϕdW :=

∫ ∞

0
I[0,τn]ϕdW on {T ≤ τn}.

First note that I[0,τn] is adapted. Thus, I[0,τn]ϕ is progressively measurable and hence

the stochastic integral is welldefined. Since τn ↑ ∞ almost surely, the probability of

the event {T ≤ τn} is going to 1 for n → ∞. Thus, this definition is almost surely

well-defined.

(3) We set Mt :=
∫ t
0 ϕdW . Then we have

Mt∧τn =

∫ t∧τn

0
ϕdW =

∫ ∞

0
I[0,t∧τn]ϕdW ∈ L2(Ω;B).

Moreover, for each n (Mt∧τn : t ≥ 0) is a martingale with respect to the filtration

(Ft∧τn : t ≥ 0). Since τn is a stopping time also t ∧ τn is a stopping time and for a

stopping time τ we have that Fτ = {A : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0} is a σ-algebra

which contains all information up to the random stopping time τ . Since τn ↑ ∞ the

theorem follows.

□

The next lemma can be found as Lemma 3.6 in [3]
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Lemma 1.4. Let τ be a F-stopping time, ϕ progressively measurable in γ(K,B), such that

E
[ ∫ ∞

0
∥ϕ(s)∥2γ(K,B)ds

]
<∞.

Then for t ≥ 0

Mt =

∫ t

0
ϕ(s)dW

defines a martingale and the definition

Mt∧τ =

∫ t∧τ

0
I[0,τ ]ϕdW

is well-defined almost surely.

1.2. BDG inequality in martingale type 2.

Theorem 1.5 (BDG in MT2 setting). Let 0 < p <∞. Let B be a separable Banach space of

martingale type 2. There exists C = Cp,B <∞ such that for any F−adapted stopping time τ

and for every in γ(K,B) progressively measurable process F we have

E sup
0≤t≤τ

∥∥
∫ t

0
F (t′)dW (t′)

∥∥∥
p

B
≤ Cp,BE

[( ∫ τ

0
∥F (t′)∥2γ(K,B)dt

′
) p

2
]
.

Here W is a K−cylindrical Wiener process.

Proof. We begin the proof by defining certain notations. We define for r ≥ 0

M(r) =
∥∥∥
∫ r

0
F (t′)dW (t′)

∥∥∥
B

and its running maximum

M∗(r) = sup
s≤r

M(s).

Furthermore, set

N(r) =
[ ∫ r

0
∥F (t′)∥2γ(K,B)dt

′
] 1

2
.

The goal is to show a ”good λ inequality” and we need the variables β > 1, δ > 0, λ > 0, t ≥ 0

which will be chosen later. We can then define

τ1 = inf{r ≥ 0 :M(r) ≥ βλ},
τ2 = inf{r ≥ 0 :M(r) ≥ λ},
σ = inf{r ≥ 0 : N(r) ≥ δλ},
ρn = inf{r ≥ 0 :M(r) ≥ n}.

From these definitions we can clearly see that τ1 ≤ τ2 and thatM∗(t∧ρn) ≤ n. Furthermore

we define the two sets

A1 = {t ≥ 0 :M∗(t ∧ ρn) ≥ βλ and N(t) < δλ},

A2 =
{
t ≥ 0 :

∥∥∥
∫ t∧τ1∧σ∧ρn

0
FdW −

∫ t∧τ2∧σ∧ρn

0
FdW

∥∥∥
B
≥ λ(β − 1)

}
.

For t ∈ A1 we can observe from the definitions that τ2 ≤ τ1 ≤ t ∧ ρn ≤ t ≤ σ which implies
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{
t ∧ τ1 ∧ σ ∧ ρn = τ1

t ∧ τ2 ∧ σ ∧ ρn = τ2
,

and hence

∥∥∥
∫ t∧τ1∧σ∧ρn

0
FdW −

∫ t∧τ2∧σ∧ρn

0
FdW

∥∥∥
B

=
∥∥∥
∫ τ1

0
FdW −

∫ τ2

0
FdW

∥∥∥
B

≥M(τ1)−M(τ2) = (β − 1)λ.

As a consequence we have A1 ⊂ A2.

Next, we use the fact τ2 < τ1 and the application of part (i) in Theorem (1.2) to calculate

E
[∥∥∥
∫ t∧τ1∧σ∧ρn

0
FdW −

∫ t∧τ2∧σ∧ρn

0
FdW

∥∥∥
2

B

]

= E
[∥∥∥
∫ t

0
I(τ2∧σ∧ρn,τ1∧σ∧ρn]FdW

∥∥∥
2

B

]

≲ E
[ ∫ t

0
I(τ2∧σ∧ρn,τ1∧σ∧ρn](s)∥F (s)∥2γ(K,B)ds

]
.

The integrand is nonzero only when τ2 ≤ σ∧ρn∧τ1∧ρn, which means in particular τ2 ≤ t∧ρn.
But for all these t we then have M∗(t ∧ ρn) ≥ λ and we can add an indicator function to get

E
[ ∫ t

0
I(τ2∧σ∧ρn,τ1∧σ∧ρn](s)∥F (s)∥2γ(K,B)ds

]

≤ E
[ ∫ t∧σ

0
∥F (s)∥2γ(K,B)dsIM∗(t∧ρn)≥λ

]

≤ N(σ)2P(M∗(t ∧ ρn) ≥ λ)

≲ δ2λ2P(M∗(t ∧ ρn) ≥ λ).

Therefore, by Chebyshev’s inequality

P(A1) ≤ P(A2) ≤
Cδ2λ2P(M∗(t ∧ ρn) ≥ λ)

λ2(β − 1)2
≤ Cδ2P(M∗(t ∧ ρn) ≥ λ)

(β − 1)2
,

and

P(M∗(t ∧ ρn) ≥ βλ) ≤ P(M∗(t ∧ ρn) ≥ βλ,N(t) < δλ) + P(N(t) ≥ δλ)

≤ P(N(t)δ−1 ≥ λ) + P(A1)

≤ P(N(t)δ−1 ≥ λ) +
Cδ2

(β − 1)2
P(M∗(t ∧ ρn) ≥ λ).
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Recall the layer cake representation for nonnegative random variables. For Z ≥ 0 and p > 0

we can write

E[Zp] = E
[ ∫ Z

0
pλp−1dλ

]
= E

[ ∫ ∞

0
I[0,Z](λ)pλ

p−1dλ
]
= E

[ ∫ ∞

0
P(Z ≥ λ)pλp−1dλ

]
.

Applying this representation we obtain

E
[
M∗(t ∧ ρnβ−1)p

]
= E

[ ∫ ∞

0
P(M∗(t ∧ ρn ≥ βλ)pλp−1dλ

]

≤ E
[ ∫ ∞

0
P(N(t)δ−1 ≥ λ)pλp−1dλ

]
+

Cδ2

(β − 1)2
E
[ ∫ ∞

0
P(M∗(t ∧ ρn) ≥ λ)pλp−1dλ

]

= δ−pE
[ ∫ ∞

0
P(N(t) ≥ λ)pλp−1dλ

]
+

Cδ2

(β − 1)2
E
[ ∫ ∞

0
P(M∗(t ∧ ρn) ≥ λ)pλp−1dλ

]

= δ−pE
[
(N(t))p

]
+

Cδ2

(β − 1)2
E
[
M∗(t ∧ ρn)p

]
.

Since also from the layer cake representation we have the equality E
[
(M∗(t ∧ ρnβ−1)p

]
=

βpE
[
(M∗(t ∧ ρn)p

]
we have together

E
[
M∗(t ∧ ρn)p

]
= βpδ−pE

[
(N(t))p

]
+

Cδ2βp

(β − 1)2
E
[
M∗(t ∧ ρn)p

]
.

Now we can choose β and δ such that Cδ2βp

(β−1)2
< 1

2 , so that we can hide the second summand

on the left side. In total we get

E
[
M∗(t ∧ ρn)p

]
≲ E

[
(N(t))p

]

where the implicit constant is independent of n. Since ρn ↑ ∞ as n ↑ ∞ andM∗(t∧ρn) ≤M∗(t)
we have M∗(t ∧ ρn) ↑M∗(t). By the monotone convergence theorem we obtain

E
[
M∗(t)p

]
≲ E

[
(N(t))p

]
.

