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1. Navier-Stokes equations

Consider a fluid moving with velocity ~u and f a property of the flow. One can understand

the change in f in two ways, depending on the coordinates,

Euler coordinates:
∂f

∂t
= lim

∆t→0

f(t+ ∆t, x)− f(t, x)

∆t
,

Lagrange coordinates:
Df

Dt
:= lim

∆t→0

f(t+ ∆t, x+ ~u∆t)− f(t, x)

∆t
.

The first represents the usual time derivative while the second captures the change of f

with respect to the flow. It is often called material derivative, but can also be mentioned

as advective, hydrodynamic, Lagrangian or Stokes derivative.

In this course, we focus on the incompressible Navier-Stokes equations (NSE), with u =

(u1, u2, u3) : R+ ×R3 → R3 the velocity field and p : R+ ×R3 → R the pressure, satisfying




∂tu+ (u · ∇)u = −∇p+ ∆u+ f, t > 0

divu = 0

u|t=0 = u0

, (1.1)

with a forcing f .

The Navier-Stokes equations are of great interest in physics, used to describe the motion

of viscous fluids. They are also of great interest in mathematics and have been extensively

studied.
1
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Note that the left-hand side of the first equation in (1.1) corresponds to the material

derivative of u, as Du
Dt = ∂tu+ (u · ∇)u, while the second equation imposes the incompress-

ibility of the fluid. Moreover, the system has 4 equations and 4 unknowns, and can be

written as follows





∂tuj +
3∑

k=1

uk∂kuj = −∂jp+ ∆uj + fj , j = 1, 2, 3

3∑

k=1

∂kuk = 0.

We start by introducing the Helmhotlz decomposition in order to simplify the equation.

Definition 1.1 (Helmhotlz decomposition). Let u ∈ Hs(Rd), s ≥ 0. Then, there exist

functions A : Rd → Rd and φ : R3 → R such that

u = ∇×A︸ ︷︷ ︸
divergence free

+ ∇φ︸︷︷︸
curl free

.

This is called the Helmholtz decomposition of u.

Remark 1.2. (i) A similar decomposition can be defined on the torus, with the addition

of a harmonic term, the Hodge decomposition. Such term can be removed by imposing the

mean zero condition to u.

(ii) The Helmhotlz decomposition in Lp(R) for p > 2 requires more care.

We want to apply the Helmholtz decomposition to the initial data u0.

Let v0 divergence free and w0 such that u0 has the following Helmholtz decomposition

u0 = v0 +∇w0.

Taking divergence of u0, we obtain

−∆w0 = −divu0 =⇒ w0 = −∇(−∆)−1∇ · u0.

Therefore, we can write the divergence free part as follows

v0 = u0 −∇w0

= (Id +∇(−∆)−1∇·)u0

:= Πu0,

with the operator Π denoted as the Leray projection. Component-wise, v0j , for j = 1, 2, 3,

is defined as follows

v0j =
3∑

k=1

(δjk + ∂j(−∆)−1∂k)u0k

= F−1

(
3∑

k=1

(
δjk −

ξjξk
|ξ|2

)
û0k(ξ)

)
.
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Remark 1.3. Recall that the Riesz transform is defined as
iξj
|ξ| on the Fourier side, and can

be interpreted as the higher dimensional analogue of the Hilbert transform,

Hf(x) = p.v.

ˆ

f(x− y)

y
dy : Lp(R)→ Lp(R), 1 < p <∞,

F(Hf)(ξ) = isgn(ξ)f̂(ξ).

In addition,

Rjf(x) =

ˆ

xj − yj
|x− y|d+1

f(y) fy, Rj : Lp → Lp, 1 < p <∞,
d∑

j=1

R2
j = −Id.

We want to apply the Leray projection to the equation and study only u, not p. For

simplicity, assume that u is divergence free.

Applying the Leroy projection to (1.1) gives




∂tu+ Π
(
(u · ∇)u

)
= Lu+ Πf

Πu = u

u|t=0 = u0

, (1.2)

since Π(∇p) = 0 and defining L := Π∆.

If u is a solution of NSE, then it satisfies the following Duhamel formulation (or mild

formulation)

u(t) = etLu0 −
ˆ t

0
e(t−t′)LΠ

(
(u · ∇)u

)
(t′) dt′ +

ˆ t

0
e(t−t′)LΠf(t′) dt′. (1.3)

Proposition 1.4 (Lp-Lq estimate). Let 1 ≤ p ≤ 1 ≤ ∞, the following estimates hold

∥∥et∆f
∥∥
Lqx
. t−

d
2

(
1
p
− 1
q

)
‖f‖Lpx , (1.4)

∥∥Dα(et∆f)
∥∥
Lqx
. t−

d
2

(
1
p
− 1
q

)
−α

2 ‖f‖Lpx , (1.5)

for all t > 0, α ≥ 0.

The previous estimates hold on the real line and in the periodic setting. On the real

line, we will use a scaling argument. However, we require a different approach on the torus,

namely the Poisson summation formula.

Lemma 1.5. Let f be a periodic function. Then the following holds
∑

n∈Zd
f̂(n)ein·x =

∑

n∈Zd
f(n+ x).

Proof. Let

F (x) =
∑

n∈Zd
f(x+ n) =

∑

n∈Zd
F̂ (n)ein·x,
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where

F̂ (n) =

ˆ

Td
F (x)e−in·x dx

=

ˆ

Td

∑

m∈Zd
f(x+m)e−in·x dx

=
∑

m∈Zd

ˆ

Td
f(y)e−in·(y−m) dy

=

ˆ

Rd
f(x)e−in·x dx− f̂(n).

�

Proof of Proposition 1.4. Since

et∆f(x) =

ˆ

Kt(x− y)f(y) dy,

where the kernel Kt is given by a Gaussian, we have
∥∥et∆f

∥∥
Lqx
. ‖Kt‖Lrx‖f‖Lpx ,

with 1
q + 1 = 1

r + 1
p using Young’s inequality.

Now we want to evaluate the norm of Kt.

We first show the estimate on the real line. Since

K̂t(ξ) = e−t|ξ|
2

= K̂
(
t
1
2 ξ
)
,

for K := K1, it follows that

Kt(x) =
1

t
d
2

K

(
x

t
1
2

)
,

hence

‖Kt‖Lrx = t−
d
2

∥∥∥∥K
(
x

t
1
2

)∥∥∥∥
Lrx

= t−
d
2 t

d
2

1
rCk ∼ t−

d
2

(
1
p
− 1
q

)
.

To show the second estimate, assume that D =
√
−∆, otherwise the proof follows by

scaling as before. We have that

Dα
(
et∆f

)
= Dα(Kt ∗ f) =

(
DαKt

)
∗ f.

Similarly, on the Fourier side, we have

F{DαKt}(ξ) = |ξ|αe−t|ξ|2 = t−
α
2
(
t
1
2 |ξ|
)α
e−t|ξ|

2

︸ ︷︷ ︸
Ĝt

.

Let G = G1 ∈ S(Rd), Gt(x) = t−
d
2G
(
x

t
1
2

)
. It follows that

∥∥DαKt

∥∥
Lrx

= t−
α
2 ‖Gt‖Lrx = t−

α
2 t
− d

2

(
1
p
− 1
q

)
, (1.6)

and the result follows.

Now focus on the periodic setting. We cannot use a scaling argument, thus we must use

the Poisson summation formula (1.6).



5

In this case we have et∆f = Kt ∗ f , with K̂t(n) = e−t|n|
2
. Thus, we want to estimate the

Lr-norm of Kt. Using the Poisson summation formula (1.6)

‖Kt‖Lrx(Td) =

∥∥∥∥
∑

n

K̂t(n)ein·x
∥∥∥∥
Lrx

=

∥∥∥∥
∑

n

Kt(x+ n)

∥∥∥∥
Lrx

.

Using Hölder’s inequality, it follows that

‖Kt‖Lrx(Td) .
∥∥∥∥
(∑

n

〈n〉−βr′
) 1
r′ ‖〈n〉βKt(x+ n)‖`rn

∥∥∥∥
Lrx(Td)

. ‖〈x〉βKt(x)‖Lrx(Rd)

. 1

t
d
2

∥∥∥∥〈xt−
1
2 〉βK

(
x

t
1
2

)∥∥∥∥
Lrx(Rd)

= c̃kt
− d

2

(
1
p
− 1
q

)
,

for βr′ > d.

A similar computation holds for ‖DαKt‖Lrx(Td). �

Remark 1.6. The estimate on the torus is only valid for 0 < t ≤ 1.

On the real line, for t� 1 , e−t|ξ|
2

has exponential decay, but weaker for |ξ| � 1. However,

on the torus we cannot expect decay without imposing the mean zero condition.

The following linear estimates follow from Proposition 1.4

Corollary 1.7. Let 1 < p ≤ q < ∞ (or 1 < p < q = ∞). Then the following estimate

holds
∥∥DαetLf

∥∥
Lqx
. t−

d
2

(
1
p
− 1
q

)
−α

2 ‖f‖Lpx . (1.7)

We now focus on the scaling invariance of the equation. Let (u, p) be a solution to (1.1)

and λ > 0. Then, (uλ, vλ) defined as follows
{
uλ(t, x) = λu(λ2t, λx)

pλ(t, x) = λ2p(λ2t, λx)
,

is also a solution. Note that

‖uλ‖LqtLrx(R+×Rd) = λ
1− d

r
− 2
q ‖u‖LqtLrx .

Hence the scaling invariant indices are given by 2
q + d

r = 1 for u and 2
q + d

r = 2 for p.

For instance, for d = 3, Ḣ
1
2 (R3) ⊂ L3(R3), where

‖f‖Ḣs =

(
ˆ

|ξ|2s|f̂(ξ)|2dξ
) 1

2

,

‖f‖W s,p = ‖F−1(〈ξ〉sf̂)‖Lpx .
The following quantity is conserved for (1.1)

ˆ

|u(T )|2dx+

ˆ T

0

ˆ

|∇u(t)|2 dx dt =

ˆ

|u0|2 dx,
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however it is too weak to control the L3
x(R3)-norm.

2. Small data global well-posedness

In this section, we show global well-posedness of homogeneous NSE in L3(R3) and

Ḣ
1
2 (R3). Thus, let f ≡ 0.

Theorem 2.1. (i) There exists δ > 0 such that if ‖u0‖L3
x(R3) < δ, then there exists a unique

solution u to (1.1) in C([0,∞);L3
x) ∩C((0,∞);W 1,3

x ). Furthermore, the flow map depends

continuously on the initial data.

(ii) The same result holds in Ḣ
1
2 (R3).

To prove local well-posedness, we want to use the mild formulation to define the solution

map

Γ(u)(t) = etLu0 −
ˆ t

0
e(t−t′)LΠ

(
(u · ∇)u

)
(t′) dt′

and show that it is a contraction.

Using Proposition 1.4

‖Γu(t)‖L3
x
≤ C‖u0‖L3

x
+ C

ˆ t

0
(t− t′)− 1

2 ‖(u · ∇)u(t′)‖
L

3
2
x

dt′

≤ C‖u0‖L3
x

+ C

ˆ t

0
(t− t′)− 1

2 ‖u(t′)‖L3
x
‖∇u(t′)‖L3

x
dt′

≤ C‖u0‖L3
x

+ C

ˆ t

0
(t− t′)− 1

2 (t′)−
1
2dt′‖u‖L∞t ((0,t);L3

x) sup
t′∈(0,t)

(t′)
1
2 ‖∇u(t′)‖L3

x
.

Recall the definition of the beta function

B(p, q) =

ˆ 1

0
tp−1(1− t)q−1dt,

with Re(p),Re(q) > 0. Note that

ˆ t

0
(t− t′)− 1

2 (t′)−
1
2dt′ =

ˆ 1

0
(1− τ)−

1
2 τ−

1
2dτ = B

(
1

2
,
1

2

)
<∞.

It remains to estimate the W 1,3-norm, using Proposition 1.4 with p = 2, q = 3,

‖∇Γu(t)‖L3
x
≤ Ct− 1

2 ‖u0‖L3
x

+

ˆ t

0
(t− t′)− 3

4 ‖(u · ∇)u(t′)‖L2
x
dt′.

Focusing on the second term, we have

‖(u · ∇)u(t′)‖L2
x
. ‖u(t′)‖L6

x
‖∇u(t′)‖L3

x

. ‖|∇| 12 ‖L3
x
‖∇u(t′)‖L3

x

. ‖u(t′)‖
1
2

L3
x
‖∇u(t′)‖

3
2

L3
x
.
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Hence,

t
1
2 ‖∇Γu(t)‖L3

x
≤ C‖u0‖L∞t ([0,∞);L3

x) + Ct
1
2

ˆ t

0
(t− t′)− 3

4 (t′)−
3
4dt′

(
sup
t′
‖u(t′)‖L3

x

) 1
2

·
(

sup
t′

(t′)
1
2 ‖∇u(t′)‖L3

x

) 1
2 .

Let X = Ct
(
[0,∞);L3

x

)
∩ L∞t

(
(0,∞);W 1,3

x

)
, restricted to divergence free functions, for

simplicity. Consider the spaces defined by the following norms

‖u‖Y := ‖u‖L∞((0,∞);L3
x),

‖u‖Z := sup
t∈(0,∞)

t
1
2 ‖∇u(t)‖L3

x
.

One can also define the spaces restricted to the time interval [0, T ], for some T > 0,

‖u‖YT := inf
{
‖v‖Y : v ∈ Y, v|[0,T ]=u},

with infimum taken over all extensions v ∈ Y of u. The spaces XT and ZT are defined in

a similar manner.

2.1. Small data global well-posedness in L3(R3). We already showed

‖Γu‖Y ≤ C0‖u0‖L3
x

+ C1‖u‖Y ‖u‖Z ,

‖Γu‖Z . ‖u0‖L3
x

+ ‖u‖
1
2
Y ‖u‖

3
2
Z .

Similarly,

‖Γu− Γv‖Y . ‖u− v‖Y ‖u‖Z + ‖v‖Y ‖u− v‖Z ,

‖Γu− Γv‖Z . ‖u− v‖
1
2
Y ‖u− v‖

1
2
Z‖u‖Z + ‖v‖

1
2
Y ‖v‖

1
2
Z‖u− v‖Z .

Let ‖u0‖L3
x
� 1, and consider a closed ball of radius η, Bη ⊂ X, for η = 10C0‖u0‖L3

x
� 1.

Then, combining the previous estimates

‖Γu‖X ≤ 2C0‖u0‖L3
x

+ C1‖u‖2X < η,

‖Γu− Γv‖X ≤ C2

(
‖u‖X + ‖v‖X

)
‖u− v‖X ≤ 2C2η‖u− v‖X ,

hence we must choose 2C2η ≤ 1
2 .

Using Banach fixed point theorem, there exists u such that Γu = u in Bη ⊂ X, and small

data global well-posedness in L3(R3) follows.

Remark 2.2. Uniqueness in L3
x(R3) follows from a continuity argument.

