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1. Lecture 1

1.1. Chapter 0. Introduction. We begin by recalling a couple of examples of (deter-

ministic) dispersive PDEs.

1. Non-linear Schrödinger Equation.

i∂tu−∆u± |u|k−1u = 0 (NLS)

where k ∈ 2N + 1 and u is C-valued.

2. Non-linear Wave Equation.

∂2
t u−∆u± uk = 0 (NLW)

where u is R-valued.

Our goal is to understand how some given initial data is propogated under these non-linear

dynamics. To this end we may ask the following questions:

1. Is the PDE well-posed?

By this we mean whether a solution to the PDE exists, is unique and is stable under

perturbation. In the stochastic setting, one is mainly concerned with the first two

requirements because stability under perturbation does not hold in the classical

sense when the equation is driven by a rough noise.

1.1. Is the PDE locally well-posed?

By Local Well-Posedness (LWP), we mean that the PDE is well-posed for a

short time, where the time may depend on the initial data.

1.2. Is the PDE globally well-posed?

By Global Well-Posedness (GWP), we mean that a unique solution to the PDE

exists globally. Note that we aren’t concerned with the stability criterion here.

By a process of randomisation we are able to get stochastic dispersive PDEs from deter-

ministic ones. In the following list we collect some examples:

1. Stochastic Non-linear Schrödinger Equation.

i∂tu−∆u+ |u|k−1u = φξ (SNLS)

where ξ is a space-time white noise as in Definition 1.1 and φ is a bounded operator

on L2. In our case it will chosen so as to be a smoothing operator on the white

noise).

2. Stochastic Non-linear Wave Equation.

∂2
t u−∆u+ uk = ξ (SNLW)

3. Stochastic damped Non-linear Wave Equation.

∂2
t u+ ∂tu−∆u+ uk = ξ (SdNLW)

In terms of LWP, (SNLW) and (SdNLW) are solved in the same way. Dampness

helps when one is concerned with global in time behaviour.
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Definition 1.1 (space-time White Noise). A space-time white noise is a Gaussian random

distribution on R× Rd such that its covariance is given by the delta distribution.

Rigorously, the white noise is a random distribution and should be thought of always with

reference to the duality pairing 〈ξ, ϕ〉, where ϕ is a test function on R×Rd. However we will

formally deal with it as a random Gaussian function, ξ(t, x), of the space-time coordinates

(t, x) ∈ R× Rd and with the covariance structure:

Eξ(t1, x1)ξ(t2, x2) = δ(t1 − t2)δ(x1 − x2)

This means that the (random) behaviour at different points is independent and as such the

white noise is very rough. This is made definite in the notion of regularity. We postpone

the rigorous definitions for now, but suffice it to say that regularity is a measure of the

process’ differentiability. It is known that for the space-time white noise, the regularity in

x, is −d
2 − ε and in t it is given by −1

2 − ε, for ε > 0. This roughness of the noise makes

analysis of dispersive equations of this kind quite difficult. Nevertheless it is still a fruitful

endeavour because of (at least) the following reasons:

1. They are analytically challenging. Given the difficulty in proving the local well-

posedness of such equations with existing machinery, one can hope that the study

of such equations can catalyse new advances in theories of Analysis, PDEs and

Probability. Some notoriously difficult instances are:

– SNLS 1-d cubic (i.e. k = 3), Φ = Id. The local well-posedness of this equation

is open and understood to be critical.

– SNLW 3-d cubic. The local well-posedness of this equation is again open but

not considered critical. In fact there have been advances made in the past year.

2. SdNLW (SdNLW) formally preserves the Gibbs measure. It is important to under-

stand the long term behaviour of the solutions of S(P)DEs and it is often possible

to show that the dynamics converge to an invariant state. A related equation is

Stochastic Non-linear Heat Equation (reaction-diffusion equation):

∂tu−∆u+ uk = ξ (SNLH)

and it formally preserves the so-called Φk+1
d -measure (k refers to the degree of non-

linearity and d is the underlying spatial dimension):

dρ = z−1e
− 1
k+1

�
uk+1dx

e−
1
2

�
|∇u|2dxdu︸ ︷︷ ︸

Gaussian free field

where du refers to the non-existent lebesgue measure. Construction of such measures

was studied in the ’70s and ’80s. When d ∈ {1, 2}, measures for all k ∈ 2N+ 1 have

been constructed. Note that in the d = 2 case, we require renormalisation. For

d = 3, k = 3 is the only case that has been constructed: (Φ4
3-measure).

– Stochastic Quantisation. The idea behind this is to introduce a stochastic PDE

which preserves the measure (on a function space) to investigate it. When the

measure under consideration is Φk+1
d this is exactly the Stochastic Non-linear

Heat Equation (SNLH) we have already seen. Well-posedness for (SNLH)
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is easy for d = 1, but d = 2 requires renormalisation [1]. The concept of

renormalisation will be a significant part of this course. The d = 3 (k = 3)

case (with renormalisation) is given:

∂tu+ (1−∆)u+ u3 −∞ · u︸ ︷︷ ︸
renormalisation

= ξ (SQE)

Note that the introduction of 1 here is to preserve the invariant measure and it

doesn’t affect the LWP theory. Martin Hairer proved the local well-posedness

of this dynamical Φ4
3-model (parabolic Φ4

3-model) in [2] using regularity struc-

tures which was followed by Gubinelli-Imkeller-Perkowski proving local well-

posedness using paracontrolled calculus in [3], and also by Kupiainen in [4]

using Renormalisation Groups. This equation is called the Stochastic Quan-

tisation Equation and hence the label (SQE). The wave analogue is given

by:

∂2
t u+ ∂tu+ (1−∆)u+ u3 −∞ · u = ξ

Recall that the wave equation is a vectorial equation, so the solution is instead

the pair (u, ∂tu). Then we have (u, ∂tu) ∼ Φ4
3︸︷︷︸
u

−measure ⊗ white noise︸ ︷︷ ︸
∂tu

. This

is also referred to as the hyperbolic Φ4
3 model.

Remark 1.2. All the results mentioned until now have been on the d-dimensional torus,

i.e. Td = (R\Z)d. In the sequel, the “2π” factor in the definition of the fourier transform

will be taken for granted.

Remark 1.3. In the periodic setting spatial roughness is the only issue, but on Rd one also

has to grapple with the fact that the noise doesn’t decay as |x| → ∞, and hence the solution

is not integrable in the W s,p sense (definition 1.15). This however is not to say that there

aren’t useful results on the Rd. Some will be explored in this course and the interested reader

may alsp like to refer to [5] and [6] for the heat case and [7] for 2− d cubic SNLS.

Let us now return to (SNLS) and discuss what we mean by a solution. We remark first

that (SNLS) admits the following Itô formulation:

idu = (∆u− |u|k−1u)dt+ φdW (1.1)

where W (t, x) is the L2-cylindrical Wiener Process, as in definition 1.5.

Definition 1.4 (Brownian Motion). A (R-valued) standard Brownian Motion is a stochas-

tic process B = (Bt)t≥0 such that the following holds:

• W0 = 0 a.s..

• Wt −Ws ∼ N(0, t− s) for all 0 ≤ s < t.

• For any 0 ≤ t0 < t1 < · · · < tn, the random variables Wt1 −Wt0 , · · · ,Wtn −Wtn−1

are independent.

• W is almost surely continuous.
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Definition 1.5 (L2-cylindrical Wiener Process). W (t, x) is a L2-cylindrical Wiener Pro-

cess, if it admits the following decomposition:

W (t, x) =
∑

n∈Zd
βn(t)ein·x =

∑

n∈Zd
βn(t)en(x) (1.2)

where βn(t)n∈Zd is a collection of independent, C-valued standard Brownian Motions (i.e.

βn = Reβn + Imβn, with both Reβn and Imβn being R-valued standard Brownian Motions)

and en(x)
def
= ein·x.

Remark 1.6. While reading (1.2) one should keep in mind our convention of dropping all

expressions involving 2π when using Fourier methods. By definition, we need a complete

orthonormal system and hence the summation here would need to be normalised. Further,

in the interest of notational ease, we will drop the 2 and just assume that Varβn = t.

Remark 1.7. For (SNLW) and (SNLH), we need a real valued noise and hence will further

require that β−n = βn. This condition makes sense because for a real valued function, the

fourier coefficient at frequency −n, is equal to the conjugate of the fourier coefficient at

frequency n.

As is often the case in the theory of differential equations, one doesn’t try to solve (SNLS)

(or (1.1) for that matter) but instead an analogue of the integral formulation called the

mild formulation (or Duhamel’s formulation):

u(t) = S(t)u0 −
� t

0
S(t− t′)|u|k−1u(t′)dt′ +

� t

0
S(t− t′)φ dW (t′)

︸ ︷︷ ︸
Stochastic Convolution (ΨSch)

(1.3)

Here S(t) = e−it∆, is the so-called linear Schrödinger propagator defined as below. It is a

fourier multiplier with the following effect at frequency n: Ŝ(t)f(n) = e−it|n|
2
f̂(n).

Those who are familiar with the well-posedness theory for the (NLS) should recognise

the above formulation, except for the extra term we call Stochastic Convolution (ΨSch)

(the subscript is meant to emphasise the link to (SNLS). They should also not be surprised

that we use similar kind of Banach Fixed Point arguments for (1.3). Before we may get to

the alluded to proof, let us study the stochastic convolution more closely. Note first that if

φ is a diagonal operator in the sense that φ̂(en) = φ̂nen, with φ̂n a constant, then:

ΨSch(t) =

� t

0
S(t− t′)φdW (t′)

(1.2)
=

∑

n∈Zd
en

� t

0
ei(t−t

′)|n|2 φ̂ndβn(t′)
(1.4)

This means that each summand is a Wiener Integral. We refrain from going into the

construction of the Wiener Integral, but the following theorem showcases the property of

the course we will be needing in the course.
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Theorem 1.8 (R-valued Wiener Integral). Let f ∈ L2([a, b]), be a deterministic function.

Then for a standard Brownian Motion, B, and the function f , the Wiener Integral - I(f) =� b
a f(t)dB(t) - is a centred Gaussian random variable with the variance:

Var(I(f))︸ ︷︷ ︸
E|I(f)|2

= ‖f‖2L2([a,b])

For a complete construction the interested reader may refer to the classic [9] for an

exhaustive overview or the more recent [8] for a very readable introduction.

Remark 1.9. To deal with C-valued functions we simply decompose it into its real and

imaginary parts and use Theorem 1.8 on either of the components. Due to our assumption

on the normalisation of the variance of the C-valued Brownian motion, it too has the same

variance as in the real case (otherwise there would be a factor of 2).

Remark 1.10. With reference to the variance of the Wiener integral, we can conclude that

I is an isometry from L2([a, b]) onto its image in L2(Ω).

A less general formulation in the case that f is a bit more regular is given by the Paley-

Wiener-Zygmund Integral:

Definition 1.11 (Paley-Wiener-Zygmund Integral). If f ∈ C1([a, b]), such that f(a) =

f(b) = 0 then the Paley-Wiener-Zygmund Integral is defined by:

I(f) =

� b

a
fdB = −

� b

a
f ′(t)B(t)dt pathwise (1.5)

While the Paley-Wiener-Zygmund integral is less general than the Wiener Integral, it

gives us pathwise integration. Indeed the integrand on the RHS of (1.5) is continuous

(a.s.) and there is no difficulty in understanding the integral in the Riemann sense. Of

course where they both exist, the integrals must coincide. Having defined (the integral that

defines) Stochastic Convolution, we now collect some definitions and results we will need

to formulate our result on its regularity:

Theorem 1.12 (Kolmogorov Continuity Criterion). For a stochastic process X = {Xt}t≥0

taking values in a complete metric space, suppose that the following holds:

E[d(Xs, Xt)
p] ≤ C0|s− t|1+α

for some p, α > 0. Then:

P

(
sup
s 6=t

d(Xs, Xt)

|s− t|α/p−ε ≥ λ
)
≤ C1

λp
∀ 0 < ε <

α

p

That is to say that X is (αp − ε)-Hölder continuous.
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Example 1 (Brownian Motion).

E|B(t2)−B(t1)|2 = t2 − t1 ⇒ E|B(t2)−B(t1)|p ∼ |t2 − t1|p/2

By setting p/2 = 1 + α, we get:

α

p
− =

p/2− 1

p
− =

1

2
− 1

p
−

By the expression β− we mean all β − ε, for ε > 0. As the above is true for all p, we can

conclude that the Brownian Motion is a.s. (1
2 − ε)-Hölder continuous.

We will also need the knowledge of the following operators and spaces from Functional

Analysis:

Definition 1.13 (Hilbert-Schmidt Operators). Let X and Y be two Hilbert Spaces and T

be a bounded linear operator from X to Y . We say that T is a Hilbert-Schmidt Operator if∑∞
k=1 ‖Tek‖2 <∞ for an orthonormal basis {ek}k∈N of U .

One can check that the above sum is actually independent of the choice of orthonormal

basis. It is also easy to see that space of such operators are linear. In fact more is provable:

Proposition 1.14. The space of Hilbert-Schmidt operators from X to Y (which are both

as before), HS(X;Y ), is a Hilbert space with scalar product and norm defined by:

〈T, S〉HS(X;Y ) =
∞∑

k=1

〈Tek, Sek〉Y ‖T‖HS(X;Y ) =
∞∑

k=1

(‖Tek‖2Y )
1
2

Definition 1.15 (Sobolev spaces (Bessel Potential Space); W s,p). We denoted by W s,p the

space of those functions, for which the following norm is finite:

‖f‖W s,p = ‖〈∇〉sf‖Lp 〈∇〉 =
√

1−∆

= ‖F−1(〈n〉sf̂(n))‖Lp 〈·〉 =
√

1 + | · |2

with s ∈ R and 1 ≤ p ≤ ∞. When p = 2, by Plancherel’s identity we have W s,2 = Hs,

with:

‖f‖Hs =
(∑

n∈Zd〈n〉2n|f̂(n)|2
)1

2

Theorem 1.16 (Sobolev Embedding Theorems). Let 1 < p < q <∞ be such that s
d = 1

p−1
q .

Then one has:

‖f‖Lq(Rd) . ‖f‖W s,p(Rd)

If the function is further assumed to be mean zero, we get the same result on Td.
For sr > d, the following inequality holds on both Rd and Td:

‖f‖L∞ . ‖f‖Ẇ s,r

where by Ẇ s,r we mean the Sobolev space, wherein 〈·〉 has been replace by | · |

Proof. Refer to [13] �

We are now able to state the first result of this course:
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Proposition 1.17. If φ ∈ HS(L2(Td);Hs(Td)) for s ∈ R then ΨSch ∈ C
α
2−
t W s−α,r

x (Td)
for r ≤ ∞ and α > 0 a.s.. For r = 2 in particular ΨSch ∈ CtHs

x, a.s.

By CTH
s one means the space C ([0, T ];Hs) and the norm on the space is the natural

mixed norm. The proof is postponed till the next lecture.

Remark 1.18. In the Banach setting we have the same result as proposition 1.17 but

with the hypothesis of φ being a Hilbert-Schmidt operator being replaced with γ-radonifying

operator. The reader may refer to appendix of [10] for further details.

Remark 1.19. On Rd, we have the result Ψ ∈ LqW s,r
x , for q < ∞, r ≤ 2d

d−2 . We don’t

prove this but the interested reader may want to refer to [11] or [12].

2. Lecture 2

We remark first that assumption of diagonality on φ implies:

‖φ‖HS(L2;Hs) =
(∑

n∈Zd
‖φ(en)‖2Hs

)1
2

=
(∑

n∈Zd
〈n〉2s|φ̂|2

)1
2

before starting the proof of proposition 1.17.

Proof. (of Proposition 1.17) Assume t ≤ τ .

E[ΨSch(x, t)ΨSch(y, τ)] =
∑

n∈Zd
|φ̂n|2en(x− y)

� t

0
ei(t−t

′)|n|2e−i(τ−t
′)|n|2dt′

=
∑

n∈Zd
|φ̂n|2en(x− y)

� t

0
ei(t−τ)|n|2dt′

=
∑

n∈Zd
|φ̂n|2en(x− y)tei(t−τ)|n|2

(2.1)

where the first equality comes from the independence of the Brownian motions and the

centredness of the Wiener Integral. Consider then:

E
[
〈∇x〉sΨSch(x, t)〈∇y〉sΨSch(y, τ)

]
=
∑

n∈Zd
|φ̂n|2〈n〉2sen(x− y)tei(t−τ)|n|2

By setting x = y and t = τ in above, and recalling that Wiener Integral is a Gaussian

random variable, we may get the following bound on its p-th moment:

E[|〈∇〉sΨSch(x, t)|p] ≤ p
p
2

(
E
[
|〈∇〉sΨ(x, t)|2

])1
2

= p
p
2 t

p
2 ‖φ‖p

HS(L2;Hs)
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� p ≥ r,

1) r <∞:

From the Definition 1.15 and Minkowski’s Integral Inequality (noting that it is

in the hypothesis of Minkowski’s that we use p ≥ r assumption):

∥∥‖ΨSch(t)‖W s,r
x

∥∥
Lp(Ω)

≤
∥∥‖〈∇〉sΨSch(t)‖Lp(Ω)

∥∥
Lrx

. p
1
2 t

1
2 ‖φ‖HS(L2;Hs)

For the second inequality we have used the p-th moment bound derived prior

and the fact that |Td| ∼ 1. This proves that, for fixed t, if φ ∈ HS(L2, Hs) then

ΨSch(t) ∈W s,r
x (a.s.). A consequence of Chebyshev Inequality is the bound:

P(‖ΨSch(t)‖W s,r
x

> λ) ≤ Ce−cλ2/t‖φ‖HS(L2;H2)

2) r =∞: By theorem 1.16, we are able to proceed as before:

∥∥‖ΨSch(t)‖W s,∞
x

∥∥
Lp(Ω)

≤
∥∥‖ΨSch(t)‖W s+ε,r

x

∥∥
Lp(Ω)

. p
1
2 t

1
2 ‖φ‖HS(L2;Hs+ε)

We can adjust the ε to conclude that, for a fixed t, ΨSch(t) ∈ W s−ε,∞
x if

φ ∈ HS(L2, Hs). A similar tail bound to the one in the case r < ∞ can be

deduced here but there will be a loss of regularity.

What we have proven till now, is that if we fix a t then one can find a set

of ω with full probability such that the stochastic convolution on it, is in the

purported space. However this set of events is dependent on the choice of t

and because t comes from an uncountable set, there is no guarantee that the

set of events for which the stochastic convolution is in the purported space for

any t is of full probability. To remedy this we bound the difference operator

on Stochastic Convolution and apply Theorem 1.12.

To this end, define for a given h ∈ R, δhΨSch(x, t)
def
= ΨSch(x, t+h)−ΨSch(x, t).

Then we compute:

E
[
δhΨSch(x, t)δhΨSch(y, t)

]
= E

[
ΨSch(x, t+ h)ΨSch(y, t+ h)

]

− E
[
ΨSch(x, t+ h)ΨSch(y, t)

]

− E
[
ΨSch(x, t)ΨSch(y, t+ h)

]

+ E
[
ΨSch(x, t)ΨSch(y, t)

]

If we assume t, h > 0, we get:

=
∑

n∈Zd
|φ̂n|2en(x− y)

{
(t+ h)− te−ih|n|2 − teih|n|2 + t

}
︸ ︷︷ ︸

Fn(t,h)
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It is easy to see that Fn(t, h)
h→∞
−−−−→ 0 and |Fn(t, h)| . |t|+ |h| and also that:

|Fn(t, h)| ≤ |h|+ t|1− e−ih|n|2 |+ t|1− eih|n|2 |
. |h|+ tmin(1, |h||n|2)

. |h|+ t|h|α|n|2α (for all 0 ≤ α ≤ 1)

(2.2)

One may see that the second inequality holds by triangle inequality and mean

value theorem. A similar calculation as in the beginning of the proof yields:

∥∥〈∇〉sδhΨSch(x, t)
∥∥
Lp(Ω)

≤ p
1
2
∥∥〈∇〉sδhΨSch(x, t)

∥∥
L2(Ω)

. p
1
2 (1 + T )

1
2 |h|α/2

(∑

n

〈n〉2(s+α)|φ̂n|2
)1

2 ∀t ∈ [1, T ]

The second inequality follows from (2.2) because one h is assumed to be small,

and t ≤ T by design. As before:

∥∥‖δhΨSch(t)‖W s,r
x

∥∥
Lp(Ω)

. CT p
1
2 ‖φ‖HS(L2;Hs+α)|h|

α
2

Using theorem 1.12 (identifying s with t+ h, and replacing s+α by s) we can

conclude that ΨSch ∈ C
α
2−

1
p−

t W s−α,r
x (a.s.) if φ ∈ HS(L2;Hs). By making p

arbitrarily large, we get the required conclusion.