Plugging in the definitions for M∗ and N yields in

E
[

sup
0≤t≤τ

∥∥
∫ t

0
F (t′)dW (t′)

∥∥∥
p

B

]
≤ Cp,BE

[( ∫ τ

0
∥F (t′)∥2γ(K,B)dt

′
) p

2
]

what we wanted to show.

□
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LECTURE 12

RUOYUAN LIU

In Lecture 9 Page 11 (in the slides), we studied the following 1D cubic SNLS:
{
i∂tu−∆u = |u|2u+ uΦξ

u|t=0 = u0 ∈ L2(R)
(t, x) ∈ R+ × R, (0.1)

where ξ is a space-time white noise on R+ × R and Φ ∈ γ(L2
x;L

∞
x ) (see Lecture 4 Page 15

for the definition of γ-radonifying operators and see Lecture 9 Page 12 for a discussion on

relaxing the condition Φ ∈ γ(L2
x;L

∞
x )).

To prove local well-posedness of (0.1), we used the following truncation function:

ηR(u)(t) = η

(∥u∥C([0,t];L2
x)
+ ∥u∥L8([0,t];L4

x)

R

)
, (0.2)

where η is a smooth and nonnegative cutoff function on R+ such that η ≡ 1 on [0, 1] and

η ≡ 0 on [2,∞). Here, (8, 4) is a Schrödinger admissible pair (see Lecture 3 Page 2). From

Lecture 9 Page 13 - 21, we constructed a local-in-time solution of (0.1) in CTL
2
x ∩ L8

TL
4
x.

Let Tmax be defined as the maximal time of existence of solutions to (0.1). Note that if

Tmax <∞, we have

lim
t↗Tmax

∥u(t)∥L2
x
= +∞.

The main goal in this lecture is to show

sup
0≤t≤Tmax

∥u(t)∥L2
x
< +∞, (0.3)

which implies global well-posedness of (0.1).

1. The Ito formula

In order to prove (0.3), we use the Ito formula [2, 3]. Consider a d-dimensional Ito process

Xt = (X
(1)
t , . . . , X

(d)
t ) ∈ Rd with

X
(j)
t = X

(j)
0 +

∫ t

0
Y (j)
s ds+

∫ t

0
Z(j)
s dB(j)

s , j = 1, . . . , d. (1.1)

Here, Y (j) and Zj are adapted processes, and (B
(1)
t , . . . , B

(d)
t )t≥0 is a d-dimensional Brownian

motion. The Ito formula says that, for G ∈ C2(Rd), we have

G(Xt)−G(X0) =

∫ t

0
⟨∇G(Xs), dXs⟩Rd +

1

2

d∑

i,j=1

∫ t

0
∂ijG(Xs)d⟨X(i), X(j)⟩s. (1.2)

Note that (1.1) can be written as

dX(j)
s = Y (j)

s ds+ Z(j)
s dB(j)

s , (1.3)

1



2 R. LIU

and also we have

d⟨X(i), X(j)⟩s =
{
0 i ̸= j

|Z(j)
s |2ds i = j.

(1.4)

Thus, by plugging in (1.3) and (1.4), we note that (1.2) becomes

G(Xt)−G(X0) =

d∑

j=1

∫ t

0
∂jG(Xs)(Y

(j)
s ds+ Z(j)

s dB(j)
s ) +

1

2

d∑

j=1

∫ t

0
∂jjG(Xs)|Z(j)

s |2ds

=

∫ t

0

(
⟨∇G(Xs), Ys⟩Rd +

1

2

d∑

j=1

∂jjG(Xs)|Z(j)
s |2

)
ds

+
d∑

j=1

∫ t

0
∂jG(Xs)Z

(j)
s dB(j)

s .

(1.5)

Note that on the right-hand side of (1.5), the first integral is a Lebesgue integral with random

integrand, and the second integral is an Ito integral.

Let us also mention the Stratonovich integrals [3, Page 143], which is similar and related

to the Ito integrals. For an adapted process Y and a Brownian motion B, the Stratonovich

integral of Y against B is defined as the following limit of Riemann sums:
∫ T

0
Ys ◦ dBs = lim

mesh size
of [0,T ]→0

∑

i

Yti + Yti+1

2
(Bti+1 −Bti),

while the Ito integral of Y against B is defined as
∫ T

0
Ys · dBs = lim

mesh size
of [0,T ]→0

∑

i

Yti(Bti+1 −Bti).

Using the Stratonovich integrals, we have the following chain rule:

g(Bt)− g(B0) =

∫ t

0
g′(Bs) ◦ dBs.

Also, (1.5) can be rewritten as

G(Xt)−G(X0) =

∫ t

0
⟨∇G(Xs), Ys⟩Rdds+

d∑

j=1

∫ t

0
∂jG(Xs) ◦ dU (j)

s ,

where (U
(j)
t )t≥0 is an Ito process given by U

(j)
t =

∫ t
0 Z

(j)
s dB

(j)
s .

2. Back to 1D Cubic SNLS

2.1. The Stratonovich-1D Cubic SNLS and the Ito-1D Cubic SNLS. Let us consider

the following 1D cubic Stratonovich SNLS:{
i∂tu = ∆u+ |u|2u+ u ◦ Φξ
u|t=0 = u0 ∈ L2(R).

(2.1)

Here, ◦ denotes the Stratonovich product. Let us assume that the noise term Φξ is real-valued.

NLS has wide applications in modeling, for example, the wave propagation in fiber optics

(medium for telecommunication and computer networking, etc). The deterministic NLS
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preserves the mass. The above SNLS (2.1) can be viewed as NLS over random medium

(corresponding to the stochastic forcing u ◦ Φξ). Note that when the noise is real, SNLS (2.1)

also preserves the mass M(u)(t) = ∥u(t)∥2L2
x
, which is explained in the following (assuming

that u is smooth):

∂tM(u)(t) = ∂t

∫

R
u(t)u(t)dx

=

∫

R
∂t
(
u(t)u(t)

)
dx

= 2Re

∫

R
u(t)∂tu(t)dx

= 2Re

∫

R
u
(
− i∆u− i|u|2u− iuΦξ

)
dx

= 2Re i

∫

R

(
(∂tu)

2 − |u|2u− uΦξ
)
dx

= 0,

where in the second last line we used integration by parts.

We can write the Stratonovich SNLS (2.1) in the following Ito formulation:
{
i∂tu = ∆u+ |u|2u+ u · Φξ − i12uFΦ

u|t=0 = u0 ∈ L2(R),
(2.2)

where FΦ is defined as

FΦ(x) :=
∞∑

k=0

(Φek)
2(x),

and Φξ is the destributional derivative ∂tΦW , where

ΦW (t, x) =
∞∑

k=0

βk(t)(Φek)(x).

Here, (ek)k≥0 is an orthonormal basis of L2(R;R), (βk)k≥0 is a sequence of i.i.d real Brownian

motions, and Φ ∈ γ(L2(R;R);L∞(R;R)). More details can be found in [1].

Note that FΦ does not depend on the particular choice of the orthonormal basis. Indeed, if

(hk)k≥0 is another orthonormal basis, we have

∞∑

k=0

(Φhk)
2 =

∞∑

k=0

(
Φ

∞∑

j=0

⟨hk, ej⟩ej
)2

=

∞∑

k=0

∞∑

j,ℓ=0

⟨hk, ej⟩⟨hk, eℓ⟩(Φej)(Φeℓ)

=

∞∑

j=0

(Φej)
2.

We now state a few facts.
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Fact (1). Let Θ be the Fourier multiplier with symbol θ : R → [0, 1] being an even function,

that is,

Θ̂v(ξ) = θ(ξ)v̂(ξ).

Then, Θ is a bounded linear operator from L2(R;R) to L2(R;R). Indeed, by Plancherel’s

theorem,

∥Θv∥L2
x
= ∥θ(ξ)v̂(ξ)∥L2

ξ
≤ ∥v̂(ξ)∥L2

ξ
= ∥v∥L2

x
.

Also, for v ∈ L2(R;R), since v̂(−ξ) = v(ξ) and θ(−ξ) = θ(ξ), we have

(Θv)(x) =

∫

R
θ(ξ)v̂(ξ)eix·ξdξ ∈ R.

Fact (2). Let Θ be as in above and assume that Φ ∈ γ(L2(R;R);L∞(R;R)) ∩ γ(L2;L2)

(see Lecture 9 Page 12). Then, we have

FΦΘ(x) :=

∞∑

k=0

(ΦΘek)
2(x) ∈ L∞(R).