To show uniform continuity, the same estimates give ‖u− v‖X . ‖u0 − v0‖L3
x
.

It remains to compute pressure p from the solution u. Note that

∂tu−∆u+ (u · ∇)u−∇p = 0 =⇒ ∇p = ∂tu−∆u+ (u · ∇)u =: G(t).

Hence,

Π
(
G(t)

)
= ∂tu− Lu−Π

(
(u · ∇)u

)

=⇒ G(t) = curl free = ∇φ
=⇒ p = φ+ const.
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2.2. Small data global well-posedness in Ḣ
1
2 (R3). Focus on the Ḣ

1
2 (R3)-norm of the

solution map

‖Γu(t)‖
Ḣ

1
2
≤ C‖u0‖

Ḣ
1
2

+ C

ˆ t

0
(t− t′)− 1

2 ‖(u · ∇)u(t′)‖
L

3
2
x

dt′

≤ C‖u0‖
Ḣ

1
2

+ C

ˆ t

0
(t− t′)− 1

2 ‖u(t′)‖L3
x
‖∇u(t′)‖L3

x
dt′

≤ C‖u0‖
Ḣ

1
2

+ C

ˆ t

0
(t− t′)− 1

2 ‖u(t′)‖
Ḣ

1
2
‖∇u(t′)‖L3

x
dt′.

Moreover,

‖Γu(t)‖
Ḣ

1
2
≤ C‖u0‖

Ḣ
1
2

+ C

ˆ t

0
(t− t′)− 1

2 (t′)−
1
2dt′‖u‖

L∞t Ḣ
1
2
‖∇u‖Z .

Similarly,

‖∇Γu(t)‖L3
x
≤ CT− 1

2

∥∥|∇|− 1
2u0

∥∥
L2
x

+ ‖u‖
1
2

L∞t L3
x
‖u‖

3
2
Z

. CT− 1
2

∥∥|∇|− 1
2u0

∥∥
L2
x

+ ‖u‖
1
2

L∞t Ḣ
1
2
x

‖u‖
3
2
Z ,

from Sobolev inequality.

Therefore, running a contraction mapping argument in X̃ = CtḢ
1
2 ∩Z yields small data

global wll-posedness of (1.1) in Ḣ
1
2 (R3).

3. Large data local well-posedness

We now focus on showing local well-posedness of NSE for large data. We start by showing

the following lemma.

Lemma 3.1. Let 1 ≤ p ≤ q ≤ ∞, α ≥ 0, K compact in Lp. Then, there exists F (t) :

(0, 1]→ R+, such that lim
t→0+

F (t) = 0 and

t
d
2

(
1
p
− 1
q

)
+α

2 ‖Dαet∆f‖Lq ≤ F (t),

∀t ∈ (0, 1], ∀f ∈ K.

Proof. Suppose K = {f} and let θ := d
2

(
1
p − 1

q

)
+ α

2 . Then,

tθ‖Dαet∆f‖Lq ≤ tθ‖Dαet∆(f − g)‖Lq + tθ‖Dαet∆g‖Lq
. ‖f − g‖Lp + tθ‖Dαet∆g‖Lq ,

for all g ∈ S.

Given j ≥ 1, there exists gj ∈ S such that

tθ‖Dαet∆f‖Lq ≤
1

2j
+ tθ‖Dαet∆gj‖Lq

≤ 1

j
,

for all 0 < t ≤ tj .
Hence, let F (t) = inf

j

(
1
j

)
+ t.
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Now, consider the general case. Given j,

K ⊂
Nj⋃

k=1

B 1
2j

(gjk)

for some gjk ∈ S. Then,

tθ‖Dαet∆f‖Lq ≤
1

2j
+ tθ‖Dαet∆gjk‖Lq ,

for f ∈ B 1
2j

(Gjk).

It follows that

tθ‖Dαet∆f‖Lq ≤
1

2j
max
k

(tθ‖Dαet∆gjk‖Lq),

for all f ∈ K. Then, take infimum in j to define F (t). �

3.1. Large data local well-posedness for in L3
x. In order to show local well-posedness

we want to run a contraction mapping argmument in XT = YT ∩ ZT on BR,η =
{
‖u‖YT ≤

R, ‖u‖ZT ≤ η
}

.

We have seen that

‖Γu‖YT ≤ C0‖u0‖L3
x

+ C1‖u‖YT ‖u‖ZT ,
but this is not enough fo the difference estimate. Hence, consider the following modified

estimate

‖Γu‖YT ≤ C0‖u0‖L3
x

+ C

ˆ t

0
(t− t′)− 1

4 ‖u · ∇(t′)‖L2
x
dt′

≤ C0‖u0‖L3
x

+ C1

ˆ t

0
(t− t′)− 1

4 (t′)−
3
4dt′

︸ ︷︷ ︸
B
(

3
4
, 3
4

)
<∞

‖u‖
1
2
YT
‖∇u‖

3
2
ZT
.

Hence,

‖Γu‖YT ≤ C0‖u0‖L3
x

+ ‖u‖
1
2
YT
‖u‖

3
2
ZT
,

‖Γu‖ZT ≤ ‖etLu0‖ZT + ‖u‖
1
2
YT
‖u‖

3
2
ZT
.

Let u ∈ BR,η, with R = 2C0‖u0‖L3
x
, thus

‖Γu‖YT ≤
1

2
R+ C1R

1
2 η

3
2 ≤ R.

By Lemma 3.1, there exists T = T (u0) > R such that ‖etLu0‖ZT ≤ 1
2η, which implies

that

‖Γu‖ZT ≤
1

2
η + C2R

1
2 η

3
2 ≤ η,

therefore Γu ∈ BR,η, with η = η(R) = η(‖u0‖L3
x
)� 1.

Regarding the difference estimate, we have

‖Γu− Γv‖XT ≤ C
(
R

1
2 + η

1
2
)
η

1
2 ‖u− v‖XT

≤ 1

2
‖u− v‖XT ,
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by choosing η = η(R)� 1. Thus, using Banach fixed point argument, local well-posedness

in L3
x(R3) (or T3) follows.

3.2. Large data local well-posedness in Ḣ
1
2
x . Similarly, let ỸT = CT Ḣ

1
2
x and X̃T =

ỸT ∩ ZT .

It remains to estimate the ỸT -norm,

‖Γu‖ỸT ≤ C0‖u0‖
Ḣ

1
2

+ C

ˆ t

0
(t− t′)− 1

4 ‖u · ∇u(t′)‖L2
x
dt′.

The integral term is controlled as follows
ˆ t

0
(t− t′)− 1

4 ‖u · ∇u(t′)‖L2
x
dt′ . ‖u‖

1
2
YT
‖u‖

3
2
ZT

. ‖u‖
1
2

ỸT
‖u‖

3
2
ZT
,

using Sobolev inequality. The result follows from previous arguments.

4. Navier-Stokes equations with forcing

We want to extend the analysis to the non homogeneous NSE. Therefore, consider the

forced NSE equation, with deterministic or stochastic forcing,

forced NSE: ∂tu−∆u+ (u · ∇)u−∇p = f, f deterministic, (4.1)

stochastic NSE: ∂tu−∆u+ (u · ∇)u−∇p = ζ, (4.2)

with ζ stochastic forcing, white in time (or kick force in time), smooth in x.

The stochastic forcing ζ is defined as follows

ζ = φξ,

with ξ space-time white noite and φ a smoothing operator in x, for example Hilbert-Shmidt

from L2
x to HS

x .

Before proceeding, we must introduce some stochastic analysis.

4.1. Basic stochastic analysis. Let W (t) = (W 1(t), . . . ,W d(t)) denote a L2-cylindrical

Wiener process, with

W j(t, x) =
∑

n∈Zd
βjne

in·x,

where {βjn} n∈Zd
j∈{1,...,d}

a family of independent complex-valued Brownian motions (BM),

βjn = Re(βjn) + i Im(βjn),

with real and imaginary parts independent real-valued BMs.

Let (Ω,F , P ) a probability space. A Brownian motion (BM) B on R+ is a stochastic

process such that

(i) B(0) = 0, a.s.

(ii) B(t)−B(s) ∼ N(0, t− s), t > s.

(iii) independent increment on disjoint time intervals: B(t1) − B(s1), B(t2) − B(s2) are

independent, t2 > s2 > t1 > s2.

The Brownian motion B satisfy the following properties.
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• E
(
|B(t)−B(s)|2k

)
= (2k)!

2kk!
(t− s)k

• E
(
|B(t)−B(s)|p

)
∼p |t− s|

p
2 , with implicit constant Cp ≤ p

p
2

We will need the following result.

Lemma 4.1 (Kolmogorov continuity criterion). Let {Xt} a stochastic process with values

in a metric space S. Suppose there exists p ≥ 1, α > 0 such that E(d(Xt, Xs)
p) . |t− s|1+α

for all t, s. Then,

P

(
sup
t6=s

d(Xt, X0)

|t− s|
α
p
−γ ≥ λ

)
≤ C

λp
, ∀0 < γ <

α

p
,

which implies that Xt is a.s.
(
α
p − ε

)
-Hölder continuous. In particular, a.s. continuous.

Remark 4.2. The proof follows from the Borel-Cantelli Lemma.

Since E
(
|B(t) − B(s)|p

)
. |t − s|1+

(
p
2
−1
)

for all finite p, using Kolmogorov’s continuity

criterion, we get α
p = 1

2 − 1
p → 1

2 as p → ∞, which implies that BM is a.s. 1
2 -Hölder

continuous.

We want to study the regularity of Brownian motion. Therefore, we must introduce the

following notation and function spaces. Let j ∈ Z and

Qj(f) =

ˆ

ϕ

( |ξ|
2j

)
f̂(ξ)eiξ·xdξ,

for some nice bump function ϕ ∈ C∞c , supported on
[

1
2 , 2
]
, with

∑
j∈Z φ

(
|ξ|
2j

)
. Moreover,

let pj = Qj for j ≥ 1 and p0 =
∑

j≤0Qj the projection onto {|ξ| . 1}.
Consider the Besov spaces defined by the norm

‖f‖Bsp,q =
∥∥2js‖pj(f)‖Lpx

∥∥
`qj (Z≥0)

,

when p = q = 2 corresponds to Bs
2,2 = Hs. In addition, we can introduce the homogeneous

space with the norm

‖f‖Ḃsp,q =
∥∥2js‖Qj(f)‖Lpx

∥∥
`qj (Z≥0)

.

Note that for 0 < s < 1, Ċs = Ḃs
∞,∞ and Cs = Ċs ∩ L∞ = Bs

∞,∞.

Now, we can focus on the regularity of Brownian motion. Locally in time BM ∈ B
1
2
−
∞,∞ ⊃

W
1
2
−,p

t , 1 ≤ p ≤ ∞, and BM ∈ B
1
2
−

p,q for 1 ≤ p ≤ q ≤ ∞.

Regarding the covariance, we have

E
(
B(t)B(s)

)
= t ∧ s,

E
(
(B(t)−B(s))B(s)

)
+ E(B2(s)) = s, t > s.

Recall the definition of the Wiener integral

I(f) =

ˆ b

a
f(t) dB(t),

f ∈ L2([a, b]) deterministic.
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Step 1: Step function f(t) =
∑n

j=1 aj−11[tj−1,tj ](t), with deterministic functions aj . Define

I(f) =
∑n

j=1 aj−1(B(tj)−B(tj − tj−1)). Then,

E
(
I(f)

)
= 0,

E
(
I(f)

)2
=

n∑

j=1

n∑

k=1

aj−1ak−1E
(
(B(tj)−B(tj − tj−1))(B(tk)−B(tk−1))

)

=

n∑

j=1

a2
j−1(tj − tj−1)

= ‖f‖2L2([a,b]).

Step 2: General f ∈ L2([a, b]). Approximate f by step functions fn in L2([a, b]) and define

I(f) = lim
n→∞

I(fn). Thus, the conditions on the mean and variance apply and I : L2([a, b])→
L2(Ω) is an isometry (onto the image).

Remark 4.3. If B is complex-valued,

E|I(f)|2 = 2‖f‖2L2([a,b]).

4.2. Deterministic forcing. Consider NSE with deterministic forcing f




∂tu−∆u+ (u · ∇)u+∇p = f

divu = 0

u|t=0 = u0

.

The Duhamel formula gives

u(t) = Γu0,fu(t) = etLu0 −
ˆ t

0
e(t−t′)LΠ

(
(u · ∇)u

)
(t′) dt′ +

ˆ t

0
e(t−t′)LΠf(t′) dt′.

Denote the last term by F (t). Considering the previous analysis, it suffices to control F in

the relevant norms. Namely,

‖F‖YT ≤ ‖f‖L1
TL

2
x
,

‖F‖ỸT ≤ ‖f‖L1
T Ḣ

1
2
x

,

‖F‖ZT ,
where the last one must be made small by choosing T � 1.

Note that

t
1
2

∥∥∥∥∇
ˆ t

0
e(t−t′)LΠf(t′) dt′

∥∥∥∥
L3
x

. t 12
ˆ t

0
(t− t′)− 1

2 ‖f(t′)‖L3
x
dt′.

This quantity can be controlled by the two following quantities

(LHS) . t 12
ˆ t

0
(t− t′)− 1

2 (t′)−
1
2dt′ sup

t′∈(0,t)
‖f(t′)‖L3

x
,

(LHS) . ‖f‖LqTL2
x
,

for some q ≥ 2.
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Remark 4.4. We can take a rougher forcing, by imposing higher integrability in time, note

that

‖F‖YT . ‖f‖LqTW−2+,3
x

, q � 1

‖F‖ỸT . ‖f‖LqTH−
3
2+

x

.

4.3. Stochastic Navier-Stokes equations. Consider NSE with stochastic forcing




∂tu−∆u+ (u · ∇)u+∇p = φξ

divu = 0

u|t=0 = u0

,

with ξ space-time white noise and φ a smoothing operator in x.

Applying Π to the equation gives

∂tu− Lu+ Π
(
(u · ∇)u

)
= Π(φξ).

Consider the mild formulation

u(t) = etLu0 −
ˆ t

0
e(t−t′)LΠ

(
(u · ∇)u

)
(t′) dt′ + Π

(
ˆ t

0
e(t−t′)Lφ dW (t′)

)
,

denoting the last therm as Ψ = (Ψ1,Ψ2,Ψ3), the stochastic convolution.

In the periodic setting, we define the stochastic convolution as follows

Ψj =
∑

n∈Zd\{0}
ein·x

ˆ t

0
e−(t−t′)|n|2φn dβjn(t′)dt′,

where β−n =
¯
βjn and φ−n = φn, for j = 1, 2, 3.

For simplicity, we will drop the j in the following.

Proposition 4.5. Let φ ∈ HS(L2;Hs)/ Then,

Ψ ∈ C
α
2
−

t W s+1−α,r
x (Td), a.s. , r ≤ ∞

Ψ ∈ CtW s+1−ε,r
x (Td).

