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2 USAMA NADEEM

1. LECTURE 1

1.1. Chapter 0. Introduction. We begin by recalling a couple of examples of (deter-
ministic) dispersive PDEs.

1. Non-linear Schrédinger Equation.

i — Au = [ulflu =0 (NLS)

where k € 2N + 1 and u is C-valued.
2. Non-linear Wave Equation.

Ou— Au+u® =0 (NLW)
where u is R-valued.

Our goal is to understand how some given initial data is propogated under these non-linear
dynamics. To this end we may ask the following questions:

1. Is the PDE well-posed?
By this we mean whether a solution to the PDE exists, is unique and is stable under
perturbation. In the stochastic setting, one is mainly concerned with the first two
requirements because stability under perturbation does not hold in the classical
sense when the equation is driven by a rough noise.
1.1. Is the PDE locally well-posed?
By Local Well-Posedness (LWP), we mean that the PDE is well-posed for a
short time, where the time may depend on the initial data.
1.2. Is the PDE globally well-posed?
By Global Well-Posedness (GWP), we mean that a unique solution to the PDE
exists globally. Note that we aren’t concerned with the stability criterion here.

By a process of randomisation we are able to get stochastic dispersive PDEs from deter-
ministic ones. In the following list we collect some examples:

1. Stochastic Non-linear Schrédinger Equation.
1Oy — Au+ |ulfF "ty = o€ (SNLS)

where £ is a space-time white noise as in Definition 1.1 and ¢ is a bounded operator
on L?. In our case it will chosen so as to be a smoothing operator on the white
noise).

2. Stochastic Non-linear Wave Equation.

Ou— Au+ub =¢ (SNLW)

3. Stochastic damped Non-linear Wave Equation.

Ou+ Opu — Au+uP = ¢ (SANLW)

In terms of LWP, (SNLW) and (SANLW) are solved in the same way. Dampness
helps when one is concerned with global in time behaviour.
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Definition 1.1 (space-time White Noise). A space-time white noise is a Gaussian random
distribution on R x R? such that its covariance is given by the delta distribution.

Rigorously, the white noise is a random distribution and should be thought of always with
reference to the duality pairing (£, ¢), where ¢ is a test function on R x R?. However we will
formally deal with it as a random Gaussian function, {(¢, x), of the space-time coordinates
(t,z) € R x R? and with the covariance structure:

Ef(tl,xl)f(tg,iﬂz) = (S(tl — t2)5($1 — 1?2)

This means that the (random) behaviour at different points is independent and as such the
white noise is very rough. This is made definite in the notion of regularity. We postpone
the rigorous definitions for now, but suffice it to say that regularity is a measure of the
process’ differentiability. It is known that for the space-time white noise, the regularity in
x, is —%l — ¢ and in t it is given by —% — ¢, for ¢ > 0. This roughness of the noise makes
analysis of dispersive equations of this kind quite difficult. Nevertheless it is still a fruitful

endeavour because of (at least) the following reasons:

1. They are analytically challenging. Given the difficulty in proving the local well-
posedness of such equations with existing machinery, one can hope that the study
of such equations can catalyse new advances in theories of Analysis, PDEs and
Probability. Some notoriously difficult instances are:

— SNLS 1-d cubic (i.e. k =3), ® = Id. The local well-posedness of this equation
is open and understood to be critical.

— SNLW 3-d cubic. The local well-posedness of this equation is again open but
not considered critical. In fact there have been advances made in the past year.

2. SANLW (SANLW) formally preserves the Gibbs measure. It is important to under-
stand the long term behaviour of the solutions of S(P)DEs and it is often possible
to show that the dynamics converge to an invariant state. A related equation is
Stochastic Non-linear Heat Equation (reaction-diffusion equation):

ou— Au+uf =¢ (SNLH)

and it formally preserves the so-called <I>’d“+1—measure (k refers to the degree of non-
linearity and d is the underlying spatial dimension):

dp = Z—le—k%rl Jubtlde 67%f|Vu|2dzdu

Gaussian free field
where du refers to the non-existent lebesgue measure. Construction of such measures
was studied in the ’70s and ’80s. When d € {1, 2}, measures for all k¥ € 2N+ 1 have
been constructed. Note that in the d = 2 case, we require renormalisation. For
d = 3, k = 3 is the only case that has been constructed: (®3-measure).

— Stochastic Quantisation. The idea behind this is to introduce a stochastic PDE
which preserves the measure (on a function space) to investigate it. When the
measure under consideration is <I>§+1 this is exactly the Stochastic Non-linear
Heat Equation (SNLH) we have already seen. Well-posedness for (SNLH)
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is easy for d = 1, but d = 2 requires renormalisation [1]. The concept of
renormalisation will be a significant part of this course. The d = 3 (k = 3)
case (with renormalisation) is given:

du+ (1 —ANu+u® —c0-u=E¢ (SQE)
renormalisation
Note that the introduction of 1 here is to preserve the invariant measure and it
doesn’t affect the LWP theory. Martin Hairer proved the local well-posedness
of this dynamical ®3-model (parabolic ®3-model) in [2] using regularity struc-
tures which was followed by Gubinelli-Imkeller-Perkowski proving local well-
posedness using paracontrolled calculus in [3], and also by Kupiainen in [4]
using Renormalisation Groups. This equation is called the Stochastic Quan-
tisation Equation and hence the label (SQE). The wave analogue is given
by:
Ou+ou+(1—Au+u®—oco-u=¢
Recall that the wave equation is a vectorial equation, so the solution is instead
the pair (u,dyu). Then we have (u, du) ~ P4 —measure @ white noise. This
~ S—

u Oru
is also referred to as the hyperbolic <I>§1 model.

Remark 1.2. All the results mentioned until now have been on the d-dimensional torus,
i.e. T¢ = (R\Z)%. In the sequel, the “2r” factor in the definition of the fourier transform
will be taken for granted.

Remark 1.3. In the periodic setting spatial roughness is the only issue, but on R¢ one also
has to grapple with the fact that the noise doesn’t decay as |x| — 0o, and hence the solution
is not integrable in the W*P sense (definition 1.15). This however is not to say that there
aren’t useful results on the R, Some will be explored in this course and the interested reader
may alsp like to refer to [5] and [6] for the heat case and [7] for 2 —d cubic SNLS.

Let us now return to (SNLS) and discuss what we mean by a solution. We remark first
that (SNLS) admits the following It6 formulation:

idu = (Au — |u|*~tu)dt + pdW (1.1)
where W (¢, ) is the L2-cylindrical Wiener Process, as in definition 1.5.

Definition 1.4 (Brownian Motion). A (R-valued) standard Brownian Motion is a stochas-
tic process B = (By)i>0 such that the following holds:

e Wy =0 a.s..
o Wy — Wy~ N(0,t—5s) for all0 < s < t.
o Forany 0 <ty <ty <---<ty, the random variables Wy, — Wy,,--- Wy, — Wy, |

are independent.
o W is almost surely continuous.
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Definition 1.5 (L2-cylindrical Wiener Process). W (t,z) is a L?-cylindrical Wiener Pro-
cess, if it admits the following decomposition:
W(t,z) =Y Ba(t)e™ = > Bu(t)en() (1.2)
neZzd nezd
where B,(t),,cza is a collection of independent, C-valued standard Brownian Motions (i.e.
Brn = ReBy + Imp,,, with both Ref,, and Imp,, being R-valued standard Brownian Motions)

and en(x) Lef gin-z,

Remark 1.6. While reading (1.2) one should keep in mind our convention of dropping all
expressions involving 2w when using Fourier methods. By definition, we need a complete
orthonormal system and hence the summation here would need to be normalised. Further,
in the interest of notational ease, we will drop the 2 and just assume that Var(, =t.

Remark 1.7. For (SNLW) and (SNLH), we need a real valued noise and hence will further
require that B_, = B,,. This condition makes sense because for a real valued function, the
fourier coefficient at frequency —n, is equal to the conjugate of the fourier coefficient at
frequency n.

As is often the case in the theory of differential equations, one doesn’t try to solve (SNLS)
(or (1.1) for that matter) but instead an analogue of the integral formulation called the
mild formulation (or Duhamel’s formulation):

u(t) = S(tyug — /0 "t — )l () + /0 " S(t — )6 aW (t) (1.3)

Stochastic Convolution (¥g,)

Here S(t) = e~ A s the so-called linear Schrédinger propagator defined as below. It is a
fourier multiplier with the following effect at frequency n: S/(t)\f(n) = ¢itlnl® ﬂﬁ)

Those who are familiar with the well-posedness theory for the (NLS) should recognise
the above formulation, except for the extra term we call Stochastic Convolution (Vg )
(the subscript is meant to emphasise the link to (SNLS). They should also not be surprised
that we use similar kind of Banach Fixed Point arguments for (1.3). Before we may get to
the alluded to proof, let us study the stochastic convolution more closely. Note first that if
¢ is a diagonal operator in the sense that m = qgnen, with qASn a constant, then:

t
W (1) = /0 S(t — t)odW (1)
(1.2) ! =2 as (¢
S e /0 e budBr(t)

nezd
This means that each summand is a Wiener Integral. We refrain from going into the

(1.4)

construction of the Wiener Integral, but the following theorem showcases the property of
the course we will be needing in the course.
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Theorem 1.8 (R-valued Wiener Integral). Let f € L?([a,b]), be a deterministic function.
Then for a standard Brownian Motion, B, and the function f, the Wiener Integral - I(f) =
f; f(t)dB(t) - is a centred Gaussian random variable with the variance:

2
Var(1(£)) = 122,01
——
E[I()?
For a complete construction the interested reader may refer to the classic [9] for an
exhaustive overview or the more recent [8] for a very readable introduction.

Remark 1.9. To deal with C-valued functions we simply decompose it into its real and
imaginary parts and use Theorem 1.8 on either of the components. Due to our assumption
on the normalisation of the variance of the C-valued Brownian motion, it too has the same
variance as in the real case (otherwise there would be a factor of 2).

Remark 1.10. With reference to the variance of the Wiener integral, we can conclude that
I is an isometry from L%([a,b]) onto its image in L*(9).

A less general formulation in the case that f is a bit more regular is given by the Paley-
Wiener-Zygmund Integral:

Definition 1.11 (Paley-Wiener-Zygmund Integral). If f € C([a,b]), such that f(a) =
f(b) =0 then the Paley- Wiener-Zygmund Integral is defined by:

b b
I(f) :/ fdB = —/ f'(t)B(t)dt pathwise (1.5)

While the Paley-Wiener-Zygmund integral is less general than the Wiener Integral, it
gives us pathwise integration. Indeed the integrand on the RHS of (1.5) is continuous
(a.s.) and there is no difficulty in understanding the integral in the Riemann sense. Of
course where they both exist, the integrals must coincide. Having defined (the integral that
defines) Stochastic Convolution, we now collect some definitions and results we will need
to formulate our result on its regularity:

Theorem 1.12 (Kolmogorov Continuity Criterion). For a stochastic process X = {X¢}>0
taking values in a complete metric space, suppose that the following holds:

E[d(X, X;)P] < Cols — [+

for some p,a > 0. Then:

d(Xs, X1) Z/\><O1 Vo<e< 2
p

P s ) et
(i‘iﬁ’ =t =) S

That is to say that X is % — ¢)-Holder continuous.
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Example 1 (Brownian Motion).
E|B(ty) — B(t1)|> = ta — t1 = E|B(t2) — B(t1)[? ~ [t — t1["/?