By definition and letting {gk}k≥0 be a sequence of i.i.d real-valued standard Gaussian random

variables, we have

FΦΘ(x) =
∞∑

k=0

(ΦΘek)
2(x) = E

∣∣∣∣
∞∑

k=0

gkΦΘek(x)

∣∣∣∣
2

,

so that for 2 ≤ q <∞, we use Minkowski’s inequality and Hölder’s inequality to obtain

∥FΦΘ∥Lq(R) ≤ E
[∥∥∥∥

∞∑

k=0

gkΦΘek

∥∥∥∥
2

L2q(R)

]

≤ ∥ΦΘ∥2/q
γ(L2;L2)

∥ΦΘ∥2(q−1)/q
γ(L2;L∞)

.

By letting q → ∞, we get

∥FΦΘ∥L∞(R) ≤ ∥ΦΘ∥γ(L2;L∞) ≲ ∥Φ∥γ(L2;L∞),

where the last inequality follows from the L2-boundedness of Θ in Fact (1) and the ideal

property in Lecture 8 Page 7.

Let us also mention the following Ito-1D cubic SNLS as in previous lectures.
{
i∂tu = ∆u+ |u|2u+ u · Φξ
u|t=0 = u0 ∈ L2(R).

(2.3)

One can compare (2.3) with the Stratonovich SNLS (2.2).

2.2. Global well-posedness of the 1D Cubic SNLS with real-valued noise. In this

subsection, we prove global well-posedness of the Ito-1D cubic SNLS (2.3) with real-valued

noise. Note that our steps below can also be applied to show global well-posedness of the

Stratonovich-1D cubic SNLS (2.1).

As in Lecture 7 Page 1, we let u = uR be the solution to the truncated version of (2.3):

u(t) = S(t)u0 − i

∫ t

0
S(t− t′)ηR(u)(t′)

(
|u|2u

)
(t′)dt′ − i

∫ t

0
S(t− t′)ηR(u)(t′)u(t′)ΦdW (t′)
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for t ∈ [0, tR] for some stopping time tR. See also Lecture 6 Page 6.

In order to apply the Ito formula, we need some further regularization. Recall that η is a

smooth and nonnegative cutoff function on R+ such that η ≡ 1 on [0, 1] and η ≡ 0 on [2,∞).

We define the following Fourier multipliers:

Θ̂kv(ξ) = η
( |ξ|
k

)
v̂(ξ), k ∈ N = {1, 2, . . . },

Ŝk(t)v(ξ) = Θ̂kS(t)v(ξ) = η
( |ξ|
k

)
eit|ξ|

2
v̂(ξ).

Let u = uR,m,N with m = (m1,m2) ∈ N × N be the solution to the following regularized

equation (in Duhamel formulation):

u(t) = Sm1(t)u0 − i

∫ t

0
Sm1(t− t′)ηR(u)(t′)Θm2

(
|Θm2u|2Θm2u

)
(t′)dt′

− i

∫ t

0
Sm1(t− t′)ηR(u)(t′)u(t′)ΦΘm2dWN (t′),

(2.4)

where WN is the noise term with finitely many components {β0, . . . , βN}. Here, the stochastic

integral is understood as

−i
N∑

k=0

∫ t

0
Sm1(t− t′)ηR(u)(t′)u(t′)

(
ΦΘm2ek

)
(x)dβk(t

′),

which is an Ito integral since, due to
∑N

k=0(ΦΘm2ek)
2 ∈ L∞

x and Fubini’s theorem,

N∑

k=0

∫

R

∫ t

0

∣∣∣Sm1(t− t′)ηR(u)(t′)u(t′)
(
ΦΘm2ek

)
(x)
∣∣∣
2
dt′dx ≲ 1.

Note that, with du(t) denoted as the Ito differential for u = uR,m,N , (2.4) can be written as

du(t) = −iΘm1∆u− iηR(u)Θm2

(
|Θm2u|2Θm2u

)
− iηR(u)uΦΘm2dWN (t).

Let us recall that the mass is defined as

M(u)(t) =

∫

R
u(t)u(t)dx.

We apply the Ito formula for |u(t, x)|2:

u(t, x)u(t, x) = |u0(x)|2 + 2Re

∫ t

0
u(t′, x)dItou(t′, x) + ⟨u(x), u(x)⟩t. (2.5)

Here, for the second term on the right-hand side of (2.5), we have

2Re

∫ t

0
u(t′, x)dItou(t′, x) (2.6)

= Re

∫ t

0
u(t′, x)

[
iΘm1∆u(t

′, x) + iηR(u)(t
′)Θm2

(
|Θm2u|2Θm2u

)
(t′)
]
dt′ (2.7)

+ Re
N∑

k=0

i

∫ t

0
|u(t′, x)|2ηR(u)(t′)

(
ΦΘm2ek

)
(x)dβk(t

′), (2.8)



6 R. LIU

where the last term is zero when the noise is real (ΦΘm2ek is real. See Fact (1) in the previous

subsection). Also, the last term on the right-hand side of (2.5) is a co-variation process given

by

⟨u(x), u(x)⟩t =
N∑

k=0

∫ t

0
|u(t′)|2

(
ΦΘm2ek

)2
(x)dt′ (2.9)

=
N∑

k=0

(
ΦΘm2ek

)2
(x)

∫ t

0
|u(t′, x)|2dt′. (2.10)

Therefore, in the real-valued noise setting, we have

M(u)(t) =M(u0) +

∫ t

0

∫

R

N∑

k=0

(
ΦΘm2ek

)2
(x)|u(t′, x)|2dxdt′

+ 2Re

∫ t

0

∫

R
u(t′, x)

[
iΘm1∆u(t

′, x) + iηR(u)(t
′)Θm2

(
|Θm2u|2Θm2u

)
(t′)
]
dxdt′

(2.11)

Note that
∫

R
u(t′, x)Θm1∆u(t

′, x)dx = −
∫

R
Θm1(ξ)|ξ|2|û(t′, ξ)|2dξ ∈ R

and

ηR(u)(t
′)
∫

R
u(t′, x)Θm2

(
|Θm2u|2Θm2u

)
(t′)dx = ηR(u)(t

′)
∫

R
|Θm2u|4dx ∈ R,

so that the last term on the right-hand side of (2.11) vanishes. Here, we remark that the

second term on the right-hand side of (2.11) would be canceled in the Stratonovich-SNLS

(see [1]). As a result, we obtain

M(u)(t) =M(u0) +

∫ t

0

∫

R

N∑

k=0

(
ΦΘm2ek

)2
(x)|u(t′, x)|2dxdt′

≤M(u0) + C

∫ t

0
M(u)(t′)dt′,

where the constant C does not depend on R,m1,m2, or N . By Grönwall’s inequality (which

is valid because of the cutoff ηR(u) defined in (0.2)), we get

M(u)(t) ≤M(u0)e
Ct.

Finally, we send m1 → +∞, then m2 → +∞, N → +∞, and send R→ +∞, we achieve our

goal for establishing the bound (0.3).

2.3. Global well-posedness of the 1D Cubic SNLS with non-conservative noise. In

this subsection, we prove global well-posedness of the Ito-1D cubic SNLS (2.3) when the noise

is not real-valued.
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By (2.5), (2.8), and (2.10), we have

M(u)(t) =M(u0) + Re i
N∑

k=0

∫

R

∫ t

0
|u(t′, x)|2ηR(u)(t′)

(
ΦΘm2ek

)
(x)dβk(t

′)dx (2.12)

+

∫ t

0

∫

R

N∑

k=0

(
ΦΘm2ek

)2
(x)|u(t′, x)|2dxdt′ (2.13)

=:M(u0) +A(t) +

∫ t

0

∫

R

N∑

k=0

(
ΦΘm2ek

)2
(x)|u(t′, x)|2dxdt′. (2.14)

Recall that we have
∥∥∥∥

N∑

k=0

(
ΦΘm2ek

)2
(x)

∥∥∥∥
L∞
x

≲ 1.