Proof. Let t ≤ τ . Calculating the space-time covariance

E
(
Ψ(t, x)Ψ(τ, y)

)

= E

((∑

n

ein·x
ˆ t

0
e−(t−t′)|n|2φn dβjn(t′)dt′

)(∑

m

eim·y
ˆ τ

0
e−(τ−t′)|n|2φm dβjm(t′)dt′

))

= 2
∑

n

ein·(x−y)|φn|2
ˆ t

0
e−(t−t′)|n|2e(τ−t′)|n|2 dt′

=
∑

n6=0

ein·(x−y) |φn|2
|n|2

(
e(t−τ)|n|2 − e−(t+τ)|n|2

)

︸ ︷︷ ︸
Cn(t,τ)≤1

.

�
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Applying 〈∇x〉s+1, 〈∇y〉s+1

E
(
〈∇x〉s+1Ψ(t, x)〈∇y〉s+1Ψ(τ, y)

)
.
∑

n

ein·(x−y)〈n〉2s|φn|2Cn(t, τ).

Setting t = τ , x = y, since Ψ is a Gaussian random variable, we have that

E
(
|〈∇〉s+1Ψ(t, x)|p

)
≤ p p2E

(
|〈∇〉s+1Ψ(t, x)|2

) p
2

≤ p p2 ‖φ‖p
HS(L2;Hs)

.

Let r <∞. Then, for all r ≤ p <∞
∥∥‖Ψ(t)‖

W s+1,r
x

∥∥
Lp(Ω)

≤
∥∥‖〈∇〉s+1Ψ(t, x)‖Lpx(Ω)

∥∥
Lrx(Td)

. p 1
2 ‖φ‖HS(L2;Hs).

For r =∞, use Sobolev inequality in x

‖Ψ(t)‖
W s+1−ε,∞
x

. ‖Ψ(t)‖
W s+1,r
x

, r <∞.
Fix t > 0, then

Ψ(t) ∈W s+1,r
x a.s. r <∞

Ψ(t) ∈W s+1−ε,∞
x a.s..

Given h ∈ R such that t+ h > 0, δhΨ(t, x) = Ψ(t+ h, x)−Ψ(t, x). Then,

E
(
δhΨ(t, x)δhΨ(t, y)

)
= E

(
Ψ(t+ h, x)Ψ(t+ h, y)

)
− E

(
Ψ(t+ h, x)Ψ(t, y)

)

− E
(
Ψ(t, x)Ψ(t+ h, y)

)
+ E

(
Ψ(t, x)Ψ(t, y)

)

=
∑

n

ein·(x−y) |φn|2
|n|2

(
Cn(t+ h, t+ h)− Cn(t+ h, t)

− Cn(t, t+ h) + Cn(t, t)
)
.

Note that

|Cn(t+ h, t+ h)− Cn(t+ h, t)| =
∣∣1− e−2(t+h)|n|2 − e−h|n|2 + e−(2t+h)|n|2∣∣

=

∣∣∣∣
(
1− e−h|n|2

)(
1 + e−(2t+h)|n|2)

∣∣∣∣
. |h|α|n|3α,

using mean value theorem, for all α ∈ [0, 1].

It follows that
∥∥〈∇〉s+1−αδhΨ(t, x)

∥∥
Lp(Ω)

≤ p 1
2

∥∥〈∇〉s+1−αδhΨ(t, x)
∥∥
L2(Ω)

. p 1
2 |h|α2 ‖φ‖HS(L2;Hs).

Hence,
∥∥‖δhΨ(t)‖

W s+1−α,r
x

∥∥
Lp(Ω)

. p 1
2 |h|α2 ‖φ‖HS(L2;Hs).

Using the Kolmogorov continuity criterion, we have ψ ∈ C
α
2
−

t W s+1−α,r
x , a.s. r <∞ (and

r =∞).
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Remark 4.6. In the periodic setting, from the previous results it follows that SNSE is

locally well-posed in Ḣ
1
2 (T3), since Ψ ∈ ỸT = L∞H

1
2
x and Ψ ∈ ZT . Similarly, it is locally

well-posed in L3
x(T3), as Ψ ∈ YT .
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1. Lecture 3

Notation 1.1. Define the function space

H := L2(T2;R2),

which is the space of divergence free and mean 0 functions.

Define Z2
+ := {(n1, n2) : n1 > 0 or n1 = 0 and n2 > 0}, note that Z2

+ ∪ (−Z2
+) = Z2 \ {0}.

Next, we define the orthonormal basis on H:

en :=

{
cnn
⊥sin(nx), n ∈ Z2

+

cnn⊥cos(nx), n ∈ −Z2
−

where cn = 1√
2π|n| , n = (n1, n2) and n⊥ = (−n2, n1).

Finally, we define the following function space:

HT := {u ∈ L2
TH

1, ∂t ∈ L2
TH
−1},

with the norm

‖u‖HT
:=
(
‖u‖L2

TH
1 + ‖∂tu‖L2

TH
−1

) 1
2 .

Notice, if we have u ∈ HT , then we have the mapping

t 7→ 〈∂tu(t), u(t)〉L2
x
∈ L1

T .

Also, we have HT ⊂ CTL2
x due to the following:
ˆ T

0
〈∂tu, u〉L2

x
dt ≤ ‖∂tu‖L2

TH
−1
x
‖u‖L2

TH
1
x
,

which implies ‖u(t)‖2L2 is (absolute) continuous, therefore the we have claim above.
1
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1.1. Compactness. All we need now is some kind of compact embedding theorem, of the

type of the Rellich Lemma but for vector valued functions.

We first see one lemma, which will used in our proof of the compactness proposition.

Lemma 1.1. Given ε > 0, there exists cε > 0 so that for all x ∈ X1, we have

‖x‖0 ≤ ε‖x‖1 + cε‖x‖−1
Proof. Suppose for a contradiction, if we do NOT have the claim. There exist {xn} ⊂ x1
such that

‖xn‖0 ≥ ε‖xn‖1 + cε‖xn‖−1.
Let yn = xn

‖xn‖1 . Then,

‖yn‖0 ≥ ε+ n‖yn‖−1,
‖yn‖1 = 1. (1.1)

By assumption X1 is separable and reflexive, we have some ball B1 ⊂ X1 is weakly compact.

Hence, there exist subsequence, we denote by yn so that

yn ⇀ y in X1.

Since the inclusion X1 ⊂⊂ X0 is compact, yn → y in X0. By (1.1) we have

‖yn‖−1 ≤
1

n
‖yn‖0 ≤

c

n
→ 0.

So we have y = 0, but by (1.1) again ‖y‖0 ≥ ε. We arrive a contradiction. �

Proposition 1.2. Let X1, X0 and X−1 be three separable reflexive Banach spaces with

X0 ⊂⊂ X ⊂ X1, the inclusion X1 ⊂⊂ X0 is compact and the inclusion X0 ⊂ X−1 is

continuous. Let un be a sequence of function satisfying

{un} is bounded in Lp1T X1,

{∂tun} is bounded in Lp2T X−1,

for 1 < p1 < p2 <∞. Then there exist subsequence unj of un which is convergent in Lp1T X0

Proof. Without loss of generality, we assume there exists subsequence un ⇀ 0 in Lp1T X1.

The goal here is to show un → 0 in Lp1T X0 (strongly). We now claim: By Lemma 1.1 it

suffices to show un → 0 in Lp1T X−1. If we suppose for now the claim is true, then

ˆ T

0
‖un‖p1X0

dt ≤ ε sup
n

ˆ T

0
‖un(t)‖p1X1

dt+ Cεp1

ˆ T

0
‖un(t)‖P1

X−1dt

≤ Cε+ o(1),

as n→∞. This will implies un → 0 in Lp1T X0.

Now, we prove the claim. Let I ⊂ R be the time interval in R, which is bounded. L ∈ (X1)
∗,

(X1)
∗ denotes the dual of X1, and χI(t)L ∈ (Lp1T X1)

∗. Then, we have

〈un, χIL〉 =

ˆ

I
〈un(t), L〉dt = 〈

ˆ

I
un(t)dt, L〉,
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for all L. Noticing that 〈un, χIL〉 → 0, because un ⇀ 0 in Lp1T X1. So that we have
´

I un(t)dt

weakly convergent in X1 to 0. Hence, by assumption X1 ⊂⊂ X0, up to a subsequence we

have
ˆ

I
un(t)dt→ 0 in X0, (1.2)

therefore it is convergent in X−1.
Fix t ∈ [0, T ] and write un(t)− un(t1) =

´ t1
t

dun
ds ds. Average in t1 over [t− ε, t], we have

un =
1

ε

ˆ t

t−ε
un(t1)dt1 +

1

ε

ˆ t−ε

t
(s− t+ ε)

dun
ds

(s)ds.

Also, by Hölder
∥∥∥∥

1

ε

ˆ t−ε

t
(s− t+ ε)

dun
ds

(s)ds

∥∥∥∥
X−1

. ε
1
p′2 ‖dun

ds
‖Lp2

T X−1
. ε

1
p′2 .

Given ε0 > 0, choose ε > 0 small so that Cε
1
p′2 ≤ ε0

2
. By (1.2) we obtain

‖un(t)‖X−1 ≤
ε0
2

+
1

ε

∥∥∥∥
ˆ t−ε

t
un(t1)dt1

∥∥∥∥
X−1

→ 0.

On the other hand, by the fundamental theorem of calculus we have

‖un(t1)− un(t2)‖X−1 ≤ C|t1 − t2|
1
p′2

for all n ≥ 1. For fixed ε > 0,

sup
t∈[0,T ]

‖un(t)‖X−1 ≤ max
j=1,...,[T

ε
]
‖un(jε)‖X−1 + Cε

1
p′2 ≤ ε0

for all n ≥ N(ε0). Then, implies

sup
t∈[0,T ]

‖un(t)‖X−1 → 0,

therefore u0 → 0 in Lp1T X−1. This we complete the proof. �

By using Proposition 1.2 we have

HT ⊂⊂ L2
TH

s
x, s < 1.

2. Lecture 4

In the remaining part of the notes, we will focus on T2.

2.1. Basic properties of the bilinear form. We first recall some basic properties of the

function spaces. From Rellich compactness lemma, we have

H1(T2) ⊂⊂ Hs, s < 1.

We have HT ⊂ CTL2
x, then by Aubin-Lions compactness lemma we have

HT ⊂⊂ L2
tH

s
x([0, T ]× T2), −1 < s < 1.

Finally, we recall the bilinear form B(u, v) = Π
(
(u · ∇)v

)
, we simply write B(u) = B(u, u)

and the Leary projection L = Π∆.
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Proposition 2.1. Let u, v, w ∈ H ∩ C∞, then we have

(i) 〈B(u, v), v〉L2
x

= 0

(ii) 〈B(u, v), w〉 = −〈B(u,w), v〉

Proof. By the divergent free of u, and integration by part we have

B(u, v), v〉L2
x

=

ˆ

T2

uj∂j(v
kvk)dx =

1

2

ˆ

T2

uj∂j(|v|2)dx

= −1

2

ˆ

T2

∂ju
j(|v|2)dx = 0.

This finish the part (i). Then, by using part (i) and the bilinearity,

0 = 〈B(u, v + w), v + w〉 = 〈B(u, v), w〉+ 〈B(u,w), v〉.
This complete the proof. �

Proposition 2.2. Let u, v, w ∈ H ∩ C∞, we then have

(i)|〈B(u, v), w〉| . ‖u‖
H

1
2
x

‖v‖
H

1
2
x

‖w‖H1
x

(ii)‖B(u, v)‖H−1
x
. ‖u‖

H
1
2
x

‖v‖
H

1
2
x

Proof. We first observe that the first inequality is true if and only if the second inequality

is true, so we only prove the first one, by duality. By using Proposition 2.1, Sobolev

embedding H
1
2 (T2) ⊂ L4(T2), Hölder’s inequality

|〈B(u, v), w〉| = |〈B(u,w), v〉| ≤
ˆ

T2

|u||∇w||v|dx

. ‖u‖
H

1
2
x

‖v‖
H

1
2
x

‖u‖H1
x
.

�

Proposition 2.3. For u, v ∈ H ∩ C∞, we have

‖B(u, v)‖H−3
x
. ‖u‖L2

x
‖v‖L2

x
.

Proof. For w ∈ H3
x,

|〈B(u, v), w〉| = |〈B(u,w), v〉| =
ˆ

T2

|u| · |∇w||v|dx

. ‖u‖L2
x
‖v‖L2

x
‖w‖H2+

x
.

�

Proposition 2.4. Let u, v ∈ HT , then we have
ˆ T

0
〈Lu(t), v(t)〉dt = −

ˆ T

0
〈∇u(t),∇v(t)〉dt,

and
ˆ T

0
〈∂tu(t), u(t)〉dt =

1

2

(
‖u‖2L2

x
− ‖u(0)‖2L2

x

)

Proof. Integration by parts to get the claim. �
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Proposition 2.5. Let uj ∈ HT for j = 1, 2, 3. Then the following mapping holds

(u1, u2, u3) 7→ 〈B(u1(t), u2(t), u3(t)〉.

Proof. We claim HT ⊂ L4
TH

1
2
x .

‖u‖4
L4
TH

1
2
x

=

ˆ T

0
‖u‖4

H
1
2
x

dt

(using ‖u‖4
H

1
2
x

. ‖u(t)‖2L2
x
‖u(t)‖2H1

x
)

. ‖u‖2L∞T L2
x
‖u‖2L2

TH
1
x
. ‖u‖4HT

.

By using above, and Hölder’s inequality
ˆ T

0
〈B(u1(t), u2(t)), u3(t)〉dt . ‖u1‖

L4
TH

1
2
x

‖u2‖
L4
TH

1
2
x

‖u3‖L2
TH

1
x

. ‖u1‖HT
‖u2‖HT

‖u3‖HT
.

�

2.2. Global well-posedness in L2(T2) of the Navier-Stokes equations via the en-

ergy method. We consider the following Navier-Stokes equations on T2.{
∂tu− Lu+B(u) = f

u|t=0 = u0 ∈ L2
df ,

(2.1)

where f = Πf ∈ L2
TH
−1
x . We will prove equation (2.1) is globally well-posed on T2 by using

energy method.

Theorem 2.6 (Global well-posedness on T2 ). Given u0 ∈ H = L2
df , there exists a unique

global solution u to the Navier-Stokes equations (2.1) with u|t=0 = u0, u ∈ HT for all T > 0

and

sup
0≤t≤T

(
‖u‖2L2

x
+

ˆ t

0
‖u(t′)‖2H1

x
dt′
)
≤ ‖u0‖2L2

x
+

ˆ T

0
‖f(t)‖2H−1dt, ∀T > 0. (2.2)

Proof. We fix T > 0 and work on [0, T ].

Uniqueness:

Suppose there exist two solutions u, v ∈ HT . Let w = u− v, substitute into equation (2.1),

we have

∂tw − Lw +B(w,w) +B(v, w) = 0.