3) r = 2: The α in the previous conclusion can be traced back to the presence

of t (and τ) in S(t − t′) (S(τ − t′)). While this problem is something one has

to accept for the general result, the boundedness of S(t) in L2, allows us to do

better. Infact, when r = 2, it suffices to study the continuity property of:

Ψ̃Sch(t) = S(−t)ΨSch(t) =

� t

0
S(−t′)φdW (t′)

Doing a similar argument as before, we get:

E[Ψ̃Sch(x, t)Ψ̃Sch(y, τ)] =
∑

n

|φ̂n|2en(x− y)t

and that:
∥∥‖δhΨ̃Sch(t)‖W s,r

x

∥∥
Lp(Ω)

. CT p
1
2 ‖φ‖HS(L2;Hs+α)|h|

1
2

By theorem 1.12, we get:

Ψ̃Sch ∈ C
1
2−
t Hs

x, a.s.

The difference defined by: ΨSch(t + h) − ΨSch(t) = S(t + h)[Ψ̃Sch(t + h) −
Ψ̃Sch(t)] + [S(t + h) − S(t)]Ψ̃Sch(t) then goes to zero, as does h. We can see

this for the first term by recalling that S(t) is unitary, so is safely dropped and

then the continuity property of Ψ̃Sch(t) just derived forces it to go to zero, with

h. For the second term, we recall that S(·)f is continuous as a map in t into

Hs. We can conclude then:

ΨSch ∈ CtHs
x
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almost surely, as required.

�

Example 2. Consider φ = Id, that is the identity operator. In this case, φ ∈ HS(L2;Hs)

when s < −d
2 . Recall that −d

2 is exactly the spatial regularity of the (space-time) white

noise. Then proposition 1.17 says that ΨSch ∈ CtHs
x a.s., when s < −d

2 . This means that

if you start with a white noise, there is no improvement in the regularity of the Stochastic

convolution. This makes analysis of the (SNLS) difficult.

We are able to do to similar investigations into the (SNLW) and (SNLW). With φ again

taken to be the identity operator, the stochastic convolutions (and the equations they solve

with initial data zero) in these cases will be:

• Ψwave(t) =

� t

0

sin ((t− t′)|∇|)
|∇| dW (t′), (∂2

t + 1−∆)Ψ = ξ

Here:

(
sin (t|∇|)
|∇| f

)̂
(n) =

{
sin(t|n|)
|n| f̂(n) n 6= 0

tf̂(0) otherwise

The behaviour at frequency 0 is strange but easily fixed by replacing |∇| by 〈∇〉
in the operator above. The only difference appears at frequency 0 and the same

result of well-posedness holds. Now the 〈∇〉 in the denominator has the effect of

smoothing, and hence we “gain one derivative”.

• Ψheat(t) =

� t

0
e(t−t′)(∆−1)dW (t′), (∂t + 1−∆)Ψ = ξ Here:

(
et(∆−1)f

)̂
(n) = e−t(1+|n|2)f̂(n)

The 1 shows up here only for convenience and in terms of wellposedness doesn’t

change anything. Now if one were to go back and repeat the proof of Proposition

1.17 there is a factor 1
〈n〉2 in (2.1) because we are in the real case and t′ doesn’t get

cancelled out. This means that there is a gain of one derivative as in the wave case.

Therefore, by repeating the proof of proposition 1.17, and keeping in mind the discussion

above, it is possible to conclude that: Ψheat,Ψwave ∈ CtW
s,∞
x (Td) a.s., when s < −d

2 +

1 with φ the identity operator.

2.1. Chapter 1. One-dimensional case. We return now to (SNLS) and discuss its local

well-posedness. Recall that the general equation is given by:

SNLS :

{
i∂tu−∆u+ |u|k−1u = φξ, x ∈ Td

u|t=0 = u0

We fix s > d
2 . Then with φ ∈ HS(L2, Hs) and u0 ∈ Hs(Td) the Duhamel formulation is

given by:

u(t) = S(t)u0 + i

� t

0
S(t− t′)|u|k−1u(t′)dt′ + Ψ(t) (2.3)
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We denote the RHS of the above equation by Γu0,φ(u). Before proving our result on the

LWP of (SNLS), we recall the following property of Hs space:

Theorem 2.1. For s > d
2 , Hs is an algebra under pointwise products, which is to say:

‖fg‖Hs . ‖f‖Hs‖g‖Hs

Proof. (Sketch) One checks first that the following triangle inequality holds: 〈n1 + n2〉s ≤
〈n1〉s+〈n2〉s, for s ≥ 0. Then this inequality along with Young’s convolution inequality and

Cauchy-Schwarz inequality yields: ‖f̂ ∗ ĝ‖`2n . ‖f̂‖`2n‖ĝ‖`1n . ‖f̂‖`2n‖g‖Hs and the required

conclusion is easily recovered. �

Now consider the following bound:

‖Γu0,φ(u)‖CTHs
x
≤ ‖u0‖Hs +

∥∥∥∥∥∥∥∥

� t

0
‖S(t− t′)|u|k−1u(t′)‖Hs

x︸ ︷︷ ︸
.‖u(t′)‖k

Hsx

dt′

∥∥∥∥∥∥∥∥
L∞T︸ ︷︷ ︸

≤C1T‖u‖kCTHs

+‖Ψ‖CTHs
x

(2.4)

The first term on the RHS follows from the fact that S(t) is unitary in Hs. For the

second term, we have again used the fact that S(t) is unitary coupled with Theorem 2.1

and the fact k is odd. With the integrand bounded, the bound on the integral proper is

elementary.

Now set R = Rω = 2(‖u0‖Hs + ‖Ψ‖C([0,1];Hs)). Note that the norm on the stochastic

convolution is independent of T ; this is because we will want to chose T depending on R

in what follows. Further note that the subscript here is just to signal the fact that this

R is random, which is because of the randomness of the Stochastic Convolution. To move

towards a contraction argument we need to show that Γu0,φ(u) is bounded by R, whenever

u is in a ball of radius R around the origin in CTH
s. So for u ∈ BR ⊂ CTH

s and T < 1,

we need:

‖Γu0,φ(u)‖CTHs ≤ 1
2R+ C1TR

k

≤ R
The second inequality can be enforced by choosing a (random) T = Tω such that T � R

and T ∼ R−
1
k . This inequality means that Γu0,φ : BR 7→ BR.

‖Γu0,φ(u)− Γu0,φ(v)‖CTHs ≤ C2T (‖u‖k−1
CTHs + ‖v‖k−1

CTHs)‖u− v‖CTHs

≤ C2TR
k−1‖u− v‖CTHs

≤ 1

2
‖u− v‖CTHs

To see the first inequality. one can write |u|k−1u − |v|k−1v as a telescopic sum and then

apply Young’s Inequality on every summand in the telescopic sum. The second inequality

comes from the fact that u, v ∈ BR and finally the third inequality comes from choosing a
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convenient T . We have thus shown that if T is chosen such that both the above inequalities

hold then Γu0,φ defines a contraction on BR ⊂ CTH
s. The Banach Fixed Point theorem

then gives us that ∃! u ∈ BRω such that u = Γu0,ψ(u), on [0, Tω], a.s.. The time of local

existence is random here, because it depends on ω.

The solution depends continuously on u0 ∈ Hs and φ ∈ HS(L2;Hs). To see this, suppose

that you have two solutions with different initial data and smoothing operators:

u
def
= Γu0,φ1(u) and v

def
= Γv0,φ2(v). Then by considering a small enough T (say less than the

minimum of the Rω given by the two data sets and convolutions):

‖u− v‖CTHs
x
. ‖u0 − v0‖Hs + ‖Ψ1 −Ψ2‖︸ ︷︷ ︸

� t
0 S(t−t′)(φ1−φ2)dWt′

≤ ‖u0 − v0‖Hs + Cω‖φ1 − φ2‖HS(L2;Hs)

This proves the continuous (in fact Lipshcitz) dependency asserted. In the above calcula-

tion we hid the non-linear part on the LHS. For the second inequality we have used the

facts E
[
‖Ψ−Ψ‖2CTHs

x

]
≤ CT ‖φ1 − φ2‖2HS(L2;Hs) and Chebyshev’s inequality. It should be

emphasised that the constant Cω is random.
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1. Lecture 3 (typed by Aigerim Davletzhanova)

Littlewood-Paley decomposition:

f =
∑

N≥1

PNf =

∞∑

j=0

Pjf,

where N ∈ 2j , j ≥ 0 and PN is a Lp projector, i.e. ”projection” onto the frequency
{|n| ∼ N = 2j}.
φ(ξ) is a radial, supported on {|ξ| ≤ 2} and φ(ξ) ≡ 1 on {|ξ| ≤ 6/5}.

φj(ξ) = φ

(
ξ

2j

)
− φ

(
ξ

2j−1

)
, j ≥ 1.

P̂jf(ξ) = φj(ξ)f̂(ξ).

φj needs to be normalised, i.e.

ψj(ξ) =
φj(ξ)∑∞
k=0 φk(ξ)

,

where
∑∞

k=0 φk(ξ) is a finite sum.
Finally we get

Pjf = f−1(ψjf).

Lp Theorem: For 1 < p <∞ we have,

||f ||Lp ∼ ||(
∑

N≥1,dyadic

|PNf |2)
1
2 ||Lp

and RHS is a square function.
If p ≥ 2, then

||f ||Lp ≤ || ||PNf ||Lp ||l2N ,dyadic
and PNf here is a simpler object, compared to the previous case.

Sobolev spaces:

||f ||Hs ∼ (
∑

N≥1,dyadic

N2s||PNf ||2L2
x
)
1
2

Besov spaces Bs
p,q or Bs,p

q :

||f ||Bsp,q = ||N s||PNf ||Lpx ||lqN≥1,dyadic
,

where N s = 2js and lqN≥1,dyadic = lsj(Z ≥ 0).

There are 2 main points:

• Hs = Bs
2,2

• Bs
p,1 ⊂W s,p ⊂ Bs

p,∞, where Bs+ε
p,∞ ⊂ Bs

p,1 and W s,p = Lps.
1
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Hölder-Besov space Cs = Bs
∞,∞, s ∈ R:

• Natural extension of the classical Hölder space Cs, 0 < s < 1.

||f ||Cs = sup
x 6=y

|f(x)− f(y)|
|x− y|s ,

where Λ̇s is a homogeneous Lipshitz space and Λs = Λ̇s ∩ L∞.
FACT: Λ̇s = Ḃs

∞,∞, 0 < s < 1 and ||f ||Ḃsp,q = ||2j ||Pjf ||Lpx ||lqj (Z)

• s > 0: Cs is an algebra and

||fg||Cs . ||f ||Cs ||g||Cs .
1-d SNLW:

(∂2
t + 1−∆)u+ uk = ξ on T.

u(t) = ∂tS(t)u0 + S(t)u1 −
ˆ t

0
S(t− t′)uk(t′)dt′ +

ˆ t

0
S(t− t′)dW (t′),

where s(t) = sin(t<∆>)
<∆> and Ψ =

´ t
0 S(t− t′)ξ(dt′) ia s stochastic convolution.

Let’s denote RHS by Γ(u) = Γ(u0,u1),ξ(u)
There are 2 main points to outline:

• Recall Ψ = Ψwave ∈ CtW 1/2−,∞
x (T)

• ||∂tS(t)u0 + S(t)u1||Hs . ||(u0, u1)||Hs , where Hs = Hs ×Hs−1

Taking into consideration above, we get

||Γ(u)||CTHs . ||(u0, u1)||Hs +

ˆ t

0
||uk(t′)||Hs−1dt′ + ||Ψ||CTHs ,

where

||uk(t′)||Hs−1 ≤ ||uk(t′)||L2 = ||u(t′)||kL2k .Sobolev ||u(t′)||kHs for s ≥ 1

2
− 1

2k

and

||Ψ||CTHs ≤ Cω <a.s. ∞ for s <
1

2
.

By choosing 1
2 − 1

2k ≤ s < 1
2 , we have

||Γ(u)||CTHS . ||(u0, u1)||Hs + T ||u||kCTHs + ||Ψ||CTHs .

Similarly,

||Γ(u)− Γ(v)||CTHs . T (||u||k−1
CTHs + ||v||k−1

CTHs)||u− v||CTHs .

R = Rω ∼ ||(u0, u1)||Hs + ||Ψ||C([0,1],Hs),

therefore Γ is a contraction on BR ⊂ CTHs, T = Tω = T (Rω) << 1.
Remark: By a similar argument, we can show LWP for

∂t

(
u
∂tu

)
=

(
0 1

∆− 1 0

)(
u
∂tu

)
+

(
0
−uk

)
+

(
0
ξ

)
.

It is important for global-in-time study.
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1-d SNLH:
(∂t + 1−∆)u+ uk = ξ

Schauder estimate: For 1 ≤ p ≤ q ≤ ∞,

||DαP(t)f ||Lqx . t
− d

2
( 1
p
− 1
q

)−α
2 ||f ||Lpx on Rd or Td, t > 0, α ≥ 0,

where P(t) = et(∆−1).
Proof : Proof in the detail also can be found in [1] and Grafakos.

• Rd case

et∆f(x) =

ˆ

Kt(x− y)f(y)dy

K̂t(ξ) = e−t|ξ|
2

= K̂(t
1
2 ξ), where K = K1.

By applying inverse Fourier Transform, we have

Kt(x) =
1

t
α
2

K

(
x

t
1
2

)
,

||Kt||Lrx = t−
α
2

∣∣∣∣
∣∣∣∣K
(
x

t
1
2

)∣∣∣∣
∣∣∣∣
Lrx

= t−
α
2 t

d
2rCK ∼ (Young’s inequality) ∼ t−

d
2

( 1
p
− 1
q

)
,

therefore

||et∆f ||Lq(Rd) . t
− d

2
( 1
p
− 1
q

)||f ||Lp(Rd).

In case of α > 0, we have:

Dα(et∆f) = Dα(Kt ∗ f) = (DαKt) ∗ f,
D̂αKt(ξ) = |ξ|αe−t|ξ|2 = t−

α
2 (t

1
2 |ξ|)αe−t|ξ|2 = t−

α
2 Ĝt(ξ) = t−

α
2 Ĝ1(t

1
2 ξ), where G = G1.

By repeating the same computation, we get

||DαKt||Lr = t−
α
2 ||Gt(x)||Lr ∼ t−

α
2 t
− d

2
( 1
p
− 1
q

)

and Young’s inequality(1
q + 1 = 1

r + 1
p) could be applied again.

• Td case
et∆f = Rt ∗ f, R̂t(n) = e−t|n|

2
.

Scaling argument can’t be used, but Poisson summation formula can be:

|f(x) + |f̂(x)| .< x >−d−ε, f on Rd, where
∑

n∈Zd
f̂(n)einx =

∑

n∈Zd
f(x+ n)

Proof of the Poisson summation formula:

F (x) =
∑

n∈Zd
f(x+ n)

is a periodic function on Td and F (x) =
∑

n∈Zd F̂ (n)einx, therefore

F̂ (n) =

ˆ

Td
F (x)e−inxdx =

ˆ

[− 1
2
, 1
2

)d

∑

m

f(x+m)e−inxdx =
∑

m∈Zd

ˆ

m+Td
f(y)e−inydy = f̂(n)
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�
Back to the proof of the Schauder estimate on Td.

R̂t(n) = K̂t(n) = e−t|n|
2

and

||Rt||Lr(Td) = ||∑ K̂t(n)einx||Lr(Td) = Poisson formula = ||∑n∈Zd Kt(x +

n)||Lr(Td) . ||(
∑

< n >−βr
′
)

1
r′ || < n >β Kt(x + n)||lrn ||Lrx(Td) . || < x >β

Kt(x)||Lrx(Rd) ∼ ||Kt(x)||Lrx(Rd) + |||x|βKt(x)||Lrx(Rd).

By repeating the previous argument and knowing that |x|β .
∣∣∣ x
t
1
2

∣∣∣
β
andKt(x) =

1

t
α
2
K
(
x

t
1
2

)
for 0 < t < 1, we get Schauder estimate for et∆ on Td, 0 < t ≤ 1.

As for P(t) = et(∆−1) = e−tet∆, e−t can absorb t
β
2 for any t, therefore we get

Schauder estimate for P(t) on Td, t > 0 �
Note:

||P(t)f ||Cs1 . t−
s1−s2

2 ||f ||Cs2 , s1 ≥ s2

Back to SNLH on T:

u(t) = P(t)u0 −
ˆ t

0
P(t− t′)uk(t′)dt′ +

ˆ t

0
P(t− t′)dW (t′)

and Ψ =
´ t

0 P(t− t′)dW (t′), Ψ ∈ CtC
1
2
−

x , Cs+ε ⊂W s,∞, where s = 1
2 − 2ε.

Γ(u) is a RHS of the Duhamel formulation and

||Γ(u)(t)||Csx . ||u0||Csx +

ˆ t

0
||u(t′)||kCsxdt

′ + ||Ψ(t)||Csx, 0 < s <
1

2

||Γ(u)||CTCsx . ||u0||Csx + T ||u||kCTCsx + ||Ψ||CTCsx , T ≤ 1.

Considering above and difference estimate, we get LWP in Cs(Td), 0 < s < 1
2 .

Rougher data? u0 ∈ Cs, s < 0,

||P(t)u0||Cσ . t−
σ−s
2 ||u0||Cs , σ ≥ s.

The right hand side blows up as t→ 0+.
For the case σ > s:

||u||Y σ(T ) = sup
0≤t≤T

tθ||u(t)||Cσ

tθ||Γ(u)(t)||Cσ . tθt−
σ−s
2 ||u0||Cs + tθ

ˆ t

0
(t′)−θk((t′)θ||u(t′)||Cσ)kdt′ + tθ||Ψ(t)||Cσ ,

where σ−s
2 < θ < 1

k .
Take sup0≤t≤T and get estimate for the Y σ(T ) norm. For the s < 0,

||Γ(u)||CTCsx . ||u0||Cs + ||
ˆ t

0
(t′)−θk((t′)θ||u(t)||Cσ)kdt′||L∞T + ||Ψ||CTCsx

θ − σ−s
2 ≥ 0⇒ s ≥ σ − 2θ, s > − 2

k , because σ > 0, θ < 1
k .

Run a contraction argument on a ball in Y σ(T ) and show u ∈ CTCsx ⇒ u ∈ C([0, Tω];Cs)∩
C((0, Tω];Cσ).
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1. Local well-posedness of SNLS on R.

Let us first recall the form of the cubic stochastic nonlinear Schrödinger equation in
dimension d :

i∂tu(t, x)− ∂2
xu(t, x) + |u|2u(t, x) = φ(t, x)ξ(t, x), (t, x) ∈ R× Rd (1.1)

where ξ is a space-time white noise and φ ∈ HS(L2;L2) so that, if we denote

Ψ(t) =

� t

0
S(t− t′)φdW (t′), ∀t ∈ [0, T ] (1.2)

with S(t)f = e−it∆f = F
(
eit|·|

2
f̂(·)

)
, then Ψ ∈ CTL

2
x ∩ LqTLrx for any finite q ≥ 1 and

r ≤ 1 such that

{
r ≤ 2d

d−2 if d ≥ 3

r <∞ if d = 1, 2.

Remark 1.1. If φ ∈ HS(L2;Hs) with s ∈ R, then we have Ψ ∈ CTL2
x∩LqTW

s,r
x . The proof

of this result can be found in [6] or [17].