By setting p/2 = 1 + a, we get:
a p/2-1 1 1

p p 2 p
By the expression B— we mean all B — €, for € > 0. As the above is true for all p, we can

conclude that the Brownian Motion is a.s. (% — €)-Hélder continuous.

We will also need the knowledge of the following operators and spaces from Functional
Analysis:

Definition 1.13 (Hilbert-Schmidt Operators). Let X and Y be two Hilbert Spaces and T
be a bounded linear operator from X toY. We say that T is a Hilbert-Schmidt Operator if
S, ITex||? < oo for an orthonormal basis {ey }ren of U.

One can check that the above sum is actually independent of the choice of orthonormal
basis. It is also easy to see that space of such operators are linear. In fact more is provable:

Proposition 1.14. The space of Hilbert-Schmidt operators from X to'Y (which are both
as before), HS(X;Y'), is a Hilbert space with scalar product and norm defined by:

o0 o0

1
(T, S)HS(X;Y) = Z<T€k756k>Y HTHHS(X;Y) = Z(HT%H%)Q
k=1 k=1

Definition 1.15 (Sobolev spaces (Bessel Potential Space); W*P). We denoted by W*P the
space of those functions, for which the following norm is finite:
[fllwer = [IKV)* flle (V)=vi-A
= |FH () fF@)lle () =VI+][- ]
with s € R and 1 < p < oco. When p = 2, by Plancherel’s identity we have W2 = H*,
with:

1
7 2
1l = (Seza ()1 f(m)2)
Theorem 1.16 (Sobolev Embedding Theorems). Let1 < p < g < 0o be such that 5 = %—%.
Then one has:
[l zaay S 1 f lwsr(ra)
If the function is further assumed to be mean zero, we get the same result on T¢.
For sr > d, the following inequality holds on both R* and T?:
[fllzoe S 11 [lyia.r

where by W*" we mean the Sobolev space, wherein (-) has been replace by | - |
Proof. Refer to [13] O

We are now able to state the first result of this course:
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a_
Proposition 1.17. If ¢ € HS(L?*(T9); H*(T%)) for s € R then ¥gy, € C2 Wi *"(T%)
forr < oo and o >0 a.s.. Forr =2 in particular Vg, € CtHS, a.s.

By CrH?® one means the space C ([0,7]; H®) and the norm on the space is the natural
mixed norm. The proof is postponed till the next lecture.

Remark 1.18. In the Banach setting we have the same result as proposition 1.17 but
with the hypothesis of ¢ being a Hilbert-Schmidt operator being replaced with ~-radonifying
operator. The reader may refer to appendiz of [10] for further details.

Remark 1.19. On R¢, we have the result ¥ € LIW,", for q < oo, r < d%dQ. We don’t
prove this but the interested reader may want to refer to [11] or [12].

2. LECTURE 2

We remark first that assumption of diagonality on ¢ implies:

1
9l sz = (3 lofen) i)

nezd

1
= (X m*191)*?
nezd
before starting the proof of proposition 1.17.

Proof. (of Proposition 1.17) Assume t < 7.

t . / . /
E[\Ichh(x t)\I’Sch YT Z |¢n| en T — )/ ez(t—t)|n|2e—z(7'—t)\n\2dt/
0

n€zad

t
= Y lbulPenta—y) [ e TIFar (2.1)
nezd 0
= > [balenla —yytei-rIn"
nezd
where the first equality comes from the independence of the Brownian motions and the
centredness of the Wiener Integral. Consider then:

E[<v$>sqjsch(x7t)<v > \IISCh y7 Z |¢n en T — y)tei(tiT)ln‘Q
nezd

By setting x = y and ¢ = 7 in above, and recalling that Wiener Integral is a Gaussian
random variable, we may get the following bound on its p-th moment:

1
I|(9) s, )] < o (B[|(9)" W (1))

P D p
=p2t2 H¢HHS(L2;H8)
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mp>r

1)

r < oo:
From the Definition 1.15 and Minkowski’s Integral Inequality (noting that it is
in the hypothesis of Minkowski’s that we use p > r assumption):

[ sen () [z r

@) < NV Tsen (@)l ooy |
11
S 022 9llus (2, me)

For the second inequality we have used the p-th moment bound derived prior
and the fact that |T¢| ~ 1. This proves that, for fixed ¢, if ¢ € HS(L?, H®) then
Vs (t) € Wa" (a.s.). A consequence of Chebyshev Inequality is the bound:

P(|Wsen(t) [l > A) < Ce~ N /Molls(12.2)

r = 0o: By theorem 1.16, we are able to proceed as before:

HH‘I/Sch(t)HWi"’OHLp(Q) < HH\I/Sch(t)”Wg“”“ Lr(Q)

11
S p2t2(|@llusn2:mete)

We can adjust the £ to conclude that, for a fixed t, Wgy,(t) € Wy = if
¢ € HS(L? H*). A similar tail bound to the one in the case 7 < oo can be
deduced here but there will be a loss of regularity.

What we have proven till now, is that if we fix a ¢ then one can find a set
of w with full probability such that the stochastic convolution on it, is in the
purported space. However this set of events is dependent on the choice of ¢
and because ¢ comes from an uncountable set, there is no guarantee that the
set of events for which the stochastic convolution is in the purported space for
any t is of full probability. To remedy this we bound the difference operator
on Stochastic Convolution and apply Theorem 1.12.

To this end, define for a given h € R, §, Wgen(x, t) def Ugen(z, t+h) — Usen(x, t).
Then we compute:

E [0nVsch (2, )0, Wsen(y: )] = E[¥sen(w, t + h)Wsen(y, t + h)]
[Wsen(x,t + h)Usen(y, t)]

[\I/Sch(x7 \I/Sch(ya t+ h‘)]
[Wsen(

E
—E
—E
E[Wsen(z, 1) Wsen(y, )]

_l’_

If we assume ¢, h > 0, we get:

=" [dalen(a —y) {(t + h) — te "I —geitlnl® 44

nezZd

Fu(th)
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It is easy to see that F,(t,h) fH—°°> 0 and |F,(t,h)| < |t| + |h| and also that:
|En(t, h)] < ]+ t]1 — e=IP| g1 — ethlnl?)
< |h| + tmin(1, |h||n|?) (2.2)
< |h| 4 t|h|%|n>® (forall 0 < a < 1)

One may see that the second inequality holds by triangle inequality and mean
value theorem. A similar calculation as in the beginning of the proof yields:

6905 0| o) < 22 [49)* 50 B 1)

N[ —

< p2(1+ TY2RI2(3 ] ()24, )

n

Vit e [1,T]

The second inequality follows from (2.2) because one h is assumed to be small,
and t < T by design. As before:

1167 @ sen (8) [ yys-r

Using theorem 1.12 (identifying s with ¢ 4+ h, and replacing s + « by s) we can
a 1

LP(Q) ~ CTp2H¢‘|HS(L2Hs+a)’h‘2

conclude that Ugy, € C2 P Wi™®" (as.) if ¢ € HS(L2; H®). By making p
arbitrarily large, we get the required conclusion.

r = 2: The « in the previous conclusion can be traced back to the presence
of t (and 7) in S(t —t') (S(7 —t')). While this problem is something one has
to accept for the general result, the boundedness of S(t) in L?, allows us to do
better. Infact, when r = 2, it suffices to study the continuity property of:

Bsen () = S(—t) Vs (1) / S(—t)odW ()
Doing a similar argument as before, we get:

E[Usen(, 1) Uscn(y, 7) Z |6nen(z — y)t
and that:

116n Uscn (8) llwz

By theorem 1.12, we get:

1 1
Lp(Q) S Crp? H¢HHS(L2;HS+D‘)‘M 2

1
WUgep, € Ct2 H;, a.s.

The difference defined by: Wge,(t + h) — Uge(t) = S(t + h)[Wsen(t + h) —
Wge, (1)) + [S(t + h) — S(t)] W (t) then goes to zero, as does h. We can see
this for the first term by recalling that S(¢) is unitary, so is safely dropped and
then the continuity property of Wgu, (t) just derived forces it to go to zero, with
h. For the second term, we recall that S(-)f is continuous as a map in ¢ into
H?. We can conclude then:

\I’Sch c Oth
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almost surely, as required.

O

Example 2. Consider ¢ = 1Id, that is the identity operator. In this case, ¢ € HS(L?; H®)
when s < —g. Recall that —g is ezactly the spatial reqularity of the (space-time) white
noise. Then proposition 1.17 says that Vge, € CtH? a.s., when s < —%. This means that
if you start with a white noise, there is no improvement in the reqularity of the Stochastic

convolution. This makes analysis of the (SNLS) difficult.

We are able to do to similar investigations into the (SNLW) and (SNLW). With ¢ again
taken to be the identity operator, the stochastic convolutions (and the equations they solve
with initial data zero) in these cases will be:

(=)D ) B
. Upelt) = /0 M), 61 A =g
Here:

sin (V) ([ PR n#0
< V] f>( ) { t£(0) otherwise

The behaviour at frequency 0 is strange but easily fixed by replacing |V| by (V)
in the operator above. The only difference appears at frequency 0 and the same
result of well-posedness holds. Now the (V) in the denominator has the effect of
smoothing, and hence we “gain one derivative”.

t
o Upeat(t) = / eEAD g (¢, (0 +1 — A)U = ¢ Here:
0

(et(A—l)f)A(n) = ) fn)

The 1 shows up here only for convenience and in terms of wellposedness doesn’t
change anything. Now if one were to go back and repeat the proof of Proposition
1.17 there is a factor w >2 in (2.1) because we are in the real case and ¢’ doesn’t get
cancelled out. This means that there is a gain of one derivative as in the wave case.

Therefore, by repeating the proof of proposition 1.17, and keeping in mind the discussion
above, it is possible to conclude that: Wyear, Pwave € CiWa'™(T?) a.s., when s < —% +
1 with ¢ the identity operator.

2.1. Chapter 1. One-dimensional case. We return now to (SNLS) and discuss its local
well-posedness. Recall that the general equation is given by:

o k=1, _ d

SNLS - i0ru — Au + |ul*"tu = ¢, zeT
ult=o = uo

We fix s > 4. Then with ¢ € HS(L? H*) and up € H*(T?) the Duhamel formulation is

given by:

u(t) = uo—I—z/ S(t — ) u)*u(t)dt’ + W (t) (2.3)
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We denote the RHS of the above equation by I'y, 4(u). Before proving our result on the
LWP of (SNLS), we recall the following property of H® space:

Theorem 2.1. For s > %, H? is an algebra under pointwise products, which is to say:

1 fgllzrs S A1f 1|z llgl e

Proof. (Sketch) One checks first that the following triangle inequality holds: (n; + ng)® <
(n1)®+ (ng)®, for s > 0. Then this inequality along with Young’s convolution inequality and
Cauchy-Schwarz inequality yields: || f gl S ||f||z%||g||£}7‘ < ”fHZ,%HQHHS and the required
conclusion is easily recovered. O

Now consider the following bound:

t
P (wllor g < lluolles + /OHS(t—t')\UIk1U(t')IIH;dt' ¥l or as (2.4)

AL
Sl L

<O Tl s

The first term on the RHS follows from the fact that S(¢) is unitary in H*. For the
second term, we have again used the fact that S(¢) is unitary coupled with Theorem 2.1
and the fact k£ is odd. With the integrand bounded, the bound on the integral proper is
elementary.

