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...
2013, Our first collaboration (together with Zihua Guo (IAS))
when Yuzhao was in China and I was in Princeton

Over the last 9 years, we have written 15 joint papers and more ongoing works

Since 2016, Yuzhao contributed greatly in teaching my Ph.D. students & postdocs

11 Ph.D. students

4 postdocs: Tristan Robert (Nancy, France), Guangqu Zheng (Liverpool from Sep. 2022), ...

Together with Oana Pocovnicu (Heriot-Watt), we formed an internationally visible
group in the UK, working on dispersive PDEs with strong interest in stochastics
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Our collaboration since 2013 -

Nonlinear dispersive PDEs on Rd, Td = (R/Z)d, or M

Nonlinear Schrödinger equation (NLS): i∂tu = ∆u∓ |u|p−1u

Nonlinear wave equation (NLW): ∂2
t u = ∆u∓ uk

generalized KdV equation (gKdV): ∂tu = ∂3
xu∓ ∂x(uk)

Our main interests
Well-posedness (existence, uniqueness, and stability under perturbation of solutions)

linear estimates (Strichartz estimates) ’13

nonlinear mechanism
high-to-low energy transfer: ill-posedness (norm inflation) ’17, ’22
short-time Fourier restriction norm method ’17
normal form reduction ’17, ’18

special structure: complete integrability ’18, positivity / sign-definite structure ’21

stochastic perturbation: random data Cauchy theory, stochastic PDEs ’17, . . .

math physics: Euclidean QFT, stochastic quantization, Liouville quantum gravity

Out of our 15 joint papers, I gave talks only on a few papers....
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1. Strichartz estimates on irrational tori

Strichartz estimates on Rd: 2
q

+ d
r

= d
2

with 2 ≤ q, r ≤ ∞ and (q, r, d) 6= (2,∞, 2)

(Str1) ‖e−it∆f‖LqtLrx(R×Rd) . ‖f‖L2(Rd)

Strichartz ’77 (q = r), Yajima ’87, Ginibre-Velo ’92, Keel-Tao ’98 (endpoint)

Non-endpoint case follows from a TT ∗ argument, the dispersive estimate:

‖e−it∆f‖L∞(Rd) . |t|−
d
2 ‖f‖L1(Rd),

and the Hardy-Littlewood-Sobolev inequality (in time)

By interpolating (Str1) (with q = r =
2(d+2)
d

) and the trivial L∞t,x-L2
x bound by

Bernstein’s inequality, we obtain the following scaling-invariant inequality on Rd:

‖e−it∆P≤Nf‖Lpt,x(R×Rd) . N
d
2−

d+2
p ‖P≤Nf‖L2(Rd)(Str2)

for 2(d+2)
d
≤ p ≤ ∞

Q: Do (Str1) and (Str2) hold on the square torus Td = (R/Z)d?
On an irrational torus Tdααα =

∏d
j=1R/(αjZ)? αj > 0, rationally independent

must be local in time due to (quasi-/almost) periodicity of a linear solution
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‖e−it∆P≤Nf‖Lpt,x([0,1]×M)

?
. N

d
2−

d+2
p ‖P≤Nf‖L2(M)(Str2)

Q: Do (Str1) and (Str2) hold on the square torus M = Td?
On an irrational torus M = Tdααα =

∏d
j=1R/(αjZ)? αj > 0, rationally independent

Very challenging due to the lack of the dispersive estimate
=⇒ No hope to prove (Str1) with general admissible (q, r) on Td in general

Zygmund ’74: d = 1 and q = r = 4

Kenig-Ponce-Vega ’91: local smoothing estimate on T for a very short time ∼ N−1

Bourgain ’93 made the first substantial progress on the square torus Td

proved (Str2) for d = 1, 2 except for the endpoint p = 2(d+2)
d

disproved (Str2) at the endpoint (2-d case: Takaoka-Tzvetkov ’01)