In order to solve equation 1.1, we need to state some estimates. First, observe that using
Plancherel’s theorem twice, we get for f ∈ L2 :

‖S(t)f‖L2
x

= ‖e−it|ξ|2 f̂(ξ)‖L2
ξ

= ‖f̂(ξ)‖L2
ξ

= ‖f‖L2
x

so that S(t) is unitary for any t ∈ R. But this will not be sufficient, we will need the
so-called Strichartz estimates. To do so, let us first define the following :

1
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Definition 1.2. A couple of real numbers (q, r) is called Schrödinger admissible if it sat-
isfies 2 ≤ q, r ≤ ∞, (q, r, d) 6= (2,∞, 2) (with d the dimension) and the following scaling
condition:

2

q
+
d

r
=
d

2
. (1.3)

This allows us to state the following (note that, for any real number q ≥ 1, we denote q′ ≥ 1
the real number such that 1

q + 1
q′ = 1):

Theorem 1.3 (Strichartz estimates on Rd). Let (q, r) and (q̃, r̃) be Schrödinger admissible.
Let us take f a function of the space variable x ∈ Rd and F a function of the space-time
variable (t, x) ∈ R× Rd. Then, we have:

(1) Homogeneous estimate:

‖S(t)f‖LqtLrx(R×Rd) . ‖f‖L2
x

(1.4)

(2) Dual homogeneous estimate:
∥∥∥∥
�
R
S(−t′)F (t′)dt′

∥∥∥∥
L2(Rd)

. ‖F‖
Lq
′
t L

r′
x

(1.5)

(3) Non-homogeneous estimate / Retarded estimate:
∥∥∥∥
� t

0
S(t− t′)F (t′)dt′

∥∥∥∥
LqtL

r
x(R×Rd)

. ‖F‖
Lq̃
′
t L

r̃′
x

(1.6)

Note that this means, on time averaged sense, that there is a smoothing in terms of in-
tegrability (but NOT in terms of differentiability). We will give an idea of the proof of
Theorem 1.3, but first we need to state two preliminary results.

Theorem 1.4 (Dispersive estimate). Let f ∈ L1
(
Rd
)
, then for any t > 0:

‖S(t)f‖L∞x .
1

|t|d/2 ‖f‖L1
x

(1.7)

We will not prove this estimate here, but the proof relies on two ideas. First, we need to
express S(t)f in the following way:

[S(t)f ] (x) =
1√
4πit

�
Rd
e−
|x−y|2

4ti f(y)dy

by using the method of the stationnary phase (see other lecture notes) by seeing S(t)f as
something of the form:

[S(t)f ] =

�
Rd
eix·ξeit|ξ|

2
f̂(ξ)dξ.

Also, we need the following inequality:

Theorem 1.5 (Hardy-Littlewood-Sobolev inequality). Let 1 < p, q, r <∞ such that 1
r+1 =

1
p + 1

q . Then, for any function g ∈ Lp
(
Rd
)
,

∥∥∥|x|−
d
p ∗ g

∥∥∥
Lr(Rd)

. ‖g‖Lq(Rd) (1.8)
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Note that, in Theorem 1.5, the function x → |x|−
d
p does not belong to Lr

(
Rd
)
, but ”al-

most”. Hence, Theorem 1.5 can be seen as an endpoint version of Young’s inequality.

Idea of proof of Theorem 1.3. First, observe that by interpolating the dispersive estimate
(1.7) and the estimate resulting from the unitarity of S(t) in L2:

‖S(t)f‖L2 = ‖f‖L2

we get, for any p, p′ such that p ≥ 2 and 1
p + 1

p′ = 1:

‖S(t)f‖Lp . t
−
(
d
2
− d
p

)
‖f‖Lp′ . (1.9)

Also, we claim that saying S(t) is a bounded operator from L2
x to B = LqtL

r
x is equivalent

to say that there is a bounded dual operator T ∗ : B′ = Lq
′
t L

r′
x → L2

x defined by :

T ∗F =

�
R
S(−t′)F (t′)dt′ (1.10)

Indeed, observe that :

〈S(t)f, F 〉L2
t,x

=

�
R

�
Rd
S(t)fF (t, x)dtdx =

�
R

�
Rd
fS(−t)F (t, x)dtdx = 〈f, T ∗F 〉L2

t,x

where the last inequality comes from the definition of the dual operator. Thus, note also
that saying T = S(t) is bounded is equuivalent to say that the operator TT ∗ : B′ → B,
defined by

TT ∗F =

�
Rd
S(t− t′)F (t′)dt′

is bounded. We will prove, in fact, this last result. To do so, put TT ∗F in B = LqtL
r
x, with

(q, r) Schrödinger admissible, and then, using equation 1.9:

‖TT ∗ F‖LqtLrx =

∥∥∥∥
�
R

∥∥S(t− t′)F (t′)
∥∥
Lrx

dt′
∥∥∥∥
Lqt

.
∥∥∥∥
�
R

(t− t′)−( d2−
d
r )
∥∥F (t′)

∥∥
Lr′x

dt′
∥∥∥∥
Lqt

Thus, we get a convolution in time in the last term and observe that, since (q, r) is
Schrödinger admissible, then we have:

d

2
− d

r
+

1

q′
=
d

2
− d

r
− 1

q
+ 1 =

1

q
+ 1

so that, applying Theorem 1.5 for t ∈ R we get:

‖TT ∗ F‖q
LqtL

r
x
. ‖F‖

Lq
′
t L

r′
x

Thus, equations (1.4) and (1.5) come from the facts that S(t) : L2
x → LqtL

r
x is bounded

and T ∗ : Lq
′
t L

r′
x → L2

x is bounded respectively. There is also two ways to prove equation

(1.6). Either we observe that
� t

0 dt′ =
�
R χ[0,t](t

′)dt′ and we prove it by hand, or we can use
Christ-Kiselev lemma (see [18]).

The endpoint case, with q = 2 and r = 2d
d−2 , can be found in [8].

�
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Now that we proved Strichartz estimates, we can go back to the cubic SNLS on R, namely
the equation (1.1). We have the Duhamel formulation:

u(t) = S(t)u0 −
� t

0
S(t− t′) |u|2 u(t′)dt′ + Ψ(t) =: Γu(t) (1.11)

Thus, as (∞, 2) and (8, 4) are two Schrödinger admissible couples in dimension 1, if we
denote X(T ) := CTL

2
x∩L8

TL
4
x and ‖·‖X(T ) the associated norm, we have thanks to Theorem

1.3:

‖Γu‖X(T ) . ‖u0‖L2
x

+
∥∥|u|2u

∥∥
L
8/7
T L

4/3
x

+ ‖Ψ‖X(T )

and then, using Hölder’s inequality with 7
8 = 1

2 + 1
8 + 1

8 + 1
8 , we have

∥∥|u|2u
∥∥
L
8/7
T L

4/3
x
≤ T 1/2 ‖u‖3L8

TL
4
x
≤ T 1/2 ‖u‖3X(T )

which gives

‖Γu‖X(T ) . C1

(
‖u0‖L2

x
+ ‖Ψ‖X(T )

)
+ T 1/2 ‖u‖3X(T )

for any T ≤ 1. Also, we have a similar difference estimates using similar arguments.
Then, using a fixed point argument, since Γ is a contraction of a ball B ⊂ X(T ) of size

M ∼
(
‖u0‖L2

x
+ ‖Ψ‖X(T )

)
(recall ‖Ψ‖X(T ) is almost surely constant if φ ∈ HS

(
L2;L2

)
),

we have local well-posedness in L2 (R).

2. Local well-posedness of SNLS on Td

2.1. Zygmund’s L4-Strichartz estimates. Let us focus now on the stochastic nonlinear
Schrödinger equation on the d-dimensional torus Td:

i∂tu(t, x)− ∂2
xu(t, x) + |u|2u(t, x) = φ(t, x)ξ(t, x), (t, x) ∈ R× Td (2.1)

The main issue here comes from the Strichartz estimates on Td. Indeed, three problems
arise form the latter:

(1) They are only local in time,
(2) They are NOT as good as the Strichartz estimates on Rd,
(3) The proof is much harder.

For more references on Strichartz estimates on the torus, one can look into [19], [2] (where
Bourgain used analytic number theory with the HL circle method), [3], [4] and [13].

Theorem 2.1 (L4-Strichartz estimate on T (Zygmund 1974)). For any u0 ∈ L2 (T), we
have

∥∥∥∥∥
∑

n∈Z
einxeitn

2
û0(n)

∥∥∥∥∥
L4
t,x(T×T)

. ‖u0‖L2(T) (2.2)

Proof. Let us denote F (t, x) :=
∑

n∈Z e
inxeitn

2
û0(n). Then observe that we have

∥∥FF
∥∥
L2(T2)

=

∥∥∥∥∥∥
∑

n1∈Z

∑

n2∈Z
û0(n1)û0(n2)eit(n

2
1−n2

2)ei(n1−n2)x

∥∥∥∥∥∥
L2(T2)
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Write this sum as a Fourier series in t and x,
∑

(τ,n)∈Z2 a(τ, n)ei(nx+τt) where

a(τ, n) =
∑

(n1,n2)∈P (τ,n)

û0(n1)û0(n2)

with

P (τ, n) =
{

(n1, n2) : n2
1 − n2

2 = τ and n1 − n2 = n
}

Now we claim that, given a couple (τ, n) 6= (0, 0), there exists at most one couple (n1, n2)
such that (τ, n) = (n2

1−n2
2, n1−n2). Indeed, observe that if (n1, n2) satisfies this condition,

we have

τ − n2 = n2
1 − n2

2 − n2 = −2n2(n2 − n1) = 2nn2

so this determines n2 and then we have n = n+ n2. Also, observe that

a(0, 0) =
∑

n∈Z
|û0(n)|2 = ‖u0‖2L2 .

Putting all this together, we have, using Plancherel’s equality:

‖F‖L4(T2) =


∑

τ,n∈Z
|a(τ, n)|2




1/4

∼


 ∑

(τ,n)6=(0,0)

|a(τ, n)|2



1/4

+ (a(0, 0))1/2

.


 ∑

n1,n2∈Z
|û0(n1)û0(n2)|2




1/4

+ ‖u0‖L2

∼ ‖u0‖L2(T)

where the last inequality comes from the fact that
∑

n1,n2
|û0(n1)û0(n2)|2 is a disjoint sum

in n1 and n2. This ends the proof.
�

For more results on Strichartz estimates, specially for the Korteweg-de Vries equation,
one can look into the work of Kenig, Ponce and Vega ([9], [10], [11] and [12]).

2.2. Fourier restriction norm method. Note that Zygmund’s L4-Strichartz estimates
(2.2) is NOT enough to prove local well-posedness of cubic NLS in L2 (T) (neither is it for
any Hs (T), for any s ≤ 1

2). Instead, we are going to follow the Fourier restriction norm
method approach, developed by Bourgain in [2]. Also, note that this Fourier restriction
norm method was also used by Klainerman and Machedon for the wave equation in [14].

Definition 2.2 (Xs,b spaces). We define Xs,b, with s ∈ R and b > 0, as the space of all
functions such that the following norm is finite

‖u‖Xs,b =
∥∥∥〈n〉s〈τ − |n|2〉bû(τ, n)

∥∥∥
`2nL

2
τ(Zd×R)
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The Xs,b spaces are useful for ”perturbative” study: the idea behind is to look for
something ”close to being a linear solution”. Yet, a linear solution should be something like
F−1(δ(τ − n2)), with δ the Dirac delta operator. Indeed, if we take the linear Schrödinger
equation

i∂tu−∆u = 0

and we apply the space-time Fourier transform, we get the equation

−(τ − n2)û(τ, n) = 0

so that û(τ, n) is a measure supported on {τ = n2}. Thus, something close to a linear
solution should become very small when it is away form the line τ = n2. We measure this
”distance from the linear solution” with the weight 〈τ − n2〉b, with b > 0, that penalizes
functions whose Fourier transforms support is away from {τ = n2}.
Proposition 2.3 (Basic properties). Let s ∈ R and b > 0. Then,

(1) If b > 1
2 , then Xs,b ⊂ CtHs

x. If b = 1
2 , we need some other spaces.

(2)

‖u‖Xs,b = ‖S(−t)u‖Hs
xH

b
t

:=
∥∥∥〈∂x〉s〈∂t〉b (S(−t)u(t))

∥∥∥
L2
t,x

(2.3)

(3) Let η(t) be a smooth cutoff function supported on [−2, 2], with η(t) = 1 for any
|t| ≤ 1. Then,

‖η(t)S(t)f‖Xs,b . ‖f‖Hs (2.4)

(4) If b > 1
2 , we have the following estimate on the Duhamel term

∥∥∥∥η(t)

� t

0
S(t− t′)F (t′)dt′

∥∥∥∥
Xs,b

. ‖F‖Xs,b−1 (2.5)

Also, for θ > 0 small, b > 1
2 , T ≤ 1 and t ∈ [−T, T ] , we get the estimate

∥∥∥∥η
(
t

T

) � t

0
S(t− t′)F (t′)dt′

∥∥∥∥
Xs,b

. T θ ‖F‖Xs,b−1+θ (2.6)

and for b > 0, b 6= 1
2 ,
∥∥∥∥η
(
t

T

)
S(t)fdt′

∥∥∥∥
Xs,b

. T 1
2
−b ‖f‖Hs (2.7)

Remark 2.4. Note that, in equation (2.7), the factor T
1
2
−b is bad for b > 1

2 et T � 1.

Proof of equation (2.4). Observe that F [η(t)S(t)f ] (τ, n) = η̂(τ − |n|2)f̂(n) so that, if we
set τ̃ = τ − |n|2, we have

‖η(t)S(t)f‖Xs,b =
∥∥∥〈n〉s〈τ − |n|2〉bη̂(τ − |n|2)f̂(n)

∥∥∥
`2nL

2
τ

=
∥∥∥〈n〉s〈τ̃〉bη̂(τ̃)f̂(n)

∥∥∥
`2nL

2
τ

= ‖η‖Hb ‖f‖Hs

where ‖η‖Hb is bounded. �
The proofs of the other properties are available in [18]. From now on, we will consider the
new mild formulation

u(t) = η(t)S(t)u0 − η
(
t

T

) � t

0
S(t− t′) |u|2 u(t′)dt′ + η(t)

� t

0
S(t− t′)φdW (t′) (2.8)
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In this context, we have the following result

Theorem 2.5 (L4-Strichartz (Bourgain ’93)). For any u smooth enough, we have

‖u‖L4
t,x(R×T) . ‖u‖X0,3/8(R×T) (2.9)

The proof of this theorem can be found in Tao’s book [18], using Tzvetkov’s approach.
Note also that this result is better than Theorem 2.1 since, using Transference principle
(see Andreia’s first project [1]), this theorem only gives us

‖η(t)u‖L4
t,x
. ‖u‖X0,b

for any b > 1
2 . So we gain a bit of regularity in Theorem 2.5. In addition to this theorem,

we also have the following result

Theorem 2.6. Suppose φ ∈ HS
(
L2;Hs

)
and b < 1

2 , then (recall Ψ(t) =
� t

0 S(t−t′)φdW (t′))

χ[0,T ]Ψ ∈ Xs,b

almost surely in the sense that

∥∥χ[0,T ]Ψ ∈
∥∥
Xs,b ≤ Cω <∞ a. s.

Proof. Observe that, since φ ∈ HS
(
L2;Hs

)
, we can write φ =

∑
n∈Zd φ̂nen, with en(x) =

ein·x, hence we write

Ψ(t) =
∑

n∈Zd
φ̂nen

� t

0
ei(t−t

′)|n|2dβn(t′).

Also, using equation (2.3), observe that we really want to study

Fx
(
S(−t)χ[0,T ](t)Ψ(t)

)
(n) = χ[0,T ](t)φ̂n

� t

0
e−it

′|n|2dβn(t′).

Denote F (t) = S(−t)χ[0,T ](t)Ψ(t). If we take space-time Fourier transform, we have

F̂ (τ, n) = φ̂n

�
R
e−itτχ[0,T ](t)

� t

0
e−it

′|n|2dβn(t′)dt

= φ̂n

� T

0
e−it

′|n|2
� T

t′
e−itτdtdβn(t′)

where the second equality comes from Stochastic Fubini Theorem, with the last integral
defined as a Wiener integral (see [7]). Then, observe that

� T

t′
e−itτdt .T min

(
1,

1

|τ |

)
∼ 1

〈τ〉 .

Thus, we get using equation (2.3)

E
[∥∥χ[0,T ]Ψ

∥∥2

Xs,b

]
=

∥∥∥∥〈n〉s〈τ〉b
∥∥∥F̂ (τ, n)

∥∥∥
L2(Ω)

∥∥∥∥
2

`2nL
2
τ

and, using the properties of Wiener integral, we have
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∥∥∥F̂ (τ, n)
∥∥∥
L2(Ω)

∼ |φ̂n|
(� T

0

∣∣∣∣e−it
′|n|2

� T

t′
e−itτdt

∣∣∣∣
2

dt′
)1/2

.T |φ̂n|
1

〈τ〉
so that, if we inject this in the previous equality,

E
[∥∥χ[0,T ]Ψ

∥∥2

Xs,b

]
.T

∑

n∈Zd
〈n〉2s|φ̂n|2

�
R
〈τ〉2(b−1)dτ

.T ‖φ‖HS(L2;Hs)

where the last inequality comes from the fact that
�
R〈τ〉2(b−1)dτ is finite if and only if b < 1

2 .
Also, we have for p ≥ 2,

∥∥∥
∥∥χ[0,T ]Ψ

∥∥
Xs,b

∥∥∥
Lp(Ω)

. p1/2 ‖φ‖HS(L2;Hs)

hence, using Chebyshev’s theorem

P
(∥∥χ[0,T ]Ψ

∥∥
Xs,b > λ

)
≤ Ce

−c λ2

‖φ‖
HS(L2;Hs)

which ends the proof.
�

Now that we proved these two result, we come back to the fixed point problem (2.8).
Let us denote

Γ(v)(t) := η(t)S(t)u0 − η
(
t

T

)� t

0
S(t− t′) |v|2 v(t′)dt′ + χ[0,T ](t)

� t

0
S(t− t′)φdW (t′)

and we want to find a unique u such that

u(t) = Γ(u)(t)

for any t ∈ [0, T ] and T ≤ 1. Fix 3
8 ≤ b ≤ 1

2 and suppose φ ∈ HS
(
L2;L2

)
. Then, using

equations (2.4) and (2.6) and Theorem 2.6, we have

‖Γu‖X0,b . ‖u0‖L2 + T θ
∥∥|u|2u

∥∥
X0,− 1

2+2θ + Cω

Then, by a duality argument and Hölder’s inequality, we have

∥∥|u|2u
∥∥
X0,− 1

2+2θ = sup
‖v‖

X
0, 12−2θ

≤1

∣∣∣∣
�
R×T
|u|2uvdxdt

∣∣∣∣

≤ sup
‖v‖

X
0, 12−2θ

≤1
‖u‖3L4

x,t
‖v‖L4

x,t

. sup
‖v‖

X
0, 12−2θ

≤1
‖u‖3

X0, 38
‖v‖

X0, 38

where the last inequality comes from Theorem 2.5. Thus, we have

‖Γu‖X0,b . ‖u0‖L2 + T θ ‖u‖3X0,b + Cω.
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Using similar arguments, we also get

‖Γu− Γv‖X0,b . T θ
(
‖u‖2X0,b + ‖v‖2X0,b

)
‖u− v‖X0,b .

Thus Γ is a contraction on a ball BR ⊂ X0,b of radius

R = Rω ∼ ‖u0‖L2 + Cω

by choosing T = T (R) � 1. So we constructed a solution u ∈ BR ⊂ X0, 1
2
− to equation

(2.8), but X0, 1
2
− is not a subset of CtL

2
x. We then need to prove that u ∈ CtL2

x. Observe
that

(1) S(t)u0 ∈ CtL2
x, so the linear part is continuous.

(2) According to Remark 1.1, Ψ ∈ CtL2
x for φ ∈ HS

(
L2;L2

)
.

(3) In fact, using equation (2.5), we can prove the nonlinear part is in X0, 1
2

+ ⊂ CtL2
x.

so u ∈ C
(
[0, T ];L2

x

)
and we proved local well-posedness of equation (2.1) in L2 (T).