Fix any q ∈ [2,∞). Note that (a + b + c)q ≲ aq + bq + cq for all a, b, c ∈ R+. Thus, we

obtain from (2.14) and Jensen’s inequality that that

M(u)(t)q ≲M(u0)
q + |A(t)|q +

(
t

∫ t

0

1

t
ηR(u)(t

′)M(u)(t′)dt′
)q

≤M(u0)
q + |A(t)|q + tq−1

∫ t

0
ηR(u)

q(t′)M(u)q(t)dt′.

For any finite time T > 0, by the Burkholder-Davis-Gundy inequality, Minkowski’s inequality,

the fact that the L∞
x norm of

∑N
k=0(ΦΘm2ek)

2(x) is bounded by 1, and Jensen’s inequality,

we have

E
[

sup
0≤t≤T

|A(t)|q
]
≤ E

[∣∣∣∣ sup
t≤T

N∑

k=0

∫ t

0
ηR(u)(t

′)
∫

R

(
ΦΘm2ek

)
(x)|u(t′, x)|2dxdβk(t′)

∣∣∣∣
q]

≲q E
[∣∣∣∣
∫ T

0
ηR(u)

2(t′)
N∑

k=0

(∫

R

(
ΦΘm2ek

)
(x)|u(t′, x)|2dx

)2
dt′
∣∣∣∣
q/2]

≤ E
[∣∣∣∣
∫ T

0
ηR(u)

2(t′)
∥∥∥
∥∥ΦΘm2ek(x)

∥∥
ℓ2k
|u(t′, x)|2

∥∥∥
2

L1
x

dt′
∣∣∣∣
q/2]

≲ E
[∣∣∣∣
∫ T

0
ηR(u)

2(t′)M(u)2(t′)

∣∣∣∣
q/2]

≤ T
q
2
−1E

[ ∫ T

0
ηR(u)

q(t′)M(u)q(t′)dt′
]
.

Thus, for M∗
t = sup0≤r≤tM(u)(r), we deduce that

E
[
|M∗

T |q
]
≲ |M(u0)|q + T q−1

∫ T

0
ηR(u)

q(t)E
[
|M∗

t |q
]
dt+ T

q
2
−1

∫ T

0
ηR(u)

q(t)E
[
|M∗

t |q
]
dt,

where ηR(u) ensures the finiteness of integrals. Thus, by Grönwall’s inequality, we obtain

E
[
|M∗

T |q
]
≤ C1M(u0)

q exp
(
C2(T

q−1 + T
q
2
−1)
)
,
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where C1 and C2 are constants that do not depend on R, m1, m2, or N . Finally, by sending

m1 → +∞, m2 → +∞, N → ∞, and R→ ∞, we achieve our goal for establishing the bound

(0.3).
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LECTURE 13

ABDULWAHAB MOHAMED

So far, we studied SPDEs with multiplicative noises in the Itô sense (i.e. we interpreted

the stochastic convolution in L2(Ω)), also known as random field theory. We now turn our

attention to the pathwise well-posedness theory. First thing we stumble upon, however, is the

following issue:

Issue. Consider the following differential equation

dYt = Yt dBt,

where B = (Bt)t∈[0,1] is a Brownian motion. A first guess could be

Yt =

∫ t

0
Bs dBs.

We can interpret the right hand side as a Wiener-Itô integral.

Even worse, one has the following result by Lyons in [2]:

Theorem 0.1 (Non-existence of path integral). There is no separable Banach space X ⊂
C([0, 1]) such that

(i) B ∈ X, a.s. ,

(ii) The map

(f, g) 7→
∫ ·

0
f(t)∂tg(t) dt,

defined for smooth functions (f, g) ∈ C∞([0, 1])×C∞([0, 1]) extends continuously to a

map: X ×X → C([0, 1]).

This theorem tells us that we can not construct
∫ t
0 Bs dBs pathwise, i.e. we have to rely

on probabilistic methods to construct the integral in L2(Ω). The theory of rough paths is

a framework for which integration with respect to Brownian motion can be made sense of

pathwise.

Main idea: augment the data B = (Bt)t∈[0,1] by

B(s, t) =:

∫ t

s
(Br −Bs) dBr,

where the right-hand side is defined by the left-hand side. In other words, we are prescribing

what integration of the Brownian motion with respect to itself should be. This is the main

idea of rough paths theory developed by Lyons in [1]. For more about the theory look at the

lecture notes from Spring 2020.
1
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1. Pathwise integration

We consider the map

(f, g) 7→ I(f, g) =

∫ ·

0
f(t)∂tg(t) dt,

Cα × Cβ → Cγ ,

(1.1)

where Cα is the well-known α-Hölder space. Obviously, the expression given for I seems

to require g to be differentiable. However, there are ways to interpret the integral through

different point of views without requiring differentiability of g.

1.1. Differential calculus point of view. We can say that I(f, g) is the unique solution to

∂tI(f, g) = f∂tg, I(f, g)(0) = 0.

Note that for functions g ∈ Cβ that are not classically differentiable we have that ∂tg is a

distribution and the differential equation above is understood in distributional sense. We do

not focus on this point of view in the sequel.

1.2. First increment point of view. The first increment point of view is decreeing I =

I(f, g) to satisfy
{
I(t)− I(s) = f(s)(g(t)− g(s)) + o(|t− s|), 0 ≤ s ≤ t ≤ 1,

I(0) = 0,
(1.2)

uniformly over all 0 ≤ s ≤ t ≤ 1, where o(·) is the little-o notation as |t− s| → 0.

Remark 1.1. (i) Note that (1.2) is clearly satisfied if g ∈ C1([0, 1]) and f ∈ C([0, 1]),

and in such case

I(t) =

∫ t

0
f(s)∂sg(s) ds,

is well-defined and satisfies by the fundamental theorem of calculus

I(t)− I(s)− f(t)(g(t)− g(s)) =

∫ t

s
(f(r)− f(s))∂rg(r) dr.

By assumption f is continuous on the compact interval [0, 1] and is therefore uniformly

continuous, in particular the function admits a modulus of continuity ω : [0,∞) →
[0,∞) such that

|f(r)− f(s)| ≤ ω(|r − s|), r, s ∈ [0, 1].

The modulus of continuity ω is increasing and is continuous at 0 and ω(0) = 0. In

particular
∣∣∣∣
∫ t

s
(f(r)− f(s))∂rg(r) dr

∣∣∣∣ ≤
∫ t

s
|f(r)− f(s)||∂rg(r)|dr

≤ ∥∂rg∥L∞

∫ t

s
ω(|r − s|) dr

≤ ∥∂rg∥L∞ω(|t− s|)|t− s|,
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which shows that
∫ t

s
(f(r)− f(s))∂rg(r) dr = o(|t− s|),

yielding (1.2).

(ii) Furthermore, (1.2) determines I. Suppose that J also satisfies (1.2). Set D = I − J

and note that

D(t)−D(s) = o(|t− s|),
and this shows that ∣∣∣∣

D(t)−D(s)

t− s

∣∣∣∣ = o(1),

from which follows

lim
s→t

D(t)−D(s)

t− s
= 0.

Hence D′(t) = 0 for all t ∈ [0, 1] and D(0) = 0 which implies D ≡ 0.

This shows that I is the only function whose increment matches the “germ”

f(s)(g(t)− g(s)) modulo a negligible error.

1.3. Several notations and the Sewing Lemma. Let V be a vector space, e.g. V = R.
For n ≥ 1 and s ≤ t define

∆n(s, t) := {(s1, ..., sn) ∈ Rn : s ≤ s1 ≤ · · · ≤ sn ≤ t}.
Furthermore, set C1(V ) := C([0, 1], V ) and for n ≥ 2, define Cn(V ) ⊂ C(∆n, V ) as the space

of all functions f : ∆n → V such that f(s1, ..., sn) = 0 whenever s1 = · · · = sn. An element in

Cn(V ) is n-cochain. We also define the coboundary operator δ : Cn(V ) → Cn+1(V ) for any

f ∈ Cn(V ) by

δf(s1, ..., sn+1) :=
n+1∑

k=1

(−1)n−kf(s1, ..., sk−1, sk+1, ..., sn+1).

We may use the notation δn to specify the dependence on n in Cn(V ).

Example 1. For f ∈ C1 we have

δf(s, t) = f(t)− f(s).

For f ∈ C2 we have

δf(s, u, t) = f(s, t)− f(u, t)− f(s, u).

There are several facts that we state without proof:

• We have

δ ◦ δ = 0,

in particular Im δn−1 ⊂ Ker δn.