Multiply by w and integrate in x, t. Noticing from Proposition 2.1 and Proposition 2.2 we

have the following

|〈B(v, w), w〉| = 0

and

|〈B(w, u), w〉| = |〈B(w,w), u〉| ≤ c‖w‖2
H

1
2
x

‖u‖H1
x

≤ c‖w‖L2
x
‖w‖H1

x
‖u‖H1

x

≤ 1

2
‖w‖2H1

x
+ c‖w‖2L2

x
‖u‖2H1

x
,
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and implies

d

dt
‖w‖2L2

x
+ 2‖w‖2H1

x
= −2〈B(w, u), w〉

‖w‖2H1
x

+ c‖w‖2L2
x
‖u‖2H1

x
.

Hence, we have

d

dt
‖w‖2L2

x
≤ c‖w‖2L2

x
‖u‖2H1

x
,

then by using Gronwall’s inequality, and w(0) = 0

‖w‖2L2
x
≤ exp

[
c

ˆ t

0
‖u(t′)‖2H1

x
dt′
]
‖w(0)‖2L2

x
= 0.

This finish the uniqueness.

Existence:

For the existence, we will split into two steps. First we will a priori bound as in (2.2); then

we construct a argument based on Galerkin approximation, we pass to the limit by using

our priori bound.

STEP 1:A priori bound

Suppose u is a smooth solution to NSE (2.1). Multiply by u and integrate we have

1

2

d

dt
‖u(t)‖2L2

x
= 〈∂tu, u〉
= 〈Lu, u〉 − 〈B(u), u〉+ 〈f, u〉
≤ −‖u‖1

Ḣ1 + ‖u‖H1
x
‖f‖H−1

x

≤ −1

2
‖u‖2H1

x
+

1

2
‖f‖2H−1dt

′.

Integrating in time1

‖u(t)‖2L2
x

+

ˆ t

0
‖u(t′)‖2H1

x
dt′ = ‖u(0)‖2L2

x
+

ˆ t

0
‖f(t′)‖2

H−1
x
dt′.

Taking the supreme over time on [0, T ], we get

‖u‖L∞T L2
x

+ ‖u‖L2
TH

1
x
≤ C(u0, f),

for some constant depending on u0 and f. By Proposition 2.2,

‖B(u)‖H−1
x
. ‖u‖2

H
1
2
x

. ‖u‖L2
x
‖u‖H1

x
,

and by using our equation (2.1)

‖∂tu‖L2
TH
−1
x
≤ ‖u‖L2

TH
1
x

+ ‖u‖L∞T L2
x
‖u‖L2

TH
1
x

+ ‖f‖L2
TH
−1
x

≤ C(u0, f),

where C(u0, f) is a non-decreasing function. That is ‖u‖HT
≤ C(u0, f).

1

‖u(t)‖2L2
x
+ 2

ˆ t

0

‖∇u(t′)‖2L2
x
dt′ = ‖u(0)‖2L2

x
+ 2

ˆ t

0

〈f(t′), u(t′)〉dt′
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STEP 2: Galerkin approximation

We first define the projection

pN : L2
df → EN = span{en : |n| ≤ N}.

Then apply pN to the equation (2.1), we have

∂tpNu− LpN + pNB(u) = pNf.

Hence, one can reduce equation (2.1) into finite dimensional system of ODEs on the

”Fourier” point of view.
{
∂tuN − LuN + pNB(uN ) = pNf

uN |t=0 = pNu0.
(2.3)

By the Cauchy-Lipschitz theorem, there exists one unique locally in time solution uN to

(2.3). Blow-up alternative:

uN exists on [0, T ]

or ∃TN < T so that

lim
t→T−N

‖uN (t)‖L2
x

= +∞.

Multiply the equation (2.3) by uN and integrate, by noticing 〈pNB(uN ), uN 〉 = 〈B(uN ), uN 〉
and same computation as in step 1, we have

sup
N≥1

(
‖u‖HT

+ ‖uN‖L∞T L2
x

)
≤ C(u0, f).

We have that uN exists on [0, T ] and

uNj ⇀ u in HT .
In L2

TH
−1
x both

∂tuNj ⇀ ∂tu

LuNj ⇀ Lu.

By Proposition 1.2 (Aubin-Lions compactness lemma), there exists subsequence uNj so that

uNj → u in L2
TH

1
2
x ,

by Proposition 2.2, we have

B(uNj )→ B(u) in L2
TH

1
x.

By definition of pNj , we have

uNj (0) = pNju0 → u0 in L2
x,

and

pNjf → f in L2
TH
−1
x .

Now, we consider the (2.3) with pNj ,

∂tuNj − LuNj + pNjB(uNj ) = pNjf. (2.4)
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From (2.4), wo notice that we cannot take the limit on pNjB(uNj ). Therefore, one needs

to apply pm for a fixed m on (2.4), then Nj ≥ m (which holds for j � 1), we have

∂tpmuNj − LpmuNj + pmB(uNj ) = pmf. (2.5)

By taking the limit in j, we have convergence of (2.5) in L1
TH
−1
x , that is

∂tpmu− Lpmu+ pmB(u) = pmf. (2.6)

Notice that equation (2.6) holds for any m ≥ 1, therefore we can take the limit in m to

obtain {
∂tu− Lu+B(u) = f

u|t=0 = u0 ∈ L2
x,

this complete the proof. �

Remark 2.7. We can also start with a given subsequence uNj of uN , then we show there

exists one subsequence uNjk
of subsequence uNj so that uNjk

→ u, where u is independent

of choice of subsequence uNj . Finally, we have uN → u.

For the energy bound. By weak convergence, we have

‖u‖L2
TH

1
x
≤ lim inf

j→∞
‖uNj‖L2

TH
1
x

and the definition of pNj . Also the weak∗ convergent,

‖u(t)‖L∞T L2
x
≤ lim inf

j→∞
‖uNj‖L∞T L∞x .

References

[1] P. Constantin, C. Foias, Navier-Stokes Equatuin University of Chicago Press, 1988.



LECTURES 5 AND 6: EXISTENCE OF AN INVARIANT MEASURE

FOR THE KICK-FORCED AND WHITE-FORCED TWO DIMENSIONAL

NAVIER-STOKES EQUATION

TYPED BY W. J. TRENBERTH

Abstract. These notes are based on lectures 5 and 6 of the course Two-dimensional
statistical hydrodynamics, taught by Hiro Oh.

1. Lecture 5: Existence of an invariant measure for the kick-forced two

dimensional Naiver-Stokes equation

Recall that B(u) = B(u, u) = Π((u · ∇)u) is the nonlinearity of the Naiver-Stokes equa-

tion. In a previous lecture we used integration by parts to show

〈B(u, v), v〉 = 0. (1.1)

In the following Lemma we prove a similar result.

Lemma 1.1. Suppose u ∈ H ∩H2 where H = L2
df,mean 0. Then 〈B(u),∆u〉 = 0.

Proof. First we claim that for u ∈ Hk(T2) such that div u = 0 there exists a function

ψ ∈ Hk+1(T2), unique up to a constant, such that u = curl ψ := (−∂2ψ, ∂1ψ). Indeed as

div u = 0,

∂1u1 = −∂2u2. (1.2)

This implies

u1 =

ˆ

∂2u2 dx1 + c(x2)

u2 =

ˆ

∂1u1 dx2 + c(x1)

where the first equation comes from integrating (1.2) with respect to x1 and the second

equation comes from integrating (1.2) with respect to x2. Together these equations show

ψ = −
ˆ ˆ

∂1u1 dx1dx2 + C

which proves the claim.

Since u ∈ H2, from the above claim, there exists ψ ∈ H3 such that

u = curl ψ (1.3)

Also recall that B(u) ∈ L2
df and

‖B(u)‖L2 . ‖u‖L∞‖∇u‖L2 . ‖u‖H2 (1.4)

where in the last inequality we used the Sobolev embedding Hs(T2) ⊂ L∞(T2) for s > 1.
1
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The Helmholtz decomposition Hk = Hk
df⊕Hk+1

curl free then implies that there exists p ∈ H1

such that

B(u) = (u · ∇)u−∇p. (1.5)

In the two dimensional setting we have curl (u1, u2) = ∂1u2 − ∂2u1. This seems unusual

at first since in the three dimensional setting the curl is a vector quantity. However these

different definitions are easily reconciled as,

curl(u1, u2, 0) = (∂1u2 − ∂2u1)k̂.

Using (1.3), (1.5), integration by parts, the fact that curl∇p = 0 and the vector calculus

identity curl ((u · ∇)u) = (u · ∇)curl u we have,

〈B(u),∆u〉 =

ˆ

((u · ∇)u−∇p) · curl ∆ψ dx

= −
ˆ

(curl (u · ∇)u− curl ∇p) ·∆ψ dx

= −
ˆ

curl (u · ∇)u ·∆ψ dx

= −
ˆ

(u · ∇) curl u ·∆ψ dx.

From (1.3),

curl u = curl curl ψ

= curl (−∂2ψ, ∂2ψ)

= ∂2
2ψ + ∂2

1ψ

= ∆ψ.

Hence using integration by parts,

〈B(u),∆u〉 = −
ˆ

(u · ∇) curl u ·∆ψ dx

= −1

2

ˆ

u1∂1(∆ψ)2) + u2∂2(∆ψ)2) dx

=
1

2

ˆ

(∂1u1 + ∂2u2)(∆ψ)2 dx

= 0.

�

Random kick forcing. We study the two-dimensional kick forced Naiver-Stokes equation

(Kick NSE),

∂tu+B(u) = Lu+
∞∑

k=1

ηωk δ(t− kT ). (1.6)

Here ηωk = ηωk (x) is a random function in x.

Before we can go deep into the study of Kick NSE, we need to introduce some probabilistic

notions.
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Definition 1.2. A filtration {Ft}t∈I is an increasing family of σ−algebras. A stochas-

tic process {Xt}t∈I is said to be adapted to the filtration {Ft}t∈I if for each t, Xt is

Ft−measurable.

For Kick NSE, we work with the filtration

Ft = F(k−1)T = Fk−1 for t ∈ Ik := [(k − 1)T, kT )

and we choose Fk = σ (ηj , j = 1, 2, .., k). Note that ηk is Fk-measurable.

Definition 1.3. A stochastic process u(t), t ≥ 0 is called a solution to Kick NSE if it’s

adapted to the filtration {Ft}t≥0 and almost surely statisfies the following

(1) For all k ∈ N, u ∈ H(Ik) is a solution to NSE (with f = 0).

(2) For all k ∈ N, u(kT+)− u(kT−) = ηk.

On Ik the initial condition for Kick NSE is

u((k − 1)T+) = u0 +

k−1∑

j=1

ηωj . (1.7)

So solving Kick NSE is equivalent to solving

u(t) = u0 +
k−1∑

j=1

ηωj +

ˆ t

0
(B(u) + Lu)(t′)dt′, for all t ∈ Ik.

Hence from the L2−GWP of NSE we have the following global existence result for Kick

NSE.

Theorem 1.4. Suppose that ηk ∈ H := L2
df almost surely for all k ∈ N. Then Kick NSE

is globally well-posed in H = {u ∈ L2
TH

1
df : ∂tu ∈ L2

TH
−1
df }.

Remark 1.5. We can take u0 to be random (F0-measurable) and GWP still works.

In the following we assume the kick forces are of the form

ηk =
∑

n∈Z2\{0}
bngknen

where {en}n∈Z2 is an orthonormal basis for H := L2
df . We set Bs =

∑
n∈Z2\{0}

|n|2sb2n. We

further place the following assumptions on {gkn}n∈Z2\{0},k∈N
(1) {gkn}n∈Z2\{0},k∈N is a family of independent identically distributed random vari-

ables.

(2) |gnk(ω)| ≤ 1 for all n, k and for all ω ∈ Ω.

(3) P (|gnk| ≤ ε) > 0 for all ε > 0 (so |gkn| has a nice density).

(4) ‖ηk(ω)‖2L2 =
∑

n∈Z2\{0}
b2ng

2
kn(ω) ≤ ∑

n∈Z2\{0}
b2n = B0 <∞.

These assumptions can be considerably weakened, however they simplify the coming argu-

ment.

Combining the third and fourth assumptions with the pigeon hole principle gives

P (‖ηk‖L2 ≤ ε) > 0 for all ε > 0. (1.8)
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From now on we will assume T = 1 for simplicity. We let

Φt : u0 7→ u(t)

denote the solution map to NSE (with f = 0) and we set Φ = Φ1. Then,

u(k) = Φ(u(k − 1)) + ηk, where u(k) = u(k+)

u(k + t) = Φt(u(k)) for 0 ≤ t < 1.
(1.9)

Energy estimates. We now establish some estimates needed to prove the existence of an

invariant measure.

Proposition 1.6. The following estimates hold

(1) ‖Φt(u0)‖L2 ≤ e−t‖u0‖L2 .

(2) ‖Φt(u0)‖H1 ≤ e−t‖u0‖H1 .

Proof. For the first estimate multiplying both sides of the equation ∂tu+B(u) = Lu by u,

integrating and noting that 〈B(u), u〉 = 0 gives,

1

2

d

dt
‖u(t)‖2L2 = 〈Lu, u〉 = −‖u‖2

Ḣ1 ≤ −‖u‖2L2 .

Where in the last inequality we used the fact that u has mean 0. An application of Gron-

wall’s inequality then gives

‖u(t)‖2L2 ≤ e−2t‖u(0‖2L2 .

For the second estimate multiplying both sides of the equation ∂tu + B(u) = Lu by ∆u,

integrating and using Lemma 1.1 gives,

1

2

d

dt
‖u(t)‖2

Ḣ1 = 〈Lu,∆u〉 = −‖u‖2
Ḣ2 ≤ −‖u‖2Ḣ1 .

An application of Gronwall’s inequality then gives

‖u(t)‖2
Ḣ1 ≤ e−2t‖u(0‖Ḣ1 .

The desired inequality follows from the fact that u(t) has mean 0. �

We use the notation u(k;u0) to denote the solution to Kick NSE with initial data u0.

Proposition 1.7. The followings inequalities hold

(1) ‖u(k; 0)‖L2 ≤
√
B0

e
e−1 .

(2) ‖u(k; 0)‖H1 ≤
√
B1

e
e−1 .

Proof. For 0 ≤ m ≤ k, using Proposition 1.6,

‖u(k)‖L2 = ‖Φ(u(k − 1)) + ηk‖L2

≤
√
B0 + e−1‖u(k − 1)‖L2

≤
√
B0 + e−1(

√
B0 + e−1‖u(k − 2)‖L2)

≤ . . .
≤
√
B0(1 + e−1 + · · ·+ e−m) + e−m‖u(k −m)‖L2 .

Hence,

‖u(k)‖L2 ≤
√
B0

e

e− 1
+ e−m‖u(k −m)‖L2 .
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In particular, for k = m, ‖u(k; 0)‖L2 ≤
√
B0

e
e−1 . The proof of the second inequality is

similar. �

We can write (1.9) as a random dynamical system (RDS). That is we can write (1.9) in

the form

u(k) = Fk(u(k − 1), ω)

where Fk : H × Ω → H is a locally Lipschitz (from LWP theory) measurable function in

u ∈ H.