Remark 2.7. Similarly, we can prove local well-posedness of equation (2.1) in Hs (T), for
s ≥ 0, assuming φ ∈ HS

(
L2;Hs

)
. To do so, observe that for any s ≥ 0 and n = n1−n2+n3,

we have

〈n〉s . 〈n1〉s〈n2〉s〈n3〉s
so that, with the same notations,

‖u1u2u3‖
Xs,− 1

2+ .
3∏

j=1

‖uj‖Xs,b

and the rest of the proof follows in the same way.

2.3. Improvement by Moyua and Vega. Previously, we proved Zygmund’s L4-
Strichartz estimates (2.2), but in 2008, Moyua and and Vega proved the improved result
(see [15]):

Theorem 2.8. Let I ⊂ R be an interval, denote L4
I,x = L4

t (I)L4
x (T), then

‖S(t)u0‖L4
I,x
. |I|1/8 ‖u0‖L2(T) (2.10)

Then, by duality and using Hölder’s inequality, we have

∥∥∥∥
�
I
S(−t′)F (t′)dt′

∥∥∥∥
L2
x

= sup
‖f‖L2=1

∣∣∣∣
�
I
〈F (t′), S(t′)f〉L2

x
dt′
∣∣∣∣

≤ sup
‖f‖L2=1

‖F‖
L
4/3
I,x

∥∥S(t′)f
∥∥
L4
I,x

hence, if we apply Theorem 2.8 on ‖S(t′)f‖L4
I,x

, we have

∥∥∥∥
�
I
S(−t′)F (t′)dt′

∥∥∥∥
L2
x

. |I|1/8 ‖F‖
L
4/3
I,x

(2.11)

Also, since S(t− t′) = S(t)S(−t′), applying first Theorem 2.8 and next equation (2.11), we
have
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∥∥∥∥
�
I
S(t− t′)F (t′)dt′

∥∥∥∥
L4
I,x

. |I|1/4 ‖F‖
L
4/3
I,x

(2.12)

which is a bit alike the following lemma (see [5])

Lemma 2.9 (Christ-Kiselev ’01).
∥∥∥∥
� t

0
S(t− t′)F (t′)dt′

∥∥∥∥
L4
I,x

. |I|1/4 ‖F‖
L
4/3
I,x

Once we have this result, we can again prove local well-posedness using a contraction
argument in L4

T,x ∩ CTL4
x, just recall the following results:

(1)
∥∥|u|2u

∥∥
L
4/3
T,x

≤ ‖u‖3L4
T,x

,

(2) Ψ ∈ L4
T,x ∩ CTL2

x.

3. Global well-posedness using Ito calculus approach

Let us first recall the form of the 1 dimensional cubic stochastic nonlinear Schrödinger
equation on T :

i∂tu(t, x)− ∂2
xu(t, x) + |u|2u(t, x) = φ(t, x)ξ(t, x)

Then, if we set ourselves in deterministic case, namely φ = 0, we have

∂t

�
T
|u|2dx = 2 Re

�
T
∂tu · udx = −2 Re i

�
T
∂2
xu · udx+ 2 Re i

�
T
|u|2u · udx

Then, observe
�
T |u|2u · udx =

�
T |u|4dx and, using integration by parts,

�
T ∂

2
xu · udx =�

T |∂xu|2dx. Thus, we have

∂t

�
T
|u|2dx = 0

There is then L2-conservation and we use this result to prove global well-posedness in
L2 (T). However, we cannot use this for stochastic NLS. We will use instead Ito’s lemma
on the mass

M(u) =

�
T
|u|2dx =

∑

n∈Z
|û(n)|2 =

∑

n∈Z

(
p2
n + q2

n

)
(3.1)

where pn = Reu(n) and qn = Imu(n). Then, if we rewrite equation (2.1) in the following
way (let us denote ûn(t) := û(t, n))

dûn =
(
in2ûn + i|̂u|2u(n)

)
dt− iφ̂ndβn

we can split it into

dpn =
(
−n2qn − Im

(
|̂u|2u(n)

))
dt+ Im

(
φ̂ndβn

)
(3.2)

and

dqn =
(
n2pn + Re

(
|̂u|2u(n)

))
dt− Re

(
φ̂ndβn

)
(3.3)

where we have
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



Im
(
φ̂ndβn

)
= Im φ̂nd (Reβn) + Re φ̂nd (Imβn)

Re
(
φ̂ndβn

)
= Re φ̂nd (Reβn)− Im φ̂nd (Imβn)

with Reβn and Imβn independent for any n ∈ Z. Then let us recall Ito’s lemma:

Lemma 3.1 (Ito). Let X be a stochastic process such that

dX = fdt+ gdB

then, if we consider F (X), with F a function, we have

dF = ∂xFdX +
1

2
∂2
xF (dX)2

= ∂xF (fdt+ gdB) +
1

2
∂2
xF · g2dt

Idea of proof. Note that dF is to be understood as
�

dF , the first line is just like a second
order Taylor expansion and the second line follows from the following equalities under an
integral sign :

(1) (dt)2 = 0
(2) dtdB = 0
(3) dBdt = 0

(4) (dB)2 = dt

�

The idea, from now on, is to use Ito’s lemma on the mass M(u). Then we should get

dM = 2
∑

n∈Z
(pndpn + qndqn) + 2

∑

n∈Z

(
(dpn)2 + (dqn)2

)
dt

= 2
∑

n∈Z

(
pn Im

(
φ̂ndβn

)
− qn Re

(
φ̂ndβn

))
+ 2 ‖φ‖HS(L2;L2) dt

Then, we want to use the Burkholder-Davis-Gundy inequality:

Theorem 3.2 (Burkholder-Davis-Gundy inequality). Let X be a (local) martingale and
1 ≤ p <∞, then

E

[
sup
t∈[0,T ]

|Xt|p
]
∼ E

[
〈Xt〉p/2[0,T ]

]
(3.4)

where, in the previous theorem, 〈Xt〉[0,T ] is the quadratic variation. In the case of an Ito
process X (i.e. such that dX = fdt+ gdB), we have

〈Xt〉[0,T ] =

� t

0
g2dt′.

Let us explain how we can use Theorem 3.2 with the following example:
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Example 1. Let us study 2
∑

n∈Z pn Im φ̂nd (Reβn). To do so, we apply Theorem 3.2 on
the following:

E

[
sup
t∈[0,T ]

� t

0
2
∑

n∈Z
pn Im φ̂nd (Reβn) dt′

]
. E



(� T

0

∑

n∈Z
p2
n|φ̂n|2dt

)1/2



. E

[(� T

0
‖u‖2L2 ‖φ‖2HS(L2;L2) dt

)1/2
]

. E



(

sup
t∈[0,T ]

M(u)(t)

)1/2

T 1/2 ‖φ‖1/2
HS(L2;L2)




. εE
[

sup
t∈[0,T ]

M(u)(t)

]
+

1

ε
T ‖φ‖HS(L2;L2)

where the last line comes from Cauchy’s inequality.

Then, using the previous example, we have

E

[
sup
t∈[0,T ]

M(u)(t)

]
≤ ‖u0‖2L2 + C

(
T, ‖φ‖HS(L2;L2)

)

which gives almost sure existence up to time T , but for any finite T, hence the global
well-posedness in L2 (T).

Unfortunately, we cannot directly do these computations. Instead, we will decompose
our solution u using the frequency cutoffs P≤N defined by :

F (P≤Nf) = χ{|n|≤N}f̂ . (3.5)

Remark 3.3. Note that we could use also smooth cutoffs.

From now on, we will consider the finite dimensional approximation:

i∂tuN − ∂2
xuN + P≤N

(
|uN |2uN

)
= φnξ (3.6)

with uN = P≤NuN and φN = P≤N ◦φ. If we write the equation on the Fourier side, we get

idûN =
(
−n2ûN + ̂P≤N (|uN |2uN )(n)

)
dt+ φ̂N (n)dβn (3.7)

with |n| ≤ N . This gives us a finite dimensional system of stochastic partial differential
equations for (pn, qn)|n|≤N . We can then apply Ito’s lemma 3.1, but we need to check that
uN is adapted first. Since we do not know if uN exists globally in time, we need to use a
stopping time argument.

Fix a target time T � 1 and let τ be a stopping time such that

0 < τ ≤ min (T, Tmax)

where Tmax = Tmax(ω) is the maximal time of existence.

Example 2. Fix R > 0, then one can check that

τR = inf {t > 0: ‖u(t)‖L2 ≥ R}



LECTURES 4 AND 5 13

is a stopping time, and this can work for our case.

Then insert χ[0,τ ](t) to the equation (3.7) and apply Ito’s lemma 3.1.Then, by the local

well-posedness argument, we have as N tends to infinity, if we denote T̃ the local existence
time,

‖uN − u‖X0,3/8

t∈[0,T̃ ]
∩C

T̃
L2
x
−→ 0

Then we can verify Ito’s lemma for u and prove global well-posedness. For more details on
this part, see [6] or [16].

Remark 3.4. We can also prove global well-posedness of equation (2.1) on R if we also

inser t a cutoff in size θ
(
‖u‖
R

)
on the nonlinearity in the equation (3.7).
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1. Lecture 5, part II & lecture 6 (17/03/21) & (24/03/21).

1.1. A pathwise approach for the SNLW. It is often not possible to obtain global

well-posedness via a pathwise approach. However, let us look at case that allows such a

method. Consider the (defocusing) SNLW on T3, given by

∂2t u+ (1−∆)u+ u3 = φξ, (1.1)

where φ ∈ HS(L2, Hs−1) for s > 0. Note that in this case Ψ ∈ CtW s−ε,∞
x .

The Duhamel formulation is then

u(t) = ∂tS(t)u0 + S(t)u0 −
ˆ t

0
S(t− t′)u3(t′) dt′ + Ψ(t),

where S(t) = sin(t〈∇〉)
〈∇〉 . Using a method sometimes referred to Da Prato-Debussche trick,

which relies on a first-order expansion of u it is possible to show local well-posedness for the

SNLW. Indeed, we write u(t) = Ψ(t) + v(t) and postulate that the remainder term v ∈ H1.

Note that then v satisfies

v(t) = ulin(t)−
ˆ t

0
S(t− t′)(v(t′) + Ψ(t′))3 dt′ =: Γv,

Date: May 12, 2021.
2010 Mathematics Subject Classification. 35L71, 60H15.
Key words and phrases. stochastic nonlinear wave equation; nonlinear wave equation; damped nonlinear

wave equation; renormalization; white noise; Gibbs measure.
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where ulin is the solution to the linear equation. Let H1 := H1×L2. Then we can estimate

‖(Γv, ∂tΓv)‖CTH1 . ‖(u0, u1)‖H1 + T‖(v + Ψ)3‖L∞T L2
x

= ‖(u0, u1)‖H1 + T‖(v + Ψ)‖3L∞T L6
x

. ‖(u0, u1)‖H1 + T
(
‖v‖3L∞T L6

x
+ ‖Ψ‖3L∞T L6

x

)
.

Hence, as longs as φ ∈ HS(L2, H−1), such that also Ψ ∈ CTL6
x almost surely, we can obtain

local well-posedness for sufficiently small T . To prove this, one can employ a fixed-point

argument for Γ, where the radius of contraction depends on the norm of the initial data

and the (random) norm CTL
6
x-norm of Ψ. For more details on the Da Prato-Debussche

trick we refer to [3], one of the initial articles where this method was exploited. For a more

detailed analysis of the SNLW we refer to [2] and [5].

We can also use this method to obtain global well-posedness. To do that, consider a target

time T0 >> 1. Then for almost all ω there exists a K = K(ω) such that

‖Ψ‖CT0L6
x
≤ K,

and we will obtain a (local) time of existence T = T (‖(u0, u1)‖H1 ,K) > 0. Then, if we

can control ‖(v, ∂tv)‖H1 on [0, T ], we can iterate the above argument on [jT, (j + 1)T ] to

obtain existence on all of [0, T0], where T0, initially, was arbitrary. Thus we get global

well-posedness.

Theorem 1.1. The defocusing SNLW (1.1) is globally well-posed.

Proof. We will use an energy estimate to control ‖(v, ∂tv)‖H1 on [0, T ]. With our first order

expansion u = Ψ + v, the remainder v satisfies

∂2t v + (1−∆)v + (v + Ψ)3 = 0,

where clearly almost surely

(v + Ψ)3 = v3 + 3v2Ψ + 3vΨ2 + Ψ3.

Define the energy

E(v, ∂tv) =
1

2

ˆ

T3

|〈∇〉v|2 dx+
1

2

ˆ

T3

(∂tv)2 dx+
1

4

ˆ

T3

v4 dx.

Then almost surely, taking the derivative yields

∂tE(v, ∂tv) =

ˆ

∂t(∂
2
t v + (1−∆)v + v3) dx

=

ˆ

∂t(−3v2Ψ− 3vΨ2 −Ψ3) dx

. C‖Ψ‖L∞t L∞x
(
ˆ

(∂tv)2 dx

) 1
2
(
ˆ

v4 dx

) 1
2

+ C‖Ψ‖
1
2

L∞T L
6
x

(
ˆ

(∂tv)2 dx

) 1
2

≤ C(Ψ, T ) (1 + E(v, ∂tv)) ,

where we used that (
ˆ

(∂tv)2 dx

) 1
2
(
ˆ

v4 dx

) 1
2

≤ E(v, ∂tv),
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as well as that by Young’s inequality

vΨ2 ≤ 1

2
(v2Ψ + Ψ3).

Hence, applying Grönwall’s inequality yields for some C = C(ω, T ), almost surely

sup
t∈[0,T ]

‖(v(t), ∂tv(t))‖H1 ≤ C <∞.

�

1.2. An invariant measure argument: the Gibbs measure. Up to now we relied

on methods stemming from the deterministic conservation laws. The invariant measure

approach, though similar in nature, is of a different kind. To give an example, consider the

(deterministic, defocusing) NLW

∂2t u+ (1−∆)u+ uk = 0, (1.2)

for k ∈ 2N + 1. We can rewrite this into a Hamiltonian equation of the form

∂t

(
u
∂tu

)
=

(
0 1
−1 0

)(
∂E/∂u

∂E/∂(∂tu)

)
, (1.3)

where E is the energy for the wave equation,

E(u, ∂tu) =
1

2

ˆ

|〈∇〉u|2 dx+
1

2

ˆ

(∂tu)2 dx+
1

k + 1

ˆ

uk+1 dx,

which is conserved under the NLW dynamics. In the finite-dimensional case, the Hamil-

tonian preserves the volume in the phase-space, dud(∂tu). This means we should expect

that dud(∂tu) remains invariant under the flow as infinite-dimensional Lebesgue measure.

However, it is well-known that such a measure cannot exist. Still, following this rationale,

we expect the Gibbs measure

dρ(u, ∂tu) = Z−1e−E(u,∂tu)dud(∂tu),

where Z is a normalizing constant, to be invariant. Note that by plugging in the energy E,

we can write

dρ(u, ∂tu) = Z−1e−
1
k+1

´

uk+1 dxe−
1
2
‖u‖2

H1du⊗ e−
1
2
‖∂tu‖2

L2d(∂tu),

where e−
1
2
‖u‖2

H1du has the form of a Gaussian free field measure, e−
1
2
‖∂tu‖2

L2d(∂tu) is the

spatial white noise measure and Z−1e−
1
k+1

´

uk+1 dx is some weight. Before we continue, let

us briefly discuss the above measures. As we mentioned, we cannot immediately consider

sµs = Z−1e−
1
2
‖u‖2Hsdu

as Gaussian probability measure. However, we can consider it as the limit of truncated

measures of the form

dµs,N = Z−1N e−
1
2
‖P≤Nu‖2Hsd(P≤Nu),

where P≤N is the sharp frequency cut-off, cutting off frequencies greater than N . As such,

it is a measure on

EN = span{en, |n| ≤ N},
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and by Plancherel’s inequality we can write

dµs,N = Z−1N
∏

|n|≤N
e−

1
2
〈n〉2s|û(n)|2dû(n),

with dû(n) the Lebesgue measure on C ∼= R2. Defining the complex-valued independent

standard Gaussian random variables

gn = 〈n〉sû(n), n ∈ N,

we get that under µs,N , u has the representation

uN (x) :=
∑

|n|≤N

gn
〈n〉s e

inx.

We would like to take the limit as N → ∞ and hence have to investigate whether uN
converges appropriately. A computation gives

E
(
‖uN − uM‖2Hσ

)
=

∑

M<|n|≤N

〈n〉2σE|gn|2
〈n〉2s

=
∑

M<|n|≤N
〈n〉2σ−2s → 0,

if and only if 2σ − 2s < −d, which is equivalent to σ < s− d
2 , where d is the dimension of

the Torus. We follow that for such σ, {uN}N∈N is a Cauchy sequence in L2(Ω, Hσ(Td)) (or

by an analogous computation in Lp(Ω, Hσ(Td)), for p <∞), with (almost sure) limit

u(x) =
∑

n∈Zd

gn
〈n〉s e

inx.

Using this, we can understand µs as the pushforward measure P ◦u−1. Note that µs is not

a probability measure on Hs and we needed to enlarge the space to Hσ, where σ satisfies

σ < s − d
2 . In other words, we lowered the regularity in order to enable this construction.

With the same σ, other possible choices of larger spaces include W σ,p, the Besov-spaces

Bσ
∞,∞ as well as the Fourier-Lebesgue spaces FLσ,p for σ < s− d

p . The triple (µs, H
s, B) is

referred to as abstract Wiener space, where B is the enlarged space.

For a more detailed treatise on Gaussian measures in Banach spaces, we refer to [4].

1.3. The one-dimensional NLW.. Let d = 1 and consider again the NLW (1.2) above.

We can write the Gibbs measure as

dρ(u, ∂tu) = Z−1e−
1
k+1

´

uk+1 dxdµ1 ⊗ dµ0(u, ∂tu), where

µ1(du) = e−
1
2
‖u‖2

H1du

µ2(d(∂tu)) = e−
1
2
‖∂tu‖2

L2d(∂tu).

As u ∈ H 1
2
−, the Sobolev embedding gives that u ∈ Lrx almost surely for r <∞. Thus we

know that the weight

0 < e−
1
k+1

´

uk+1 dx ≤ 1, (a.s.),

as well as e−
1
k+1

´

uk+1 dx ∈ Lp(µ1), for p ≤ ∞, almost surely. Therefore we know that

ρ and µ1 ⊗ µ0 are equivalent on H
1
2
−(T) × H−

1
2
−(T). Using an argument by Bourgain
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(94’), see [1], we can establish global well-posedness. We can use the ”finite-dimensional

approximation” uN , which satisfies

∂2t uN + (1−∆)uN + P≤N ((P≤Nu)k) = 0.

In other words, we truncate the initial data and look at a set of lower frequencies, as well

as the associated truncated Gibbs measure

dρN = Z−1N e−
1
k+1

´

(P≤Nu)k+1 dxdµ1 ⊗ dµ0(u, ∂tu).

We can verify that the finite-dimensional system, i.e. for frequencies up to N , is a Hamil-

tonian system, for which the truncated Gibbs measure is invariant. Moreover, notice that

the high-frequency part of u, i.e. u − P≤Nu is a solution of the linear problem, for which

we can consider the Gaussian measure, which is invariant under linear dynamics. Then, on

the one hand we can show that uN converges to u as N →∞. On the other hand, we can

show that the density of ρN converges to the one of ρ in Lp, for 2 ≤ p >∞. Finally we can

show that ρ is invariant under the dynamics of u.

Proposition 1.2. Given T > 0 and ε > 0 there exists ΩN,T,ε ⊂ Ω such that

(i) ρN (Ωc
N,T,ε) < ε, and

(ii) for each ω ∈ ΩN,T,ε the solution (uN , ∂tuN ) = (uωN , ∂tu
ω
N ) exists on [−T, T ] and

satisfies

sup
−T≤t≤T

‖(uN (t), ∂tuN (t))‖H1 .
(

log
T

ε

) 1
2

.