• We get the following cochain complex:

0 → R → C1
δ→ C2

δ→ C3
δ→ · · · (1.3)

This complex is exact, i.e. Im δn−1 = Ker δn and the cohomology Hn =

Ker δn/ Im δn−1 = {0}. Hence if δf = 0, then f = δg for some g.
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These newly introduced notation will be used in our context as follows. Let A(s, t) =

f(s)δg(s, t) = f(s)(g(t)− g(s)) and note that (1.2) is equivalent to

A = δI +R,

for some R such that R(s, t) = o(|t− s|). Taking δ on both sides yields

δA = δR,

since δ ◦ δI = 0. The so-called sewing map allows us to recover R from δA ∈ C3.

Before formulating the main result, let us define a topology on Cn. We say f ∈ Cα
n ([s, t]) if

∥f∥Cα
n ([s,t]) := sup

(s1,...,sn)∈∆n(s,t)

|f(s1, ..., sn)|
|sn − s1|α

<∞.

See the paper by Gubinelli and Tindel [3] for a variant norm and more on the cochains.

We set

Cα+

n :=
⋃

β>α

Cβ
n .

Remark 1.2. We have δC1 ∩ C1+
2 = {0} which follows from the fact that any function

satisfying |f(x)− f(y)| ≲ |x− y|α for α > 1 is constant. Indeed any f ∈ δC1 is of the form

f = δg and f ∈ C1+
2 implies

|g(t)− g(s)| = |δg(s, t)| = |f(s, t)| ≲ |t− s|α,

for some α > 1. In particular g is constant and therefore f ≡ 0. This shows the claim.

Theorem 1.3 (Sewing Lemma). There exists a unique map Λ : C1+
3 ∩ δC2 → C1+

2 such that

δΛ = IdC3∩δC2 ,

and for any closed interval I ⊂ R+ and α > 1, there exists a constant C = C(α) such that

∥Λh∥Cα
2 (I) ≤ C∥h∥Cα

3 (I), for all h ∈ Cα
3 ∩ δC2. (1.4)

Proof. See the course notes from Spring 2020 or [3]. The proof can also be found in [4]. □

The way we apply the Sewing Lemma is along the following lines. Recall that A = δI +R

which gave us δA = δR. Assuming δA ∈ C1+
3 ∩ δC2, we have δΛδA = δA which gives

δ(R−A) = δ(R− ΛδA) = 0.

Therefore by the fact the cochain in (1.3) is exact we get

R− ΛδA = δf,

for some f ∈ C1. Note that Rs,t = o(|t− s|) and ΛδA ∈ C1+
2 which gives that δf = o(|t− s|)

yielding δf ≡ 0. Hence

R = ΛδA.

We conclude that

δI = A−R = (Id−Λδ)A.
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1.4. Young integral. Let f ∈ Cα and g ∈ Cβ with α + β > 1. With the first increment

point of view, it is natural to write

δI(f, g)(s, t) =

∫ t

s
f(u) dg(u) =

∫ t

s
f(s) dg(u)−R(s, t) = f(s)δg(s, t)−R(s, t),

where R(s, t) = o(|t− s|). We set A(s, t) = f(s)δg(s, t) to obtain δI = A−R. Now note that

δA(s, u, t) = A(s, t)−A(u, t)−A(s, u)

= f(s)δg(s, t)− f(u)δg(u, t)− f(s)δg(s, u)

= f(s)(δg(s, t)− δg(s, u))− f(u)δg(u, t).

We have

δg(s, t)− δg(s, u) = g(t)− g(s)− (g(u)− g(s)) = g(t)− g(u) = δg(u, t),

so that

δA(s, u, t) = f(s)δg(u, t)− f(u)δg(u, t) = (f(s)− f(u))δg(u, t) = −δf(s, u)δg(u, t).
By assumption f ∈ Cα and g ∈ Cβ which gives

|δA(s, u, t)| = |δf(s, u)δg(u, t)| ≲ |u− s|α|t− u|β ≲ |t− s|α+β,

yielding δA ∈ Cα+β
3 . Since α + β > 1 we get by the Sewing Lemma given in 1.3 (and in

particular the discussion after the statement), that

δI(f, g) = (Id−Λδ)A = (Id−Λδ)(fδg).

Note that for any partition P = {0 = t0 ≤ t1 ≤ t2 ≤ .... ≤ tn = t}, we can write through

telescoping

I(f, g)(t) = I(f, g)(t)− I(f, g)(0)

=
∑

P

δI(f, g)(ti, ti+1)

=
∑

P

(f(ti)(g(ti+1)− g(ti)) + Λδ(fδg)(ti, ti+1))

=
∑

P

f(ti)(g(ti+1)− g(ti) +
∑

P

Λδ(fδg)(ti, ti+1).

Note that since the partition P is arbitrary, we get an equality when we take the mesh size

|P | → 0, in other words we get

I(f, g)(t) = lim
|P |→0

∑

P

f(ti)(g(ti+1)− g(ti) +
∑

P

Λδ(fδg)(ti, ti+1).

We note that the map Λ maps continuously into Cα+β
2 which yields that

∑

P

|Λδ(fδg)(ti, ti+1)| ≲
∑

P

|ti+1 − ti|α+β ≲ |P |α+β−1
∑

P

|ti+1 − ti|
︸ ︷︷ ︸

=t

,

where we have used the fact that α+ β > 1 in the last inequality. We obtain

lim
|P |→0

∑

P

Λδ(fδg)(ti, ti+1) = 0,
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and consequently

I(f, g)(t) = lim
|P |→0

∑

P

f(ti)(g(ti+1)− g(ti)). (1.5)

1.5. Young differential equations. Now consider an equation of the form

dYt = Yt dXt, Y |t=0 = Y0 (1.6)

with some α > 1/2, X ∈ Cα and y ∈ R (for the initial condition). An example that falls into

this category is when X is a fractional Brownian motion with Hurst parameter H > 1/2.

Now assuming Y ∈ Cα satisfies the DE, we get

Yt = Yr +

∫ t

r
Yu dYu (1.7)

= Yr +

∫ t

r
Yr dXu +

∫ t

r
δYur dXu

︸ ︷︷ ︸
=:Rtr

(1.8)

In here and in the sequel, we use the notation Atr = A(r, t) for any A ∈ C2, and also if f ∈ C1,

we may write ftr to mean δftr = δf(r, t). We have
∫ t

r
Yu dXu =

∫ t

r
Yr dXu

︸ ︷︷ ︸
YrδXtr

+Rtr.

Taking δ of both sides together with the fact that δδ = 0 (the left hand side is basically δI),

yields

δRt1t2t3 = −δ(Y δX)t1t2t3 := δXt1t2δYt2t3 = O(|t1 − t3|2α).
Note that 2α > 1 by the assumption that α > 1/2, so we can apply the Sewing Lemma and

get that

R = −Λδ(Y δX).

Hence ∫ t

r
Yu dXu = (Id−Λδ)(Y δX)tr.

Recalling (1.7) our Young differential equation (1.6) is boils down to solving the following

fixed point problem:

Yt − Yr = (Id−Λδ)(Y δX)tr =: (δΓY )tr. (1.9)

In the above we have set

(ΓY )(t) := (Id−Λδ)(Y δX)t0 + Y0.

Recall on the space of Hölder functions Cα the norm can be given by

∥Z∥Cα := |Z0|+ |Z|Cα ,

where

|Z|Cα := sup
s ̸=t

|Zt − Zs|
|t− s|α .

Note that we can write

|(δΓY )tr| ≤ ∥Y ∥L∞∥X∥Cα |t−r|α+|Λδ(Y δX)tr| ≤ ∥Y ∥L∞∥X∥Cα |t−r|α+∥δ(Y δX)∥Cα
2
|t−r|α.
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We note that for any t ≤ T , we have

|Zt| ≤ |Z0|+ |Zt − Z0| ≤ |Z0|+ |Z|CαTα.

This yields

∥Z∥L∞
T

≤ |Z0|+ Tα|Z|Cα . (1.10)

We have

∥δ(Y δX)∥Cα
2
≲ Tα∥Λ(δY δX)∥C2α

2

(1.4)

≲ Tα∥δY δX∥C2α
3

≲ Tα∥Y ∥Cα∥X∥Cα .

Therefore

|ΓY |Cα ≲ ∥Y ∥L∞
T
∥X∥Cα + Tα∥Y ∥Cα∥X∥Cα .