Now set R = Ry = 2(|luollzs + |¥|lc(jo,1);5))- Note that the norm on the stochastic
convolution is independent of T'; this is because we will want to chose T depending on R
in what follows. Further note that the subscript here is just to signal the fact that this
R is random, which is because of the randomness of the Stochastic Convolution. To move
towards a contraction argument we need to show that I'y, 4(u) is bounded by R, whenever
u is in a ball of radius R around the origin in CrH?®. So for u € B C CrH?® and T < 1,
we need:

ITup0(W)|lcpms < AR+ CITR”
<R
The second inequality can be enforced by choosing a (random) 7' = T, such that T' < R
and T ~ Rii. This inequality means that I'y, 4 : Br — Bg.

k—1 k—
ITug,6(w) = Tug,6(0)llermrs < CoT(lullés s + 011G ) lu = vllop e
S CgTRk_lﬂu - UHCTHS

1
< Sllu—vlopm

To see the first inequality. one can write |u[*~'u — [v|*~1v as a telescopic sum and then

apply Young’s Inequality on every summand in the telescopic sum. The second inequality
comes from the fact that u,v € Bgr and finally the third inequality comes from choosing a
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convenient T'. We have thus shown that if T" is chosen such that both the above inequalities
hold then Iy, 4 defines a contraction on B C CrH?®. The Banach Fixed Point theorem
then gives us that 3! v € B, such that u = I'yy4(u), on [0,7,], a.s.. The time of local
existence is random here, because it depends on w.

The solution depends continuously on ug € H* and ¢ € HS(L?; H®). To see this, suppose

that you have two solutions with different initial data and smoothing operators:

0 Iyp6, (1) and v of I'y.40(v). Then by considering a small enough T (say less than the

minimum of the R, given by the two data sets and convolutions):

lu—vllormy S lluo —vollms + (| X1 — Vol

N—_——
Jo St—t")(¢1—¢2)dWt/
< [luo — vollas + Culldr — d2llus (L2,

This proves the continuous (in fact Lipshcitz) dependency asserted. In the above calcula-
tion we hid the non-linear part on the LHS. For the second inequality we have used the
facts E [qu - \IJH%TH;] < Crll¢1 — ¢2lis 2.+ and Chebyshev’s inequality. It should be
emphasised that the constant C, is random.
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1. LECTURE 3 (TYPED BY AIGERIM DAVLETZHANOVA)

Littlewood-Paley decomposition:

f=>_ Pnf=> Pif,
j=0

N>1
where N € 2j,j > 0 and Py is a LP projector, i.e. ”projection” onto the frequency
{|n| ~ N =27}.
#(&) is a radial, supported on {|¢| <2} and ¢({) =1 on {|¢| < 6/5}.

5,0 =0 (5) -0 (5) i 21
P, 1(€) = 6; ()] (€).

¢; needs to be normalised, i.e.

o 9i(8)
%(5) - Ziio‘bk(g)’

where Y27 ¢x(€) is a finite sum.
Finally we get

Pif=f"'f)

LP Theorem: For 1 < p < oo we have,
1
1Al ~11C DY PafP) 2
N2>1,dyadic

and RHS is a square function.
If p > 2, then

Sl <1 (PN Fllze 2, ayadic
and Py f here is a simpler object, compared to the previous case.

Sobolev spaces:

£l ~ (>0 N®|[Pyfli2,)?

N>1,dyadic

Besov spaces B; , or By":
A llBs,, = INIIPw fl 2]y

where N® = 27 and N1 dyadic = 13(Z > 0).
There are 2 main points:
[ ] HS - 3572

e BS | CW*P C By ., where Byts C By, and W*P = Lf.
1

a )
N>1,dyadic



Holder-Besov space C° = B3 s eR:

00,007
e Natural extension of the classical Holder space C*,0 < s < 1.

1 fllos = sup L&) = W)

TH#Y |5C - y|s ’

where AS. is a homogeneous Lipshitz space and Af = Asn L.
FACT: A* = B3, .. 0 < s < Land ||fll, = 2P fll el
p,q

00,007
e s> (: C?is an algebra and
1 fglles S I llesllglles-

1-d SNLW:
@ 4+1-Au+uf=¢ on T.
t t
u(t) = 8,8 (o + S(t)us — / S(t— )k ()dt + / S(t— )aw (1),
0 0
where s(t) = % and U = fot S(t —t')&(dt') ia s stochastic convolution.

Let’s denote RHS by T'(u) = Ty u,),¢(v)
There are 2 main points to outline:

o Recall U = Wy € C,Wa/27°(T)
o ||0:S(t)ug + S(t)u||ms < ||(ug, u1)||3s, where H® = HS x H51
Taking into consideration above, we get

t
T ()lleras S [l (w0, un)|lx, +/0 1P (@) |1t + || ¥l |crars,

where

€
2%k

N |

[ (@)= < ()] 22 = 1wl )[F2r Ssobotew [t for s>
and .
H\I]HC’THS < Cw <g.s. OO for s< 5

By choosing % — i <s< %, we have

I loprs < M1(uo, un)|laee + Tllulleg s + 19 ller .
Similarly,
I0(u) = P(@)llerms < Tlullgg s + 10le )llu = vllerne.
R = Ry ~ [[(uo, wr)|la, + |[¥lco,m9),

therefore I' is a contraction on B C CrH*, T =T, =T(R,,) << 1.
Remark: By a similar argument, we can show LWP for

o () = (a2 0) () (2)+ (8)-

It is important for global-in-time study.



1-d SNLH:
O +1—-Au+ur=¢

Schauder estimate: For 1 < p < ¢ < oo,
IDPO)fllps St 267075 flly on RY or T ¢>0,a>0,

where P(t) = e/A-1),
Proof: Proof in the detail also can be found in [1] and Grafakos.

e f(x) /Kta:— (y)dy

E(f) =t = K(?ﬁ?f), where K = Kj.
By applying inverse Fourier Transform, we have

Ky(x) = ~ K (f) ,
Il =% | ()

t2
therefore

e RY case

Ck ~ (Young’s inequality) ~ ¢~ 1Gg

Ly

16" Il paggay S ¢ 2070 £l 1o geay-

In case of a > 0, we have:
D' f) = D (K * f) = (DKy) * f,

DR () = [¢]%e P = 5 (12 |¢)) e 1P = 175 G,(6) = ¢ 2 Gh(t28), where G =G,

By repeating the same computation, we get
o del_1
DKl = 5 |Gu(@)llr, ~ ¢~ 72670

and Young’s inequality(% +1= % + 5) could be applied again.

o T case - ,
e2f =Ry« f, Ry(n)=e "

Scaling argument can’t be used, but Poisson summation formula can be:
|f(x) + ]]?(3:)| S<ax>"%c¢ f on RY where

Z fln)e™ = Z f(z+n)

nezd nezd
Proof of the Poisson summation formula:

=Y fla+n)
nezd

is a periodic function on T and F(z) = Y,z F(n)e™®, therefore

o= [ Foemae= [

1
37 meZd m+T4

S Sy = 3 [ ey =

f(n)



O
Back to the proof of the Schauder estimate on T¢.

Ri(n) = Ki(n) = e """ and
[[Rel|pr(pay = HEff\t(n)emxHLT(Td) = Poisson formula = |3, cpa Ki(x +
NES
Wl|preay S NQ2 < > < n P Kz + n)llipllprerey S I < @ >P
Ko@)l pr ey ~ 1K (@) 1y ey + |l|2]P K (@)]] Ly may-
ll

B
By repeating the previous argument and knowing that |z|? < andK(x)
2

ti%K (%) for 0<t< 1, we get Schauder estimate for e!® on T%, 0 < ¢t < 1.
t2
As for P(t) = €A1 = ¢t ¢t can absorb t3 for any t, therefore we get
Schauder estimate for P(¢) on T¢, ¢ > 0 O
Note:

s1—

52
2 ”fHCSQu S1 252

P@) flles St
Back to SNLH on T:
t t
u(t) = P(t)ug — / P(t — t)u*(t')dt' + / P(t —t)dw(t)
0 0

1_
and U= [[P(t —t)dW ('), ¥ € C;C2 ", O+ C W**, where s = 1 — 2e.
I'(u) is a RHS of the Duhamel formulation and

t
1
IP)Ollcs S llllcs + [ @)l +190llcz, 0<s <5

IT()lleres < lluolles + Tllullé,op + 1¥llerey, T <1.

Considering above and difference estimate, we get LWP in C*(T4), 0< s < %
Rougher data? ug € C*, s <0,

IIP(t)uollcr St™°F ||uollcs, o >s.

The right hand side blows up as t — 0+.
For the case o > s:

lullyeiry = sup £*][u(t)[|c-
0<t<T

—s t
PIIC(u)(t)]loe < 17672 IIUOllcs+t9/ ()" [l |er)Fdt' + ][O (t)]| e,
0

where 75* <0 < %
Take supy<;<7 and get estimate for the Y?(7") norm. For the s <0,

t
IT(w)lleres S lluolles + H/O (&) (W) llu(®)l oo ) dt' | g +11®llores

0 — 75° 20:>820—29,5>—%,becauuseo>07 0<%.
Run a contraction argument on a ball in Y?(T") and show u € C7C2 = u € C([0,T,]; C*)N
C((0,T,]; C?).
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1. LoCAL WELL-POSEDNESS OF SNLS oN R.
Let us first recall the form of the cubic stochastic nonlinear Schrodinger equation in
dimension d :
i0pu(t, x) — O2u(t, x) + |ul®u(t, x) = o(t, z)E(t, x), (t,z) € R x RY (1.1)

where ¢ is a space-time white noise and ¢ € HS(L?; L?) so that, if we denote

\If(t):/OtS(t—t’)gzde(t’), vt € [0,T] (1.2)

with S(t)f = e "2 f = F <e“|"2f(-)), then ¥ € CpL2 N LLLY for any finite ¢ > 1 and
r < 1 such that
2d :
T S ) if d Z 3
r<oo if d=1,2.

Remark 1.1. If ¢ € HS(L? H®) with s € R, then we have ¥ € CpL2NLIW;". The proof
of this result can be found in [6] or [17].

In order to solve equation 1.1, we need to state some estimates. First, observe that using
Plancherel’s theorem twice, we get for f € L? :

1S@)F1zz = e F©)l 2 = 17Oz = 1).z2

so that S(t) is wnitary for any ¢ € R. But this will not be sufficient, we will need the
so-called Strichartz estimates. To do so, let us first define the following :
1



2 PIERRE DE ROUBIN

Definition 1.2. A couple of real numbers (q,r) is called Schrodinger admissible if it sat-
isfies 2 < q,r < 00, (q,7,d) # (2,00,2) (with d the dimension) and the following scaling
condition:

2 d d

This allows us to state the following (note that, for any real number ¢ > 1, we denote ¢’ > 1
the real number such that % + % =1):

Theorem 1.3 (Strichartz estimates on R?). Let (q,7) and (¢, 7) be Schrédinger admissible.
Let us take f a function of the space variable x € R? and F a function of the space-time
variable (t,z) € R x R, Then, we have:

(1) Homogeneous estimate:
1S gg1p oy S 152 (1.4)

(2) Dual homogeneous estimate:

| [scoraa| <Py, (15)
R LQ(Rd) t x
(3) Non-homogeneous estimate / Retarded estimate:
¢
| se-orwar S 1Fly (16)
0 LiL; (RxRY) L

Note that this means, on time averaged sense, that there is a smoothing in terms of in-
tegrability (but NOT in terms of differentiability). We will give an idea of the proof of
Theorem 1.3, but first we need to state two preliminary results.