Proof. Fix K >> 1. Let the solution map

ΦN (t) :=

{
H 1

2
−(T) → H 1

2
−(T)

(u0, u1) 7→ (u(t), ∂tu(t))

and define

ΩN,T,ε :=

[t/δ]⋂

j=−[T/δ]
ΦN (−jδ)BK ,

where BK denotes the ball of radius K inH 1
2
−(T) and δ ∼ K−θ is the local time of existence

for solutions starting in BK . To prove the first claim, we can use the σ-additivity of ρ to

write

ρN (Ωc
N,T,ε) ≤

[T/δ]∑

j=−[T/δ]
ρN (ΦN (−jδ)Bc

K)

=

[T/δ]∑

j=−[T/δ]
ρN (Bc

K)

. T

δ
ρN (Bc

K),

where for the second inequality we used that ρN is invariant under ΦN . Then, recalling

that ρN is a Gaussian measure, we can further estimate,

ρN (Ωc
N,T,ε) . TKθe−cK

2
< ε,
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by choosing K ∼
(
log T

ε

) 1
2 . Finally, by a local well-posedness argument on the intervals

[jδ, (j + 1)δ], j = 0, . . . , [Tδ ]− 1, we have

sup
−T≤t≤T

‖(uN (t), ∂tuN (t))‖H1 ≤ CK ∼
(

log
T

ε

) 1
2

,

where we in particular note that the last bound is independent of N . �

To summarize, the set ΩN,T,ε depends on N , but the constant in our final bound is

independent of N . Hence we get the same log bound for the true solution (u, ∂tu) by a

PDE approximation argument. Thus we obtain almost sure global well-posedness.

For the true solution u, we may call the condition, given in in the above proposition

almost a.s. global well-posedness, meaning that for any T, ε > 0 there exists a set ΩT,ε such

that if ω ∈ ΩT,ε the corresponding solution uω exists on [−T, T ] and P (Ωc
T,ε) < ε. From

there we can get a.s. global well-posedness.

Theorem 1.3. The defocusing NLW is a.s. globally well-posed with respect to random

initial data.

Proof. Fix ε and set Ωj = Ω2j ,ε/2j . Then setting

Ωε :=
⋂

j

Ωj , we get P (Ωc
ε) ≤

∑

j

ε

2j
= ε.

Now, if ω ∈ Ωε, then uω exists globally in time. Finally, set

Σ :=
⋃

ε>0

Ωε, ⇒ P (Σc) = inf
ε
P (Ωc

ε) = 0,

and thus we get a.s. global well-posedness. �

2. Lecture 7 (31/03/21)

2.1. Stochastic damped NLW. Consider

∂2t u+ ∂tu+ (1−∆)u+ uk =
√

2ξ,

for k ∈ 2N+ 1, where ξ again denotes white noise. We can write this in vectorial form with

v = ∂tu, meaning,

∂t

(
u
v

)
=

(
v

(−1 + ∆)u− uk
)

+

(
0

−v +
√

2ξ

)
.

Note that the first term on the right-hand side are the deterministic NLW dynamics, whereas

the second term on the right-hand side is an Ornstein-Uhlenbeck (OU) process for v, if we

ignore the NLW dynamics term. We recall from the previous section that the NLW preserves

the Gibbs measure

dρ(u, v) = Z−1e−
1
k+1

´

uk+1 dxdµ1 ⊗ dµ0(u, v).

Moreover, it can be shown that the OU process preserves the spatial white noise measure

µ0(dv) and therefore also preserves the Gibbs measure.
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Let us recall some properties of an OU process X. For parameters a > 0, b ∈ R its

stochastic differential is given by
{
dX(t) = −aX(t)dt+ bdB(t),

X(0) = x0,

where we suppose that x0 ∼ N(0, b
2

2a) is independent from the Brownian motion B. Then

X is given by

X(t) = e−atx0 + b

ˆ t

0
e−a(t−t

′)dB(t′).

It is a Gaussian random variable with variance

E[X2(t)] = e−2atE[x20] + b2
ˆ t

0
e−2a(t−t

′)dt′

= e−2at
b2

2a
+
b2

2a
(1− e−2at)

=
b2

2a
,

i.e. X(t) ∼ N(0, b
2

2a) for all t. With this in mind, let us consider the OU part of our

stochastic damped NLW (SdNLW), that is

∂tv = −v +
√

2ξ.

With the Fourier transform in x this becomes

∂tv̂(n) = −v̂(n) +
√

2dβn,

which we should further separate into Re v̂(n) and Im v̂(n) in order to use the above

properties of the OU process. We note that the distribution of v̂(n) at any time t

is determined by the complex random variable gn ∼ N(0, 1). Moreover, the v̂(n) are

independent for different n, since the βn are independent Brownian motions. Therefore v̂

preserves the spatial whie noise measure µ0 and hence the Gibbs measure ρ.

So we see that both the NLW dynamics and the OU part preserve the Gibbs measure

individually. The questions is, how do we check that together they still preserve the Gibbs

measure? Consider the truncated dynamics

∂2t uN + ∂tuN + (1−∆)uN + P≤N ((P≤Nu)k) =
√

2ξ. (2.1)

Note that we did not truncate the noise term, and further, that for high frequencies |m| > N

we have the linear equation

∂2t P>NuN + ∂tP>NuN + (1−∆)P>NuN =
√

2P>Nξ,

for which the Gaussian measure µ 1
1,N
⊗ µ 1

0,N
is invariant, where by µ 1

j,N
we denote the

marginal measure of µj on E 1
N

:= span{en : |n| > N}, j = 0, 1. Let us further consider the

truncated Gibbs measure from the previous section, which we now write as

dρN (uN , ∂tuN ) = Z−1N e−
1
k+1

´

(P≤Nu)k+1 dx (dµ1,N ⊗ µ0,N (P≤N (uN , ∂tuN )))
⊗(

µ 1
1,N
⊗ µ 1

0,N
(P>N (uN , ∂tuN ))

)
.
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By the invariance of the marginal measures we note that ρN is invariant under the

truncated SdNLW (2.1).

Let LN be the generator of the Markov semigroup Pt for (2.1). In other words, LN is

the time derivative of Pt at t = 0, where for a functional F on the phase space for (u, v),

v = ∂tu, Pt satisfies

PtF ((u, v)) = EF (Φt(u, v)),

with Φ denoting again the solution map. ρN being invariant for (2.1) means that the adjoint

(LN )∗ρN = 0, or in other words, for any functional F ,
ˆ

LNF (u, v)dρ(u, v) = 0.

In our case, the generator can be written as the sum of two generators, i.e.

LN = LN1 + LN2 ,

where LN1 is the generator for the truncated NLW and LN2 is the generator for the OU

process (for v). As a result, by linearity for the adjoint

(LN )∗ρN = (LN1 )∗ρN + (LN2 )∗ρN = 0,

meaning that ρN is invariant under the stochastic damped NLW dynamics (2.1). For here

we can repeat Bourgain’s invariant measure argument to obtain a.s. global-wellposedness

for (2.1), as well as the invariance of ρ under its dynamics, as we did in the previous section.

2.2. Parabolic Φk+1
1 -model. Suppose first we have

du(t) = −γ∇uH(u)dt+
√

2γdW (t)

where by ∇ we mean the Fréchet derivative. For a functional F we can write

L(F (u)) = γTr(D2F (u))− γ〈∇F (u),∇H(u)〉.

L∗(F (u) = 0 is equivalent to
ˆ

LF (u)ρ(du) = γ

ˆ

TrD2F (u)e−H(u) du+ γ

ˆ

〈∇F (u),∇(e−H(u))〉 du

= 0,

by integration by parts. Though it is an informal calculation, it shows how one can check

invariance by hand.

Now, consider

∂tu+ (1−∆)u− uk =
√

2ξ.

We will compute the Markov generator and prove invariance by a truncation argument.

For ûn = an + ibn and N (u) = uk we get

dan =
(
− 〈n〉2an − Re N̂ (u)

)
dt+

√
2dReβn

dbn =
(
− 〈n〉2bn − Im N̂ (u)

)
dt+

√
2d Imβn.
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In fact, note that we consider the truncated dynamics under the projection P≤N , though

we omit the subscript N for readability. Now, we identify the function û with its Fourier

coefficients, which we denote in vector form as ~a and ~b. Then, for a test function F ,

LN1 F (~a,~b) =
∑

n

(
−〈n〉2an∂an +

1

2
∂2an

)
F

+
∑

n

(
−〈n〉2bn∂bn +

1

2
∂2bn

)
F,

LN2 F (~a,~b) =
∑

n

∂anF (−Re(N̂ (u))(n))

+
∑

n

∂bnF (− Im(N̂ (u))(n)),

where LN1 is the generator corresponding to the linear part and LN2 corresponds to the

nonlinear part.

As an example, let us first consider the linear case, i.e. N = 0. Then the Gaussian

measure is

dµN = Z−1N e−
1
2
‖P≤Nu‖2H1dP≤Nu

= Z−1N e−
1
2

∑
n〈n〉2(a2n+b2n)Πndandbn.

To see the invariance, consider for simplicity only the an-part for a fixed n. Recall

first that we impose an = a−n, whereby we lose the factor 1
2 in the following exponential

functions. Then, integration by parts gives
ˆ

(−〈n〉2an∂anF +
1

2
∂2anF )e−〈n〉

2a2n dan

=

ˆ

〈n〉2F∂an(ane
−〈n〉2a2n) +

1

2
F∂2ane

−〈n〉2a2n dan = 0,

where we used that

∂an(ane
−〈n〉2a2n) = e−〈n〉

2a2n − 2〈n〉2a2ne−〈n〉
2a2n

1

2
∂2ane

−〈n〉2a2n = ∂an(−〈n〉2ane−〈n〉
2a2n)

= −〈n〉2e−〈n〉2a2n + 2〈n〉4a2ne−〈n〉
2a2n .

An similar computation also holds for the bn part. Hence we get that (LN )∗ρ = 0.

Now let us consider the truncated Gibbs measure with the nonlinear part, where we again

write LN = LN1 + LN2 . Again we want to check that for test functions F on the Fourier

coefficients,

(LN )∗ρN = 0 ⇔
ˆ

LNF (~a,~b)dρN (~a,~b) = 0.

We will rewrite the weight to

ρN = e−
1
k+1

´

(P≤Nu)k+1

dµN = e−M(~a,~b)dµN ,
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where µN is the same Gaussian measure as above. Then, by the convolution theorem and

the chain rule

∂anM(~a,~b) = ∂an
1

k + 1

∑

n1+···+nk+1=0

ûn1 · · · ûnk+1

= ∂ûnM
∂û

∂an
+ ∂û−nM

∂û−n
∂an

= N̂ (u)(−n) + N̂ (u)(n)

= 2 Re N̂ (u)(n),

where we used that

∂ûnM =
1

k + 1

∑

n1+···+nk+1=−n
ûn1 · · · ûnk ,

and similarly for −n. Analogously,

∂bnM(~a,~b) = iN̂ (u)(−n)− iN̂ (u)(n)

= 2 Im N̂ (u)(n).

To check that

(LN1 + LN1 )∗ρN = 0,

let us fix again an n and focus on the real part. Then, notice that
(
〈n〉2an + Re N̂ (u)(n)

)
∂ane

−M(~a,~b)e−〈n〉
2a2n = −1

2
∂2ane

−M(~a,~b)e−〈n〉
2a2n .

Therefore we have by integration by parts, omitting the imaginary part,
ˆ

(LN1 + LN2 )Fdρ =
∏

n

ˆ

F
(
〈n〉2an∂an + Re N̂ (u)(n)∂an +

1

2
∂2an
)
e−M(~a,~b)e−〈n〉

2a2ndan

= 0.

A similar computation also holds for the bn part, and hence we have the invariance of the

truncated Gibbs measure.
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Singular Stochastic Partial Differential Equations

Thamsanqa Castern Moyo
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Abstract

The lecture notes on singular SPDEs are based on a course taught by professor: TadaHiro
Oh. In particular, we focus on: Lecture 7 (pp 14-15), Lecture 8, and Lecture 9 (pp 1-5) of the
hand written course notes.

1 Introduction

We consider the parabolic Φk+1
1 -model of a two dimensional Stochatic Non-Linear Heat equa-

tions (SNLH) on T2 satisfying the system:

{
∂tu + (1−∇)u− uk =

√
2 ξ,

(u)|t=0= u0 ∈ Hs
(1)

where u = u(t, x) is the velocity field; t is time and x ∈ T2 (periodic domain). Here, ξ denotes
the additive space-time white noise. Since the space-time white noise is more irregular in two
dimension than in one dimension, the SNLH system (1) is not well-posed. To circumvent this
particular problem we introduce renormalisation.

2 The need for renormalisation

In this section we argue why one needs a renormalisation technique to study the two dimensional
SNLH system. In particular we consider

u =
∑

n∈Z2

gn
〈n〉e

in·x,

and a Gaussian free field (GFF) with a density

dµ = Z−1e−
1
2
‖u‖2

H1 du.

We start with a truncated version of u given by

uN =
∑

|n|≤N

gn
〈n〉e

in·x,

for a fixed x ∈ T2, and N ∈ N. Then uN (x) is mean zero Gaussian random variable with variance

σN = E
[
|uN (x)|2

]
=
∑

|n|≤N

1

〈n〉2 ∼ logN,

1



where logN →∞ as n→∞, and the limit u is not a function but a distribution. furthermore we
observe that

E[‖uN‖2Hs ] =
∑

|n|≤N

1

〈n〉2(1−s) <∞,

if and only if s < 0. If s ≥ 0, then u /∈ Hs with positive probability. And as consequence of
Kolmogorov 0-1 law, u /∈ L2(T2) a.s (diverges almost sure). Hence, the SNLH system is ill-posed
since u is a distribution, and in general we cannot define a product of distributions unless we
introduce some structure . In particular, the power uk is ill-defined and thus we need to introduce
a renormalisation.

Remarks

Before, introducing renormalisation structure, we make the following remarks. As defined before,
let

u =
∑

n∈Z2

gn(ω)

〈n〉 e
in·x,

where {gn(ω)} is the independent standard C-valued Gaussian random variable.

In the motivation of why the SNLH system (1) is ill-posed, we deduced that

u ∈ Hs(T2)\L2(T2)

a.s. for s < 0. Now, a natural phenomenon to investigate at this stage will be the case where p < 2
in

Lp(T2) ⊃ L2(T2).

The Case when p=1:

For p = 1: we proceed as follows

Let

Xn =
∑

n∈Z2

gn(ω)

〈n〉 e
in·x,

for fixed x ∈ T2, and

Yn = Xn · 1{{Xn}≤A}
for some A ≥ 0. In view of this formulation, we recall the following theorem.

Theorem 1 (Kolomogorov three series:). Let XN be a sequence of independent random variable.
The random series

∑
n=1Xn converges a.s. if and only if the following conditions hold for some

A > 0:

(i). ∑

n=1

P(|Xn|≥ A) converges.

2



(ii) Let Yn = Xn · 1{{Xn}≤A}, then
∑

n=1 E[Yn], the series of expected values of Yn, converges.

(iii) ∑

n=1

var(Yn) converges.

In our case we obtain
∑

n∈Z2

var(Yn) ≥
∑

n∈Z2

1

〈n〉2E|gn|·1|gn|≤A〈n〉 ≥
∑

n∈Z2

1

〈n〉2E|gn|·1|gn|≤A =∞.

Therefore in view of Theorem 1 (Kolomogorov three series), the series
∑

n∈Z2 Xn diverges on a set
of positive probability. As a consequence of Kolomogorov 0-1 Law, the the series

∑
n∈Z2 Xn diverges

a.s. Now taking the expectation of u ∈ L1(T2) with some cut-off (not relabelled) we observe that

E
(∫

T2

|u(x)|dx
)

=

∫

T2

E(|u(x)|)︸ ︷︷ ︸
I=∞

dx =∞,

for each fixed x as the limit diverges in N. Hence, taking the expectation of the truncated solution
i.e. uN yields the following results: uN does not converge in L1(T2) with positive probability, by
Kolomogorov 0-1 Law, uN diverges in L1(T2) a.s.

On the Regularity of uN :

Since
uN =

∑

|n|≤N

gn
〈n〉e

in·x,

Then,

E
[
uN (x)uN (y)

]
=
∑

|n|≤N

1

〈n〉2 en(x− y),

inserting 〈∇x〉−ε and〈∇y〉−ε on the left side of equation and setting x = y, for n ∈ Z2 we get

E[|〈∇〉−εuN (x)|2] .
∑

|n|≤N

1

〈n〉2+2ε
<∞,

uniformly in N ∈ N. Note, the estimate still holds for uN − uM by similar computation. It is also
worth noting that in the real-setting we have

E[gkng
l
n] = k! δkl,

and in particular, E[g2
n] = 0. Now computing, the Sobolev norm, and applying Minkoski’s inequality

for r <∞ and p ≥ r we infer
∥∥∥∥‖uN (x)‖W s,r

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥ ‖〈∇〉suN (x)‖Lp(Ω)︸ ︷︷ ︸

=p
1
2 ‖···‖L2(Ω)

∥∥∥∥
Lrx(T2)

. p 1
2 ,

uniformly in N ∈ N, for s < 0. Note, a similar computation for uN − M holds. And as such,
{uN}N∈N converges in Lp(Ω,W s,r

x (T2), for s < 0 and r ≤ ∞. As a consequence of Chebyshev’s
inequality, we have an exponential tail estimate:

P
(
‖u‖W s,r

x
> λ

)
≤ Ce−cλ2

.

For higher order powers, we get λ2

k on the left hand side of the estimate.

3



3 Renormalisation

Since u is not a function but only defined in the sense of a distribution, the power term uk is
ill-defined. As such, to make sense of the SNLH system (1) we need to introduce a renormalisation.
In the following presentation, we restrict our attention to the real-valued setting. Our main object
will be a Hermite polynomial.

Hermite Polynomial:

For this we consider a generating function

etx−
1
2
σt2 =

∞∑

k=0

tk

k!
Hk(x, σ), (2)

where the term on the right follows from a series expansion, and we note that Hk(x, σ) is the
Hermite polynomial of degree k. In our case we use the probabilistic kth Hermite polynomial given
by

Hk(x, σ) = (−σ)ne
x2

2σ
dk

dxk
e−

x2

2σ ,

with variance σ. We can easily compute the Hermite polynomials using the following recurrence
relation

Hk+1(x, σ) = xHk(x, σ)− σ d

dx
Hk(x, σ),

to deduce

H0(x, σ) = 1,

H1(x, σ) = x,

H2(x, σ) = x2 − σ,
H3(x, σ) = x3 − 3σx,

H4(x, σ) = x4 − 6σx2 + 3σ.

The importance of these polynomials follows from their orthogonality property, thus settingHk(x) =
Hk(x, 1), we observe that for k,m ∈ N, the L2 product inner of these polynomials with respect to
Gaussian measure on R is ∫

Hk(x)Hm(x)
e
−x2

2√
2π

dx = k! δkm.

In fact, the Hermite polynomial
{
Hk(x)√

k!

}
k∈Z≥0

forms an orthonormal basis of L2

(
R, e

−x2

2√
2π

dx

)
, see

([1], Lemma 1.1.2) for details.

In view of the generating function (2), we also have another important orthogonality property
given by the following lemma.
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Lemma 1. Let f and g be jointly Gaussian random variables with mean zero, let σf and σg be
variance of f and g respectively. Then for any n,m ∈ N, we have

E
[
Hk(f, σf )Hm(g, σg)

]
= δkmk!

{
E[fg]

}k
. (3)

Proof. Taking the product of the generating functions for (f, σf ) and (g, σg) yields:

E
[
etf−

1
2
σf t

2
esg−

1
2
σgs2

]
= etsE[fg]

Using (2) and expanding both sides we obtain

∞∑

k,m=0

tksm

k!m!
E
[
Hk(f, σf )Hm(g, σg)

]
=
∑

k=0

(ts)k

k!

{
E[fg]

}k
.

Identifying the coefficients of the power series yields (3).

On the complex-valued setting, we instead use the (generalised) Laguerre polynomials see [2]
for more details.