In particular

|ΓY |Cα ≲ (|Y0|+ Tα∥Y ∥Cα)∥X∥Cα .

Therefore, since (ΓY )(0) = Y0 we get

∥ΓY ∥Cα ≤ c0(1 + |Y0|)∥X∥Cα + CTα∥Y ∥Cα∥X∥Cα ,

for some constants c0, C > 1 only depending on α. We can take R := c0(1 + |Y0|)∥X∥Cα and

define

BR := {Y ∈ Cα : ∥Y ∥Cα ≤ R, Y |t=0 = Y0}.
Now take T ≪ 1 small enough so that CTα∥Y ∥Cα ≤ 1

2R for all Y ∈ BR. This establishes

ΓY : BR → BR.

We still need to estimate the difference of ΓY and ΓỸ for Y, Ỹ ∈ BR to complete the fixed

point argument through Banach’s fixed point theorem. We have by a similar argument

∥ΓY − ΓỸ ∥Cα ≲ ∥Y − Ỹ ∥L∞∥X∥Cα + Tα∥Y ∥Cα∥X∥Cα .

We have Y0 = Ỹ0 so that

∥Y − Ỹ ∥L∞
T

≤ Tα∥Y − Ỹ ∥Cα ,

which gives

∥ΓY − ΓỸ ∥Cα ≤ C1T
α∥Y − Ỹ ∥Cα∥X∥Cα .

By taking T small enough to ensure CTα∥X∥Cα ≤ 1
2 , we get

∥ΓY − ΓỸ ∥Cα ≤ 1

2
∥Y − Ỹ ∥Cα .

This shows existence of a unique solution in BR. One can show that this solution is the unique

local solution in Cα through the standard argument.

1.6. Towards rough paths. After the theory for Young differential equations for Cα with

α > 1/2, we may ask:

Question: What about Brownian motion?

The theory in the subsection above does not cover whenever X is a Brownian motion. In

such case X ∈ Cα \ C1/2, a.s. for any α < 1/2.

Let X ∈ Cα(R+, V ) for some 1/3 ≤ α < 1/2, and X ∈ C2α
2 (R+, V ⊗ V ), satisfying Chen’s

relation, i.e.

Xt1t3 − Xt1t2 − Xt2t3 = δXt1t2 ⊗ δXt2t3 . (1.11)

We call (X,X) a rough path.
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1.7. Controlled rough paths. Controlled rough path is a path Y taking values that somehow

locally behaves like X. This notion was introduced by Gubinelli in [4]. Let W be some

Banach space and denote by L(V,W ) the space of linear bounded operators from V to W .

The precise definition of controlled rough path can be stated as follows:

Definition 1.4 (Controlled rough path). A path Y ∈ Cα([0, T ];W ) is controlled rough path if

δYtr = Y ′
rXtr +RY

tr, (1.12)

with Y ′ ∈ Cα([0, T ];L(V,W )) and RY ∈ C2α
2 (V ). We call Y ′ the Gubinelli derivative and we

use the notation (Y, Y ′) ∈ D2α
X for a controlled rough path.

Example 2. Let V = Rn and W = Rm. An example of controlled rough path is Y = F (X)

for some function F : Rn → Rm. In this case Y ′ = DF (X) which can verified by Taylor’s

theorem.

From now on V = W = R. We let Y be a controlled rough path. Note that for the case

V =W = R, we have L(V,W ) ≃ R and consequently Y ′ : [0, T ] → R. Consider

Itr =

∫ t

r
Yu dXu.

By (1.12), we formally have

Itr =

∫ t

r
Yr dXu +

∫ t

r
δYur dXu

= YrδXtr +

∫ t

r
Y ′
rXtr +RY

tr dXu

= YrδXtr + Y ′
r

∫ t

r
Xur dXu

︸ ︷︷ ︸
undefined

+

∫ t

r
RY

ur dXu

︸ ︷︷ ︸
undefined

.

The last two terms are not well-defined, but we impose that
∫ t

r
Xur dXu = Xtr,

which leads us to the definition of the integral through the following. We define I by I(0) = 0

and

Itr = YrδXtr + Y ′
rXtr + o(|t− r|). (1.13)

As in (1.2) on page 2, it turns out that (1.13) characterizes Itr through the Sewing Lemma.

Remark 1.5. When Y and X are smooth then
∫ t
r Yu dXu satisfies (1.13) with Xtr =∫ t

r Xur dXu which for smooth X is well-defined.

We have

Itr = δXtrYr + XtrY
′
r +Ktr

and note that

δKt1t2t3 = −δ(δXtrYr + XtrY
′
r )t1t2t3

= δXt1t2δYt2t3 − δ(XtrY
′
r )t1t2t3

=: I− II.
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In here δ(XtrY
′
r )t1t2t3 means δ applied to (r, t) 7→ XtrY

′
r and evaluated at (t1, t2, t3). For I we

write

I
(1.12)
= δXt1t2δXt2t3Y

′
t3 + δXt1t2R

Y
t2t3︸ ︷︷ ︸

∈C2α
3

. (1.14)

For II we write

II = Xt1t3Y
′
t3 − Xt1t2Y

′
t2 − Xt2t3Y

′
t3

= (Xt1t3 − Xt2t3)Y
′
t3 − Xt1t2Y

′
t2 .

We now use Chen’s relations (1.11) to write

Xt1t3 − Xt2t3 = Xt1t2 + δXt1t2δXt2t3 ,

which yields

II = −Xt1t2δY
′
t2t3︸ ︷︷ ︸

∈C3α
2

+δXt1t2δXt2t3Y
′
t3 . (1.15)

Note that the last term in the previous expression is the same term as the first term in the

expression for I in (1.14). Therefore these term cancel each other when we subtract (1.15)

from (1.14), and we will be left with

δKt1t2t3 = I− II = δXt1t2R
Y
t2t3 − Xt1t2δY

′
t2t3 ∈ C3α

2 ∩ C2.

Note that α ≥ 1/3 which implies that K ∈ C1+
3 ∩ δC2 allowing us to apply the Sewing Lemma

1.3 yielding

K = −Λδ(δXtrYr + XtrY
′
r ),

and hence

Itr =

∫ t

r
Yu dXu =

[
(Id−Λδ)(δXt1t2Yt2 + Xt1t2Y

′
t2)
]
tr
.

This defines Itr, but for a more pleasing formula concerning Riemann-type sums, can obtained

by a similar calculations as was done to obtain (1.5) for the Young integral, namely
∫ t

0
Yr dXr = lim

|P |→0

∑

P

YtiXti+1ti + Y ′
tiXti+1ti .

1.8. Rough differential equations. Now we consider rough differential equations (RDE)

which are of the following type

dYt = Yt dXt, Y |t=0 = Y0,

where X ∈ Cα with 1/3 < α ≤ 1/2 is a rough path, i.e. enhanced with some X ∈ C2α
2

satisfying Chen’s relation (1.11). We have that a solution Y would satisfy

Yt − Yr =

∫ t

r
Yu dXu =

[
(Id−Λδ)(δX · Y + X · Y ′)

]
tr
. (1.16)

Note that (1.16) for a controlled path (Y, Y ′) ∈ D2α
X , we have δYtr = YrδXtr + “error”, which

implies that Y ′ = Y . We can endow D2α
X with the seminorm

∥(Y, Y ′)∥X,2α = ∥Y ′∥Cα + ∥RY ∥C2α
2
,
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which makes D2α
X a Banach space under the norm

|||(Y, Y ′)||| := |Y0|+ |Y ′
0 |+ ∥(Y, Y ′)∥X,2α. (1.17)

We solve the RDE through a fixed point argument. To that end, we set

Γ(Y, Y ′)(t) :=
(∫ t

0
Yu dXu, Yt

)
+ (Y0, 0).

Let us also set

Zt :=

∫ t

0
Yu dXu, Z ′

t = Yt.

In order to estimate the seminorm ∥ · ∥X,2α of Γ(Y, Y ′) we need to write Zt as a controlled

path

δZtr = Z ′
rδXtr +RZ

tr.

Since Zt =
∫ t
0 Yu dXu, we have (from (1.13) on page 8)

Z ′ = Y.