⇐= ε-loss is necessary at the endpoint

partial range for d ≥ 3: (i) p > 4 when d = 3 and (ii) p > 2(d+4)
d

when d ≥ 4

yielded the first low regularity well-posedness of NLS on Td

⇐= remained open until Bourgain-Demeter ’15 (also ε-removal by Killip-Vişan ’16)
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Bourgain ’93: Strichartz estimates on the square torus Td

number-theoretic tools: divisor counting estimate, Hardy-Littlewood circle method

non-trivial for PDE people, especially the HL circle method part

d = 1 and p = 6: The counter example to the L6-Strichartz estimate on T:∥∥∥∥ ∑
|n|≤N

ei(nx+n2t)

∥∥∥∥
L6([0,1]×T)

& (logN)
1
6 N

1
2︸︷︷︸

∼‖1|n|≤N‖`2n

also follows from the HL circle method (Diophantine approximation, Weyl sum, Gauss sum)
⇐= Bourgain just refer to the book by Vinogradov ’54...

In 2011, E. Stein and L. Pierce gave a two-week summer course on the basic HL circle
method, which allowed me to at least understand Bourgain’s counter example (see a note

on my website) but not the entire paper...

Burq-Gérard-Tzvetkov ’02-: many papers on Strichartz estimates on compact manifolds
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Bourgain ’07 studied Strichartz estimates on an irrational torus (d = 3)

Tdααα =
∏d
j=1R/(αjZ), αj > 0, rationally independent

proved (Str2) for (d, p) = (3, 4) with 1
12

-derivative loss
- based on Hausdorff-Young’s inequality and the lattice counting estimate by Jarnı́k ’26
- “unquestionably deserve to be studied more”

Catoire-W.-M. Wang ’10: proved (Str2) for (d, p) = (2, 4) with 1
6

-derivative loss

Bourgain ’13: proved (Str2) with ε-loss for p ≤ 2(d+1)
d

(< 2(d+2)
d

)
- based on the induction on scales (Bourgain-Guth ’11) and the multilinear restriction

theorem (Bennett-Carbery-Tao ’06)

Theorem 1: Guo-Oh-Wang, Proc. Lond. Math. Soc. ’14

The scaling invariant Strichartz estimate (Str2) hold on Tdααα for a wider range of p
(and also new Strichartz estimates with ε-loss)

In 2012, Yuzhao wrote a note for the higher-dimensional case

Thanks to this work, we finally(!) worked out all the details of the Bourgain ’93 paper

Theorem 1 yielded new local well-posedness results for NLS on Tdααα in (sub-)critical
spaces (including the energy-critical NLS on a partially irrational torus T3

ααα)
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Ideas of the proof:
higher-dimensional case: Hausdorff-Young’s inequality (as in Bourgain ’07) and
the Hardy-Littlewood circle method: for r = dp

4
> 4ˆ

I

∣∣∣ ∑
0≤n≤N

e2πin
2t
∣∣∣r dt ∼ Nr−2

When r = dp
4

= 4, the above bound comes with (logN)2 (Hua ’38) =⇒ ε-loss
d = 2: repeat the argument in Bourgain ’93 & bound the following term

K(x, t) = χ(t)
∑

n=(n1,n2)∈Z2

σn1 · 1|n2|≤N · e
i(n·x+(n2

1+θn2
2)t)

in n1: by a Weyl sum type argument (Bourgain ’93)
in n2: bound by N (very crude!!)

Subsequent developments:
Demeter ’14: unpublished note (incidence theory and multilinear restriction)
Bourgain-Demeter ’15: resolution of the `2-decoupling conjecture
=⇒ full range of the Strichartz estimates on Tdααα (with ε-loss): p ≥ 2(d+2)

d

Killip-Vişan’16: ε-removal in the non-endpoint case p > 2(d+2)
d

(need number theory!!)