3.1 Wick renormalisation

In these lecture notes, we define wick renormalisation as the orthogonal projection onto the Wiener
homogeneous chaoses of degree k by using the Hermite polynomials discussed above. We define the
ordered monomial : ukN : by

: ukN (x) := Hk(uN , σN ),

pointwise where Hk(uN , σN ) is the Hermite polynomial polynomial of degree k as defined in (2).
We note that, for each fixed x ∈ T2, the random variable uN is a mean-zero real valued Gaussian
with variance

σN = E
[
|uN (x)|2

]
=
∑

|n|≤N

1

〈n〉2 ∼ logN. (4)

Here, our σN does not depend on x ∈ T2. And it is also essential to note that, on a manifold M,
σN depends on x ∈M. Using the Hermite polynomials computations shown above we see that

for k = 2, : u2
N := u2

N − σN ,

for k = 3, : u3
N := u3

N − 3σNuN .

Infinite dimension Case:

Let (H,B, µ) be an abstract wiener space. For our two-dimensional case, we consider the Gaussian
measure given by

dµ = Z−1e
1
2
‖u‖2Hdu,

5



and set H = H1(T2), and B = H−ε(T2). Let {ej}j∈N ⊂ B∗ be a complete orthonormal system
of H∗ = H. We consider the product of finitely many Hermite polynomials in different directions
given by

∞∏

j=1

Hkj(〈x, ej〉),

where kj 6= 0 for finitely many j′s. And 〈·, ·〉 = B − B∗ is the dual pairing (in our case its just
a product in H). Let Hk denote the collection of homogeneous wiener chaoses of degree k under
‖·‖L2(B,µ) so that

Hk = span




∞∏

j=1

Hkj(〈x, ej〉) :
∑

j

kj = k



 .

Wiener-Ito decomposition:

Thus, we have

L2(B,µ) =
∞⊕

k=0

Hk,

and we set

H≤k =
k⊕

j=0

Hj ,

to be a polynomial in Gaussian of degree k.

Lemma 2 (Wiener Chaos Estimate). Let k ∈ N. Then, we have

‖X‖Lp(Ω)≤ (p− 1)
k
2 ‖X‖L2(Ω)

for any p ≥ 2 and any X ∈ H≤k.

For more details on the proof see previous lecture notes on hypercontraxtivity (taught by pro-
fessor Tadahiro Oh).

Proposition 1. {: ukN :}N∈N forms a Cauchy sequence in Lp(Ω;W s,r(T2)), s < 0, r ≤ ∞. Denoting
the limit by : uk :, we have

: uk :∈W s,r(T2), s < 0, r ≤ ∞.

Proof. Let {: ukN (x) :}N∈N and {: ukN (y) :}N∈N be sequences in Lp(Ω;W s,r(T2)) so that in view of
(3) the following holds:

E[: ukN (x) : : ukN (y) :] = k!

{
E[uN (x)uN (y)]

}k

= k!
∑

|n|≤N

1

〈n1〉
en1(x− y) · · · 1

〈nk〉
enk(x− y)

= k!
∑

|nj |≤N

k∏

j=1

1

〈nj〉2
en1+···+nk(x− y)

6



Inserting 〈∇x〉−ε and 〈∇y〉−ε, and setting x = y we deduce

E[|〈∇〉−ε : ukN : |2] = k!
∑

|nj |≤N

k∏

j=1

1

〈nj〉2
· 1

〈n1 + · · ·+ nk〉2ε

.ε,k 1,

uniformly in N ∈ N. Computing the Sobolev norm and using the Minkowski inequality for p ≥ r,
we obtain

∥∥∥∥‖: ukN : ‖W s,r

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥‖〈∇〉s : ukN (x) : ‖Lp(Ω)

∥∥∥∥
Lrx

In view of Wiener Chaos estimate i.e. Lemma (2), ‖〈∇〉s : ukN (x) : ‖Lp(Ω)≤ p
k
2 ‖· · · ‖L2(Ω so that

∥∥∥∥‖: ukN : ‖W s,r

∥∥∥∥
Lp(Ω)

. p k2

for s < 0.

Note that, a similar computation holds for (different projections) : ukN : − : ukM :, N ≥M ≥ 1.
In this case, we use max(|nj |≥M which implies 1

〈nj〉2 ≤
1
Mδ

1
〈nj〉2−δ for some δ < ε.

Next we consider the lemma which allows us to study the regularity of stochastic terms.

Lemma 3 (Regularity). Let {XN}N∈N and X be spatially homogenous stochastic process such that
XN , X : R → D′(Td) i.e. for any x0 ∈ Td, {X(t, ·)}t∈R and {X(t, · + x0)}t∈R have the same law.
Suppose that XN (t), X(t) ∈ H≤k, for all t ∈ R

(i) Fix t ∈ R, if there exists s0 ∈ R such that

E
[
X̂(t, n)|2

]
. 〈n〉−d−2s0 (5)

for all n ∈ Zd. Then,

X(t) ∈W s,∞(Td), s < s0, a.s.

Moreover, if there exists θ ≥ 0 such that

E
[
|X̂N (t, n)− X̂(t, n)|2

]
. N−θ〈n〉−d−2s0 (6)

for all n ∈ Zd. Then,
XN → X in W s,∞(Td), s < s0, a.s.

7



(ii) Fix T > 0. Suppose (i) holds on [−T, T ] and consider the difference operator δnf(t) =
f(t+ h)− f(t). If there exists σ ∈ (0, 1) such that

E
[
|δnX̂(t, n)|2

]
. 〈n〉−d−2s0+σ|h|σ

for all n ∈ Zd, |h|≤ 1, and for all t ∈ [−T, T ]. Then,

X ∈ C([−T, T ];W s,∞(Td))

for s < s0 − −σ2 , a.s. Furthermore, if there exists θ > 0 such that

E
[
|δnX̂(t, n)− δnX̂(t, n)|2

]
. N−θ〈n〉−d−2s0+σ|h|σ

for all n ∈ Zd, |h|≤ 1, and for all t ∈ [−T, T ]. Then,

XN → X in C([−T, T ];W s,∞(Td)), s < s0, a.s.

Note that, W s,∞(Td) can be replaced Cs(Td) = Bs
∞,∞(Td).

4 Stochastic Wave Equation

In this part of the lecture notes we show a renormalisation of the two-dimensional stochastic wave
equations (SNLW) on T2 with an additive space-time white noise forcing

{
(∂2
t −∆)u + uk = ξ,

(u, ∂tu)|t=0= (φ0, φ1) ∈ Hs(T2) := Hs(T2)×Hs−1(T2), (x, t) ∈ T2 × R
(7)

where k ≥ 2 is an integer and ξ(x, t) denotes a Gaussian space-time white-noise on T2 × R. In
fact, the current formulation of SNLW system (7) is ill-posed since solutions are expected to be
distributions in space variable, and as such, uk is ill-defined. In addition, it can be shown that the
stochastic convolution

Ψ(t, x) =

∫ t

0

sin(t− t′)〈∇〉
〈∇〉 dW (t′), (8)

where Ψ(t, x) ∈ CtW s,∞
x (T2)\L2(T2) is also ill-posed for s < 0 a.s. For more details on this see

[2], and references therein. Similarly to the SNLH system, this problem is cured by introducing a
renormalisation.

4.1 Renormalised SNLW

We define the ordered monomial : Ψk
N (t, x) : of the truncated stochastic convolution by

: Ψk
N (t, x) := Hk

(
ΨN (t, x), σN (t)

)

where Hk

(
ΨN (t, x), σN (t)

)
is the Hermite polynomial of degree k. Following the presentation in

[2], ΨN (t, x) is a Gaussian random variable with variance

8



σN (t) = E[|ΨN (t, x)|2] ∼ t logN.

Next, we look at an example where we can apply regularity Lemma 3 in : Ψk
N (t, x) :.

Proposition 2. {: Ψk
N (t, x) :}N∈N forms a Cauchy sequence in LP (Ω;W−ε,∞x ), p <∞ a.s.

Proof. Here, we only verify (5) in the Regularity Lemma 3. Now in view of (3), we deduce that

E
[
| ̂: Ψ(t, x)kN :(t, n)|2

]
=

∫

T2
y

∫

T2
x

E
[

: Ψ(t, x)kN (t, x) :: Ψ(t, x)kN (t, y) :

]
en(y − x) dxdy

= k!

{
E[ΨN (t, x)ΨN (t, y)]

}k
.

Using Ito isometry, we have

E[ΨN (t, x)ΨN (t, y)] =
∑

|m|≤N

∫ t

0

(
sin(t− t′)〈m〉

〈m〉

)2

dt em(x− y)

therefore,

E
[
| ̂: Ψ(t, x)kN :(t, n)|2

]
.

∑

n1+···nk=n

k∏

j=1

1

〈nj〉2
. 〈n〉−2+ε,

where ε = −2s0 in regularity Lemma. Thus ΨN (t, x) ∈W s,∞, s < 0 a.s.

9



Lecture (9):

So far, we checked the regularity of the wick power (same as wick monimial)

: Ψk(t, x) := lim
N

: Ψk
N (t, x) :, ΨN (t, x) = P≤Ψwave(t, x)

of the stochastic convolution in 2-d SNLW case using (5) for a fix t in part (i) of the regularity
Lemma 3. Then, for part (ii) of Lemma 3 i.e. the difference part, we simply use the mean value
Theorem to get 〈n〉σ|h|σ.

Note that (dropping N), by construction

: Ψk :∈ Hk.

Then, in view of the Wiener chaos estimate in Lemma 2 and Chebyshev’s inequality, we get

P
(
‖: Ψk : ‖LqTW−ε,∞x

> λ

)
≤ C exp

(
−c λ

2
k

T
1+ 2

qk

)

for all ε > 0, finite q ≥ 1, T > 0. For q = ∞, we can use the Garsia-Rodemich-Rumsey inequality
and get

P
(
‖: Ψk : ‖L∞([j,j+1];W−ε,∞x (T2))> λ

)
≤ exp

(
−c λ

2
k

j + 1

)
.

For more details see [3] and references therein.

4.2 2-d Heat convolution

In the following computations, we use Lemma 3 part (i) to show regularity of stochastic convolution
in the Heat case. For 2-d SNLH system(1), the stochastic convolution is given by

Ψ =

∫ t

0
e(t−t′)(∆−1) dW (t′). (9)

Now, using Lemma 3 we infer the following Proposition holds a.s.

Proposition 3. {: Ψk
N (t, x) :}N∈N forms a Cauchy sequence in Lp(Ω;CtC

−ε
x (T2)) and in CtC

−ε
x (T2),

and C−ε = Bε
∞,∞

Proof. (dropping N):

We only verify (5) in the Regularity Lemma 3. Now in view of (3), we deduce that

E
[
| ̂: Ψ(t, x)k :(t, n)|2

]
=

∫

T2
y

∫

T2
x

E
[

: Ψ(t, x)k(t, x) :: Ψ(t, x)k(t, y) :

]
en(y − x) dxdy

= k!

{
E[Ψ(t, x)Ψ(t, y)]

}k
.

10



Using Ito isometry, we have

E[Ψ(t, x)Ψ(t, y)] =
∑

m

∫ t

0
e−2(t−t′)〈m〉2 dt em(x− y) =

1− e−2〈m〉2

〈m〉2

therefore,

E
[
| ̂: Ψ(t, x)kN :(t, n)|2

]
.

∑

n1+···nk=n

k∏

j=1

1

〈nj〉2
. 〈n〉−2+ε

for all ε > 0 in regularity Lemma. Thus : Ψk : (t, x) ∈ CtC−εx (T2) a.s.

Idea of the proof of the regularity Lemma 3:

Assuming that all stochastic process are spatial homogeneous i.e. Translation invariance (in x)
we get

E[X̂(t, n)X̂(t,m)] = 0

for n+m 6= 0, in the real-value setting. Noting the difference frequencies we get

E[X̂(t, n)X̂(t,m)] =

∫ ∫
E[X(t, x)X(t, y)]︸ ︷︷ ︸

II

e−n(x)e−m(y)︸ ︷︷ ︸
=e−(n+m)(x)em(x−y)

dxdy,

where II = F̂ (t, x− y) for a fixed t. Then,

E
[
X̂(t, n)X̂(t,m)

]
= F̂ (t,m)

∫

Td
e−i(n+m)·x dx = 0

for n + m 6= 0. Now suppose (5) holds for a fixed t. Then, for p >> 1,r >> 1. The Sobolev
inequality yields ∥∥∥∥‖X‖W s,∞

∥∥∥∥
Lp(Ω)

.
∥∥∥∥‖X‖W s+ε,∞

∥∥∥∥
Lp(Ω)

Using Minkowski inequality for p ≥ r, we get

∥∥∥∥‖X‖W s+ε,∞

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥‖〈∇〉s+εX‖Lp(Ω)

∥∥∥∥
Lr
.

Finally, using Wiener chaos estimate Lemma (2)

∥∥∥∥‖〈∇〉s+εX‖Lp(Ω)

∥∥∥∥
Lr
≤ p k2

∥∥∥∥ ‖
∑

n

〈n〉s+εX̂(n)en(x)‖L2(Ω)

︸ ︷︷ ︸
G

∥∥∥∥
Lr
,

where

G = ⊕
(∑

n

〈n〉2(s+ε)
E[|X̂(n)|2]

) 1
2

.

Using (5), we get

11



∥∥∥∥‖〈∇〉s+εX‖Lp(Ω)

∥∥∥∥
Lr
. p k2


∑

n∈Zd
〈n〉2(s+ε)−d−2s0




1
2

<∞,

for s < s0 (by taking 0 < ε << 1 such that s + ε < s0). To prove part (ii) of Lemma 3, we use
Kolomogorov continuous criterion.
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LECTURE 9 AND LECTURE 10.

GUOPENG LI

1. Lecture 9 (Continues from the start of Section 2.1 of hand-written

lecture notes)

1.1. LWP of SNLW on T2.

Lemma 1.1. Basic product estimates

(i) fractional Leibniz rule:

Let 0 ≤ s ≤ 1, 1 < pj , qj , r <∞, 1
pj

+ 1
qj

= 1
r , and j = 1, 2. We have

‖〈∇〉s(fg)‖Lr(Td) . ‖f‖Lp1‖〈∇〉sg‖Lq1 + ‖g‖Lq2‖〈∇〉sf‖Lp2

(ii) Let s > 0, 1 < p, q, r <∞, and 1
p + 1

q ≤ 1
r + s

d . We have

‖〈∇〉−s(fg)‖Lr(Td) . ‖〈∇〉−sf‖Lp‖〈∇〉sg‖Lq

Proof. The proof of (i), we use the fractional Leibniz rule on Rd1 and transference principle

[3]. The proof of (ii), see [3]. Here, f is merely a distribution but the product fg makes

sense as long as the sum of the regularities is greater or equal to 0. �

In the following we study the following stochastic nonlinear wave equations (SNLW) on

the two-dimensional torus T2 = (R/Z)2 with an additive space-time white noise forcing:
{
∂2
t u+ (1−∆)u+ uk = ξ

(u, ∂tu)|t=0 = (u0, u1)
(x, t) ∈ T2 × R+, (1.1)

where ξ(x, t) denotes a (Gaussian) space-time white noise on T2 × R+. Next, we truncate

the noise by writing it as ξN = P≤Nξ. Then, we consider the truncated SNLW:

(∂2
t + 1−∆)uN + ukN = ξN ,

where ukN has no truncation. In particular, we write the Duhamel form of uN as following

decomposition: (stochastic convolution + reminder part)

uN = ΨN + vN .

Then, by the binomial theorem we see that ukN satisfies:

ukN =

k∑

j=0

(
k

j

)
Ψj
Nv

k−j
N .

1See also Coifman-Meyer theorem and Kato-Ponce inequality.

1
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We note here Ψj
N has no limit for j ≥ 2. Hence, we need to renormalize it by using the

Wick renormalization. Namely, we replace Ψj
N by its Wick ordered counterpart:

:Ψj
N (x, t) :

def
= Hj(ΨN (x, t);σN (t)),

whereH`(x;σ) is the Hermite polynomial of degree j with variance parameter σ and σN (t) ∼
t logN. Then, for each j ∈ N, the limit of Wick power :Ψj

N : exists a.s.. Now, we define the

renormalized nonlinearity :ukN : is interpreted as

:ukN := :(ΨN + vN )k : =
k∑

j=0

(
k

j

)
:Ψj

N : vk−jN .

For the above definition, it is only defined for uN of the form uN = ΨN + vN . Here, the

residual term vN satisfies

(∂2
t + 1−∆)vN +

k∑

j=0

(
k

j

)
:Ψj

N : vk−jN = 0.

By taking a limit as N →∞, we then obtain the limiting equation:

(∂2
t + 1−∆)v +

k∑

j=0

(
k

j

)
:Ψj : vk−j = 0. (1.2)

Then, the “solution” u to the renormalized SNLW:

(∂2
t + 1−∆)u+ :uk : = ξ (1.3)

is given by

u = Ψ + v (1.4)

Remark 1.2. Here, the equation (1.3) for u is just a fomal expression. For example, when

k = 3, we have

(∂2
t + 1−∆)u+ u3 − 3 ∞︸︷︷︸

=limN→∞ σ

u = ξ

By (1.3), we really mean (1.2) with the first order decomposition of (1.4)

2. Lecture 10, date 09/04/21

We consider the following deterministic NLW:
{

(∂2
t + 1−∆)v +

∑k
j=0

(
k
j

)
Ξ` v

k−j = 0

(u, ∂tu)|t=0 = (u0, u1)
(2.1)

for given initial data (v0, v1) and a source (Ξ, . . . ,Ξk) with the understanding that Ξ0 ≡ 1.

We call the following expression enhanced data set:

ΞΞΞ = (u0, u1,Ξ1,Ξ2, . . . ,Ξk). (2.2)

We define X s(T2) by

X s(T2)
def
= Hs(T2)×

(
L∞([0, 1];W−ε,∞(T2))

)⊗k
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and set

‖ΞΞΞ‖X s = ‖(v0, v1)‖Hs +
k∑

j=1

‖Ξj‖L∞([0,1];W−ε,∞)

for ΞΞΞ = (u0, u1,Ξ1,Ξ2, . . . ,Ξk) ∈ X s(T2). Then, we have the following local well-posedness

result for (2.1).

Proposition 2.1. There exists εk > 0 small such that, for 0 ≤ ε < εk, (2.1) is locally

well-posed. More precisely, given an enhanced data set:

ΞΞΞ = (v0, v1,Ξ1,Ξ2, . . . ,Ξk) ∈ X s(T2),

there exist T = T (‖ΞΞΞ‖X s) > 0 and a unique solution v to (2.1) in the class:

C([0, T ];H1−ε(T2)). (2.3)

In particular, the uniqueness of v holds in the entire class (2.3). Furthermore, the solution

map: ΞΞΞ 7→ v ∈ C([0, T ;H1−ε(T2)) is continuous.

Proof. Case 1: s = 1− ε.
By writing (2.1) in the Duhamel formulation, we have

v(t) = Γ(v)
def
= ∂tS(t)u0 + S(t)u1

+

k∑

j=0

(
k

j

)
ˆ t

0
S(t− t′)

(
Ξj v

k−j)(t′)dt′,
(2.4)

where the map Γ = ΓΞΞΞ depends on the enhanced data set ΞΞΞ in (2.2) and S(t) = sin t〈∇〉
〈∇〉 .

Fix 0 < T < 1.

We first treat the case j = 0. From (2.4) and applying Sobolev’s inequality twice, we

obtain
∥∥∥∥
ˆ t

0
S(t− t′)vk(t′)dt′

∥∥∥∥
CTH

1−ε
x

. T‖vk‖CTH−εx . T‖v
k‖
CTL

2
1+ε
x

. T‖v‖k
CTL

2k
1+ε
x

. T‖v‖k
CTH

1−ε
x

,

provided that

0 ≤ ε ≤ 1

k − 1
.

Case 2: 1 ≤ ` ≤ k − 1.

It follows from Lemma 1.1 (ii) and then (i) followed by Sobolev’s inequality that
∥∥∥∥
ˆ t

0
S(t− t′)

(
Ξj v

k−j)(t′)dt′
∥∥∥∥
CTH

1−ε
x

. T‖Ξj vk−j‖L∞T H−εx

. T‖〈∇〉−εΞj‖
L∞T L

2
ε
x

‖〈∇〉εvk−j‖L∞T L2
x

. T‖ΞΞΞ‖X 1−ε‖〈∇〉εv‖k−j
L∞T L

2(k−j)
x

. T‖ΞΞΞ‖X 1−ε‖v‖k−j
CTH

1−ε
x

,
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provided that

0 ≤ ε ≤ 1

2(k − 1)
.