Theorem 1.4 (Dispersive estimate). Let f € L! (Rd), then for any t > 0:

1
IS Nz % 11y (L.7)

We will not prove this estimate here, but the proof relies on two ideas. First, we need to
express S(t)f in the following way:

1 _Jz—y?

[S(t) f](z) = Vit S e” % f(y)dy

by using the method of the stationnary phase (see other lecture notes) by seeing S(t)f as
something of the form:

S0 = [ et fig)as
Also, we need the following inequality:

Theorem 1.5 (Hardy-Littlewood-Sobolev inequality). Let 1 < p, q,r < oo such that %+1 =
% + %. Then, for any function g € LP (Rd),

[1217% 9], oy  Nolzagea) (1.8)
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d
Note that, in Theorem 1.5, the function z — || » does not belong to L” (Rd), but ”al-
most”. Hence, Theorem 1.5 can be seen as an endpoint version of Young’s inequality.

Idea of proof of Theorem 1.3. First, observe that by interpolating the dispersive estimate
(1.7) and the estimate resulting from the unitarity of S(¢) in L?:

1S fll2 = 1112
we get, for any p, p’ such that p > 2 and % + %

150 Al <t ) 71, (1.9)

Also, we claim that saying S(¢) is a bounded operator from L2 to B = L{L" is equivalent
to say that there is a bounded dual operator T* : B’ = Lq Lr — L2 defined by :

F:/RS(—t’)F(t’)dt' (1.10)

(S()f,F) s / [ S0Pl - / FSCOF (. x)dtde = (£.T"F),5

R JR?
where the last inequality comes from the definition of the dual operator. Thus, note also

that saying 7' = S(t) is bounded is equuivalent to say that the operator TT* : B’ — B,
defined by

Indeed, observe that :

TT*F = [ St-t)F()dt
R4

is bounded. We will prove, in fact, this last result. To do so, put 7T*F in B = L{L", with
(g,7) Schrodinger admissible, and then, using equation 1.9:

L=y G e,

Thus, we get a convolution in time in the last term and observe that, since (g,r) is
Schrédinger admissible, then we have:

<

~ ‘

|ITT  Fl| gy, = H/R |S(t —t)F(t')| It dt’

dt

q
Lt t

d_d_1_d_d_ 1 1
2 r q¢ 2 r q q
so that, applying Theorem 1.5 for t € R we get:
ITT 5y, S IFl g,
Thus, equations (1.4) and (1.5) come from the facts that S(¢) : L2 — L{L" is bounded
and T% : Lgngl — L2 is bounded respectively There is also two ways to prove equation

(1.6). Either we observe that fot dt’ = fR X0, t')dt’ and we prove it by hand, or we can use
Christ-Kiselev lemma (see [18]).
The endpoint case, with ¢ =2 and r = dZTdQ, can be found in [8].
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Now that we proved Strichartz estimates, we can go back to the cubic SNLS on R, namely
the equation (1.1). We have the Duhamel formulation:

w(t) = S(t)uog — /Ot St —t') Ju u(t)dt’ + U (t) = Tu(t) (1.11)

Thus, as (00,2) and (8,4) are two Schrodinger admissible couples in dimension 1, if we
denote X (T) := CpL2NL5L; and ||| x(r) the associated norm, we have thanks to Theorem
1.3:

ITullx(ry < llwollzz + |UU|QUHL8T/7L§/3 + 1Yl x )

and then, using Holder’s inequality with % = % + é + % + %, we have

3 3
H\U|2UHL§/7L;1/3 <T'/? HUHLBTLg <72 lullx (7

which gives

1/2 11,113
ICullx(zy S Cr (ollzz + 1¥lLxery ) + T2l
for any T < 1. Also, we have a similar difference estimates using similar arguments.
Then, using a fixed point argument, since I' is a contraction of a ball B C X(T') of size

M ~ (HUOHLQ + H\IIHX(T)) (recall [|W[| x(py is almost surely constant if ¢ € HS (L% L?)),

we have local well-posedness in L? (R).

2. LOCAL WELL-POSEDNESS OF SNLS on T¢

2.1. Zygmund’s L*-Strichartz estimates. Let us focus now on the stochastic nonlinear
Schrédinger equation on the d-dimensional torus T:

iDu(t, z) - 02u(t,2) + [ulu(t,2) = o(t, D)€L x),  (Lz) ERxTE  (21)
The main issue here comes from the Strichartz estimates on T¢. Indeed, three problems
arise form the latter:

(1) They are only local in time,
(2) They are NOT as good as the Strichartz estimates on RY,
(3) The proof is much harder.

For more references on Strichartz estimates on the torus, one can look into [19], [2] (where
Bourgain used analytic number theory with the HL circle method), [3], [4] and [13].

Theorem 2.1 (L*-Strichartz estimate on T (Zygmund 1974)). For any ug € L*(T), we
have

Z 6inmeitn2 ’ZL\() (n)

neL

S Hu0||L2(’]I‘) (2.2)
L}, (TXT)

~

Proof. Let us denote F'(t,x) =) ., ¢z ¢itn*Go (n). Then observe that we have

HFFHL%T?) _ Z Z ao(nl)aO(nQ)eit(nffng)ei(mfm)x
n1€EZ no€Z LQ(TQ)
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nz+Tt)

Write this sum as a Fourier series in ¢t and @, >, yez2 a(T, n)el where

a(t,n) = Z o (n1)uo(n2)

(n1,n2)€P(T,n)

with

P(r,n) ={(ni,n2) : ni —nj =7 and ny —ny =n}
Now we claim that, given a couple (7,n) # (0,0), there exists at most one couple (n1,n2)
such that (7,n) = (n? —n3,n1 —ns2). Indeed, observe that if (n1, ny) satisfies this condition,
we have

r—n?= n% — n% —n?= —2n9(ng — ny) = 2nngy

so this determines no and then we have n = n 4+ ns. Also, observe that

~ 2 2
a(0,0) =Y [io(n)* = [[uo| 7
nez
Putting all this together, we have, using Plancherel’s equality:

1/4

1Pl sy = | 32 la(r.m)?

T,NEZ
1/4

~1 Y a4 (a(0,0)!?
(T,n)#(0,0)
1/4

S OY [Ge(n)ao(n2)l | + lluoll 2

ni1,ne€Z

~ lluoll 2T

where the last inequality comes from the fact that > |tig(n1)TUg(n2)|? is a disjoint sum

in n1 and ng. This ends the proof.

ni,n2

g

For more results on Strichartz estimates, specially for the Korteweg-de Vries equation,
one can look into the work of Kenig, Ponce and Vega (][9], [10], [11] and [12]).

2.2. Fourier restriction norm method. Note that Zygmund’s L*-Strichartz estimates
(2.2) is NOT enough to prove local well-posedness of cubic NLS in L? (T) (neither is it for
any H*® (T), for any s < %) Instead, we are going to follow the Fourier restriction norm
method approach, developed by Bourgain in [2]. Also, note that this Fourier restriction
norm method was also used by Klainerman and Machedon for the wave equation in [14].

Definition 2.2 (X*? spaces). We define X*°, with s € R and b > 0, as the space of all
functions such that the following norm is finite

lull oo = |[ ()¢ = 07, m)

2 12(Z4xR)
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The X% spaces are useful for "perturbative” study: the idea behind is to look for
something ”close to being a linear solution”. Yet, a linear solution should be something like
F~1(8(r —n?)), with § the Dirac delta operator. Indeed, if we take the linear Schrodinger
equation

10w —Au=20
and we apply the space-time Fourier transform, we get the equation

—(r—=n®)a(r,n) =0
so that 2(7,n) is a measure supported on {7 = n?}. Thus, something close to a linear
solution should become very small when it is away form the line 7 = n?. We measure this
"distance from the linear solution” with the weight (7 — n2)®, with b > 0, that penalizes
functions whose Fourier transforms support is away from {7 = n?}.

Proposition 2.3 (Basic properties). Let s € R and b > 0. Then,
(1) Ifb> 3, then X*b C CyHS. If b= 1%, we need some other spaces.
(2)
(2.3)

lull e = IS(=E)ull sy = [[ (@2 @ (S(=tyu®))|,

(3) Let n(t) be a smooth cutoff function supported on [—2,2], with n(t) = 1 for any
[t| < 1. Then,

[n@®)SEfllxon S NSl as (2.4)
(4) If b > %, we have the following estimate on the Duhamel term
S AF[ xo-1 (2.5)

‘ / S(t F(that'
Xs:b

Also, for § > 0 small, b > 5, T<1andte[-T,T], we get the estimate

() s

andforb>0,b7é§,

‘?7 (;) st

Remark 2.4. Note that, in equation (2.7), the factor T2 s bad for b > % et T < 1.

ST |F oo (2.6)

Xs:b

1_
ST270| £l e (2.7)

Proof of equation (2.4). Observe that F [n(t)S(t)f] (r,n) = (T — |n|2)f(n) so that, if we

set 7 =7 — |n|?, we have

~

IS Ol e = ()7 = I = ) Fw)|, = [ @aE T
where ||n]| ;» is bounded. O

= [ll o 111z

2Lz 2Lz

The proofs of the other properties are available in [18]. From now on, we will consider the
new mild formulation

ult) = () S(tyun — 1 ( ) / S(t— ) [uPu(#)d? + n(t) /0 S(t— )dW (') (2.8)
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In this context, we have the following result

Theorem 2.5 (L*-Strichartz (Bourgain '93)). For any u smooth enough, we have

lullgs_qaery < el xossgaery (2.9)

The proof of this theorem can be found in Tao’s book [18], using Tzvetkov’s approach.
Note also that this result is better than Theorem 2.1 since, using Transference principle
(see Andreia’s first project [1]), this theorem only gives us

In(@)ullps S llullxoe

for any b > % So we gain a bit of regularity in Theorem 2.5. In addition to this theorem,
we also have the following result

Theorem 2.6. Suppose ¢ € HS (L% H®) andb < %, then (recall U(t) = fg S(t—t")pdW (t'))

X[O,T]\P € Xs’b

almost surely in the sense that

Ixo1Y €] o € Cw <0 a s

Proof. Observe that, since ¢ € HS (L2; HS), we can write ¢ = ) ;4 a;en, with e, (x) =
e hence we write

t
i)=Y %en/ G-OME 45 (1)

nezd 0
Also, using equation (2.3), observe that we really want to study

t
Fo (S(=)xpm)(t)¥(1) (n) = X[o,7) (75)¢n/0 e ag, ().
Denote F'(t) = S(—t)xjo,)(t)¥(¢). If we take space-time Fourier transform, we have

~

— . t )
F(r,n) = qﬁ”/Re_ZtTX[O,T} (t)/o eI AB, (1) dt

— T v} 2 T .
— ¢n/ €7lt In| e*ltTdtdﬁn(t/)
0 t

where the second equality comes from Stochastic Fubini Theorem, with the last integral
defined as a Wiener integral (see [7]). Then, observe that

r 1 1
/ e " dt < min <1, > ~ .
t’ |7 (1)

Thus, we get using equation (2.3)