Remark 1.8. Every RDS defines a Markov chain ({u(k)}k≥0 in H) in a canonical way.

Definition 1.9. For u0 ∈ H, k ∈ Z≥0, A ∈ BH we define the transition probability

Pk(u0, A) = P (u(k;u0) ∈ A).

Note that δu0 by δu0(A) = P0(u0, A). We will later use the following, well known, result

in probability theory.

Theorem 1.10. (Chapman-Kolmogorov equation) The following holds

Pk+m(u0, A) =

ˆ

H
Pm(u,A)Pk(u0, du).

For a proof of this result and for more information concerning transition probabilities,

see [2, Chapter 5].

Markov semigroups.

Definition 1.11. We let Cb(H) denote the set of continuous and bounded Borel functions

on H. We define the Kolmogorov operator Tk : Cb(H)→ Cb(H) by

Tkf(v) =

ˆ

H
f(z)Pk(v, dz) = E [f(u(k; v))] .

It is not immediately obvious from the above definition that Tkf(v) ∈ Cb(H). We show

this later.

Definition 1.12. We let P (H) denote the set of all probability measures on H. We define

the dual Kolmogorov operator T ∗k : P (H)→ P (H) by

(T ∗kµ)(A) =

ˆ

H
Pk(v,A)µ(dv) = µ({v : u(k; v) ∈ A}).

Remark 1.13. If u0 is random with L(u0) = µ, then T ∗kµ = L(u(k;u0)).

From the definitions one can show

〈Tkf, µ〉 =

ˆ

H
Tkf(v)µ(dv) =

ˆ

H
f(z)(T ∗kµ((dz).

Hence, calling T ∗k the dual operator of Tk is justified.

Definition 1.14. Let Tk be a Markov semi-group. Then,

(1) Tk is Feller if Tk ∈ Cb(H) for all f ∈ Cb(H), for all k ≥ 0.

(2) Tk is Strong Feller if Tk ∈ Cb(H) for all f ∈ L∞(H), for all k > 0.

(3) Tk is irreducible if Tk1B(x0,r)(x) > 0, for all x, x0 ∈ H for all r > 0, for any k ≥ 0.
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Proposition 1.15. Equipping P (H) with the weak topology, the mapping H → P (H)

defined by u 7→ Pk(u, ·) is continuous.

Proof. Let u0,n → u0 be a sequence in H. By the Portmanteau Theorem, see [1], it suffices

to show that if A is a continuity set of measure Pk(u0, ·), that is Pk(u0, ∂A) = 0 then

Pk(u0,n, A)→ Pk(u0, A). From LWP theory and the fact that A is a continuity set we have,

Pk(u0,n, A) = P ({ω : u(k;u0,n) ∈ A})

=

ˆ

1u(k;u0,n)∈A(ω)dP (ω)

→
ˆ

1u(k;u0)∈A(ω)dP (ω)

= Pk(u0, A).

�

We now show that the semi-group associated to Kick NSE is Feller.

Proposition 1.16. Tk : Cb(H)→ Cb(H) is Feller.

Proof. Suppose u0, n→ u0 be a sequence in H. By the Portmanteau Theorem,

Tkf(u0,n) =

ˆ

f(z)Pk(u0,n, dz)→
ˆ

f(z)Pk(u0, dz) = Tkf(u0)

and so Tkf is continuous. Further,

|Tkf(v)| =
∣∣∣∣
ˆ

H
f(z)Pk(v, dz)

∣∣∣∣ ≤ ‖f‖L∞ (1.10)

and so Tkf is bounded. �

Proposition 1.17. T ∗k : P (H)→ P (H) is continuous.

Proof. Suppose µn → µ. Let f ∈ Cb(H). Then from the fact that Tk is Feller and the

Portmanteau Theorem we have,
ˆ

f(z)(T ∗kµn)(dz) =

ˆ

Tkfdµn →
ˆ

Tkfdµ =

ˆ

f(z)(T ∗kµ)(dz).

�

Definition 1.18. A probability measure µ ∈ P (H) is said to be invariant (or stationary)

for Tk if
ˆ

H
tkfdµ =

ˆ

fdµ

for all k ≥ 0, for all f ∈ L∞(H).

If Tk is Feller then the above definition is equivalent to T ∗kµ = µ for all k ≥ 0.

With all the necessary probabilistic machinery laid out, we are now in a position to prove

the main theorem of this section.

Theorem 1.19. There exists and invariant measure for Kick NSE.
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Proof. The proof of this theorem uses the well known Bogolyubov-Krylov argument, see

[4].

For simplicity we assume B1 < ∞. The theorem can also be proven if B1 = ∞ but the

proof is much longer.

Let u(0) = 0. Set µk = L(u(k)) and

µk =
1

k

k−1∑

j=0

µj .

Let r =
√
B1

e
e−1 . By Proposition 1.7 µj(BH1(r) = 1 for all j ≥ 0 and hence muk(BH1(r)) =

1 for all k ≥ 0.

Hence {µk}k≥0 is tight and so by Prokhorov’s Theorem, see [2, Theorem 6.7], {µk}k≥0 is

weakly precompact. Hence there exists µ ∈ P (H) such that µkn ⇀ µ. We claim that µ is

an invariant measure for Kick NSE. To do this is suffices to show T1µ = µ as then it would

follow that Tkµ = µ for all k ≥ 0. For f ∈ Cb(H) we have,

〈f, T ∗1 , µ〉 = lim
m→∞

〈f, T ∗1 µ〉

= lim
m→∞

1

km

km−1∑

j=0

〈f, T ∗1 µj〉

= lim
m→∞

1

km

km∑

j=1

〈f, µj〉

= lim
m→∞

〈f, µkm〉+ lim
m→∞

1

km
(〈f, µkm〉 − 〈f, µ0〉)

= 〈f, µ〉

where in the first equality we used Proposition 1.17, the third we shifted the sum and used

the fact that T ∗1 µj = µj+1. �

2. Lecture 6: Existence of an invariant measure for the white-forced two

dimensional Naiver-Stokes equation

In the previous section we proved that there exists an invariant measure for Kick NSE.

In this section we will go through a similar procedure and prove the existence of a invariant

measure for the White Forced NSE (SNSE).

Formally SNSE is NSE with forcing

f =
d

dt
ζ(t, x)

where,

ζ(t, x) =
∑

n∈Z2
0

bnβn(t)en(x).

Recall {en}n∈Z2
0

is a basis for L2
df .



8 W. J. TRENBERTH

Stochastic Convolution. The stochastic convolution

Ψ(t) =

ˆ t

0
et−t

′)Ldζ(t′), L = Π∆

is important in the study of White-Forced NSE. Note that

ζ = φdW (2.1)

where dW is a Wiener process on L2
df . In the following we assume φ is a Hilbert-Schmidt

operator, φ ∈ HS(L2, Hs). The Hilbert-Schmidt norm is given by,

‖φ‖HS(L2;Hs) :=


∑

n∈Z2
0

|n|2sb2n




1
2

=: Bs.

It is easy to prove the following regularity estimate for ζ.

Proposition 2.1. If φ ∈ HS(L2;HS) then for ε > 0, q, r <∞ and T <∞,

ζ ∈ CtW s+1−ε,∞
x a.s. and ζ ∈ LqtW s+1,r

x a.s. (2.2)

Well-posedness of SNSE. We aim to solve

∂tu = Lu−B(u) + ∂tζ

or in Ito formulation

du = (Lu−B(u))dt+ dζ.

To solve SNSE, we use the well known Da Prato-Debussche trick, see [3]. That is we make

the ansatz

u = v + Ψ.

As

∂tΨ = Lv + ∂tζ

it follows that v solves the equation

∂tv = Lv −B(v, v)−B(v,Ψ)−B(Ψ, v)−B(Ψ,Ψ) (2.3)

which we call (SNSE’). We have the following estimate on the nonlinear piece of SNSE’,

〈B(Ψ, v), v〉 = 0

〈B(v,Ψ), v〉 ≤ C‖v‖2L4‖∇Ψ‖L2

≤ C‖v‖Ḣ1‖v‖L2‖∇Ψ‖L2

≤ 1

2
‖v‖Ḣ1 + C‖v‖2L2‖∇Ψ‖2L2

〈B(Ψ,Ψ), v〉 . ‖v‖2L2 + ‖〈∇〉Ψ‖4L4

Multiplying SNSE’, (2.3), by v and integrating,

1

2
∂t‖v‖2L2 + ‖∇v‖2H1 = −〈B(v, v), v〉 − 〈B(Ψ, v), v〉 − 〈B(v,Ψ), v〉 − 〈B(Ψ,Ψ), v〉. (2.4)

Combining this with the estimates for the nonlinear terms above gives

1

2
∂t‖v‖2L2 ≤ C1(Ψ(t)) + C2(Ψ(t))‖v‖2L2 .
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Multiplying this by an integrating factor gives,

∂t

(
e−
´ t
0 C2(Ψ(t′))dt′‖v(t)‖2L2

)
≤ C1(Ψ(t))

and after integrating we get,

sup
t∈[0,T ]

‖v(t)‖L2
x
≤ C(u0,Ψ, T ).

Putting this estimate back into (2.4) gives

‖v‖L2
T ,H

1
x
. C(u0,Ψ, T ).

Also

‖B(v,Ψ)‖L2
TH
−1
x
. ‖v‖L∞T L2

x
‖Ψ‖L2

TL
∞
x
.

Indeed this follows by duality. Testing by w ∈ Ḣ1,

‖B(v,Ψ)‖L2
TH
−1
x
∼ 〈B(v,Ψ), w〉 = −〈B(v, w),Ψ〉 ∼

ˆ

v∇wΨ . ‖v‖L2‖∇w‖L2‖Ψ‖L∞ .

Similarly we also have

‖B(Ψ, v)‖L2
TH
−1
x
. ‖v‖L∞T L2

x
‖Ψ‖L2

TL
∞
x

‖B(Ψ,Ψ)‖L2
TH
−1
x
. ‖Ψ‖2

L4
TH

1
2
x

.

Hence taking the L2
TH
−1
x -norm of SNSE’, (2.3), we get,

‖∂tv‖L2
TH
−1
x
. ‖v‖L2

TH
1
x

+ ‖v‖L∞T L2
x
‖v‖L2

TH
1
x

+ ‖Ψ‖L2
TL
∞
x
‖v‖L∞T L2

x
+ ‖Ψ‖

L4
TH

1
2
x

and so

‖∂tu‖L2
TH
−1
x
≤ C(u− 0,Ψ, T ).

Galerkin approximation. We consider the following truncated version of SNSE’, (2.3),

∂vN = LvN − PNB(vN + ΨN ) (2.5)

vN |t=0 = PNu0

where ΨN = PNΨ. We have

ΨN → Ψ a.s. and so B(vN + ΨN )→ B(v + Ψ) in L1
TH
−1
x a.s.

This truncated equation, (2.5), is well-posed on [0, T ] for all T > 0 and hence is globally

well-posed in L2(T2) if B0 <∞, that is ψ ∈ HS(L2;L2).

The point of considering this approximated equation is that (2.5) is a finite dimensional

system of SDEs and so we can use standard results in stochastic calculus like Itô’s Lemma.

Further it is easy to show that (2.5) satisfies the same a priori estimates as (2.3), uniformly

in N .
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Itô’s Lemma. We have shown a control on

‖u(t)‖L2 ≤ ‖v(t)‖L2 + ‖Ψ(t)‖L2 .

We can use Itô’s Lemma to get another estiamte.

Lemma 2.2. (Itô’s Lemma) Suppose

dX(i) =
m∑

j=1

fijdBj + gidt

where B = (B1, . . . , Bm) are independent Brownian motions, ~X = (X(1), . . . , X(n)), f =

(fij)n×m, g = (g1, dots, gn). Then,

dF (t, ~Xt) =
∂F

∂t
(t, ~Xt)dt+

m∑

i=1

∂F

∂xi
(t, ~Xt)dX

(i) +
1

2

n∑

i,j=1

∂2F

∂xi∂xj
(t, ~Xt)dX

(i)dX(j)

where dBidBj = δijdt, dBidt = 0, dtdBi = 0 and dtdt = 0.

For a proof of Itô’s Lemma see [4] or [7].

Writing (2.5) as

du = VN (u)dt+
∑

|n|≤N
bnendβn

and using Itô’s Lemma with F = ‖u(t)‖2L2 we have,

dF (t, u(t)) = ∂tF (t, u(t))dt+ 〈∇uF, vN (u)〉dt+ 〈∇uF,
∑

|n|≤N
bnendβn〉+

1

2

∑

|n≤N

∂2F

∂û2
n

b2ndt.

Taking an expectation we get,

d

dt
E ‖u(t)‖2L2 = −E ‖u(t)‖2H1 +B0,N ≤ −E ‖u(t)‖2L2 +B0.

Gronwall’s inequality then gives a bound on E, ‖u(t)‖2L2 . But we actually want a bound on

E sup
t∈[0,T ]

‖u(t)‖2L2 .

To get this bound we use the Burkhölder-Davis-Grundy inequality: for p > 0 and local

martingale M(t) we have

E sup
t∈[0,T ]

|M(t)|p ∼ E〈M〉
p
2
T .

In our setting this gives the desired bound

E sup
t∈[0,T ]

‖u(t)‖2L2 ≤ C(‖u0‖L2 , B0, T ).

By applying Itô’s Lemmas to F (u) = ‖u‖2H1 we get

E‖u(t)‖2
Ḣ1 ≤

1

2
B1 + e−2tE‖u0‖2Ḣ1 .
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Stationary measure. We consider the semi-group Tt : Cb(H)→ Cb(H) defined by

(Ttf)(v) =

ˆ

H
f(u)Pt(v, du) = E[f(u(t; v))].

Here H = L2
df , Pt(u0, A) is the transition probability at time t, defined in a manner similar

to the previous lecture and u(t, v) denotes the solution to SNSE at time t with inital data

v.

We also consider the dual of Tt, T
∗
t : P (H)→ P (H) defined by

(T ∗µ)(A) =

ˆ

H
Pt(v,A)µ(dv) = (Φt)∗µ

where here Φt is the solution map to SNSE. The dual operator is defined in such a way so

that if µ = L(u0) then T ∗t µ = L(u(t)).

We are now in a position to prove the main theorem of this section.

Theorem 2.3. There exists an invariant measure for SNSE.

Proof. We assume B1 <∞. The result id still true if B1 =∞ but our assumption simplifies

the proof. Set µt = L(u(t)) and

µt =
1

t

ˆ t

0
µt′dt

′.

We define BH1(r) to be the ball of radius r centered at 0 in H1. Then using Chebyshev,

µt(H\BH1(r))0 = P(‖u(t)‖H1 > r)

≤ C

r2

< ε

where we choose r sufficiently large in the last inequality. This shows that

µt((BH1(r))c) < ε.