Case 3: j = k.

Lastly, we have
∥∥∥∥
ˆ t

0
S(t− t′)Ξk(t′)dt′

∥∥∥∥
CTH

1−ε
x

. T‖Ξk‖CTH−εx ≤ T‖ΞΞΞ‖X 1−ε .

Putting Case 1, 2 and 3 together, we have

‖Γ(v)‖CTH1−ε
x
≤ C1‖(u0, u1)‖H1−ε + C2T‖ΞΞΞ‖X 1−ε

(
1 + ‖v‖CTH1−ε

x

)k−1

+ C3T‖v‖kCTH1−ε
x

.

A similar estimate hols for the difference Γ(v1) − Γ(v2). Therefore, by choosing T =

T (‖ΞΞΞ‖X 1−ε) > 0 sufficiently small, we conclude that Γ is a contraction in the ball of radius

R ∼ ‖(u0, u1)‖H1−ε + ‖Ξk‖C([0,1];W−ε,∞x ).

�

Summary:

Know: 2− d NLW is ill-posed in negative Sobolev spaces, see [1, 4, 2]. In particular, if we

consider the 2− d SNLW such that

(u0, u1, ξ)→ u

is ill-posed. The idea is that we decompose the ill-defined solution map into two steps:

(i) use stochastic analysis (only in this step) to construct an enhanced data set.

(ii) use deterministic analysis to prove LWP for the remainder term

v = u−Ψ.

(u0, u1, ξ)
(i)7−→Ξ = (u0, u1,Ψ, :Ψ

2 :, · · · , :Ψk :)
(ii)7−→ v 7−→ u = Ψ + v

where the step (i) is not continuous but the step (ii) is a continuous map.

Theorem 2.2. There exists εk > 0 small such that for 0 < ε < εk, the renormalized

SNLW on T2 is locally well-posed in H1−ε(T2). Moreover, the solution uN to the truncated

renormalized SNLW:

(∂2
t + 1−∆)uN +uk := ξN

converges to

u = Ψ + v ∈ C([0, Tω];H−ε(T2)),

a.s..

Remark 2.3. (i) First order expansion u = Ψ + v

• trick to solve the equation

• also gives a description. For example, in small scales, u “behaves like” Ψ.
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(ii) Without renormalization, no non-reivial limit exists (uN → 0 or linear solution). This

is called triviality [5].

(iii) Regularization on ξ:

• by P≤N
• by mollification ξδ = ηδ ∗ ξ (spatial/ space-time),

which give a same limit.

Q: Rougher initial data? We consider the NLW on Rd:

(∂2
t −∆)u+ uk = 0

• Scaling invariance: scaling critical regularity sc

sc =
d

2
− 2

k − 1

• Lorentz invariance (conformal):

sconf =
d+ 1

4
− 1

k − 1

Then, we have

scrit = max(sc, sconf, 0).

Hence, when d = 2

scrit = max(1− 2
k−1 ,

3
4 − 1

k−1 , 0).

Theorem 2.4. [3] (i) when k = 2, 3 and let s > scrit.

(ii) when k ≥ 4 and let s > scrit.

Then, the renormalized SNLW on T2 is locally well-posed in Hs(T2).

Proposition 2.5. Strichartz estimates

Let 0 ≤ s ≤ 1. We say (q, r) s-admissible and (q̃, r̃) dual s-admissible if

1 ≤ q̃ ≤ 2 ≤ q ≤ ∞ 1 ≤ r̃ ≤ 2 ≤ r ≤ ∞
(q, r, d) 6= (2,∞, 3) (q̃, r̃, d) 6= (2, 1, 3).

If the following conditions hold:

scaling :
1

q
+
d

r
=
d

2
− s =

1

q̃
+
d

r̃
= 2

admissibility :
1

q
+
d− 1

2r
≤ d− 1

4
,

1

q̃′
+
d− 1

2r̃′
≤ d− 1

4
.

Note here, (q̃, r̃) dual s-admissible if and only if (q̃′, r̃′) is (1− s)-admissible.

Then, for the SNLW on Td:
{

(∂2
t + 1−∆)u+ = F

(u, ∂tu)|t=0 = (u0, u1)

we have the following estimates:

‖(u, ∂tu)‖L∞T Hsx + ‖u‖LqTLrx . ‖(u0, u1)‖Hsx + ‖F‖
Lq̃TL

r̃
x
.
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Also,

‖(u, ∂tu)‖L∞T Hsx + ‖u‖LqTLrx . ‖(u0, u1)‖Hsx + ‖F‖L1
TH

s−1
x

,

for 0 ≤ T ≤ 1.

Proof. Follows from Strichartz estimates on Rd, see [7]. �

Proof of the theorem: We only consider the case when k = 3 and the critical regularity

scrit = 1
4 . For the general case see [3, 6].

Let

(q, r) = ( 12
1+4δ ,

3
1−2δ ), (1

4 + δ)− admissible.

(q̃, r̃) = ( 12
9+4δ ,

3
3−2δ ), (1

4 + δ)− admissible.

The nonlinearity is

Ξjv
3−j ∈ Lq̃TLr̃x + L1

TH
s−1
x .

For example,

‖v3‖
Lq̃TL

r̃
x

= ‖v‖3
L

36
9+4δ
T L

9
3−2δ
x

. T θ‖v‖3LqTLrx

where 36
9+4δ < q < 12

1+4δ and 9
3−2δ < r < 3

1−2δ . Now, if s− 1 ≤ −ε

‖Ξ3‖L1
TH

s−1
x
≤ T‖Ξ3‖L∞T W−ε,∞x

≤ T‖Ξ‖X s .

Lastly, for s− 1 = −3
4 + δ we use Sobolev’s inequality

‖Ξjv3−j‖L1
TH

s−1
x
≤ ‖〈∇〉−δ(Ξjv3−j‖L1

TL
2
x

. ‖〈∇〉−δΞj‖L∞T L∞x ‖〈∇〉
δv3−j‖

L1
TL

8
7−8δ
x

.

By using Lemma 1.1, we see that when j = 2:

‖〈∇〉δv3−j‖
L1
TL

8
7−8δ
x

. T‖v‖L∞T Hδ
x
≤ T‖v‖L∞T Hs

x
,

and when j = 1:

‖〈∇〉δv3−j‖
L1
TL

8
7−8δ
x

. T‖〈∇〉δv2‖
L∞T L

16
7−8δ
x

. T‖v‖2
L∞T H

1+16δ
8

x

.

Let us define the Y s(T )-norm to be

‖~u‖Y s(T ) = ‖(u, ∂tu)‖L∞T Hsx + ‖u‖LqTLrx .

Then, we have

‖~Γ(v)‖Y s(T ) = ‖(Γ(v), ∂tΓ(v))‖Y s(T )

≤ C1‖(u0, u1)‖Hs + C2(‖v‖Y s(T ) + ‖Ξ‖Z−δ)3

where ‖Ξ‖Z−δ =
∑3

j=1 ‖Ξj‖L∞([0,1];W−δ,∞x )
. A similar estimate holds for the difference.

�
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SINGULAR STOCHASTIC DISPERSIVE PDES

FOIVOS KATSETSIADIS

1. Lecture 11

1.1. 2-d. Stochastic NLH. We study the P (Φ)2-model (or Φk+1
2 -model) where P denotes

a polynomial. We want to prove local well-posedness for the equation

∂tu+ (1−∆)u+ uk =
√

2ξ. (1.1)

The basic space on which we will be looking for solutions is Cs(T2) = Bs
∞,∞(T2)

We introduce the stochastic convolution, which is given by

Ψ = Ψheat =

� t

0
P (t− t′)dW (t′) , P (t) = et(∆−1) (1.2)

and belongs to the space CtC
s
x(T2) for all s < 0, a.s. (as well as in Lp(Ω)).

As in the case of the 2 dimensional stochastinc non-linear wave equation, we use the first

order expansion:

u = Ψ + v (1.3)

(see [5]) and solve the equation for v = u−Ψ:

∂tv + (1−∆)v + (v + Ψ)k = 0 (1.4)

Since Ψ is not a function (i.e. it is only a distribution-valued function), Ψj does not

make sense for j ≥ 2 and thus we consider the renormalized version:

∂tv + (1−∆)v +
k∑

j=0

(
N

k

)
: Ψj : vk−j = 0 (1.5)

where Ψj = limN→∞ : (P≤NΨ)j :

On the following, we only consider (SNLHv), but we can also show that vN → v where

vN satisfies

∂tvN + (1−∆)vN +

k∑

j=0

(
k

j

)
: Ψj

N : vk−jN = 0 (1.6)

2010 Mathematics Subject Classification. 35L71, 60H15.
Key words and phrases. stochastic nonlinear wave equation; nonlinear wave equation; damped nonlinear

wave equation; renormalization; white noise; Gibbs measure.
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2 F. KATSETSIADIS

where ΨN = P≤NΨ and hence uN = ΨN + vN → u = Ψ + v

Our main tool is the paraproduct decomposition (see [1]). We let f, g ∈ Td (or Rd) of

regularities s1 and s2. Then,

fg = f < g + f = g + f > g =
∑

j<k−2

Pj(f)Pk(g) +
∑

|j−k|≤2

Pj(f)Pk(g) +
∑

k<j−2

Pj(f)Pk(g)

(1.7)

• Pj = Lp projection onto {|n| ∼ 2j} (for j = 0 this is just {|n| ≤ 1})
• f < g = Paraproduct of g by f

- Always makes sense (for any s1, s2 ∈ R) as a distribution with regularity

min(s1, s1 + s2)

• The same for f > g ∼ min(s1, s1 + s2).

• f = g : Resonant product of f and g.

- May not make sense as a distribution. In general, if s1 + s2 > 0, then f = g ∼
s1 + s2 makes sense

- Recall the product estimate (ii) from GKO, where f =g makes sense for s1+s2 =

0 in terms of Sobolev spaces.

In studying nonlinear PDEs, the main task is to make sense of (or give a meaning to)

the nonlinearity uk. Since the paraproduct f < g and f > g always make sense, the main

job is to make sense of the resonant product f = g (more in the parabolic thinking). When

there is an issue in making sense of uk, we overcome this issue by imposing a structure on

u:

u = Ψ + v , u ∈ Xs,b (1.8)

Lemma 1.1. (Paraproduct estimates) Let s1, s2 ∈ R and let 1 ≤ p, p1, p2, q ≤ ∞, where
1
p = 1

p1
+ 1

p2

(1) ||f < g||
B
S2
p,q
. ||f ||Lp1 ||g||s2Bp2 ,q

(2) If s1 < 0 then ||f < g||
B
s1+s2
p,q

. ||f ||s1Bp1,q ||g||
s2
Bp2,q

(3) If s1 + s2 > 0 then ||f = g||s1+s2
Bp1,q

. ||f ||s1Bp1,q ||g||
s2
Bp2,q

Note that in (1), f is a function if s1 ≥ 0 and in (1) and (2) one has f < g ∼ min(s2, s1 +

s2)

Proof. We begin by proving (1). We have

||f < g||Bs2p,q ∼ ||2
s2k||Pk(f < g)||Lpx ||lqk(Z≥0) (1.9)

where Pk projects to frequencies ∼ 2k. We have
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Pk(f < g) =
2∑

i=−2

∑

j<k+i−2

Pj(f)Pk+i(g) (1.10)

Heuristically, one has that freq. of f < g ∼ freq. of g. Now, let Sk(f) =
∑

j<k Pj(f)

which projects f onto the set of frequencies {|n| . 2k}. Therefore,

Pk(f < g) =
2∑

i=−2

Sk+i−2(f)Pk+i(g) (1.11)

Now, we take the Lpx-norm and apply Hölder’s inequality:

||Pk(f < g)||Lpx =
2∑

i=−2

||Sk+i−2(f)||Lp1 ||Pk+i(g)||Lp2 (1.12)

Taking into account that ||Sk+i−2(f)||Lp1 . ||f ||Lp1 uniformly in k and i, we then multiply

by 2s2k and take the lqk norm on both sides to obtain

||f < g||
B
S2
p,q
. ||f ||Lp1 ||g||Bs2p,q (1.13)

We now proceed to prove (2). We have

Pk(f < g) ∼
2∑

i=−2

2−s1j2s1k
∑

0≤j<k+i−2

Pj(f)2s2kPk+i(g) (1.14)

.
∑

i

∑

0≤j≤k+i−2

2s1(k−j)(2s1j ||Pj(f)||Lp1 )(2s2(k+i)||Pk+i(g)||Lp2 ) (1.15)

where we took the Lpx-norm and applied Hölders inequality. We then take lqk-norms. This

concludes the proof of (2).

Finally, we prove (3). One has

2(s1+s2)kPk(f = g) =
2∑

i=−2

2(s1+s2)(k−j) ∑

j≥k−10

Pk(2
s1jPj(f)2s2jPj+i(g)) (1.16)

We then take lqk-norms and viewing the terms summed over i on the right hand side as

convolutions of 2(s1+s2)j1j≤0 (recall that s1 +s2 > 0) and Pj(f)Pj+i(g)1j≤0 (which are both

in lqj (Z)) we use Young’s inequality to obtain

||f = g||
B
s1+s2
p,q

. ||f ||Bs1p1,q ||g||Bs2p2,∞ (1.17)

This completes the proof.

�
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Corollary 1.2. Let s > 0. Then, Cs(Td) = Bs
∞,∞(Td) is an algebra with ||fg||Cs .

||f ||Cs ||g||Cs

We now go back to (SNLHV ). The Duhamel formulation reads

v(t) = Γv(t) = P (t)u0 −
k∑

j=0

(
k

j

)� t

0
P (t− t′) : Ψj : vk−j(t′)dt′ (1.18)

where : Ψj :∈ CtC−εx .

Let s > 0. We write s = 2ε. Then,

||Γv||CTCsx . ||u0||Cs +

k∑

j=0

(
k

j

) � t

0
(t− t′)− 3

2
ε|| : Ψj : vk−j(t′)||C−εdt′ (1.19)

and we also have the bound

|| : Ψ : vk−j || . || : Ψj : ||C−ε ||v||k−jC2ε (1.20)

The moral of this is that in order to make sense of the product, the sum of the regularities

must be > 0. However, the resulting regularity of the product is given by one of the

paraproducts.

Example 1. Let s1 < 0 < s2. We need s1 + s2 > 0, but fg ∼ s, coming from f > g.

Hence, we have

||Γv||CTCsx . ||u0||Cs +

k∑

j=0

T θ · || : Ψj : ||CTC−εx ||v||
k−j
CTCs

(1.21)

for s > 0 (s.t. s+ ε > 0). We thus obtain local well posedness of SNLHv in Cs(Td)
We will now consider rougher initial data, i.e. the case of u0 ∈ Cs(T2) for s < 0. We

have

||u||Y (T ) = sup
0<t<T

tθ||u(t)||Cσx (1.22)

where σ, θ > 0. Hence,

tθ||Γv(t)||Cσx . tθt
s−σ
2 ||u0||Cs +

k∑

j=0

(
k

j

)
tθ
� t

0
(t− t′)− 3

2
ε|| : Ψj : vk−j(t′)||C−εx dt′ (1.23)

where we set θ = σ−s
2 and σ = 2ε.

We also have the bound

|| : Ψ : vk−j(t′)||C−εx . || : Ψj : ||CTC−εx ((t′)θ||v(t′)||C2ε
x

)k−j(t′)−(k−j)θ (1.24)
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where we note that ((t′)θ||v(t′)||C2ε
x

)k−j ≤ ||v||k−jY (T ). We need to control

tθ
� t

0
(t− t′)− 3

2
ε(t′)−(k−j)θdt′ (1.25)

for t ≤ T . To this end, we recall some facts about the Beta funciton:

B(x, y) =

� 1

0
(1− t)x−1ty−1dt Rex,Rey > 0 (1.26)

and

ta1
� t

0
(t− t′)α2(t′)α3dt′ = B(a2 + 1, a3 + 1) <∞ (1.27)

where a1 + a2 + a3 = −1 and a2, a3 > −1

In order to bound 1.25 we need θ + (−3
2ε) + (−kθ) ≥ −1, therefore we get s > − 2

k−1 .

Since we also need the corresponding a2, a3 > −1 to apply the formula that involves the

Beta function given above, we additionally get ε < 2
3 and θ = ε − s

2 < 1/k. Therefore,

in these cases, the expression 1.25 is finite. Hence, by a contraction argument, we obtain

v ∈ Y (T ) that satisfies the equation in the Duhammel formulation. This implies that

v ∈ C([0, T ];Cσx (T2)), with σ = 2ε > 0. A posteriori we can show that v ∈ C([0, T ];Csx(T2)),

with s < 0. We thus obtain local well-posedness for (SNLHv) in Cs(T2) for s > − 2
k .

2. Lecture 12

2.1. Global-in-time aspects.

2.1.1. Parabolic P (Φ)2-model.

(∂t + 1−∆)u+ uk =
√

2ξ on T2, k ∈ 2N + 1 (2.1)

We renormalize the nonlinearity : uk+1 :

Pathwise approach: Control the Lp - norm (p = p(k)) of v = u−Ψ. Why is this enough?

One has

(∂t + 1−∆)v +
k∑

j=0

(
N

k

)
: Ψj

N : vk−jN = 0 (2.2)

with the initial condition v|t=0 = u0.

As in Lec. 11, we work with the Y (T )-norm:

||u||Y (T ) = sup
0<t<T

tθ||u(t)||Cσ (2.3)

where σ = 2ε > 0, θ = ε− s
2 and 2 2

k < s < 0.

tθ||Γ(v)(t)||Cσ . tθt−
σ
2
− d

2
( 1
p
− 1
∞ )
supm||Pmu0||Lp + Duhamel term (2.4)
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We then need θ − σ
2 − 1

p ≥ 0 i.e. 1
p ≤ − s

2 which is equivalent to p ≥ − s
2 >> 1. when

s→ 0− i.e. k →∞.

Then, we obtain local well-posedness of (SNLHv) in Lp(T2) and the local existence time

∼ (||u0||Lp(T2) +Wick powers of Ψ)−σ. For fixed T >> 1, the part with the Wick powers

inside the parenthesis may be large, but finite a.s.

k∑

j=1

|| : Ψj : ||C([0,T ];C−ε) < Cε <∞ (2.5)

Therefore, as long as we control sup0<t<T ||v(t)||Lp (for each T >> 1), we obtain global

well-posedness. To do this, we just compute ∂t||v(t)||pLp and use the equation and the cotrol

on the stochastic terms to get a bound on sup0<t<T ||v(t)||Lp
• On T2: See [Trenberth ’19] on the stochastic complex Ginzburg-Landau (SCGL)

equation.

∂tu = (a1 + ia2)(∆− 1)u− (c1 + ic2)|u|k−1u+
√

2ξ. (2.6)

with r = |a1a2 |, then one can obtain global well-posedness for r ≥ C(k).

• On R2: In [8] global well-posedness of the parabolic P (Φ)2-model on R2 is obtained

using weighted Besov spaces.

2.2. Invariant measure argument. The Gibbs measure on T2 is given by

dp = z−1e−
1
k+1

�
T2 u

k+1dzdµ1 k ∈ 2N + 1 (2.7)

where the measure dµ1 = e−||u||
2
H1du. A typical ”function” u under µ1 is not a function.

as then one has
�
T2 u

k+1dx = ∞ a.s. hence the need to renormalize the potential energy.

We use the following renormalization procedure:

�
: uk+1 : dx = lim

N→∞

�
T2

: (P≤Nu)k+1 : dx. (2.8)

where we recall that : (P≤Nu)k+1 : → : uk+1 : in W−ε,∞(T2) a.s. or in C−ε(T2) in the

Lp(Ω) sense.

• In the 70’s we have the development of Euclidean Quanty Field Theory and that

e
1
k+1

�
T2

: uk+1 : dx ∈ Lp(dµ1) ∀p <∞ (2.9)

• Hypercontractivity of Ornstein-Uhlenbeck process/Wiener chaos estimate due to

[9].