E|Ixom %] =

2
L e 2

and, using the properties of Wiener integral, we have
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~ e*’L n e*’L Tdt
L2(Q) i /0 ’ ¢

so that, if we inject this in the previous equality,

2 1/2 1
dt’) <1 nl

HﬁxT’”)) (r)

2 [HX[O,T]\PHis,b} Sr Z <n>28’$;’2/<7'>2(b_1)d7

nezd R
St llellns 2 mre

where the last inequality comes from the fact that [ (7)2¢~Ydr is finite if and only if b < 1.
Also, we have for p > 2,

HHX[O,T}‘I/HXs,b 51?1/2 H¢||HS(L2;HS)

Lr(Q)
hence, using Chebyshev’s theorem
A2

P (Il ¥l .o > ) < Ce R0

which ends the proof.
O

Now that we proved these two result, we come back to the fixed point problem (2.8).
Let us denote

r)0) = 10500 1 () [ S )b o) +xom(@) [ - Oyoawe)

and we want to find a unique u such that

u(t) = I'(u)(t)
for any t € [0,7] and T' < 1. Fix % <b< % and suppose ¢ € HS (L% L?). Then, using
equations (2.4) and (2.6) and Theorem 2.6, we have

HFUHXOJJ 5 ||U0||L2 + TH H|u|2uH 0,— 14260 + Ow
x%—z

Then, by a duality argument and Hélder’s inequality, we have

/ ]u\qudxdtl
RxT

3
< sup iz [lvllza,

Tl 1 <1
ol 0,320

H\u|2uH sup

1 -
x0-g+20
U” 0’%_29§1

< 3 )
S sup <1HUHX0,% o]l 0,3
Xo,%—w—

where the last inequality comes from Theorem 2.5. Thus, we have

IPull o S luoll g2 + T [[ullxos + Co:
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Using similar arguments, we also get

0 2 2
ICw = Tollos S T (Iullfos + lollos ) llu = vll oo

Thus T is a contraction on a ball B € X% of radius

R = Rw ~ ||u0||L2 + Cw
by choosing T' = T'(R) < 1. So we constructed a solution v € B C X 0.3~ to equation

(2.8), but X%2 is not a subset of CyL2. We then need to prove that u € C;L2. Observe
that

(1) S(t)uo € CyL2, so the linear part is continuous.
(2) According to Remark 1.1, ¥ € CL2 for ¢ € HS (L* L?).

(3) In fact, using equation (2.5), we can prove the nonlinear part is in X 0.5+ CyL2.
sou € C ([0,T]; L2) and we proved local well-posedness of equation (2.1) in L? (T).

Remark 2.7. Similarly, we can prove local well-posedness of equation (2.1) in H® (T), for
s > 0, assuming ¢ € HS (Lg; HS). To do so, observe that for any s > 0 and n = ny—na+ns,
we have

(n)* S (n1)*(n2)*(ns)”
so that, with the same notations,

huvmusl ooy S T gl e
=1

and the rest of the proof follows in the same way.

2.3. Improvement by Moyua and Vega. Previously, we proved Zygmund’s L%-
Strichartz estimates (2.2), but in 2008, Moyua and and Vega proved the improved result
(see [15]):

Theorem 2.8. Let I C R be an interval, denote L} . = L{ (I) L1 (T), then
IS@uolly < 11 ffuoll o) (2.10)

Then, by duality and using Hélder’s inequality, we have

/ S(—t)F(t')dt
I

= sup

F),S)f)2dt
L= | s

< sup (1F s [SE)F] 1
1l 2=1 fe

hence, if we apply Theorem 2.8 on HS(t’)fHLz;' , we have

/

< VR 1Fl s (2.11)

L3
Also, since S(t —t") = S(t)S ( t'), applying first Theorem 2.8 and next equation (2.11), w,
have
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/St—t t')dt
I,a:

which is a bit alike the following lemma (see [5])

Lemma 2.9 (Christ-Kiselev '01).

/ S(t F(tdt

Once we have this result, we can again prove local well-posedness using a contraction
argument in L4T 2N CrL%, just recall the following results:

S s (212)

1/4
S YA s

4
LI,(E

2 3
1) |[[]ul U’\L;{i < Jlullzs,
(2) Ve Ly, NCrlLs.
3. GLOBAL WELL-POSEDNESS USING ITO CALCULUS APPROACH

Let us first recall the form of the 1 dimensional cubic stochastic nonlinear Schréodinger
equation on T :

iOpu(t, z) — O2u(t, x) + |u|®u(t, z) = ¢(t, x)&(t, x)

Then, if we set ourselves in deterministic case, namely ¢ = 0, we have

&g/|u|2dx:2Re/8tu-udx:—2Rei/8§u'udx—|—2Rei/|u2u-udw
T T T T

Then, observe [;|u[*u-udz = [} |ul*dz and, using integration by parts, [;d2u - udz =
Jr |0zu|*dz. Thus, we have
8t/ Ju|*dz =0
T

There is then L?-conservation and we use this result to prove global well-posedness in
L? (T). However, we cannot use this for stochastic NLS. We will use instead Ito’s lemma
on the mass

/ w2de = 3 a2 = 3 (62 + ¢2) (3.1)

neL nez
where p, = Reu(n) and ¢, = Imu(n). Then, if we rewrite equation (2.1) in the following
way (let us denote u,(t) == u(t,n))

dau,, = (in2ﬁn + z|u|2u(n)) dt — idndB,,

we can split it into

dp, = <—n2qn —Im <m(n))> dt +Im <$ndﬂn> (3.2)
and
dq, = <n2pn +Re (@(n))) df — Re (andﬁn) (3.3)

where we have
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Im ($,dB,) = Imapd(RefBy) + Red,d (Imf5,)
Re (¢ndBn) = Regnd(RepB,) —Imdpd (Im B,)
with Re 8, and Im f3,, independent for any n € Z. Then let us recall Ito’s lemma:

Lemma 3.1 (Ito). Let X be a stochastic process such that

dX = fdt + gdB

then, if we consider F(X), with F a function, we have
1
dF = 9,FdX + §8§F(dX)2
1
= 0, F(fdt + gdB) + §8§F - gdt
Idea of proof. Note that dF is to be understood as [ dF, the first line is just like a second

order Taylor expansion and the second line follows from the following equalities under an
integral sign :

(1) (d)* =0
(2) dtdB =0
(3) dBdt =0
(4) (dB)* =dt

O

The idea, from now on, is to use Ito’s lemma on the mass M (u). Then we should get

AM =237 (pudpn + nddan) +2 Y ((dpn) + (dg,)”) at
nez nez

=2 (pu1m (6adB,) — g Re (6082 ) ) + 2116l g2
nez

Then, we want to use the Burkholder-Davis-Gundy inequality:

Theorem 3.2 (Burkholder-Davis-Gundy inequality). Let X be a (local) martingale and
1 <p< oo, then

E

sup |Xt|p] ~E (X 7] (34)
t€[0,7) ’

where, in the previous theorem, (Xt)[o;r] is the quadratic variation. In the case of an Ito
process X (i.e. such that dX = fdt + gdB), we have

t
(Xt)o,m) :/0 gdt’.

Let us explain how we can use Theorem 3.2 with the following example:
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Example 1. Let us study 23, ., p,Im $nd (Refn). To do so, we apply Theorem 3.2 on
the following:

- 1/2
<SE (/0 Zpi!qﬁn!th)

nel

t
E | sup / 2> " pnImgnd (Re B,) dt’

tep,11J0 =7

i T 1/2
sE(Anwéwﬁwmma)]

1/2
SE (Sup M(U)(t)) T1/2H¢H11{/82(L2;L2)
te[0,7)

SeR | sup M(u)(t)

1
+ =T ||9llgs (2.2
w0 ] - HS(L2;L2)

where the last line comes from Cauchy’s inequality.

Then, using the previous example, we have

E | sup M(u)(t)| < lluollZe +C (T, 16 lus(zzo))
t€[0,T]
which gives almost sure existence up to time 7', but for any finite T, hence the global
well-posedness in L? (T).
Unfortunately, we cannot directly do these computations. Instead, we will decompose

our solution u using the frequency cutoffs P<y defined by :

F(P<nf) = X{lnj<m) ] (3.5)
Remark 3.3. Note that we could use also smooth cutoffs.

From now on, we will consider the finite dimensional approximation:

10N — 8%’&]\[ + PSN (‘UNIQUN) = Ppé (3.6)
with uy = P<yun and ¢ = P<y o ¢. If we write the equation on the Fourier side, we get

idiiy = (=% + P (Jun[2un)(n) ) dt + by (n)dB, (3.7)

with |n] < N. This gives us a finite dimensional system of stochastic partial differential
equations for (pn, gn)n<n- We can then apply Ito’s lemma 3.1, but we need to check that
uy is adapted first. Since we do not know if uy exists globally in time, we need to use a
stopping time argument.

Fix a target time T' < 1 and let 7 be a stopping time such that

0 <7 <min (T, Trax)
where Tinax = Tmax(w) is the maximal time of existence.

Example 2. Fiz R > 0, then one can check that

Tr =1inf {t > 0: |lu(t)|;2 > R}
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s a stopping time, and this can work for our case.

Then insert xo(t) to the equation (3.7) and apply Ito’s lemma 3.1.Then, by the local

well-posedness argument, we have as N tends to infinity, if we denote T the local existence
time,

HUN - UHXO,3/8~ AC~I2 —0
t€[0,T] T
Then we can verify Ito’s lemma for v and prove global well-posedness. For more details on

this part, see [6] or [16].
Remark 3.4. We can also prove global well-posedness of equation (2.1) on R if we also

iser t a cutoff in size 0 (@) on the nonlinearity in the equation (3.7).
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1. LECTURE 5, PART II & LECTURE 6 (17/03/21) & (24/03/21).

1.1. A pathwise approach for the SNLW. It is often not possible to obtain global
well-posedness via a pathwise approach. However, let us look at case that allows such a
method. Consider the (defocusing) SNLW on T3, given by

OPu+ (1 — Ayu+ u® = ¢, (1.1)

where ¢ € HS(L?, H*~!) for s > 0. Note that in this case ¥ € C;W, =*.
The Duhamel formulation is then

w(t) = 0:S(t)ug + S(t)ug — /Ot S(t—t () dt' + W(t),

where S(t) = Sin%)v». Using a method sometimes referred to Da Prato-Debussche trick,

which relies on a first-order expansion of u it is possible to show local well-posedness for the
SNLW. Indeed, we write u(t) = ¥(t) + v(t) and postulate that the remainder term v € H'.

Note that then v satisfies

v(t) = win(t) — /Ot St —t)(v(t') +U(t))dt' =: T,

Date: May 12, 2021.
2010 Mathematics Subject Classification. 35L71, 60H15.
Key words and phrases. stochastic nonlinear wave equation; nonlinear wave equation; damped nonlinear
wave equation; renormalization; white noise; Gibbs measure.
1
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where wug;,, is the solution to the linear equation. Let H! := H! x L?. Then we can estimate
1T, 0T0) [l et S N0, un) g + Tl (0 + 9| L 2
= (o ) ls + T + 0o
< o, ur)lla + T ([0ll750 16 + 190750 0)-

Hence, as longs as ¢ € HS(L?, H~!), such that also ¥ € CpL5 almost surely, we can obtain
local well-posedness for sufficiently small 7. To prove this, one can employ a fixed-point
argument for I', where the radius of contraction depends on the norm of the initial data
and the (random) norm C7LS%-norm of W. For more details on the Da Prato-Debussche
trick we refer to [3], one of the initial articles where this method was exploited. For a more
detailed analysis of the SNLW we refer to [2] and [5].