This shows the family of measures µt is tight. The rest of the proof is identical to the proof

of the existence of an invariant measure for Kick NSE in the previous section. �

Universality of White Noise Forces. Consider the random kick forces

ηε(t) =
√
ε
∑

k∈Z0

ηkδ(t− εk)

where

ηk =
∑

k∈Z2
0

bngknen.

We compare the dynamics of Kick NSE with the above kick forcing to SNSE with forcing

f =
d

dt
ζ

where

ζ =
∑

k∈Z2
0

bnβnen.

We have the following result.
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Theorem 2.4. The solution uε to the above kick forced NSE equation converges to u, the

solution to SNSE in law.

The proof of the above result follows from Donsker’s Theorem which states that if {Xn}n
is a i.i.d mean zero variance σ2 sequence of random variables and

Zn(t;ω) =
1

σ
√
n
S[nt](ω)(nt− [nt])

1

σ
√
n
X[nt]+1(ω)

then Zn converges in law to a Brownian motion.

Remark 2.5. We can also consider continuous in time forcing but not Gaussian forcing

and still obtain ”weak universality” and convergence to white forcing. Skorokhod’s theorem

can be used to upgrade this convergence to a.s. convergence.
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1. Preliminary from measure theory

The main references for this section are [1, Chapter 5] and [4, Chapter 2].

In the following, let (X, dX) denote an arbitrary Polish space (= complete and separable

metric space). We denote by Cb(X) the space of continuous and bounded functions from

X to R and P(X) the set of probability measures on X.

1.1. Metrizing weak convergence of probability measures. Recall that we say a

sequence {µn}n∈N ⊂ P(X) converges weakly to some µ ∈ P(X), denoted µn ⇀ µ, if

〈µn, f〉 −→ 〈µ, f〉 (1.1)

as n → ∞, for every f ∈ Cb(X). In fact, we may interpret the duality pairing through

integration so that µn ⇀ µ if and only if
ˆ

X
f(x)dµn(x) −→

ˆ

X
f(x)dµ(x)

1
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for every f ∈ Cb(X). For f ∈ Cb(X), we define the Lipschitz norm of f by

‖f‖Lip := sup
x∈X
|f(x)|+ Lip(f), (1.2)

where

Lip(f) := sup
x,y∈X
x 6=y

|f(x)− f(y)|
dX(x, y)

. (1.3)

Note that replacing the denominator above by dX(x, y)α, for some α ∈ (0, 1), yields the

α-Hölder seminorm of f

Let U := {f ∈ Cb(X) : ‖f‖Lip ≤ 1}. The following proposition shows that for establish-

ing the weak convergence of probability measures, it suffices to establish the convergence

in (1.1) along the subset of functions in U .

Proposition 1.1. Let µn, µ ∈ P(X). Then µn ⇀ µ if and only if

〈µn, f〉 −→ 〈µ, f〉 (1.4)

for every f ∈ U .

For the proof see, [1, Proposition 5.1].

We now endow P(X) with the following dual-Lipschitz distance:

‖µ− ν‖∗Lip := sup
f∈U
|〈µ, f〉 − 〈ν, f〉|. (1.5)

It turns out P(X) endowed with the dual-Lipschitz distance is a good space for analysis

(since (P(X), ‖·‖∗Lip) is a complete metric space) and furthermore the dual-Lipshitz distance

metrizes the notion of weak convergence of probability measures. More precisely, we have:

Theorem 1.2. The metric space P(X) endowed with the dual-Lipschitz distance is com-

plete. Moreover, {µn}n∈N ⊂ P(X) converges to µ ∈ P(X) with respect to the dual-Lipschitz

distance if and only if µn ⇀ µ.

A small point: P(X) is convex but is not in general a vector space.

Remark 1.3. The dual-Lipschitz distance also makes the space of measures M(X) into a

metric space, however it is not complete.

Let 0 < d ≤ 1. We define a new distance on X by

d̃(x1, x2) := dX(x1, x2) ∧ d. (1.6)

Notice that dX and d̃ define the same topology on X since balls with respect to dX are also

balls with respect to d̃. Moreover, the dual-Lipshcitz norms with respect to dX and d̃ are

equivalent; that is for any µ, ν ∈ P(X), we have

‖µ− ν‖∗
Lip,d̃

≤ ‖µ− ν‖∗Lip,dX
≤ 2

d
‖µ− ν‖∗

Lip,d̃
. (1.7)

To see (1.7), we set

UdX := {f ∈ Cb(X) : ‖f‖Lip,dX ≤ 1},
U
d̃

:= {f ∈ Cb(X) : ‖f‖
Lip,d̃

≤ 1},
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and since d̃(x1, x2) ≤ dX(x1, x2) for any x1, x2 ∈ X, we have U
d̃
⊂ UdX which implies the

first inequality in (1.7). For the second inequality, we notice that if f ∈ UdX , then d
2f ∈ Ud̃.

1.2. Variational distance. Given µ, ν ∈ P(X), we define

‖µ− ν‖var = sup
A∈B(X)

|µ(A)− ν(A)|, (1.8)

where B(X) is the set of Borel sets in (X, d). This is the variational distance between

the probability measures µ and ν. Notice that ‖µ − ν‖var ≤ 1 for any µ, ν ∈ P(X). The

variational distance is a measure of the ‘non-overlapping’ of two measures and this heuristic

is motivated by the following two properties:

(i) µ and ν are singular if and only if ‖µ− ν‖var = 1.

(ii) Suppose there exist ρ ∈ P(X) such that µ, ν � ρ. Then we have

‖µ− ν‖var =
1

2

ˆ

X

∣∣∣∣
dµ

dρ
(x)− dν

dρ
(x)

∣∣∣∣dρ(x)

= 1−
ˆ

X

dµ

dρ
(x) ∧ dν

dρ
(x)dρ(x).

(1.9)

Thus, the variation distance is roughly

1− (total overlap) = (total non-overlap).

Remark 1.4. In fact, the measure ρ := 1
2(µ + ν) ∈ P(X) and satisfies µ, ν � ρ so (1.9)

‘always holds.’

The equality in (1.9) follows from the general equivalent characterisation

‖µ− ν‖var =
1

2
sup

f∈Cb(X)
‖f‖L∞≤1

∣∣∣∣
ˆ

f(x)dµ(x)−
ˆ

f(x)dν(x)

∣∣∣∣. (1.10)

As the class of functions in the above supremum contains the class U , we find

‖µ− ν‖∗Lip ≤ 2‖µ− ν‖var. (1.11)

Consequently, we have:

Theorem 1.5. The following hold:

(i) The space (P(X), ‖ · ‖var) is complete.

(ii) µn → µ in the variation distance if and only if

〈f, µn〉 → 〈f, µ〉

uniformly in f ∈ Cb(X) such that ‖f‖L∞ ≤ 1.

(iii) P(X) with the variational distance embeds continuously into Cb(X)∗.

Compare (ii) to Proposition 1.1. The result of (iii) follows from (1.10) with (1.9) and

Remark 1.4.
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1.3. Coupling. We denote the law of a random variable ξ by L(ξ).

Definition 1.6. Given µ1, µ2 ∈ P(X), a pair of random variables (ξ1, ξ2) defined on the

same probability space is called a coupling for (µ1, µ2) if L(ξj) = µj for j = 1, 2.

Given a coupling (ξ1, ξ2), the random variable ξ = (ξ1, ξ2) on X × X has L(ξ) = µ (a

measure on B(X ×X)) and marginals

µ1 = (Π1)#µ = µ ◦Π−1
1 and µ2 = (Π2)#µ = µ2 ◦Π−1

2 ,

where Πj(ξ) = ξj , for j = 1, 2 are the coordinate projections. In this sense, a coupling has

“doubled” the number of variables in going from X to X ×X.

Given a coupling (ξ1, ξ2) for (µ1, µ2), for any A ∈ B(X) we have

µ1(A)− µ2(A) = E[1A(ξ1)− 1A(ξ2)]

= E[1{ξ1 6=ξ2}(1A(ξ1)− 1A(ξ2))]

≤ P(ξ1 6= ξ2),

which implies

‖µ1 − µ2‖var ≤ P(ξ1 6= ξ2). (1.12)

Definition 1.7. A coupling (ξ1, ξ2) is called maximal if:

(i) ‖µ1 − µ2‖var = P(ξ1 6= ξ2), that is equality holds in (1.12).

(ii) ξ1 and ξ2 conditioned on the event N = {ξ1 6= ξ2} are independent, that is, for all

A,B ∈ B(X),

P(ξ1 ∈ A, ξ2 ∈ B | N ) = P(ξ1 ∈ A | N )P(ξ2 ∈ B | N ).

It is natural to ask whether any pair of probability measures has a maximal coupling.

This turns out to be the case.

Lemma 1.8 (Dobrushin’s Lemma). Given any µ1, µ2 ∈ P(X), there exists a maximal

coupling (ξ1, ξ2).

Proof. Put δ = ‖µ1 − µ2‖var. If δ = 1, any pair (ξ1, ξ2) of independent random variables

with L(ξj) = µj , j = 1, 2, is a maximal coupling for (µ1, µ2) (use (1.12)). On the other

hand, if δ = 0, then µ1 = µ2 so any random variable ξ with L(ξ) = µ1 gives rise to a

maximal coupling (ξ, ξ). We now assume 0 < δ < 1 and begin to set up some definitions

and notations. With

m :=
1

2
(µ1 + µ2),

we have µ1, µ2 � m and we write

ρj :=
dµj
dm

,

for j = 1, 2, ρ := ρ1 ∧ ρ2 and ρ̂j = 1
δ (ρj − ρ). In particular, we have ρj = ρ + δρ̂j . By

Remark 1.4 and (1.9), the measures

dµ̂j := ρ̂jdm and dµ :=
ρ

1− δ dm
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are probability measures on X. Let ζ1, ζ2, ζ and α be independent random variables on the

same probability space1 such that

L(ζj) = µ̂j , L(ζ) = µ,

P(α = 0) = δ, P(α = 1) = 1− δ. (1.13)

With all the setup in place, we now claim that the random variables (ξ1, ξ2), defined by

ξj := αζ + (1− α)ζj for j = 1, 2, (1.14)

are a maximal coupling for (µ1, µ2).

We first verify (ξ1, ξ2) are a coupling. Given A ∈ B(X) and j = 1, 2 fixed, we have

P(ξj ∈ A) = P(ξj ∈ A, α = 0) + P(ξj ∈ A, α = 1)

= P(α = 0)P(ξj ∈ A) + P(α = 1)P(ξj ∈ A)

= δ

ˆ

A
ρ̂j(x)dm(x) + (1− δ)

ˆ

A

ρ(x)

1− δ dm(x)

=

ˆ

A
ρj(x)dm(x) = ρj(A).

Thus, L(ξj) = ρj for each j = 1, 2. We now verify (i) in Definition 1.7. By the independence

of α with ζ1 and ζ2, we have2

P(ξ1 6= ξ2) = P(ξ1 6= ξ2, α = 0) + P(ξ1 6= ξ2, α = 1)

= P(α = 0)P(ξ1 6= ξ2)

= P(α = 0) = δ.

Finally, since P(ζ1 6= ζ2) = 1 and {ξ1 6= ξ2} = {ζ1 6= ζ2} ∩ {α = 0}, we have

P(ξ1 ∈ A, ξ2 ∈ B |{ξ1 6= ξ2}) = P(ζ1 ∈ A, ζ2 ∈ B,α = 0)

= P(ζ1 ∈ A,α = 0)P(ζ2 ∈ B,α = 0)

= P(ξ1 ∈ A |{ξ1 6= ξ2})P(ξ2 ∈ B |{ξ1 6= ξ2})
for any A,B ∈ B(X). Thus, (ξ1, ξ2) are a maximal coupling for (µ1, µ2). �

The constructive proof of Dobrushin’s Lemma immediately implies the following corol-

lary.

Corollary 1.9. Any µ1, µ2 ∈ P(X) admits a representation

µj = (1− δ)µ+ δνj for j = 1, 2,

where δ := ‖µ1 − µ2‖var, µ, ν1, ν2 ∈ P(X) and ν1 ⊥ ν2.

The measure (1 − δ)µ is sometimes referred to as the minimum of µ1 and µ2 and is

denoted µ1 ∧ µ2.

1A priori, such random variables exist on different probability spaces. What we write here is their natural
extensions to the product space formed from these probability spaces.

2We use here that P(ζ1 6= ζ2) = 1. To concretely see this, note that by definition of ρ̂j , we have
ρ̂1(x)ρ̂2(x) = 0 for a.e. x ∈ X. Then,

P(ζ1 = ζ2) =

¨

{x1=x2}

ρ̂1(x1)ρ̂2(x2)dm(x1)dm(x2) = 0.
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1.4. Kantorovich functional. Let F : X ×X → R be a measurable function such that

F (x1, x2) = F (x2, x1) ≥ dist(x1, x2) for all x1, x2 ∈ X. (1.15)

We define the Kantorovich functional K = KF : P(X)×P(X)→ R, associated with F , by

K(µ1, µ2) = inf
all couplings

(ξ1,ξ2) for (µ1,µ2)

E[F (ξ1, ξ2)]. (1.16)

The function F is known as the Kantorovich density for the functional KF . We will make

use of the following inequality.

Lemma 1.10. For any µ1, µ2 ∈ P(X) and any measurable F : X × X → R satisfying

(2.42), we have

‖µ1 − µ2‖∗Lip ≤ KF (µ1, µ2).

Proof. Let (ξ1, ξ2) be a coupling for (µ1, µ2) and let f ∈ U . Then,

〈f, µ1〉 − 〈f, µ2〉 = E[f(ξ1)− f(ξ2)]

≤ E[Lip(f)dist(ξ1, ξ2)]

≤ E[F (ξ1, ξ2)].

We now take a supremum over f ∈ U followed by an infimum over all such couplings. �

2. Uniqueness of the invariant measure for (KickNSE)

2.1. The kicked NSE. For the sake of reference, we recall our formulation of the

(KickNSE). The (KickNSE) is the PDE

∂tu− Lu+B(u) = ηω(t), (2.1)

where u : R × T2 → R2, L = Π∆, B(u) = Π(u · ∇)u and ηω(t) is a random stochastic

process on some probability space (Ω,F ,P) defined by

η(t) = ηω(t) =
∑

k∈Z
ηωk δ(t− k), ω ∈ Ω,

which provides ‘kicks’ of a random strength ηωk at each time t = k ∈ Z. We make the

following assumptions on the kicks ηωk : for each k ∈ Z, we have

ηωk =
∑

n∈Z2
0

bngkn(ω)en, (2.2)

where

• {en}n∈Z2
0

are an orthonormal basis of H := L2
df, 0(T2 → R2), the space of L2 vector

fields which are divergence free and have zero mean,

• bn ≥ 0 and B0 :=
∑

n∈Z2
0
b2n < +∞, and

• {gkn(ω)}k∈Z,n∈Z2
0

are independent random variables satisfying

|gkn(ω)| ≤ 1 for all n ∈ Z2
0, k ∈ Z, ω ∈ Ω (2.3)

and

L(gkn) = pn(r)dr, n ∈ Z2
0, k ∈ Z, (2.4)

where the pn are Lipschitz functions supported in [−1, 1] with pn(0) 6= 0.
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These assumptions have two important consequences:

sup
k∈Z
‖ηk(ω)‖2L2 = sup

k∈Z

∑

n∈Z2
0

b2ng
2
kn(ω) ≤ B0, and (2.5)

P(‖ηk‖L2 ≤ ε) > 0, for any ε > 0. (2.6)

We saw in the previous lectures that applying the deterministic global well-posedness theory

for the forced NSE on T2 we obtain a unique, global-in-time solution u ∈ CTH, ω-a.s., for

any T > 0, to (2.1) under the standing assumptions. Denoting by Φ = Φ1 the time t = 1

nonlinear solution map of NSE with no forcing, we may write

u(k) = Φ(u(k − 1)) + ηk, k ∈ Z. (2.7)

This formulation of (2.1) then gave rise to a formulation in terms of a random dynamical

system and hence there was a naturally associated Markov chain with transition probabil-

ities

pk(u0, A) := P(u(k;u0) ∈ A), (2.8)

for u0 ∈ H, k ∈ Z≥0 and A ∈ B(H), and hence also an associated Markov semigroup Tk.