Q: Periodic Strichartz estimates for KdV on T? Bourgain ’93: q = r = 6 with ε-loss

q = r = 6 without ε-loss?
q = r = 8 with ε-loss? q = r = 10 with ε-loss: Hughes-Wooley ’21
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2. Ill-posedness: norm inflation

Well-posedness: existence, uniqueness, and stability under perturbation

Ill-posedness: one of the criteria above fails

Scaling heuristics: We “expect” ill-posedness for s < sscaling
(sometimes even above sscaling)

Norm inflation (Christ-Colliander-Tao ’03): given ε > 0, there exist a (smooth)
solution uε and tε ∈ (0, ε) such that

‖uε(0)‖Hs < ε but ‖uε(tε)‖Hs > ε−1

implies discontinuity of the solution map: Hs → C([0, T ];Hs) at u0 = 0

Kappeler ’15 asked me if I could prove norm inflation for the 1-d cubic NLS on T

sscaling = − 1
2

Christ-Colliander-Tao ’03: norm inflation on R for s � − 1
2

Carles-Kappeler ’17: norm inflation on T for s < − 2
3

(also in the Fourier-Lebesgue spaces)

I asked Kishimoto and he gave a proof overnight (Fourier analytic approach)

10/34



Theorem 2: Oh-Wang, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. ’18

Let s ≤ scritical = − 1
2 . Then, norm inflation holds in Hs(T) for the cubic NLS on T

also for the fractional NLS (Choffrut-Pocovnicu ’18: even above sscaling)

s < 0: need to exhibit high-to-low energy transfer

Christ-Colliander-Tao ’03: ODE approach
use an explicit solution of the dispersionless problem on R (which exhibits
high-to-low energy transfer) and a scaling argument, but this argument is not so
robust, leaving a gap (i) s = − 1

2
when d = 1 and (ii) − d

2
< s < 0 when d ≥ 2

A similar argument (with low-to-high energy transfer) works for s > 0:
CCT ’03, Burq-Gérard-Tzvetkov ’05

Iwabuchi-Ogawa ’15, Kishimoto ’19: Fourier analytic approach, much more robust

Oh ’17: norm inflation at generic initial data

In Theorem 2, we adapted the ODE approach

subcritical case (s < − 1
2

):
scaling argument =⇒ work on a dilated torus TL = R/LZ (with L→∞)

critical case (s = − 1
2

):
directly establish robust high-to-low energy transfer for the dispersionless model
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Cubic nonlinear heat equation (NLH) on M = Rd or Td:

∂tu−∆u± u3

canonical equation in both deterministic and stochastic analysis

Local well-posedness in Cs(M) = Bs∞,∞(M) for s > − 2
3

Theorem 3: Chevyrev-Oh-Wang ’22

Let s ≤ − 2
3 and σ ∈ R. Then, norm inflation with infinite loss of regularity holds for

the cubic NLH in Cs. Namely, given ε > 0, there exist a solution uε and tε ∈ (0, ε)

such that
‖uε(0)‖Cs < ε but ‖uε(tε)‖Cσ > ε−1

sscaling = −1 =⇒ norm inflation above the scaling critical regularity

sharp in the regularity s ∈ R since NLS is well-posed for s > − 2
3

Fourier analytic approach as in Oh ’17 with initial data supported on a single mode

s = − 2
3

: Combine norm inflation mechanisms at lacunary scales (∼ 22kN )

norm inflation also holds in B
− 2

3
∞,q for 3 < q ≤ ∞ ⇐= sharp in terms of q
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3. Normal form approach

Poincaré-Dulac Theorem: Consider a differential equation

∂tx = Ax+ F (x) = Ax+

∞∑
j=a

fj(x), x = (x1, x2, . . . , xN ),

where fj(x) denotes nonlinear terms of degree j in x

Under some assumption, we can introduce a sequence of changes of variables:

z1 = x+ y1,

z2 = z1 + y2 = x+ y1 + y2,

...

z = z∞ = x+
∞∑
j=1

yj ,

to reduce the system to the canonical form:

∂tz = Az +G(z) = Az +

∞∑
j=a

gj(z)
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Canonical form:

∂tz = Az +G(z) = Az +
∞∑
j=a

gj(z)

where gj(z) = resonant monomials of degree j in z

After the J th step,

∂tzJ = AzJ +GJ(zJ),

where monomials of degree up to J(a− 1) + a− 2 in GJ(zJ) are all resonant

Interaction representation: x̃(t) = e−tAx(t), etc.