We can also use this method to obtain global well-posedness. To do that, consider a target
time Ty >> 1. Then for almost all w there exists a K = K(w) such that

1% 10 < K,

and we will obtain a (local) time of existence T' = T'(||(uo, u1)||21,K) > 0. Then, if we
can control ||(v, v)|4 on [0,T], we can iterate the above argument on [jT, (j + 1)T] to
obtain existence on all of [0,7p], where Ty, initially, was arbitrary. Thus we get global
well-posedness.

Theorem 1.1. The defocusing SNLW (1.1) is globally well-posed.

Proof. We will use an energy estimate to control ||(v, ;v)||21 on [0,T]. With our first order
expansion © = ¥ + v, the remainder v satisfies

v+ (1—Aw+ (v+¥)* =0,
where clearly almost surely
(v +0)? =03 + 3020 + 3002 + T3,

Define the energy
1 1 1
E(v,0w) = / (V)o|* dx + / (O)? dx + / vt dz.
2 T3 2 T3 4 T3
Then almost surely, taking the derivative yields
O E(v,0p) = /8,5(831) + (1= A +0%) da

= /8t(—3v2\11 — 3002 — U3 dg

< 2, )2 4, )2 3 2 :
S Ol W[ peopoo (Opv)* dx vt dx —i—C’H\PHL%OLg (Opv)* dx

<OV, T)(1+ E(v,0v)),

where we used that
1 1

( / (8tv)2dx>2 < / o d:n>2 < E(v, o),
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as well as that by Young’s inequality
0?2 < %(’L}Q\I’ +03).
Hence, applying Gronwall’s inequality yields for some C' = C(w,T"), almost surely

sup |[(v(t), 0w (1)) |4 < C < o0
te[0,7T

g

1.2. An invariant measure argument: the Gibbs measure. Up to now we relied
on methods stemming from the deterministic conservation laws. The invariant measure
approach, though similar in nature, is of a different kind. To give an example, consider the
(deterministic, defocusing) NLW

DPu+ (1 —A)u+u* =0, (1.2)

for kK € 2N 4+ 1. We can rewrite this into a Hamiltonian equation of the form

() = (51 o) (omsaam) 0

where F is the energy for the wave equation,

E(u,du) = 2/|<V>u’2 dm+2/(atu)2 dx + ]Hl/uk-i_l dz,

which is conserved under the NLW dynamics. In the finite-dimensional case, the Hamil-
tonian preserves the volume in the phase-space, dud(dyu). This means we should expect
that dud(d;u) remains invariant under the flow as infinite-dimensional Lebesgue measure.
However, it is well-known that such a measure cannot exist. Still, following this rationale,
we expect the Gibbs measure

dp(u, Opu) = Z~ e P9 qud(du),

where Z is a normalizing constant, to be invariant. Note that by plugging in the energy F,
we can write

dp(u, Opu) = Z e Jut e =5l gy o eiéHatuHiQd(atu),

L2 . 18, .
where e~ 21"l duy has the form of a Gaussian free field measure, e 21222 4(u) is the

+1dx

L1 [k . , .
spatial white noise measure and Z e F+1 Ju is some weight. Before we continue, let

us briefly discuss the above measures. As we mentioned, we cannot immediately consider
21— Lijy2
sps = 2 Ye 2k gy

as Gaussian probability measure. However, we can consider it as the limit of truncated
measures of the form

dps. N = Z&le*%“PgNUH%{s d(PgNU),
where P<p is the sharp frequency cut-off, cutting off frequencies greater than N. As such,
it is a measure on
Eyn = span{ey, |n| < N},
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and by Plancherel’s inequality we can write
dusn = Zy" H e~ M mE g (),
In|<N

with dii(n) the Lebesgue measure on C = R?. Defining the complex-valued independent
standard Gaussian random variables

gn = (n)’u(n), neN,

we get that under u, n, u has the representation

un(z) = Z In_gine.

=

We would like to take the limit as N — oo and hence have to investigate whether wuy
converges appropriately. A computation gives

3 (n)*°E|gn|”
E(HUN_UMH%{U) = <n>25n
M<|n|<N

— Z <n>20725 -0,

M<|n|<N

if and only if 20 — 2s < —d, which is equivalent to o < s — %l, where d is the dimension of
the Torus. We follow that for such o, {ux}yen is a Cauchy sequence in L2(2, H?(T%)) (or
by an analogous computation in LP(Q, H°(T4)), for p < oo), with (almost sure) limit

u(z) = Z <fgseim”.

nezd

Using this, we can understand js as the pushforward measure Powu~'. Note that s is not
a probability measure on H® and we needed to enlarge the space to H?, where o satisfies
o<s— %. In other words, we lowered the regularity in order to enable this construction.
With the same o, other possible choices of larger spaces include WP, the Besov-spaces
BZ, o as well as the Fourier-Lebesgue spaces F'L7P for o < s — g. The triple (us, H®, B) is
referred to as abstract Wiener space, where B is the enlarged space.

For a more detailed treatise on Gaussian measures in Banach spaces, we refer to [4].

1.3. The one-dimensional NLW.. Let d = 1 and consider again the NLW (1.2) above.
We can write the Gibbs measure as
dp(u, Opu) = Z_lefk%lf”kﬂdxdul ® dpo(u, Opu), where
pi1(du) = ozl gy,
12 (d(8)) = e 212022 4(B,0).

Asue H %_, the Sobolev embedding gives that u € L, almost surely for » < co. Thus we
know that the weight

L [kl
0<e v < (a.s.),

— L [ubtlde
as well as e” 1. € LP(uy), for p < almost surely. Therefore we know that
X

m’
p and p1 ® po are equivalent on H %7(T) H 7%7(1?). Using an argument by Bourgain
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(947), see [1], we can establish global well-posedness. We can use the ”finite-dimensional
approximation” wuy, which satisfies

8fuN +(1—A)uy + PgN((PgNU)k) =0.

In other words, we truncate the initial data and look at a set of lower frequencies, as well
as the associated truncated Gibbs measure

dpn = Z;[le_k%-l J(P<yu)ttt dxdul ® dpg(u, Opu).

We can verify that the finite-dimensional system, i.e. for frequencies up to N, is a Hamil-
tonian system, for which the truncated Gibbs measure is invariant. Moreover, notice that
the high-frequency part of u, i.e. u — P<yu is a solution of the linear problem, for which
we can consider the Gaussian measure, which is invariant under linear dynamics. Then, on
the one hand we can show that uy converges to u as N — oco. On the other hand, we can
show that the density of py converges to the one of p in LP, for 2 < p > oco. Finally we can
show that p is invariant under the dynamics of u.

Proposition 1.2. Given T'> 0 and € > 0 there exists Qn . C §2 such that
(1) pN(Qy 1) <&, and
(ii) for each w € QN1 the solution (uy,Owun) = (uy, Owuy;) exists on [=T,T] and
satisfies

T 2
sup [ (un(6), Bun ()]s < (1og) |
—T<t<T g

Proof. Fix K >> 1. Let the solution map

{H%—(T) — H3(T)
Dy(t) :=
(uo,ur) = (u(t), du(t))
and define
[t/3]
Onre= (] ®n(—jd)Bx,
j==I[T/3]
where B denotes the ball of radius K in ”Héf(rﬂ‘) and § ~ K~ is the local time of existence
for solutions starting in Bg. To prove the first claim, we can use the o-additivity of p to
write
(T/9]
pv(Qre) < D pn(®n(—6)Bf)
j==I[T/3]
(T/4]
= Z pn (Bg)
j==I[T/3]
< Ton(BY),
where for the second inequality we used that py is invariant under ®p. Then, recalling
that py is a Gaussian measure, we can further estimate,

pn( Q% re) STK ek <,



6 F. GERM

w\»—‘

by choosing K ~ (log %) Finally, by a local well-posedness argument on the intervals
[0, ( +1)d], 5 =0,...,[5] — 1, we have

™
sup [0, B (D) < O ~ (1o )

—T<t<T
where we in particular note that the last bound is independent of V. O
To summarize, the set Qx 7. depends on N, but the constant in our final bound is

independent of N. Hence we get the same log bound for the true solution (u,dyu) by a
PDE approximation argument. Thus we obtain almost sure global well-posedness.

For the true solution u, we may call the condition, given in in the above proposition
almost a.s. global well-posedness, meaning that for any T',e > 0 there exists a set {7, such
that if w € Q7. the corresponding solution u® exists on [T, 7] and P(Q2%_) < e. From
there we can get a.s. global well-posedness.

Theorem 1.3. The defocusing NLW is a.s. globally well-posed with respect to random
titial data.

Proof. Fix € and set 2 = €y, . /p;. Then setting

E:—ﬂQJ, we get  P(€) gz;
J j

Now, if w € €, then u“ exists globally in time. Finally, set
=[]0, = P =infP(Q) =0,
e>0 c
and thus we get a.s. global well-posedness. U
2. LECTURE 7 (31/03/21)
2.1. Stochastic damped NLW. Consider
OPu+ Opu + (1 — A)u + u* = V2¢,

for k € 2N+ 1, where £ again denotes white noise. We can write this in vectorial form with

O (3) = ((1 +Av)uuk> t <—v—+(-)\/§§) :

Note that the first term on the right-hand side are the deterministic NLW dynamics, whereas
the second term on the right-hand side is an Ornstein-Uhlenbeck (OU) process for v, if we

v = Oyu, meaning,

ignore the NLW dynamics term. We recall from the previous section that the NLW preserves
the Gibbs measure

dp(u,v) = Z e m f“kHdId,ul ® dpg(u,v).

Moreover, it can be shown that the OU process preserves the spatial white noise measure
po(dv) and therefore also preserves the Gibbs measure.
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Let us recall some properties of an OU process X. For parameters a > 0,b € R its
stochastic differential is given by

{ dX(t) = —aX(t)dt+bdB(t),
X(0

) = o,
where we suppose that xg ~ N (0, S—) is independent from the Brownian motion B. Then

X is given by
t
X(t)=e xo+b / e~ = aB ().
0
It is a Gaussian random variable with variance

E[XQ(t)] —2atE[ ]+b2/ —Qa(t—t’)dt/
0

b2 b2
—2at —2at
= — — (1 —
© 2a + 2a( © )
b2
= %,

ie. X(t) ~ N(O, %) for all t. With this in mind, let us consider the OU part of our
stochastic damped NLW (SANLW), that is
o = —v 4+ V2.
With the Fourier transform in x this becomes
dri(n) = —i(n) + V2dBn,

which we should further separate into Re?(n) and Imd(n) in order to use the above
properties of the OU process. We note that the distribution of ©(n) at any time ¢
is determined by the complex random variable g, ~ N(0,1). Moreover, the ©(n) are
independent for different n, since the f,, are independent Brownian motions. Therefore ©
preserves the spatial whie noise measure pg and hence the Gibbs measure p.