We then showed there exists a measure µ ∈ P(H) invariant under the flow of (2.1); that

is, T ∗kµ = µ for every k ∈ Z≥0.

Goal: Prove µ is the unique invariant measure under the flow of (KickNSE).

In fact, we will actually prove a stronger statement about (2.1): it is exponentially mixing.

Essentially, this says that given any initial distribution, the law of the resulting solution

converges exponentially fast to the invariant measure. The uniqueness of the invariant

measure follows readily from exponential mixing and it is the proof of the latter result that

requires the bulk of the forthcoming work.

2.2. The main lemma. Recall that the time-one transition probability can be written as

p1(u, ·) = L(Φ(u) + η1). (2.9)

Lemma 2.1. There exists a probability space (Ω,F ,P) such that for any R ≥ 1, there

exists N = N(R) ≥ 1 such that if bn 6= 0 for |n| ≤ N , then for any u1, u2 ∈ BR ⊂ H, the

measures

µ1 = p1(u1, ·) and µ2 = p1(u2, ·)

admit a coupling (V1, V2), where Vj = Vj(u1, u2;ω) such that

(i) Vj : BR ×BR × Ω 7−→ H is measurable and

(ii) with d := ‖u1 − u2‖L2, we have

P
(
‖V1 − V2‖L2 ≥ 1

2
d

)
≤ C0d, (2.10)

where C0 = C0(R,B0, {bn}|n|≤N ).

The inequality (2.10) is nontrivial when C0d ≤ 1.
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Proof. Let

PN : H 7−→ EN = span{en : |n| ≤ N}
and P⊥N := Id−PN . We search for V1 and V2 of the form:

V1 = Φ(u1) + ξ1,

V2 = Φ(u2) + ξ2,

where the random variables ξ1, ξ2 ∈ H and satisfy L(ξ1) = L(ξ2) = η1. Then, noting (2.9),

(V1, V2) will be a coupling for (µ1, µ2). Our goal is to define the random variables ξ1 and

ξ2. We do this by specifying PNξj and P⊥Nξj for some appropriate N ≥ 1.

We will define ξ1 and ξ2 on the probability space (Ω,F ,P), where Ω = Ω1 × Ω2 for

(Ω2,F2,P2) to be defined later. With η1 the natural extension of η1 to Ω; that is,

η1(ω1, ω2) = η1(ω1), we set

P⊥Nξ1 = P⊥Nξ2 = P⊥Nη1. (2.11)

We now move onto defining PNξj for j = 1, 2. Setting vj = PNΦ(uj), for j = 1, 2, the

Lipschitz continuity of Φ implies

‖v1 − v2‖L2 ≤ C(R)‖u1 − u2‖L2 = C(R)d. (2.12)

We have

L(PNη1) = q(x)dx,

where x ∈ RdimEN (we have identified EN with RdimEN ). Here, q(x) =∏
|n|≤N b

−1
n pn(b−1

n xn) and we have used the assumptions bn 6= 0 for |n| ≤ N and (2.4).

Notice that q is Lipschitz. Then

νj := (PN )#µj = L(vj + PNη1) = q(x− vj)dx
and it follows from (1.9) and (2.12) that

‖ν1 − ν2‖var =
1

2

ˆ

EN

|q(x− v1)− q(x− v2)|dx ≤ C0d. (2.13)

By Dobrushin’s Lemma, there exists a maximal coupling (Ξ1,Ξ2) for (ν1, ν2) on a probabil-

ity space (Ω2,F2,P2), where Ξj = Ξj(u1, u2;ω2). Recalling Definition 1.7 and using (2.13),

we have

P2(Ξ1 6= Ξ2) = ‖ν1 − ν2‖var ≤ C0d. (2.14)

We now check that Ξj : BR × BR × Ω2 7−→ EN is measurable. For u ∈ BR, let v(u) =

PNΦ(u) and we have ν(u) = (PN )#p1(u, ·) = q(x − v(u))dx. Here, ν(u) is a measure

on EN and qv(x) := q(x − v) is measurable with respect to (x, v) ∈ E2
N . Then, the map

ρ : BR ×BR 7−→ R, defined by

ρ(u1, u2) = ‖ν(u1)− ν(u2)‖var,

is measurable. Putting m = 1
2(ν(u1) + ν(u2)), we construct as in the proof of Lemma 1.8,

the following measures on EN :

µ̂j = p̂j(u1, u2, x)dx, µ0 = p0(u1, u2, x)dx,
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for j = 1, 2, where p̂j and p0 are measurable with respect to (u1, u2, x). We then obtain

probability spaces {(Ω̃j , F̃j , P̃j)}2j=0, with corresponding random variables {ξj(u1, u2)}2j=0

such that

L(ξj(u1, u2)) = µj for j = 0, 1, 2.

Furthermore, by [2, Lemma 4.3] (see also [4, Theorem 1.2.28]), ξj(u1, u2, ω̃j) is measurable

with respect to (u1, u2, ω̃j). On the probability space ([0, 1],B([0, 1]),Leb), we set

αρ(u1,u2) = 1[0,1−ρ(u1,u2)](s).

Then, on the probability space

(Ω2,F2,P2) =
(
×2
j=0 Ω̃j × [0, 1],×2

j=0F̃j × B([0, 1]),⊗2
j=1P̃j × Leb

)

with the naturally extended version of the (now independent) random variables ξj and α

to this probability space, we set

Ξj(u1, u2;ω2) = αξ0 + (1− α)ξj for j = 1, 2,

as in (1.14). Now Ξj(u1, u2;ω2) is a maximal coupling for (ν(u1), ν(u2)) and is measurable

with respect to (u1, u2, ω2).

Let Ξj(ω1, ω2) := Ξj(ω2) for j = 1, 2 and we set

PNξj = Ξj −PNΦ(uj) for j = 1, 2. (2.15)

Recalling (2.11), we put

Vj = PNξj + P⊥Nη1 + Φ(uj) for j = 1, 2. (2.16)

Then, (V1, V2) is a coupling for (µ1, µ2) and are measurable with respect to (u1, u2, ω). It

remains to verify (2.10). From (2.16) and (2.11), we have

V1 − V2 = Ξ1 − Ξ2 + P⊥N [Φ(u1)− Φ(u2)].

Therefore,

P
(
‖V1 − V2‖L2 ≥ 1

2
d

)
≤ P

(
‖P⊥N [Φ(u1)− Φ(u2)]‖L2 ≥ 1

2
d

)
+ P(Ξ1 6= Ξ2).

By Proposition 2.2, we have3

‖P⊥N [Φ(u1)− Φ(u2)]‖L2 ≤ N−1‖Φ(u1)− Φ(u2)‖H1 ≤ N−1C1(R)d.

Thus, given R > 0, we choose N � 1 such that N−1C1(R) < 1
2 . Then (2.14) implies (2.10),

which completes the proof. �

2.3. Some PDE estimates. In this subsection, we derive a useful smoothing property of

the NSE flow on T2 with forcing:

∂tu− Lu+B(u) = f. (2.17)

Proposition 2.2. [4, Proposition 2.1.25] Let Φt(u0; f) denote the solution of (2.17) at

time t with initial data u0 and forcing f . Then, the following hold:

3We are using the smoothing properties of the NSE flow; see Subsection 2.3.
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(i) There exists C > 0 such that for any u0,1, u0,2 ∈ H and f1, f2 ∈ L2
loc(R+; Ḣ−1), we

have

‖Φt(u0,1; f1)−Φt(u0,2; f2)‖2L2 ≤ exp

(
C

ˆ t

0
‖Φs(u0,1; f1)‖2

Ḣ1ds

)
‖u0,1 − u0,2‖2L2

+

ˆ t

0
exp

(
C

ˆ t

s
‖Φt′(u0,1; f1)‖2

Ḣ1dt
′
)
‖f1(s)− f2(s)‖2

Ḣ−1ds.

(ii) There exists C > 0 such that 0 < t ≤ 1 and for any u0,1, u0,2 ∈ H and f1, f2 ∈
L2

loc(R+; Ḣ), we have

‖Φt(u0,1; f1)− Φt(u0,2; f2)‖2
Ḣ1 ≤C

ˆ t

0
‖f1 − f2‖2L2ds

+A(t)t−3

[
‖u0,1 − u0,2‖2L2 +

ˆ t

0
‖f1 − f2‖2Ḣ−1ds

]
,

where

A(t) := exp

(
C

ˆ t

0
‖Φs(u0,1; f1)‖2

Ḣ1 + ‖Φs(u0,2; f2)‖2
Ḣ1 + ‖f1‖2L2 + ‖f2‖2L2ds

)
.

Proof. The following computations can be justified by first considering suitable Galerkin

approximations; we omit these technicalities. Let uj = uj(t) = Φt(u0,j ; fj), for j = 1, 2,

and set w := u1 − u2 which solves

∂tw − Lw +B(w, u1) +B(u2, w) = f1 − f2. (2.18)

(i) We take the inner product of (2.18) with 2w and use

〈B(u, v), v〉 = 0,

to obtain

∂t(‖w‖2L2) + 2‖w‖2
Ḣ1 = −2〈B(w, u1), w〉+ 2〈f1 − f2, w〉.

Using4

|〈B(w, u1), w〉| ≤ C‖u‖2
Ḣ1‖w‖2

Ḣ
1
2
≤ C‖u‖2

Ḣ1‖w‖L2‖w‖Ḣ1 ≤
1

4
‖w‖2

Ḣ1 + C‖u1‖2L2‖w‖2L2 ,

|〈f1 − f2, w〉| ≤ ‖f1 − f2‖Ḣ−1‖w‖Ḣ1 ≤
1

4
‖w‖2

Ḣ1 + ‖f1 − f2‖2Ḣ−1 ,

we have

∂t

(
‖w‖2L2 +

ˆ t

0
‖w‖2

Ḣ1dt
′
)
≤ 2C‖u1‖2Ḣ1

(
‖w‖2L2 +

ˆ t

0
‖w‖2

Ḣ1dt
′
)

+ 2‖f1 − f2‖2Ḣ−1 .

(2.19)

By Gronwall’s inequality, we get

‖w(t)‖2L2 +

ˆ t

0
‖w(t′)‖2

Ḣ1dt
′ ≤ exp

(
2C

ˆ t

0
‖u1‖2Ḣ1dt

′
)
‖u0,1 − u0,2‖2L2

+ 2

ˆ t

0
exp

(
2C

ˆ t

t′
‖u1(s)‖2

Ḣ1ds

)
‖f1(t′)− f2(t′)‖2

Ḣ−1dt
′

(2.20)

This now implies (i).

4The constants change from line to line.
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(ii) We take the inner product with 2t(−Lw) and have

∂t(t‖w‖2Ḣ1) + 2t‖Lw‖2L2 =‖w‖2
Ḣ1 + 2t〈B(w, u1), Lw〉

+ 2t〈B(u2, w), Lw〉 − 2t〈f1 − f2, Lw〉.
(2.21)

Using the inequalities

‖w‖L∞ ≤ C‖w‖
1
2

L2‖Lw‖
1
2

L2 , and ‖w‖Ḣ1 ≤ ‖w‖
1
2

L2‖Lw‖
1
2

L2

we estimate

|〈B(w, u1), Lw〉| ≤ C‖w‖L∞‖u1‖
1
2

Ḣ1
‖Lw‖L2

≤ C‖w‖
1
2

L2‖Lw‖
3
2

L2‖u1‖
1
2

L2‖Lu1‖
1
2

L2

≤ 1

8
‖Lw‖2L2 + C‖w‖2L2‖u1‖2L2‖Lu1‖2L2

and

|〈B(u2, w), Lw〉| ≤ C‖u2‖L∞‖w‖Ḣ1‖Lw‖L2

≤ C‖u2‖
1
2

L2‖Lu2‖
1
2

L2‖w‖
1
2

L2‖Lw‖
3
2

L2

≤ 1

8
‖Lw‖2L2 + C‖w‖2L2‖u2‖2L2‖Lu2‖2L2 .

Using these with

|〈f1 − f2, Lw〉| ≤
1

4
‖Lw‖2L2 + ‖f1 − f2‖2L2 ,

we integrate in time (2.21) which yields the estimate

t‖w‖2
Ḣ1 +

ˆ t

0
t′‖Lw‖2L2dt

′ ≤
ˆ t

0
‖w‖2

Ḣ1dt
′ + C

ˆ t

0
t′‖w‖2L2(‖u1‖L2‖Lu1‖2L2

+ ‖u2‖2L2‖Lu2‖2L2)dt′ + 2

ˆ t

0
t′‖f1 − f2‖2L2dt

′.

Noting 0 < t ≤ 1, we use (2.20) to bound the first term on the right hand side and estimate

‖w‖2L2 in the second term. Then, in order to obtain (ii), we are left to show

ˆ t

0
t′‖uj‖2L2‖Luj‖2L2dt

′ ≤ Ct−2 exp

(
C

ˆ t

0
‖uj‖2Ḣ1 + ‖fj‖2L2 dt

′
)

(2.22)

for j = 1, 2 and 0 < t ≤ 1. We require the following estimates on solutions to (2.17): There

exists a constant α > 0 such that for any u0 ∈ H and f ∈ L2
loc(R+; Ḣ−1), we have

‖Φt(u0)‖2L2 ≤ e−αt‖u0‖2L2 +

ˆ t

0
e−α(t−s)‖f(s)‖2

Ḣ−1ds, (2.23)

t‖Φt(u0)‖2
Ḣ1 +

ˆ t

0
s‖Φs(u0)‖2L2ds ≤ ‖u0‖2L2 +

ˆ t

0
s‖f(s)‖2L2ds+

ˆ t

0
‖f(s)‖2

Ḣ−1ds. (2.24)

The proof of (2.23) follows from the energy bound in Lecture 4, Poincare’s inequality and

Gronwall’s inequality; see [4, Proposition 2.1.21 (i)] for more. The proof of (2.24) is a direct
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computation from differentiating in time the quantity t〈LΦt(u0),Φt(u0)〉; see [4, Theorem

2.1.18]. For 0 ≤ t ≤ 1, (2.24) implies
ˆ t

0
s‖uj(s)‖2L2ds ≤ ‖u0,j‖2L2 + 2

ˆ t

0
‖fj‖2L2ds. (2.25)

Now, taking the inner product of (2.17) with 2uj and integrating in time gives

‖uj(t)‖2L2 + 2

ˆ t

0
‖uj‖2Ḣ1ds = ‖u0,j‖2L2 + 2

ˆ t

0
〈uj , fj〉ds.