However, what is RZ? We have

RZ
tr = δZtr − Z ′

rδXtr

=

∫ t

r
Yu dXu − YrδXtr

(1.16)
= XtrYr −

[
Λδ(δX · Y + X · Y ′)

]
tr
.

(1.18)

By writing Γ(Y, Y ′) = (Γ1(Y, Y
′),Γ2(Y, Y

′)) with Γ1(Y, Y
′) the Gubinelli derivative of Γ(Y, Y ′)

and Γ2(Y, Y
′) the remainder. We have for the Gubinelli derivative Γ1(Y, Y

′)

∥Γ1(Y, Y
′)∥Cα = ∥Z ′∥Cα

= ∥Y ∥Cα

(1.12)

≤ ∥Y ′∥L∞
T
∥X∥Cα + Tα∥RY ∥C2α

2

≤ (|Y ′
0 |+ Tα∥Y ′∥Cα)∥X∥Cα + Tα∥RY ∥C2α

2
,

(1.19)

where we have used the bound (1.10). Moreover for the remainder Γ2(Y, Y
′) we have using

(1.18) together with the Sewing Lemma (in particular (1.4)), that

∥Γ2(Y, Y
′)∥C2α

2
= ∥RZ∥C2α

2

(1.18)
= ∥XtrYr −

[
Λδ(δX · Y + X · Y ′)

]
tr
∥C2α

2

(1.4)

≤ ∥X∥C2α
2
∥Y ∥L∞

T
+ C∥δXt1t2R

Y
t1t2 − Xt1t2δY

′
t2t3∥C2α

≤ ∥X∥C2α
2
∥Y ∥L∞

T
+ CTα(∥X∥Cα∥RY ∥C2α2

+ ∥X∥C2α
2
∥Y ′∥Cα),

(1.20)

where the constant C is coming from (1.4) and is only depending on α. For the first term in

the previous inequality we use

∥Y ∥L∞
T

≤ |Y0|+ Tα∥Y ∥Cα

(1.19)

≤ |Y0|+ Tα(|Y ′
0 |+ Tα∥Y ′∥Cα)∥X∥Cα + T 2α∥RY ∥C2α

2
. (1.21)

Note that Γ(Y, Y ′)|t=0 = (Y0, Y0) yields

|||Γ(Y, Y ′)||| ≤ 2|Y0|+ ∥Γ(Y, Y ′)∥X,2α.
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For the second term we use (1.19), (1.20) and (1.21) to get

|||Γ(Y, Y ′)||| ≤ c0(1 + ∥X∥C2α
2
) + ∥X∥Cα∥X∥C2α

2
|Y ′

0 |︸ ︷︷ ︸
=: 1

2
R

+c(∥X∥Cα , ∥X∥C2α
2
)Tα(∥RY ∥C2α

2
+∥Y ′∥Cα),

for any 0 ≤ T ≤ 1. As already underbraced above, we set

R := 2
(
c0(1 + ∥X∥C2α

2
) + ∥X∥Cα∥X∥C2α

2
|Y ′

0 |
)
.

Then by choosing T = T (R, ∥X∥Cα , ∥X∥C2α
2
) > 0 sufficiently small, we have

|||Γ(Y, Y ′)||| ≤ 1

2
R+ C(∥X∥Cα , ∥X∥C2α

2
)Tα ∥(Y, Y ′)∥X,2α︸ ︷︷ ︸

≤|||(Y,Y ′)|||
≤ R,

(1.22)

for any (Y, Y ′) ∈ BR ⊂ D2α
X ∩ {(Y, Y ′)|t=0 = (Y0, Y0)}. One has the BR is a closed subset in

D2α
X and the intersection is to make sure the initial condition is satisfied. This all shows that

Γ : BR → BR. We need to show that Γ is also a contraction.

To that end, we need to estimate the difference between two elements. Through an exact

similar approach as done above, but now done for Y − Ỹ yields the following for the Gubinelli

derivative

∥Γ1(Y, Y
′)− Γ1(Ỹ , Ỹ

′)||Cα = ∥Y − Ỹ ∥Cα (1.23)

≤ Tα∥Y ′ − Ỹ ′∥Cα∥X∥Cα + Tα∥RY −RỸ ∥C2α
2

(1.24)

for any (Y, Y ′), (Ỹ , Ỹ ′) ∈ BR, where we have to remark that BR include the initial condition

ensuring (Y − Ỹ )0 = 0.

For the remainder term we get

∥Γ2(Y, Y
′)− Γ2(Ỹ , Ỹ

′)∥C2α
2

≤ ∥X∥C2α
2
∥Y − Ỹ ∥L∞

T
+ CTα(∥X∥Cα∥RY −RỸ ∥C2α

2
+ ∥X∥C2α

2
∥Y ′ − Ỹ ′∥Cα),

(1.25)

where the constant C is by the Sewing Lemma (1.4). We also have

∥Y − Ỹ ∥L∞
T

≤ Tα∥Y − Ỹ ∥Cα

(1.23)

≤ T 2α∥Y ′ − Ỹ ′∥Cα∥X∥Cα + T 2α∥RY −RỸ ∥C2α
2
. (1.26)

By gathering the inequalities (1.23), (1.25) and (1.26), we obtain

|||Γ(Y, Y ′)− Γ(Ỹ , Ỹ ′)||| ≤ C(∥X∥Cα∥X∥C2α
2
)Tα|||(Y, Y ′)− (Ỹ , Ỹ ′)||| (1.27)

We can make C(∥X∥Cα , ∥X∥C2α
2
)Tα ≤ 1

2 by choosing T ≪ 1. From (1.22) and (1.27) we

conclude that Γ is a contraction on BR, so a (local) solution exists by Banach’s fixed point

theorem.
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1. Lecture 14

In this lecture, we start with some general background on the Rough path theory:

• Rough path theory was originally introduced in terms of V p = functions of bounded

p-variations. Moreover, we notice the following facts regarding to the V p-space.

– Cα ⊂ V 1/α, for any 0 < α < 1.

– If a function f ∈ V p
c , then ∃ reparametrization τ such that f ◦ τ ∈ C1/p.

• The rough differential equation (RDE), RPDE:

Given an SDE (or SPDE) with a noise X which is rough in time (Cα, α ≤ 1/2, V p

for p ≥ 2), we lift the noise X to a rough path (X,X) and study the original equation,

where an integral is interpreted as a rough integral.

In the dispersive PDEs, we introduce the paracontrolled distributations [3]. We consider

dY = Y dX,

then the paracontrolled ansatz:

Y = Y ′ < X +R. (1.1)

Here, X ∈ Cα for α ≤ 1/2, Y ′ ∈ Cα denote as the “Gubinelli derivative”, and the remainder

term R ∈ C2α. Moreover, the symbel < denotes as paraproduce, we see the following for the

precise definition.

Paraproduct decomposition [1]:

Let Pj be the Littlewood-Paley projection operators, and we can have the decomposition:

fg = f < g + f = g + f > g

=
∑

j<k−2

Pj(f)Pk(g) +
∑

|j−k|≤2

Pj(f)Pk(g) +
∑

k<j−2

Pj(f)Pk(g)

• f < g = paraproduct of g by f . The function f is in the low-frequency and g is in the

high-frequency, i.e.

frequency of g � frequency of f.

We notice that let f ∈ Cα1 and g ∈ Cα2 , then f < g is always well defined object.

Moreover, the regularity f < g ∼ min{α2, α1 + α2}.
• f = g = resonant product. It is well defined if α1 + α2 > 0. If f = g is well defined,

then the regularity f = g ∼ α1 + α2.
1



2 G. LI

Let us come back to the paracontrolled ansatz (1.1):

Y = Y ′ < X +R

=: Z +R.
(1.2)

We have the following computation by using paraproduct decomposition.

∂tY = Y ∂tX = Y < ∂tX + Y = ∂tX + Y > ∂tX.

Here, α1 = 1/2+ and α2 = −1/2−. Therefore, Y ∂tX ∼ (1/2+) + (−1/2−) < 0, Y < ∂tX ∼
−1/2−, Y = ∂tX is NOT well defined, and Y > ∂tX ∼ 0−. Next, by using (1.2), we have

∂tZ = (Z +R) < ∂tX, (1.3)

which implies that Z ∼ 1/2−, as ∂tX ∼ −1/2−. For the remainder term,

∂tR = (Z +R) > ∂tX + Z = ∂tX +R = ∂tX, (1.4)

where (Z + R) > ∂tX ∼ 0−. By ingoring the resonaut products, we would expect R ∼ 1−.