So we see that both the NLW dynamics and the OU part preserve the Gibbs measure
individually. The questions is, how do we check that together they still preserve the Gibbs
measure? Consider the truncated dynamics

dtun + Opun + (1 — A)un + P<n((P<yu)¥) = V2¢. (2.1)

Note that we did not truncate the noise term, and further, that for high frequencies |m| > N
we have the linear equation

OF Poyun + O P yun + (1 — A)Psyuy = V2PsNE,
for which the Gaussian measure o ® o is invariant, where by u . we denote the

marginal measure of y1; on E 1= span{en \n\ > N}, j=0,1. Let us further consider the
truncated Gibbs measure from the previous section, which we now write as

Zle S Penw e (g o @ o v (Pen (un, Bpun)))

® (1,3, @ 13 (Ponun, drun))

dpn(un,Oiun) =
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By the invariance of the marginal measures we note that py is invariant under the

truncated SANLW (2.1).

Let LY be the generator of the Markov semigroup P; for (2.1). In other words, LV is
the time derivative of P; at t = 0, where for a functional F' on the phase space for (u,v),
v = Qyu, P; satisfies

P F((u,v)) = EF(P¢(u,v)),

with ® denoting again the solution map. py being invariant for (2.1) means that the adjoint
(LN)*pnx = 0, or in other words, for any functional F,

/LNF(u,v)dp(u, v) = 0.
In our case, the generator can be written as the sum of two generators, i.e.
N =LY + 13

where LY is the generator for the truncated NLW and LY is the generator for the OU
process (for v). As a result, by linearity for the adjoint

(LY)"pn = (L) "pn + (L) pn = 0,

meaning that py is invariant under the stochastic damped NLW dynamics (2.1). For here
we can repeat Bourgain’s invariant measure argument to obtain a.s. global-wellposedness
for (2.1), as well as the invariance of p under its dynamics, as we did in the previous section.

2.2. Parabolic <I>’f+1-model. Suppose first we have
du(t) = =V H(u)dt + V2vdW (t)
where by V we mean the Fréchet derivative. For a functional F' we can write
L(F(u)) = yTr(D*F(u)) = {VF(u), VH (u)).

L*(F(u) = 0 is equivalent to

/LF(u)p(du) = W/TTDQF(U)G_H(U‘) du + 7 /(VF(U), V(e W)Y du
by integration by parts. Though it is an informal calculation, it shows how one can check

invariance by hand.
Now, consider

o+ (1 — A)u — uf = V2¢.

We will compute the Markov generator and prove invariance by a truncation argument.
For i, = a, + ib, and N(u) = u* we get

dan, = (— (n)*a, — ReN(u))dt +V2dRe B,
db, = (= (n)%b, — Im N (u))dt + v2d Im B,.



LECTURE NOTES 9

In fact, note that we consider the truncated dynamics under the projection P<y, though
we omit the subscript IV for readability. Now, we identify the function @ with its Fourier
coefficients, which we denote in vector form as @ and b. Then, for a test function F,

Np(= 7y _ 2 1o
L F(a,b)—z< (n) anaan—i—Qaan F

+> <—<n>2l)nabn + ;a§n> F,
LY F(d@,b) = 0u, F(— Re(N (w))(n))

+ 3 0y, F(—Im(N (u)) (n),

where LY is the generator corresponding to the linear part and L corresponds to the
nonlinear part.

As an example, let us first consider the linear case, i.e. N = 0. Then the Gaussian
measure is

1 2
~1 —LyP
dMN — ZNIE sl SNu”HldPSNU

= Z&le—% ()@ +O)TL da,, db,,.

To see the invariance, consider for simplicity only the a,-part for a fixed n. Recall

first that we impose a, = a_,, whereby we lose the factor % in the following exponential

2
functions. Then, integration by parts gives
1
/(—(n>2an8anF + iagnF)e*<">2a% day,
1
= /<n>2F8an(ane_<”>2a%) + §F63ne_<”>2“% da, =0,

where we used that

O, (ane™ M700) = =0k _ 9(p)2q2 e (M7an
SO = 9, (—{n)Pae )

An similar computation also holds for the b, part. Hence we get that (LY)*p = 0.

Now let us consider the truncated Gibbs measure with the nonlinear part, where we again
write LV = LY + LY. Again we want to check that for test functions F' on the Fourier
coefficients,

(LN oy =0 < / LN (@, D)dpy (6.5) = 0.
We will rewrite the weight to

oy = e [P M(@d)
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where pp is the same Gaussian measure as above. Then, by the convolution theorem and
the chain rule
7 1 N "
8anM(G/, b) = 8anm Z Upqy * UnkJrl
ni+-4ngy1=0
ou Ol_p,
=0y M— +0;_ M
oG, T,
= N(u)(=n) + N(u)(n)

= 2Re N (u)(n),

n

where we used that

1 N "
04, M = m Z Upy ** Uny,

nitAngp1=-—n
and similarly for —n. Analogously,

—.

Ay, M (a@,b) = iN (u)(—n) — iN(u)(n)
= 2Tm N (u)(n).

To check that
(LY + LY)*pn =0,

let us fix again an n and focus on the real part. Then, notice that

. o 1 .
((n)?an + ReN(U)(n))aanefM(“’b)e%")Q“% = —iagnefM(“’b)e%mza%.
Therefore we have by integration by parts, omitting the imaginary part,

N 1 i
/ (LY + LY ) Fdp =] / F((n)?an0,, + ReN(u)(n)0,, + iagn)e—ma,b)e—mpaidan

=0.

A similar computation also holds for the b, part, and hence we have the invariance of the
truncated Gibbs measure.
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Abstract

The lecture notes on singular SPDEs are based on a course taught by professor: TadaHiro
Oh. In particular, we focus on: Lecture 7 (pp 14-15), Lecture 8, and Lecture 9 (pp 1-5) of the
hand written course notes.

1 Introduction

We consider the parabolic <I>]f+1—m0del of a two dimensional Stochatic Non-Linear Heat equa-
tions (SNLH) on T? satisfying the system:

{&gu—l—(l—V)u—uk:ﬂf, O

(u)|t=0=ug € H?

where u = u(t, ) is the velocity field; ¢ is time and x € T? (periodic domain). Here, ¢ denotes
the additive space-time white noise. Since the space-time white noise is more irregular in two
dimension than in one dimension, the SNLH system (1) is not well-posed. To circumvent this
particular problem we introduce renormalisation.

2 The need for renormalisation

In this section we argue why one needs a renormalisation technique to study the two dimensional
SNLH system. In particular we consider

u= Z giein-x’
nez? <n>
and a Gaussian free field (GFF) with a density

dp = Z-te 2l gy,

We start with a truncated version of u given by

_ In  in-x
uy = Z @6 7

In|<N

for a fixed € T2, and N € N. Then uy(z) is mean zero Gaussian random variable with variance

oy =E [|uN(m)|2] = Z <nl>2 ~ log N,
In|<N



where log N — 0o as n — 0o, and the limit u is not a function but a distribution. furthermore we
observe that

1
E[lun|l3r:] = Z m < 00,
In|<N

if and only if s < 0. If s > 0, then u ¢ H® with positive probability. And as consequence of
Kolmogorov 0-1 law, u ¢ L?(T?) a.s (diverges almost sure). Hence, the SNLH system is ill-posed
since u is a distribution, and in general we cannot define a product of distributions unless we
introduce some structure . In particular, the power u” is ill-defined and thus we need to introduce
a renormalisation.

Remarks

Before, introducing renormalisation structure, we make the following remarks. As defined before,

let ()
In\W) in.z
u= ——e"

n%Z; <n>

where {g,(w)} is the independent standard C-valued Gaussian random variable.

In the motivation of why the SNLH system (1) is ill-posed, we deduced that

u € H(T2)\LX(T?)

a.s. for s < 0. Now, a natural phenomenon to investigate at this stage will be the case where p < 2
in

LP(T?) > L*(T?).
The Case when p=1:
For p = 1: we proceed as follows

Let

for fixed z € T?, and

Yo = Xn - Ligx,)<ay
for some A > 0. In view of this formulation, we recall the following theorem.
Theorem 1 (Kolomogorov three series:). Let Xy be a sequence of independent random variable.

The random series ), _, X, converges a.s. if and only if the following conditions hold for some
A>0:

(1)-
Z P(| X, |> A) converges.

n=1

\V)



(i) Let Y, = Xn - Lyix,y<a}, then > E[Y,], the series of expected values of Y, converges.

(iii)
Z var(Yy,) converges.
n=1

In our case we obtain
1 1
Z var(Yy) > Z <n>2E|gn|'ﬂ|gn|§A<n> = Z <n>2E‘9n|‘1\gn|§A = 00.
nez? nez? nezZ?

Therefore in view of Theorem 1 (Kolomogorov three series), the series ), ;> X;, diverges on a set
of positive probability. As a consequence of Kolomogorov 0-1 Law, the the series » ;> X, diverges
a.s. Now taking the expectation of u € L'(T?) with some cut-off (not relabelled) we observe that

B ( [ @ldr) = [ E(u@) do = .

I=00
for each fixed x as the limit diverges in N. Hence, taking the expectation of the truncated solution
i.e. uy yields the following results: uy does not converge in L!(T?) with positive probability, by
Kolomogorov 0-1 Law, uy diverges in L(T?) a.s.

On the Regularity of uy:

Since

Then,

E[uv@uwt)| = X et -0,

[n|<N
inserting (V,)~¢ and(V,) ¢ on the left side of equation and setting z = y, for n € Z? we get

(V) “un@)] < 3 <n>1+ < oo,
|n|<N

uniformly in N € N. Note, the estimate still holds for uy — up; by similar computation. It is also
worth noting that in the real-setting we have

Elgrgh] = k! 0w,

and in particular, E[g2] = 0. Now computing, the Sobolev norm, and applying Minkoski’s inequality
for r < co and p > r we infer

uniformly in N € N, for s < 0. Note, a similar computation for uy — M holds. And as such,
{un}nen converges in LP(2, W, (T?), for s < 0 and r < co. As a consequence of Chebyshev’s
inequality, we have an exponential tail estimate:

P (ulwpr> ) < O™

N

Sz,
Ly(T?)

un () [lwsr

/

< H (V) un ()| e (o)

Lr(Q)

:P7||"'||L2(Q)

For higher order powers, we get )‘% on the left hand side of the estimate.



3 Renormalisation

Since u is not a function but only defined in the sense of a distribution, the power term u* is

ill-defined. As such, to make sense of the SNLH system (1) we need to introduce a renormalisation.
In the following presentation, we restrict our attention to the real-valued setting. Our main object
will be a Hermite polynomial.

Hermite Polynomial:

For this we consider a generating function

1,2 >tk
' = Y S H(w,0), (2)
k=0

where the term on the right follows from a series expansion, and we note that Hy(z, o) is the
Hermite polynomial of degree k. In our case we use the probabilistic &** Hermite polynomial given
by

22 dF .2

Hk(l‘ao-) = (_U)ne% d.%'k 6_%,

with variance 0. We can easily compute the Hermite polynomials using the following recurrence
relation

d
Hyy1(z,0) = zHy(z,0) — J@Hk(l', o),

to deduce

Ho(z,0) = 1,

Hy(z,0) = =,

Hy(z,0) = z°—o0,
H3(z,0) = 2°— 30z,
Hy(z,0) = z*—602®+ 30.

The importance of these polynomials follows from their orthogonality property, thus setting Hy(x) =
Hy(x,1), we observe that for k,m € N, the L? product inner of these polynomials with respect to

Gaussian measure on R is

a2

e 2

V2r

forms an orthonormal basis of L? (]R, e 2 d:z:), see

/ Hio(2) Ho(2) = d = k1 .