• Nelson’s estimate

• See also the course Probabilistic Perspectives in Nonlinear Dispersive PDEs from

2017 by Tadahiro Oh

• Also see [11, 12] and [7], [15], [6].
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We then use Bourgain’s invariant measure argument (see [2], [10] for SNLW on a 2-d

compact Riemannian manifold without boundary).

2.3. 2-d SNLW/SdNLW.

2.3.1. Pathwise approach. : Known only for k = 3 (GKOT). For k = 5 the problem is still

open.

With v = U −Ψ, we have

(∂2
t + 1−∆)v + v3 + 3v2Ψ + 3v : Ψ2 : + : Ψ3 :︸ ︷︷ ︸

rough perturbation

= 0 (2.10)

This presents two difficulties:

(1) v(t) ∈ H1−ε(T2)−H1(T2) Hence, can not use the energy

E(~v) =
1

2

�
| < ∇ > |2dx+

1

2

�
(∂tv)2 +

1

4

�
v4dx (2.11)

We want to smooth out v. We therefore use the I-method.

(2) Even if v were in H1, v does not satisfy the deterministic NLW. Hence, E(~v) is not

conserved.

• If the noise is a bit smoother, Ψ2 = (∂2
t + 1 − ∆)−1 < ∆x > ξ ∈ CtL∞x . We

therefore obtain global well-posedness by use of the Gronwall argument (due

to [3]). This gives:

∂tE(~v) ≤ C(Ψ)E(t) (2.12)

• I-method (= method of almost conservation law), see [4] (after Bourgain’s

high-low method ’98):

For N ∈ N and 0 < s < 1, let

mN (n) =

{
1, |n| ≤ N
N1−s
|n|1−s , |n| ≥ 2N

By Lp theory, we have

||If ||Wα+σ,p . Nσ||f ||Wα,p ∀0 ≥ σ ≥ 1− s ∀1 < p <∞ (2.13)

||f ||Hs . ||If ||H1 . N1−s||f ||Hs (2.14)

Hence, we now study the I − SNLWv:

(∂2
t + 1−∆)Iv + I(v3) + 3I(v2Ψ) + 3I(v : Ψ2 :) : +I(: Ψ3 :) = 0 (2.15)

Thus, E( ~Iv) is not conserved for two reasons:

(a) I(v3) 6= (Iv)3 so we need a commutator estimate for I(v3)− (Iv)3

(b) The perturbation terms for rough : Ψj :
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Lemma 2.1. Let p <∞. Then

|| ||IΨ||LpT,x ||Lp(Ω) . p1/2T 1/2+1/p(logN)1/2 (2.16)

Furthermore, one has

I(v2Ψ)→ (Iv)2 · IΨ + error (2.17)

Hence, at the end, we obtain

E( ~Iv) . C +

� t

0
E( ~Iv)logE( ~Iv)(t′)dt′ (2.18)

Therefore, we get a double exponential bound.

2.4. Invariant measure argument for SdNLW.

(∂2
t + ∂t + 1−∆)u+ uk = ξ k ∈ 2N + 1 (2.19)

The Gibbs measure is given by: ~ρ(du, d(∂tu)) + ρ(du)⊗ µ0(d(∂tu))

where ρ denotes the Φk+1
2 -measure and µ0 denotes the law of the white noise process.

We set v = u−Ψ to obtain the Duhamel formulation:

v(t) = ∂tD(t)u0 +D(t)(u0 + u1)−
k∑

j=0

(
k

j

)� t

0
D(t− t′)(: Ψj : vk−j)(t′)dt′ (2.20)

where D(t) = e−t/2
min(t,

√
3
4
−∆)

3
4
−∆

(one degree of smoothing).

The same local well-posedness argument (by Sobolev) as in SNLW works. By virtue of

this, we obtain local well-posedness and therefore a.s. global well-posedness and invariance

of ~ρ.

Remark 2.2. For damped NLW, the same Strichartz estimates hold locally in time on T2.

Remark 2.3. • Parabolic Φk+1
2 -model = (parabolic) stochastic quantization equation

for Φk+1
2 -measure (see [13]).

• Hyperbolic Φk+1
2 -model = canonical SQE (see [14]). With w = ∂tu,

∂t

(
u
w

)
=

(
0 1
−1 0

)(
∂E
∂u
∂E
∂W

)
+

(
0

− ∂E
∂W + ξ

)

(Langevin equation)
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2 YOUNES ZINE

1. A first look at the model and the need for a paracontrolled

approach

We look at the parabolic Φ4
3 model

{
(∂t + 1−∆)u+ u3 = ξ

u|t=0 = u0
(x, t) ∈ T3 × R+, (1.1)

where u0 belong to some Cs(T3), s ∈ R. See [1, 2, 3] for a local theory for

(1.1) and [4] for a construction of the related stochastic objects.

Recall that on T3, we have Ψ := (∂t+1−∆)−1ξ ∼ −1
2 , so that Ψ3 and hence

u3 does not make sense. As in the two dimensional case it seems tempting

to try to attack the problem through a first order expansion u = v+ , where

is the stochastic convolution Ψ - here we use the tree notation as presented

in [4] for instance. Under this decomposition, v solves the equation

(∂t + 1−∆)v = −(v + )3

= −v3 − 3v2 − 3v 2 − 3

Since has negative regularity, its powers 2 and 3 are ill-defined. By

adding counterterms to remove divergences we will replace them by and

respectively. The equation for v now reads

(∂t + 1−∆)v = −v3 − 3v2 − 3v −
Let us take a look at the formal regularities of the different terms in the

above equation. By “parabolic couting”, we have ∼ −1− and ∼ −3
2−.

Hence, thanks to Schauder’s estimate v ∼ (−3
2−) + (2−) = 1

2− and the

product v ∼ (−1
2−) + (−1−) = −1

2 < 0 is ill-defined.

We now try a second order expansion u = v + − , where solves

(∂t + 1−∆) =

Thus v solves - again, replacing the powers of by their renormalized

counterparts,

(∂t + 1−∆)v = −(v − )3 − 3(v − )2 − 3(v − ) 2. (1.2)

The worst term is (v − ) < ∼ −1−. Hence v ∼ (−1−) + (2−) = 1− and

v ∼ (1−) + (−1−) < 0 is ill-defined.

One could continue to use higher order expansions but this would not help

since the worst term would always involve the unknown - i.e. the term v .

The idea is to impose a structure on v.

Let us denote by > the operator > + =. Since the worst term in the

right-hand side of (1.2) is v < we make the ansatz v = X + Y where
{

(∂t + 1−∆)X = −3(X + Y − ) <

(∂t + 1−∆)Y = −(X + Y )3 − 3(X + Y − ) > +Q(X + Y ),
(1.3)



GLOBAL DYNAMICS FOR 2-d STOCHASTIC NLW 3

where Q is the polynomial defined by

Q(v) = b0 + b1v + b2v
2, (1.4)

and 



b0 = ( )3 − 3 ( )2

b1 = 6 − 3( )2

b2 = −3 + 3

(1.5)

Let us analyze the system (1.3). By “parabolic counting” one gets X ∼
1− and Y ∼ 3

2−. One still needs to make sense of the resonant product

(X + Y − ) = . We have Y = ∼ (3
2−) + (−1−) = 1

2− > 0. Hence this

term is not an issue. After a renormalization procedure one can make sense

of =  
=

. We now have a look at X = . As is, X ∼ 1− and ∼ −1−
and hence one cannot directly make sense of the resonant product. However,

thanks to (1.3) and the inherited structure of X one can make sense of this

product. This idea is the essence of the paracontrolled approach. We denote

by (P (t)) the semi-group associated to ∂t + 1−∆. We write for t > 0

X(t) = P (t)X0 − 3

∫ t

0
P (t− t′)

(
(X + Y − ) <

)
(t′)dt′ (1.6)

By the smoothing properties of the heat semi-group, one can always make

sense of the product P (t)X0 = . Let us recall the following rule of thumbs,

if f and g are two spatial functions and D is a Fourier multiplier then one

expects D(f < g) ≈ f < D(g). Thus we expect,
∫ t

0
P (t− t′)

(
(X + Y − ) <

)
(t′)dt′ ≈ (X + Y − ) < (t)

It is then natural to introduce

com1(X,Y ) := P (t)X0 − 3

∫ t

0
P (t− t′)

(
(X + Y − ) <

)
(t′)dt′

+ 3(X + Y − ) < .

(1.7)

We will show that the term com1(X,Y ) enjoys some smoothing and has

actually spatial regularity 1 + ε for some ε > 0. Hence,

X = = −3
(
(X + Y − ) <

)
= + com1(X,Y ) = .

Because of the discussion above, com1(X,Y ) = ∼ (1+) + (−1−) > 0

is well defined. Moreover, since we expect the high frequency regime of

(X+Y − ) < to be governed by that of we expect
(
(X+Y − ) <

)
= ≈

(X + Y − ) < ( = ). To this end we introduce the following notation for

three functions f, g, h:

[<, =](f, g, h) = (f < g) = h− f(g = h).

and set
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com2(X + Y ) := [<, =]
(
− 3(X + Y − ), ,

)
(1.8)

After another renormalization procedure we replace = by
=

. Then we

can write

X = = −3(X + Y − )
=

+ com2(X + Y ) + com1(X,Y ) = .

2. Local well-posedness for Φ4
3

We want to solve the following system



(∂t + 1−∆)X = −3(X + Y − ) <

(∂t + 1−∆)Y = −(X + Y )3 − 3Y = + 3
=

−3(X + Y − ) > − 3com1(X + Y ) =

−3com2(X + Y ) +Q(X + Y )

(2.1)

where Q is given by (1.4) and (1.5) and com1(X,Y ) and com2(X + Y ) by

(1.7) and (1.8) respectively.

Remark 2.1. If X and Y solve a (frequency truncated version of) (2.1)

then u = − +X +Y solves (a truncated version of) the following equation

(∂t + 1−∆)u+ u3 − Cu = ξ

for some constant C > 0.

2.1. On the stochastic objects. Here we give the regularities of the rel-

evant stochastic objects in the scale of CTC
s
x(T3) spaces, for any T > 0

without proof. See [4] for details.

= = =

s −1
2 − ε −1− ε 1

2 − ε −ε −1
2 − ε −ε

Table 1. The list of relevant stochastic terms with their regularities

In what follows we denote by K the constant given by

max
(Ξ,s)

sup
0≤t≤1

‖Ξ(t)‖Csx ≤ K

sup
0≤t1<t2≤1

‖ (t1)− (t2)‖
C

1
4−ε

|t1 − t2|
1
8

≤ K.
(2.2)
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where the maximum is taken over the couples (Ξ, s) in Table 1.

2.2. Some deterministic estimates. For a space-time function f and two

times t, t′ > 0 we denote by δt,t′(f) the quantity δt,t′(f) := f(t)− f(t′).

Proposition 2.2. Let ε > 0, β ∈ (4ε, 1 + 2ε], p ∈ [1,∞], T > 0. Then,
∥∥com1(X,Y )− P (t)X0

∥∥
C1+2ε

. K2 +

∫ t

0

K

(t− t′)1+2ε−β
2

‖(X,Y )(t′)‖
Bβp,∞×Bβp,∞dt

′

+

∫ t

0

K

(t− t′)1+2ε
‖δt,t′(X + Y )‖Lpdt′,

where K is as in (2.2).

Proof. See Proposition 2.2 in [3]. �

Proposition 2.3. Let α < 1, β, γ ∈ R, 1 ≤ p, p1, p2, p3 ≤ ∞ such that

β + γ < 0, α+ β + γ > 0,
1

p
=

1

p1
+

1

p2
+

1

p3
.

Then,

[<, =] : (f, g, h) 7→ (f < g) = h− f(g = h),

extends to a continuous trilinear map:

Bα
p1,∞ ×Bβ

p2,∞ ×Bγ
p3,∞ → Bα+β+γ

p,∞

Proof. See Proposition A.9 in [4]. �

We now record some basic facts on the heat semi-group (P (t)). We shall

start with the following which is proven by showing the anologue in the

euclidian case R3 using integration by parts and then deducing the result for

the periodic domain T3 by the Poisson formula.

Lemma 2.4. Let ϕ be a function supported on the annulus {|ξ| ∼ 1}. Then

we have

‖F−1
(
ϕ(
·

2j
)e−t|·|

2)‖L1
x
. e−ct22j ,

for some c > 0.

Lemma 2.5. Let p, q ∈ R. We have

‖(1− P (t))f‖Bαp,q . t
β−α
2 ‖f‖

Bβp,q
,

for 0 ≤ β − α ≤ 2.
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Proof. We claim that if f̂ is supported on {|n| ∼ 2j} then

‖(1− P (t))f‖Lp . (t22j ∧ 1)‖f‖Lp . (2.3)

Assuming (2.3) we have for any fixed j, denoting by Pj the smooth frequency

projector onto frequencies or order 2j ,

2αj‖(1− P (t))Pjf‖Lp . 2αj(t22j ∧ 1)‖Pjf‖Lp

. t
β−α
2 · (t22j)

α−β
2 (t22j ∧ 1) · 2βj‖Pjf‖Lp

. t
β−α
2 · 2βj‖Pjf‖Lp .

Summing over j proves the lemma.

We now prove the claim. First, by Lemma 2.4, we have from Young’s

inequality,

‖P (t)Pjf‖Lp . e−ct2
2j‖Pjf‖Lp ,

which shows the claim for t22j ≥ 1. Thus, it suffices to prove

‖(1− P (t))Pjf‖Lp . t22j‖f‖Lp , (2.4)

for t22j � 1. We prove (2.4) on R3 as the result follows in the periodic

domain upon using the Poisson formula.

By Young’s inequality it suffices to bound the L1 norm of

gj(t, x) :=

∫

R3

eix·ξϕ(
ξ

2j
)(1− e−t〈ξ〉2)dξ,

for some smooth function ϕ supported on {|ξ| ∼ 1}. We compute

‖gj(t, x)‖L1
x

=
∥∥∥
∫

R3

eix·ξϕ(ξ)(1− e−tλ2|ξ|2−t)dξ
∥∥∥
L1
x(R3)

.

Let Q = {|x| . 1}. Replacing the L1
x norm L∞x norm on the bounded domain

Q, we have by Hausdorff-Young’s inequality and the mean value theorem

(recalling |ξ| ∼ 1 in the integral),
∥∥∥
∫

R3

eix·ξϕ(ξ)(1− e−tλ2|ξ|2−t)dξ
∥∥∥
L1
x(Q)
. ‖ϕ(ξ)(1− e−t22j |ξ|2−t)‖L1

ξ

. t22j

Further, since x 7→ |x|−2×3 is integrable on Qc, it suffices to bound the L∞x
contribution of

|x|−2×3

∫

R3

eix·ξϕ(ξ)(1− e−tλ2|ξ|2−t)dξ

=

∫

R3

(−∆ξ)
3(eix·ξ)ϕ(ξ)(1− e−tλ2|ξ|2−t)dξ

=

∫

R3

eix·ξ(−∆ξ)
3
(
ϕ(ξ)(1− e−tλ2|ξ|2−t)

)
dξ,
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by an integration by parts. The last term may be decomposed into a sum of

terms where (i) all the derivatives fall on ϕ(ξ) and (ii) at least one derivatives

hits (1−e−tλ2|ξ|2−t). For the former we use the mean value theorem as before

and bound its contribution by t22j . For the latter, we get a factor of order at

most t22j |ξ|2 . t22j from the derivatives that falls on (1− e−tλ2|ξ|2−t) which

makes this contribution acceptable. �

2.3. The fixed point argument. We now show the fixed point argument

showing the existence and uniqueness of a solution to (2.1) in some well-

chosen space. We introduce the operator ΓX defined by

ΓX(X,Y )(t) := P (t)X0 − 3

∫ t

0
P (t− t′)

(
(X + Y − ) <

)
(t′)dt′

We also define ΓY in a similar fashion. In the following we show that for

0 < T ≤ 1, (ΓX ,ΓY ) is a contraction mapping from CTC
1
2

+2ε
x ∩ C

1
8
T L
∞
x ×

CTC
1+2ε∩C

1
8
T L
∞
x =: Z(T ) to itself for ε� 1 assuming that the initial datum

(X0, Y0) lies in C
1
2

+2ε
x × C1+2ε

x . Let BR ⊂ Z(T ) be the ball of center 0 and

radius R > 0 in Z(T ).

We estimate using the standard heat, paraproducts estimates and the

results of Section 2.1,

‖ΓX(X,Y )‖CTC1+2ε
x
. ‖X0‖

C
1
2+2ε
x

+ T θ‖(X + Y − ) < ‖CTC−1−ε
x

. ‖X0‖
C

1
2+2ε
x

+ T θ‖X + Y − ‖CTL∞x ‖ ‖CTC−1−ε
x

. ‖X0‖
C

1
2+2ε
x

+ T θK(K +R), (2.5)

for (X,Y ) ∈ BR. Further, we have for t1 < t2,

ΓX(X,Y )(t2)− ΓX(X,Y )(t1)

= (P (t2 − t1)− Id)P (t1)X0

+ (P (t2 − t1)− Id)

∫ t1

0
P (t1 − t′)

(
(X + Y − ) <

)
(t′)dt′

+

∫ t2

t1

P (t2 − t′)
(
(X + Y − ) <

)
(t′)dt′ =: I + II + III.

We have from Lemma 2.5,

‖I‖L∞x . ‖I‖Cεx
. (t2 − t1)

1
8 · ‖X0‖

C
1
4+ε
x

. (2.6)

Similarly
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‖II‖L∞x . (t2 − t1)
1
8

∥∥
∫ t1

0
P (t1 − t′)

(
(X + Y − ) <

)
(t′)dt′

∥∥
C

1
4+ε
x

. (t2 − t1)
1
8 · T θK(K +R). (2.7)

We also get

‖III‖L∞x . (t2 − t1)
1
8T θK(K +R). (2.8)

Collecting (2.6), (2.7) and (2.8), we deduce:

‖Γ(X,Y )‖
C

1
8
T L
∞
x

. ‖X0‖
C

1
2+2ε
x

+ T θK(K +R). (2.9)

We now look at the operator ΓY . By Proposition 2.4, we estimate for

(X,Y ) ∈ BR and 0 < t ≤ T :
∥∥∥
∫ t

0
P (t− t′)com1(X + Y ) = (t′)dt′

∥∥∥
C1+2ε
x

.
∫ t

0

1

(t− t′) 1+ε
2

‖com1(X + Y ) = ‖CTCεx

. T θ‖com1(X + Y )‖CTC1+2ε
x
· ‖ ‖CTC−1−ε

x

. T θK
(
‖X0‖

C
1
2+2ε
x

+R2 +

∫ t

0

K

(t− t′) 7
8

+2ε
· ‖δt,t′(X + Y )‖L∞x

(t− t′) 1
8

dt′
)

. T θK(‖X0‖
C

1
2+2ε
x

+R2 +KR).

We also have for 0 < t ≤ T and Proposition 2.5,
∥∥∥
∫ t

0
P (t− t′)com2(X + Y )(t′)dt′

∥∥∥
C1+2ε
x

.
∫ t

0

1

(t− t′) 3
4

+ 5ε
2

‖com2(X + Y )‖
CTC

1
2−3ε
x

. T θ‖X + Y − ‖
CTC

1
2−ε
x

‖ ‖CTC1−ε
x
‖ ‖CTC−1−ε

x

. T θK2(K +R).

Estimating the other terms in the equation for Y in (2.1) using standard

arguments and the regularities of the stochastic objects in Subsection 2.1,

we get for (X,Y ) ∈ BR,

‖ΓY (X,Y )‖CTC1+2ε
x
. ‖Y0‖C1+2ε

x
+ T θ(K +R)3.

By arguments similar to those for ΓX , we obtain acceptable estimates for

‖ΓY (X,Y )‖
C

1
8
T L
∞
x

and some different estimates for Γ(X1, Y1) − Γ(X2, Y2)

where Γ = (ΓX ,ΓY ) and (X1, Y1), (X2, Y2) ∈ BR. Choosing R ∼ ‖X0‖
C

1
2+2ε
x

+

‖Y0‖C1+2ε
x

and T small enough this shows that Γ is a contraction mapping

from Z(T ) to itself.
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