This implies that R = ∂tX ∼ (1−) + (−1/2−) > 0 is well defined. Moreover, we notice that

from (1.3) and (1.4) that

∂tY = (Z +R) < ∂tX + ∂tR.

Now, we see from (1.4) that the issue term is Z = ∂tX ∼ (1/2−) + (−1/2−) < 0. We use the

structure of Z,

Z(t) = Z0 +

∫ t

0
(Z +R) < ∂tX(t′)dt′,

where Z0 is constant. Therefore, Z0 = ∂tX is well defined. Next, we consider the second term,

and we obtain(∫ t

0
(Z +R) < ∂tX(t′)dt′

)
= ∂tX =

[
(Z +R) < δXt0

]
= ∂tX + Com1 = ∂tX, (1.5)

where ∂tX + Com1 = ∂tX ∼ (1/2 + 2ε) + (−1/2− ε) > 0, and which is a good and well defined.

We continuite from RHS of (1.5) such that

RHS = (Z +R) < (δXt0
= ∂tX) + Com1 = ∂tX + Com2.

Here, we view δXt0
= ∂tX as a part of given data, and Com2 = [<, =](Z +R, δXt0 , ∂tX).

Now, all the terms of (1.3) and (1.4) make sense. Therefore, we can solve the system for Z

and R by a standard contraction argument1. Finally, we summarise (i) paracontrolled and (ii)

controlled path.

• paracontrolled:

X
?→ (∂tX, δXt0

= ∂tX)X
??→ (Z,R)

→ Y = Z +R

• controlled path:

X
?→ (X,X)

??→ (Y ′, R)
(

or (Y, Y ′)
)

→ Y

1Strictly speaking, we need to multiply by a smooth cut-off function (in time) to prove LWP.
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– Here, ? is denoted as the process such that stochastic analysis to lift X to an

enhanced data set/rough path.

– The second arrow, ?? is that deterministic analysis, and we notice there is NOT

probability.

1.1. Pathwise local well-posedness of SNLS with multiplicative noise on Td. We

study the Cauchy problem of the following SNLS with multiplicative noise on Td:
{
i∂tu = ∆u+N (u) + uΦξ on Td

u|t=0 = u0,
(1.6)

where u is linear in u, but it is nonlinear in noise, N (u) = |u|p−1u for p ∈ 2N+ 1, and ξ is the

space-time white noise. The interaction representation is defined such that,

v(t) := S(−t)u(t) = eit∆u(t).

For simplicity, let the nonlinearity N (u) = 0, we have

v(t) = u0 − i
∫ t

0
S(−t′)

(
S(t′)v(t′)Φdξ(t′)

)

= u0 − i
∫ t

0
S(−t′)

(
S(t′)v(t′)dXt′

)

We set Yt = v(t) and write

Yt = Yr − i
∫ t

r
S−t′dXt′St′Yt′ .

We observe that S−t′ and St′ make things harder in a sense that we need to lose spatial

regularity to compute Cαt -norms (i.e. Dα
t e

it|n|2 ∼ |n|2αeit|n|2).

We then split into two cases: the Young case and the Rough case.

Young case:

Let X ∈ Cαt Hs with α > 1/2 and Φ ∈ HS(L2;Hs). Then, we have

∫ t

r
S−t′dXt′St′Yt′ =

∫ t

r
S−t′dXt′St′Yr − i

∫ t

r
S−t′dXt′St′

∫ t′

r
S−t′′dXt′′St′′Yt′′

=: I + II

From the RHS we have,

δI = −δ
(∫ t

r
S−t′dXt′St′Yr

)
= X1

t1t2δYt2t3 = X1δY,

where we defined the operator X1
tr :=

∫ t
r S−t′dXt′St′ .

We now make the following claim:

Claim 1.1. If X1 maps Hs to Hs with ‖X1
tr‖L(Hs;Hs) . |t− r|α (this is denote the class by

Cα2 L(Hs;Hs)), then we have

δI = X1δY ∈ C2α
3 ⇐= |t1 − t2|α|t2 − t3|α,

where 2α > 1.
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Next, by the sewing lemma, we obtain
∫ t

r
S−t′dXt′S−t′Yt′ = (Id− Λδ)X1Y,

where X1 is the operator.

Now, the question left is: How to verify claim 1.1?

First of all, by taking the Fourier transform we obtain,

X̂1
trf(n) =

∑

n=n1+n2

∫ t

r
e−it

′(|n1|2−|n2|2)φ(n1)dβHn1
(t′)f̂(n2)

=
∑

n=n1+n2

∫ t

r
e−it

′(|n1|2−|n2|2)dXf̂(n2),

where we denote φ(n1)dβHn1
(t′) = dX, when X is a fractional brownian motion in time with a

Hurst parameter H > 1/2, which is slightly smoother in time than a brownian motion. Next,

let us assume Φ̂f(n) = φ(n)f̂(n) and Φ ∈ HS(L2;Hs) with s > d/2 (i.e., algebric property

hold). Then, the main tool is the random matrix/tensor extimate from Deng-Nahmod-Yue

[2] and [6]. Then, we can deduce X1 ∈ Cα2 L(Hs;Hs) with α > 1/2 (α = H−). Finally, we

perform a contraction argument as in Lecture 13, and we can conclude the Young case.

Rough case:

In the rough case, we take X = ΦW , where W is the L2-cylindrical Wiener process, and

Φ ∈ HS(L2;Hs) with s > d/2. Then, we have

Yt = Yr − i
∫ t

r
S−t′dXt′St′(D

−εYt′), (1.7)

where the operator X1
tr =

∫ t
r S−t′dXt′St′ . From controlled rough path,

δYtr = X1
trY
′
r +RYtr = −iX1

trD
−εYr +RYtr. (1.8)

By using (1.8) into (1.7), we get

i

∫ t

r
S−t′dXt′St′D

−εYt′ =

∫ t

r
S−t′dXt′St′D

−εYr − i
∫ t

r
S−t1dXt1St1X

1
t′rD

−2εYr +X1
trR·r

= X1
trD

−εYr − iX2
trD

−2εYr +X1
trR·r,

where we remark that (X1,X2) is an operator-valved rough path adapted to the Schrödinger

flow, satisfying

X2
t1t3 − X2

t1t2 − X2
t2t3 = Xt1t2 ◦ Xt2t3 . (1.9)

We then apply the controlled rough path, we have

δX1
trR·r = −δ(X1

trD
−εY ) + iδ(X2D−2εY ).

By using (1.8), the first term on the RHS:

−δ(X1
trD

−εY )t1t2t3 = X1
t1t2δD

−εYt2t3
= −iX1

t1t2 ◦X1
t2t3D

−2εYt3 +X1
t1t2D

−εRt2t3 .
(1.10)

By using (1.9) on the second term of RHS:
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iδ(X2D−2εY ) = iX2
t1t3D

−2εYt3 − iX2
t1t2D

−2εYt2 − iX2
t2t3D

−2εYt3

= −iX2
t1t2δD

−2εYt2t3 + iX1
t1t2 ◦X1

t2t3D
−2εYt3 .

(1.11)

We observe that from (1.10) and (1.11) that X1
t1t2 ◦X1

t2t3D
−2εYt3 get cancellation. Moreover,

2α+ α = 3α > 1 of α > 1/3. Therefore, we apply the sewing lemma such that
∫ t

r
S−t′dXt′St′Yt′ = (Id− Λδ)(X1Y − iX2Y )

For this computation, we need

X1 ∈ Cα2 L(H2;Hs−ε), X2 ∈ Cα2 L(H2;Hs−2ε).

The computation fails when ε = 0.

We, therefore, have the following theorem.

Theorem 1.2 (Oh-Zheng ’22 [7]). Let ε ≥ 0, Φ ∈ (L2;Hs) for s > d/2. Then, the SNLS

(1.6) is LWP in Hs(Td). In particular, (i) When W is Brownian in time, the LWP holds for

D−εudW instead of udW ; (ii) when W is fractional BM in time with Hurst index H > 1/2.

Then, the LWP holds without D−ε.

Remark 1.3. When ε = 0, this argument fails, and we need another idea. For the heat case,

see Gubinelli-Tindel [4], and also Hairer-Pardoux [5] for the regularity structure approach.
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