∂tx = Ax+ F (x) =⇒ ∂tx̃ = e−tAF (etAx̃)

Also, the resulting canonical equations become∂tz̃J = e−tAGJ(etAz̃J), after the J th step

∂tz̃ = e−tAG(etAz̃), J =∞
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After integrating in time, we obtain
z̃J (t) = z̃J (0) +

ˆ t
0
e−t
′AGJ (e

t′Az̃J (t
′))dt′, after the J th step

z̃(t) = z̃(0) +

ˆ t
0
e−t
′AG(et

′Az̃(t′))dt′, J =∞

The main goal point of the classical Poincaré-Dulac normal form reductions is to
renormalize the flow so that it is expressed in terms of resonant terms. We, however,
introduce the following change of viewpoint to study dispersive PDEs

Generalized Duhamel formulation:

After the J th step:

x̃(t) = x̃(0)−
J∑
j=1

[
ỹj(t)− ỹj(0)

]
+

ˆ t

0

e−t
′AGJ(et

′Az̃J(t′))dt′

With J =∞:

x̃(t) = x̃(0)−
∞∑
j=1

[
ỹj(t)− ỹj(0)

]
+

ˆ t

0

e−t
′AG(et

′Az̃(t′))dt′

Original Duhamel formulation: x̃(t) = x̃(0) +

ˆ t
0
e−t
′AF (et

′Ax̃(t′))dt′
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This change of viewpoint turned out to be useful in various settings:

Unconditional uniqueness for dispersive PDEs in low regularities
uniqueness in the entire C([0, T ];Hs)

construction of solutions without any auxiliary functions spaces
such as Strichartz spaces or the Xs,b-spaces
precursor (two iterations & no mention of NF): Babin-Ilyin-Titi ’11, Kwon-Oh ’12

infinite iterations: Guo-Kwon-Oh ’13 , Oh-Wang ’21, Kishimoto ’21, etc.

Nonlinear smoothing =⇒ upper bound on the growth of high Sobolev norms

two iterations: Erdogăn-Tzirakis ’13

Improved energy estimates for proving uniqueness, quasi-invariance, etc.
NF reductions applied to the evolution equation for an energy
uniqueness: Oh-Wang ’18
quasi-invariance: Oh-Tzvetkov ’17, O.-Sosoe-Tz. ’18, Oh-Seong ’21
adding correction terms to the I-method: CKSTT ’02 (NF view point: Guo-Oh ’18)

Reducibility to the linear equation
weak form of integrability
Chung-Guo-Kwon-Oh ’17: quadratic derivative NLS on T
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Renormalized cubic NLS on T: i∂tu = ∂2
xu+

(
|u|2 − 2

ffl
|u|2
)
u

Fourier-Lebesgue space FLp(T) = {f on T : f̂(n) ∈ `pn}

sensible weak solution: u0,n → u0 implies (i) un → u and (ii)N (un) converges to some

limit in D′t,x (independent of the approximating sequence {u0,n})

Theorem 4: Oh-Wang, J. Anal. Math. ’21

Let 1 ≤ p <∞. Then, the renormalized cubic NLS (rNLS) on T is globally
well-posed in FLp(T) in the sense of sensible weak solutions
When 1 ≤ p ≤ 3

2 , unconditional uniqueness holds (even without the renormalization)

The condition p ≤ 3
2

is necessary in making sense of |u|2u, i.e. u ∈ FL
3
2 (T) ⊂ L3(T)

construction by an infinite iteration of NF reductions

Guo-Kwon-Oh ’13: construction in L2(T) and UU in H
1
6 (T)

p =∞ is scaling-critical =⇒ Theorem 4 is almost optimal

Note: FL∞(T) does not admit approximation by smooth functions and thus is not
suitable for studying well-posedness
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General setup:
1 Separate the nonlinear part into nearly resonant and non-resonant parts
2 “Eliminate” the non-resonant part =⇒ introduces higher order terms
3 Repeat (or terminate the process at some finite step)