In fact, the Hermite polynomial {M

'z }keZZO
([1], Lemma 1.1.2) for details.

In view of the generating function (2), we also have another important orthogonality property
given by the following lemma.



Lemma 1. Let f and g be jointly Gaussian random variables with mean zero, let oy and oy be
variance of f and g respectively. Then for any n,m € N, we have

k
| 7.0 Ho(0v00)| = bkt {B1731| g
Proof. Taking the product of the generating functions for (f,o¢) and (g,04) yields:
E |:etféaft2esg%ags2:| _ etsE[fg}

Using (2) and expanding both sides we obtain

thgm

> k!m!E[Hk(fan)Hm(g,Ug)] -y U {E[fg}}k.

k,m=0

Identifying the coefficients of the power series yields (3). O

On the complex-valued setting, we instead use the (generalised) Laguerre polynomials see [2]
for more details.

3.1 Wick renormalisation

In these lecture notes, we define wick renormalisation as the orthogonal projection onto the Wiener
homogeneous chaoses of degree k by using the Hermite polynomials discussed above. We define the
ordered monomial : uﬂfv : by

: u]fv(x) = Hk(uN, O'N)7

pointwise where Hy(uy,on) is the Hermite polynomial polynomial of degree k as defined in (2).
We note that, for each fixed € T?, the random variable uy is a mean-zero real valued Gaussian
with variance

on =E[luy@) ] = 3 <n1>2 ~log N. (4)
In|<N

Here, our oy does not depend on z € T?. And it is also essential to note that, on a manifold M,
on depends on z € M. Using the Hermite polynomials computations shown above we see that

for k=2, :u% :=u% —on,
— 13— 13
for k=3, :uy:=uy—3onun.

Infinite dimension Case:

Let (H, B, nt) be an abstract wiener space. For our two-dimensional case, we consider the Gaussian
measure given by



and set H = H'(T?), and B = H°(T?). Let {e;}jen C B* be a complete orthonormal system
of H* = H. We consider the product of finitely many Hermite polynomials in different directions
given by

T Hei (. e5)).
j=1

where kj # 0 for finitely many j’s. And (-,-) = B — B* is the dual pairing (in our case its just
a product in H). Let Hj denote the collection of homogeneous wiener chaoses of degree k under
H'HLQ(B,;L) so that

‘Hj, = span Hij((x,ej» : Zk:j =k
J

Jj=1
Wiener-Ito decomposition:

Thus, we have

L2(37 ,U,) = @ %kv
k=0
and we set i
Her = P H;,
=0

to be a polynomial in Gaussian of degree k.

Lemma 2 (Wiener Chaos Estimate). Let k € N. Then, we have

k
1 X[ zo@)< (P — 121 X 22
for any p > 2 and any X € H<y.

For more details on the proof see previous lecture notes on hypercontraxtivity (taught by pro-
fessor Tadahiro Oh).

Proposition 1. {: u%; :}nen forms a Cauchy sequence in LP(; W5 (T?)),s < 0,7 < oo. Denoting
the limit by : uF :, we have
cuP e WH(T?), 5 < 0, r < oco.

Proof. Let {: uf (z) :}yen and {: uk(y) :}nen be sequences in LP(Q; W*"(T?)) so that in view of
(3) the following holds:

k
Ef: uky(a) :: uby(y) ] — k!{E[uzv(a:)uN(y)]}
1 1
~ K ens ( — 4)+ —eny (2 — )
m% (m) P ) ’
koo
= k! Z H<n >2€n1+ +nk($ y)
nj|<Nj=1 "



Inserting (V)¢ and (V,) ¢, and setting = = y we deduce

LS 1
Bl = B D e
nj|<N j=

Ss,k 17

uniformly in N € N. Computing the Sobolev norm and using the Minkowski inequality for p > r,
we obtain

k k
Jisuly s twer| < 10905 @) Lo
LP(Q) L
In view of Wiener Chaos estimate i.c. Lemma (2), [[(V)* : uf () : || o) < ng “+||L2(q so that
k
[ -
Lr(Q)
for s < 0.
O
Note that, a similar computation holds for (different projections) : uﬁ“\, - uﬂ“w s N>M > 1.

In this case, we use max(|n;|> M which implies <ni>2 < ﬁ <nj>12_5 for some § < ¢.

Next we consider the lemma which allows us to study the regularity of stochastic terms.

Lemma 3 (Regularity). Let {Xn}nen and X be spatially homogenous stochastic process such that
Xn, X : R — D'(T?) d.e. for any xo € T, {X(t,-)}ter and {X(t,- + 20)}ter have the same law.
Suppose that Xn(t), X (t) € H<p, for allt € R

(i) Fizt € R, if there exists sy € R such that
E| X007 5 (-2 5)
for all n € Z¢. Then,

X(t) € WH®(T9), 5 < s9, a.s.

Moreover, if there exists 8 > 0 such that
E||Xn(t,n) = X(t,n)]*| S N~(n)~47%0 (6)

for alln € Z¢. Then,
Xy = X in WS®(T9), 5 < 59, a.s.



(ii) Fix T > 0. Suppose (i) holds on [-T,T] and consider the difference operator 6,f(t) =
f(t+h)— f(t). If there exists o € (0,1) such that

B[ 0, X (0| S )2
for all n € Z4,|h|< 1, and for all t € [T, T]. Then,

X € C([-T,T); W*>°(T4))

—o

Jor s < sp — =7, a.s. Furthermore, if there exists 6 > 0 such that

E||6,X (t,n) — 6, X (t,n)|?| < N~9(n)=d-2s0to|p|o
for alln € Z4,|h|< 1, and for all t € [T, T]. Then,
Xy — X in C([=T,T); Wo=(T9)), s < so, a.s.

Note that, W*>(T%) can be replaced C*(T¢) = Bgom(']l‘d).

4 Stochastic Wave Equation

In this part of the lecture notes we show a renormalisation of the two-dimensional stochastic wave
equations (SNLW) on T? with an additive space-time white noise forcing

{(8?—A)u+uk:§, (7)

(u, 0u)|i=0= (o, ¢1) € H*(T?) := H*(T?) x H*~1(T?), (r,t) € T2 xR

where k > 2 is an integer and £(x,t) denotes a Gaussian space-time white-noise on T? x R. In
fact, the current formulation of SNLW system (7) is ill-posed since solutions are expected to be
distributions in space variable, and as such, u” is ill-defined. In addition, it can be shown that the
stochastic convolution

U(t,z) = /O W aw (1), (8)

where U(t,z) € C;W,°°(T?)\L?(T?) is also ill-posed for s < 0 a.s. For more details on this see
[2], and references therein. Similarly to the SNLH system, this problem is cured by introducing a
renormalisation.

4.1 Renormalised SNLW

We define the ordered monomial : WX (¢, 2) : of the truncated stochastic convolution by
: \I/?V(t, x) = Hy <\I/N(t, x), O‘N(t)>

where Hy, <\Il ~N(t, x), JN(t)> is the Hermite polynomial of degree k. Following the presentation in

[2], ¥n(t,x) is a Gaussian random variable with variance



on(t) =E[Un(t 2)* ~ tlogN.
Next, we look at an example where we can apply regularity Lemma 3 in : \I"]“V(t, x) .
Proposition 2. {: Uk (¢, x) :}nyen forms a Cauchy sequence in LT (Q; W, =), p < 00 a.s.

Proof. Here, we only verify (5) in the Regularity Lemma 3. Now in view of (3), we deduce that

it | = [ [ B[sveakn s weohtn oo

- k!{E[wux)wN(t,y)]}k.

Using Ito isometry, we have

E[WN(t,2)¥N(t,y)] Z / (smt—t’ >> dtem(z —y)

Im|<N
therefore,
E|]: U(t,z)k :(t,n)\Q] n)~2te,
nit-np=nj= 1
where € = —2sg in regularity Lemma. Thus Uy (t,z) € W5 s < 0 a.s.



Lecture (9):
So far, we checked the regularity of the wick power (same as wick monimial)
k() = li]{fn Ok (4, x) Un(t,z) = P<Wyave(t, )

of the stochastic convolution in 2-d SNLW case using (5) for a fix ¢ in part (i) of the regularity
Lemma 3. Then, for part (ii) of Lemma 3 i.e. the difference part, we simply use the mean value
Theorem to get (n)?|h|.

Note that (dropping N), by construction

UF e H,

Then, in view of the Wiener chaos estimate in Lemma 2 and Chebyshev’s inequality, we get

2

\2
P([]: UF: || g o> A ) < Cexp —cik2
LWy T1+R

for all € > 0, finite ¢ > 1,7 > 0. For ¢ = 0o, we can use the Garsia-Rodemich-Rumsey inequality
and get

2
Ak
gk, -
]P(|| LA HLN(WH];W;E,OO(TZ))> A) < exp ( cj n 1).

For more details see [3] and references therein.

4.2 2-d Heat convolution

In the following computations, we use Lemma 3 part (i) to show regularity of stochastic convolution
in the Heat case. For 2-d SNLH system(1), the stochastic convolution is given by

t
- / e =(A=1) Gy (¢, ()
0

Now, using Lemma 3 we infer the following Proposition holds a.s.

Proposition 3. {: UX (¢, 2) :} yen forms a Cauchy sequence in LP(Q; C,C;¢(T?)) and in C;C¢(T?),
and C~° = Bg,

Proof. (dropping N):

We only verify (5) in the Regularity Lemma 3. Now in view of (3), we deduce that

E y:qf@k:(t,n)yﬂ - /T /TQIE[:\II(t,x)k(t,x) Ut 2) (8 y) ;| en(y — x) dady

= K {E[\I/(t,x)\l/(t,y)]}k.

10



Using Ito isometry, we have

— e—2(m)?
E[U(t, z)¥(t,y)] Z/ dt@m( —y) = 1<m>2

therefore,
— 1 Cons
R To EI EE D | F e
ni+-nEg=nj=1 J
for all € > 0 in regularity Lemma. Thus : % : (¢,z) € C;C;¢(T?) a.s. O

Idea of the proof of the regularity Lemma 3:

Assuming that all stochastic process are spatial homogeneous i.e. Translation invariance (in x)
we get
E[X(t,n)X(t,m)] =0

for n +m # 0, in the real-value setting. Noting the difference frequencies we get

BX(EnX(tm) = [ [EX00X(t0)] calolenls) dody

N~

=€_(n+m)(®)em(z—y)

where I1 = ﬁ(t, x —y) for a fixed t. Then,

E [)?(t, n)X(t, m)} = F(t,m) / e MM g — 0
Td

for n +m # 0. Now suppose (5) holds for a fixed ¢t. Then, for p >> 1,r >> 1. The Sobolev
inequality yields

mem

SWXMWM

LP(Q) Lr(Q)

Using Minkowski inequality for p > r, we get

[EST-

V) X | o)

|
LP(Q) H Lr

Finally, using Wiener chaos estimate Lemma (2)

1> (X (n)en (@) 20

n

]Wwwmm@

LT

LT

g

where

Using (5), we get

11



5 pg Z <n>2(s+5)—d—250 < o0,

H||<V>S+EXHLP<Q>
Lr nezd

for s < s¢ (by taking 0 < ¢ << 1 such that s + ¢ < sp). To prove part (ii) of Lemma 3, we use
Kolomogorov continuous criterion.
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