“Eliminate”: by integration by parts

Cubic NLS on T: Interaction representation v(t) = S(−t)u(t):

∂tv̂n = −i
∑

n=n1−n2+n3

e−iφ(n̄)tv̂n1 v̂n2 v̂n3 =: −iN (1)(v)n,

where φ(n̄) := n2 − n2
1 + n2

2 − n2
3 = 2(n2 − n1)(n2 − n3)

Given a parameter K = K(‖u(0)‖L2) > 0, write

N (1)(v) = N (1)
res (v)︸ ︷︷ ︸

nearly resonant

+N (1)
nr (v)︸ ︷︷ ︸

non-resonant

, depending on |φ(n̄)| ≤ K or > K

Nearly resonant partN (1)
res (v) satisfies a good FLp-estimate

No estimate is available for the (highly) non-resonant partN (1)
nr (v)

=⇒ Apply a NF reduction toN (1)
nr (v)

18/34



General setup:
1 Separate the nonlinear part into nearly resonant and non-resonant parts
2 “Eliminate” the non-resonant part =⇒ introduces higher order terms
3 Repeat (or terminate the process at some finite step)

“Eliminate”: by integration by parts

Cubic NLS on T: Interaction representation v(t) = S(−t)u(t):

∂tv̂n = −i
∑

n=n1−n2+n3

e−iφ(n̄)tv̂n1 v̂n2 v̂n3 =: −iN (1)(v)n,

where φ(n̄) := n2 − n2
1 + n2

2 − n2
3 = 2(n2 − n1)(n2 − n3)

Given a parameter K = K(‖u(0)‖L2) > 0, write

N (1)(v) = N (1)
res (v)︸ ︷︷ ︸

nearly resonant

+N (1)
nr (v)︸ ︷︷ ︸

non-resonant

, depending on |φ(n̄)| ≤ K or > K

Nearly resonant partN (1)
res (v) satisfies a good FLp-estimate

No estimate is available for the (highly) non-resonant partN (1)
nr (v)

=⇒ Apply a NF reduction toN (1)
nr (v)

18/34



1st step of NF reductions (= differentiation by parts)

N (1)
nr (v)n =

∑
n=n1−n2+n3
|φ(n̄)|>K

eiφ(n̄)tv̂n1 v̂n2 v̂n3

= ∂t

[∑
∗

eiφ(n̄)t

φ(n̄)
v̂n1 v̂n2 v̂n3

]

−
∑
∗

eiφ(n̄)t

φ(n̄)
∂t
(
v̂n1 v̂n2 v̂n3

)
=: ∂tN (2)

bd (v)n︸ ︷︷ ︸
easy

+N (2)(v)n︸ ︷︷ ︸
quintic

Divide the quintic term N (2)(v) into

(i) nearly resonant part N (2)
res (v): bounded in FLp

⇐= modulation restriction + divisor counting argument

(ii) non-resonant part N (2)
nr (v): no estimate available

=⇒ 2nd step of NF reductions
Repeat the process indefinitely
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Difficulty:
When we apply differentiation by parts, the time derivative may fall on any of
the factors v̂nj . In general, the structure of such terms can be very complicated,
depending on where the time derivative falls

We use ordered trees for indexing such terms arising in the general steps of the NF
reductions

ordered trees = (ternary) trees “with memory”

⇐= The order in which time derivative fall matters!!

Example: ∂t( ) = + + =⇒

∂t( ) = + + + +

∂t( ) = + + + +

∂t( ) = · · ·

As ordered trees, and are different!!

Indexing via ordered trees allows us to handle combinatorial complexity
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After the JJJth step:

∂tv(t) = ∂t

( J+1∑
j=2

N (j)
bd (v)

)
+

J+1∑
j=1

N (j)
res (v) +N (J+1)

nr (v)︸ ︷︷ ︸
bad

In order to justify the formal computations, we consider frequency truncated initial data
P≤Nu(0) and the associated smooth solutions

In general, we only have∣∣N (J+1)
nr

∣∣ ≤ F (N, J) with lim
N→∞

F (N, J) =∞ for each fixed J ∈ N

This, however, does not cause an issue since we also show

lim
J→∞

F (N, J) = 0

for each fixed N ∈ N. Therefore, by first taking the limit J →∞J →∞J →∞ and thenN →∞N →∞N →∞,
we conclude that the error termN (J+1)

nr vanishes in the limit

Putting all together, we obtain the normal form equation:

v(t) = v(0) +

∞∑
j=2

N (j)
bd (v)

∣∣∣∣t
0

+

ˆ t

0

∞∑
j=1

N (j)
res (v)(t′)dt′

⇐= N (j)
bd (v) of deg 2j − 1, N (j)

res (v) of deg 2j + 1: both bounded in FLp
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Application on energy estimates

Integration by parts is often useful in establishing a good energy estimate.

⇐⇒ NF reduction on the evolution equation ∂tE(v) = · · · satisfied by the
(non-conserved) energy functional E(v)

Renormalized 4NLS on T: i∂tu = ∂4
xu+

(
|u|2 − 2

ffl
|u|2
)
u

Theorem 5: Oh-Wang, Forum Math. Sigma ’18

Let s > − 1
3 . Then, the renormalized 4NLS is globally well-posed in Hs(T)

Existence part: short-time Fourier restriction norm method

Uniqueness part: infinite iteration of NF reductions on the Hs-energy functionals (of the

difference of solutions with the same initial condition) and obtained an modified energy
of an infinite order

For bookkeeping, we use “ordered bi-trees” that grow in two directions
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After an infinite iteration of NF reductions:

‖u(t)‖2Hs − ‖u(0)‖
2
Hs =

∞∑
j=2

∑
n∈Z
〈n〉2sN (j)

bd (u)(n, t′)

∣∣∣∣t
0

+

ˆ t
0

∞∑
j=1

∑
n∈Z
〈n〉2sN (j)

res (u)(n, t′)dt′

Then, by defining a modified energy E∞(u) of an infinite order by

E∞(u) = ‖u‖2Hs −
∞∑
j=2

∑
n∈Z

〈n〉2sN (j)
bd (u)(n),

we obtain

E∞(u)(t)− E∞(u)(0) =

ˆ t

0

∞∑
j=1

∑
n∈Z

〈n〉2sN (j)
res (u)(n, t′)dt′,

where RHS satisfies good estimates

Moral: This infinite iteration of NF reductions allows us to exchange analytical
difficulty with algebraic/combinatorial difficulty

relevant analysis involves simple Cauchy-Schwarz inequality
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4. Complete integrability

Q: What is integrability?
Solvability via integration by quadratures (i.e. in an explicit manner)

Finite dimensional Hamiltonian dynamics on R2N :
dp
dt = ∂H

∂q ,
dq
dt = −∂H∂p

There exist H1(= H), H2, . . . , HN all in involution: {Hj , Hk} = 0

=⇒ (Liouville) The system is integrable

Action-angle variables (Liouville-Arnold):

(p, q)
symplect.7→ (I, ϕ) such that dIdt = 0, dϕdt = c(I)

Infinite dimensional case (= PDEs): various notions of integrability
infinitely many conservation laws (⇐= bi-Hamiltonian structure)
Lax pair formulation
Action-angle coordinates

...
Reducibility (to the linear equation)
Note: No Hamiltonian structure required
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1-ddd cubic NLS on M = R or T: i∂tu = ∂2
xu∓ 2|u|2u

completely integrable: Lax pair formulation

d

dt
L(t;κ) =

[
P (t, κ), L(t;κ)

]
, where L(t;κ) =

(
−∂x + κ iu
∓iu −∂x − κ

)
Killip-Vişan-Zhang ’18 studied the following perturbation determinant α(κ;u):

α(κ;u) = Re
∞∑
j=1

(∓1)j−1

j
tr
{[

(κ− ∂x)−
1
2 u(κ+ ∂x)

−1u(κ− ∂x)−
1
2
]j}

α(κ;u) is conserved under NLS

leading order term =
´
R

2κ|û(ξ)|2
4κ2+ξ2

dξ on R

sum of α(κ;u) over dyadic κ ≥ κ0︸ ︷︷ ︸
∼ scaling symmetry of NLS

∼Hs-norm for s > sscaling = − 1
2

=⇒ a priori global-in-time Hs-norm bound for s > sscaling = − 1
2
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Modulation space M2,p(R) =
{
f on R : F−1

x

(
1(− 1

2 ,
1
2 ] · f̂(· − n)

)
∈ `pnL2

x

}
On T, M2,p(T) = FLp(T)

compatible with the Galilean symmetry of NLS (i.e. translations on the freq. space)

Theorem 6: Oh-Wang, J. Differential Equations ’20

Let 2 ≤ p <∞. Then, the (renormalized) cubic NLS on M = R or T is globally
well-posed in M2,p(M)

almost critical spaces (critical p =∞)
local well-posedness: S. Guo ’17 on R, Grünrock-Herr ’08 on T
We used both scaling and Galilean symmetries of NLS to sum up α(κ;u)

Q: Can we establish a priori global-in-time bound on the FLp(R)-norm, p <∞?
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Complex-valued modified KdV (mKdV): ∂tu+ ∂3
xu± 6|u|2∂xu = 0

The same a priori global-in-time bound on the M2,p-norm holds for mKdV on
M = R and T (Oh-Wang ’20)

Theorem 7: Oh-Wang, Discrete Contin. Dyn. Syst. A ’21

Let s ≥ 1
4 and 2 ≤ p <∞. Then, mKdV is globally well-posed in M2,p

s (R)

s < 1
4 : solution map is not locally uniformly continuous (in the focusing case)

On T?: Kappeler-Molnar ’17 proved local well-posedness of the real-valued
defocusing mKdV in FLp(T), p <∞, in the sense of sensible weak solutions.
However, the local existence time is not characterized by the size of initial data...

Subsequent development:

Harrop-Griffiths, Killip, and Vişan ’20 proved global well-posedness (in the sense of
sensible weak solutions) of NLS and mKdV in Hs(R), s > − 1

2

Q: On T?

Non-existence for s < 0 without renormalization: Guo-Oh ’18
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5. Random data Cauchy theory & stochastic PDEs

Nonlinear wave equations (NLW):

∂2
t u = ∆u− uk−1

Nonlinear Schrödinger equations (NLS):

i∂tu = ∆u− |u|k−2u

Main interest: Study these equations with rough stochastic forcing and/or
random initial data

Well-posedness: existence, uniqueness, and stability under perturbation

Q1: How to make sense of the nonlinearity uk−1 as a distribution?

Impose a structure on the unknown function u

Q2: For rough initial data / noise, the map: data 7−→ u is ill defined

Decompose the classically ill-posed solution map into two steps:
1 Construction of an enhanced data set (as in rough path theory)
2 Deterministic continuous map from enhanced data set to u
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Stochastic quantization equation

Study an SPDE which preserves a target measure (Parisi-Wu ’81, Ryang-Saito-Shigemoto ’85)

- Parabolic Φkd-model: ∂tu = ∆u− uk−1 +
√

2ξ

- Hyperbolic Φkd-model: stochastic damped NLW on Td

∂2
t u+ ∂tu = ∆u− uk−1 +

√
2ξ

canonical stochastic quantization equation for the Φkd-measure
(= Hamiltonian SQE, given as a hypoelliptic Langevin equation)

- Dispersive Φkd-model: deterministic NLS on Td with Gibbsian initial data
(NLS + dissipation + ξ =⇒ SCGL (parabolic techniques apply))

Goal: Construct global-in-time dynamics and prove invariance of the Φkd-measure

parabolic Φkd-model � hyperbolic Φkd-model � dispersive Φkd-model

Main difficulty: local well-posedness
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d = 2d = 2d = 2:
parabolic Φk2-model: Da Prato-Debussche ’03

hyperbolic Φk2-model: Gubinelli-Koch-Oh ’18, Tolomeo ’21, GKOT ’21

dispersive Φk2-model: Bourgain ’96, Deng-Nahmod-Yue ’19

d = 3d = 3d = 3: only k = 4 is possible in the defocusing case

parabolic Φ4
3-model: Hairer ’14, etc.

hyperbolic Φ4
3-model: Bringmann-DNY ’22 (Oh-Wang-Zine ’22 with 〈∇〉−εξ)

dispersive Φ4
3-model: open (critical!!)

Oh-Okamoto-Tolomeo ’21: k = 3 (non-defocusing) for the parabolic and hyperbolic Φ3
3-model

Main difficulty when k = 3: measure (non)-construction

local well-posedness: paracontrolled approach (Gubinelli-Koch-Oh ’18)

Q: What about non-polynomial nonlinearities?
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Q: What about non-polynomial nonlinearities?
sine-Gordon, sin(βu):

d = 1, wave: McKean ’81
d = 2, parabolic, local in time: Hairer-Shen ’16, Chandra-Hairer-Shen ’18

exponential nonlinearity (Liouville model), eβu:

d = 2: Garban ’20

regularities of the stochastic terms depend sensitively on β2 > 0.

stochastic terms are “of infinite degree”

Theorem 8: Oh-Robert-Sosoe-Wang, ’21, ’21

Hyperbolic sine-Gordon model on T2, 0 < β2 < 2π

Parabolic sine-Gordon model on T2, 0 < β2 < 4π

Theorem 9: Oh-Robert-Wang, Comm. Math. Phys. ’21

Hyperbolic Liouville model on T2, 0 < β2 < 0.86π

Parabolic Liouville model on T2, 0 < β2 < 4π

Hoshino-Kawbi-Kusuoka ’21, ’22: parabolic Liouville model for 0 < β2 < 8π

Oh-Robert-Tzvetkov-Wang, ’20: Liouville quantum gravity model
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Cubic SNLW with almost space-time white noise on T3:

∂2
t u−∆u+ u3 = 〈∇〉−εξ, ε > 0(SNLWε)

Theorem 10: Oh-Wang-Zine, Stoch. Partial Differ. Equ. Anal. Comput. ’22

Let ε > 0. Then, SNLWε is locally well-posed.

Second order expansion: u = − + v without paracontrolled ansatz

= I(〈∇〉−εξ) ∼ ε− 1
2
− > − 1

2
=⇒ v ∼ 1

2
+

= I( ) ∼ ε− ⇐= gain from 1
2

-regularity by multilinear smoothing

Fixed point problem for v:

v = S(t)(u0, u1) + I
(
− v3 + 3( − )v2 − 3

2
v
)

+ 6I
(
( )v

)
− 3I (v) + I

( 3)
+ 3 − 3
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Fixed point problem for v:

v = S(t)(u0, u1) + I
(
− v3 + 3( − )v2 − 3

2
v
)

+ 6I
(
( )v

)
− 3I (v) + I

( 3)
+ 3 − 3

Multilinear smoothing of ( 1
2+)-regularity:

= I( ) and = I(
2

)

Random operator: I (v) = I( v) “ v ∼ −1−” but I (v) ∼ 1
2
+

random matrix estimates: Bourgain ’96, ’97, Richards ’16, Deng-Nahmod-Yue ’20

reduced analysis to that in Bringmann ’20 on the Hartree cubic nonlinearity

Factorization of the ill-posed solution map:

(u0, u1, 〈∇〉−εξ)
17−→
(
u0, u1, , , , , , I

)
27−→ v

7−→ u = − + v
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Thank you for all the help you provided to the group
members, and I hope that we can have fun talking about
math for many more years!!

(Unfortunately, Justin Forlano, Andreia Chapouto, Guangqu Zheng, and Oana Pocovnicu could not join this photo)
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