This implies

‖u0,j‖2L2 ≤ ‖uj(t)‖2L2 + 3

ˆ t

0
‖uj‖2Ḣ1ds+

ˆ t

0
‖fj‖2Ḣ−1ds

and hence by (2.23), we find

(1− e−αt)‖u0,j‖2L2 ≤ C
ˆ t

0
‖uj‖2Ḣ1 + ‖fj‖2Ḣ−1 ds. (2.26)

Using (2.23), (2.25) and (2.26), we obtain
ˆ t

0
s‖uj‖2L2‖Luj‖2L2ds ≤ C

(
‖u0,j‖2L2 + 2

ˆ t

0
‖fj‖2L2ds

)2

≤ C
(

1

1− e−αt
ˆ t

0
‖uj‖2Ḣ1 + ‖fj‖2Ḣ−1ds+ 2

ˆ t

0
‖fj‖2L2 ds

)2

.

Since 1 − e−αt = αt(1 + O(αt)) as t → 0, the inequality above implies (2.22) and thus

completes the proof. �

2.4. The main theorem.

Definition 2.3 (Weak Solutions). A process {u(k)}k≥0 ⊂ H defined on some probability

space is called a weak solution to the kicked NSE (2.7) if it satisfies (2.7) with the random

kicks {ηk} replaced by some other process {η̂k} which satisfies

L(η̂k) = L(ηk) k ≥ 0.

We now state some useful estimates related to weak solutions. Let {uj(k)}k≥0, j = 1, 2,

be two weak solutions with random kick forces {ηjk}k≥0, respectively. We define

d(k) := ‖u1(k)− u2(k)‖L2 , (2.27)

R(k) := ‖u1(k)‖L2 + ‖u2(k)‖L2 . (2.28)

In Lecture 5, we proved the estimate5

‖u(k + 1)‖L2 ≤ e−1‖u(k)‖L2 + ‖ηk‖L2 ≤ e−1‖u(k)‖L2 +
√
B0. (2.29)

Therefore, we have

R(k + 1) ≤ e−1R(k) + 2
√
B0

5In the second inequality, we used the uniform (in ω) assumption (2.3). For the case of white noise
forcing, the second inequality would hold with high probability (i.e. no longer uniformly in ω).
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for each k ≥ 0, which implies

R(`) ≤ e−(`−k)R(k) +
2e

e− 1

√
B0 ≤ e−(`−k)R(k) +

(
1

2
− 1

e

)
R0,

by choosing R0 ≥ 1. Thus, we have

R(`) ≤ 1

2
R(k) for all ` ≥ k + 1, if R(k) ≥ R0 (2.30)

and

R(`) ≤ 1

2
R0 for all ` ≥ k + 1, if R(k) ≤ R0. (2.31)

Fix 0 < d0 ≤ 1 and let u1, u2 be two weak solutions with the same kick force {η′k}. Suppose

R(0) ≤ R0 which implies ‖uj(0)‖L2 ≤ R0, j = 1, 2. Note that (2.30) and (2.31) continue to

hold for just one norm ‖uj(k)‖L2 . If η′1 = η′2 = · · · = η′T = 0 (no kicks), then

‖uj(T )‖L2 ≤ e−TR0 for T � 1

and hence

‖uj(T )‖L2 ≤ 1

4
d0 (2.32)

for j = 1, 2 if

T =

[
log

(
4R0

d0

)]
+ 1.

If the kicks do not all vanish up to time T , then (2.6) implies

‖uj(T )‖L2 ≤ e−TR0 +
e

e− 1
ε ≤ 1

2
d0,

on the set where ‖η′k‖L2 ≤ ε for all k = 1, . . . , T . Therefore,

P(d(T ) ≥ d0) ≥ θ > 0 (2.33)

for some θ = θ(T ) = θ(d0, R0).

From now, we consider measures in the space P1(H) ⊂ P(H), which are those measures

µ ∈ P(H) with finite ‘first moment’:

M1(µ) :=

ˆ

H
‖u‖L2dµ(u) < +∞. (2.34)

Theorem 2.4. There exists N = N(B0) > 0 such that if bn 6= 0 for all |n| ≤ N , then there

exists κ < 1, C ≥ 1, depending on B0 and {bn : |n| ≤ N} such that

‖T ∗kµ1 − T ∗kµ2‖∗Lip ≤ C(1 +M1(µ1) +M1(µ2))κk (2.35)

for any µ1, µ2 ∈ P1(H) and for all times k ∈ N.

Proof. Let µj(k) := T ∗kµj for j = 1, 2 and k ≥ 0.6 We want to estimate ‖µ1(k)− µ2(k)‖∗Lip.

From Lemma 1.10, we reduce this to constructing an appropriate Kantorovich functional,

which we then bound from above by a ‘special’ coupling; see (1.16). We divide the imple-

mentation of this idea into three main steps.

6This is “the law of the solution at time k.”
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Step 1: (Coupling) Our first goal is to construct a ‘special’ coupling (U1(k), U2(k)) for

(µ1(k), µ2(k)), k ≥ 0. Take any coupling (U1(0), U2(0)) on (Ω0,F0,P0).7 We now apply

Lemma 2.1 with R = R0. Let d0 = 1 ∧ 1
16C0

, where C0 is the constant coming from (2.10)

and impose R0 ≥ 4d0. We obtain coupling maps V1(u1, u2;ω1) and V2(u1, u2;ω1) which are

defined for u1, u2 ∈ BR0 ⊂ H. For j = 1, 2, we set

V̂j(u1, u2;ω1) =

{
Vj(u1, u2;ω1) if ‖u1 − u2‖L2 ≤ d0, ‖u1‖L2 + ‖u2‖L2 ≤ R0,

Φ(uj) + η(ω1) otherwise, where L(η) = L(η1).
(2.36)

We now define a coupling (U1(1), U2(1)) on the product space Ω0 × Ω1 (with the product

σ-algebra and product measure) by

Uω
0,ω1

j (1) = V̂j(U
ω0

1 (0), Uω
0

2 (0);ω1), j = 1, 2. (2.37)

By definition of V̂j and Vj (see (2.16)), we have

Uω
0,ω1

j (1) = Φ(Uω
0

j (0)) + ηω
1

1,j , j = 1, 2,

where L(η1,j) = L(η1). In particular, L(Uω
0,ω1

j (1)) = µj(1) for j = 1, 2, that is, Uj(1) is

‘distributed correctly.’ We now iterate this process T times using successively Lemma 2.1

and obtain maps

V̂j(u1, u2;ω2), . . . , V̂j(u1, u2;ωT )

and hence, for k = 1, 2, . . . , T , maps

Uj(k) = Φ(Uj(k − 1)) + ηk,j , j = 1, 2, L(ηk,j) = L(η1), (2.38)

which are all defined on the same probability space

ΩT := Ω0 × Ω′ := Ω0 × Ω1 × · · · × ΩT .

The equality (2.38) says {U1(k)}Tk=0 and {U2(k)}Tk=0 are weak solutions to (KickNSE) in

the sense of Definition 2.3. We set d(k) := ‖U1(k) − U2(k)‖L2 and R(k) := ‖U1(k)‖L2 +

‖U2(k)‖L2 and we consider two cases depending on whether d(0) ≤ d0 or otherwise. 8

Case 1: (‘In coupling’) Suppose d(0) ≤ d0 and R(0) ≤ R0. Then, we have

PΩ′(d(T ) ≤ 2−Td0

)
≥ PΩ′(d(T ) ≤ 2−Td(0)

)
≥ 1− C0d(0)(1 + 2−1 + · · ·+ 2−T+1)

≥ 1− 2C0d(0)

≥ 1− 2C0d0.

(2.39)

The second inequality in (2.39) above follows from

PΩ′(d(T ) ≥ 2−Td(0)
)
≤ C0d(0)(1 + 2−1 + · · ·+ 2−T+1). (2.40)

We will prove (2.40) by induction on T . The base case T = 1 follows immediately from

(2.36), (2.37) and (2.10). Now suppose that (2.40) is satisfied for every 1 ≤ T ≤ T0 − 1.

Our aim is to verify (2.40) for T = T0. In view of (2.31), we have R(T ) ≤ R0 for every

7Just random initial data distributed according to µj(0) = µj .
8The broad picture is that when d(0) ≤ d0 (re. Case 1), we have a ‘good’ probability (≥ 1− 2C0d0) that

we follow the couplings Vj . We are ‘knocked out of coupling’ at any later time with probability ≤ 2C0d0
or if we did not start ‘in coupling,’ that is, if d(0) > d0. In the latter case (re. Case 2), we may return to
coupling with probability θ at which point we then follow Case 1.
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T ≤ T0 − 1. Writing Ω′T := Ω1 × · · ·ΩT , from (2.36), (2.38) and (2.10) and the inductive

hypothesis, we have

PΩ′T0
(
‖U1(T0)− U2(T0)‖L2 ≥ 2−1(2−(T0−1)d(0))

)

≤ PΩ′T0
(
‖V1(U1(T0 − 1), U2(T0 − 1);ωT0)− V2(U1(T0 − 1), U2(T0 − 1);ωT0)‖L2 ≥ 2−1d(T0 − 1)

and d(T0 − 1) ≤ 2−(T0−1)d(0)
)

+ PΩ′T0
(
d(T0 − 1) ≥ 2−(T0−1)d(0)

)

≤ C0d(0)2−(T0−1) + C0d(0)(1 + 2−1 + · · ·+ 2−T0+2)

which completes the inductive step.

Case 2: (‘Not in coupling’) In this case, we suppose d(0) > d0 and R(0) ≤ R0. Then

(2.33) implies

PΩ′(d(T ) ≤ d0) ≥ θ > 0. (2.41)

Step 2: (Kantorovich functional)

Let dist(u, v) = ‖u − v‖L2 ∧ d0 and we set d = ‖u1 − u2‖L2 and R = ‖u1‖L2 + ‖u2‖L2 .

We define

F (u1, u2) =





d if d ≤ d0, R ≤ R0,

2d0 if d > d0, R ≤ R0,

R if R > R0.

(2.42)

From a case-by-case analysis9, we have

F (u1, u2) ≥ dist(u1, u2) (2.43)

and hence it follows from this and (2.42) that

K(µ1, µ2) = inf
all couplings

(ξ1,ξ2) for (µ1,µ2)

E[F (ξ1, ξ2)] (2.44)

is a Kantorovich functional. Given any coupling (U1(0), U2(0)) for (µ1, µ2), we apply the

construction in Step 1 to obtain couplings (U1(k), U2(k)) of (µ1(k), µ2(k)) for each k =

1, . . . , T . We set F (k) = F (U1(k), U2(k)) and we will estimate E[F (k)] by E[F (0)]. We

partition Ω0 into three sets and estimate each contribution separately.

Case (a) ω0 ∈ Q1 := {R(0) > R0}
In this case, F (0) = R(0). From (2.30), (2.42) and 2d0 ≤ 1

2R0 <
1
2R(0), we have

F (T ) ≤ 1

2
R(0)

and thus

EΩ′ [F (T )] ≤ 1

2
F (0). (2.45)

Case (b) ω0 ∈ Q2 := {d(0) > d0, R(0) ≤ R0}

9Recall we chose R0 ≥ 4d0.
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Here we have F (0) = 2d0. By (2.31), we have R(T ) ≤ 1
2R0 almost surely. Now from (2.41),

F (T ) ≤ d0 with probability ≥ θ. Therefore,

EΩ′ [F (T )] ≤ (1− θ)2d0 + θd0 =

(
1− 1

2
θ

)
2d0 ≤

(
1− 1

2
θ

)
F (0). (2.46)

Case (c) ω0 ∈ Q3 := {d(0) ≤ d0, R(0) ≤ R0}
We have F (0) = d(0) and again by (2.31), we have R(T ) ≤ R0 almost surely. From (2.39),

we have

F (T ) = d(T ) ≤ 1

2T
d(0) with probability ≥ 1− 2C0d(0).

Thus,

EΩ′ [F (T )] ≤ 2−Td(0) + 2d0PΩ′(d(T ) > 2−Td(0)) ≤ d(0)(2−T + 4C0d0) ≤ 3

4
F (0) (2.47)

because F (0) = d(0).

Putting (2.45), (2.46) and (2.47) together, we have

E[F (T )] = EΩ0

[ 3∑

j=1

1QjE
Ω′ [F (T )]

]
≤ κ̃EΩ0

[F (0)],

where κ̃ = (1− 1
2θ) ∨ 3

4 < 1. For j = kT , we can iterate the above argument to obtain

E[F (j)] ≤ κ̃k EΩ0
[F (0)]. (2.48)

If j ∈ [1, T − 1], the arguments in Cases (a) and (c) with T replaced by j hold too.

However, Case (b) no longer holds true since we used the exponential decay in time (of

‖uj(T )‖L2) to ensure T was large enough so that P(d(T ) ≤ d0) > θ > 0. We cannot say

P(d(j) ≤ d0) > θ > 0. We do have F (j) ≤ d0 ∨ 2d0 = 2d0 = F (0), which implies

E[F (j)] ≤ EΩ0
[F (0)].

For t = kT + j, where 0 ≤ j < T , we have

E[F (t)] ≤ κ̃kEΩ0
[F (0)] ≤ CκtEΩ0

[F (0)].

for some C > 1 and κ = κ̃
1
T .

Step 3:

It remains now to compute EΩ0
[F (0)]. By the definition (2.42), we have

EΩ0
[F (0)] ≤ 2d0 + EΩ0

[‖U1(0)‖L2 + ‖U2(0)‖L2 ] ≤ 1 +M1(µ1) +M1(µ2).

Since (U1(t), U2(t)) is a particular coupling, we have

K(µ1(t), µ2(t)) ≤ E[F (t)] ≤ C(1 +M1(µ1) +M1(µ2))κt,

for some κ < 1. Finally, by (1.7) and Lemma 1.10, we obtain

‖µ1(t)− µ2(t)‖∗Lip ≤
2

d0
‖µ1(t)− µ2(t)‖∗Lip,dist

≤ 2

d0
C(1 +M1(µ1) +M1(µ2))κt,

which completes the proof of Theorem 2.4.

�
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2.5. Corollaries of the main theorem. In lecture 5, we saw that (2.7) has an invariant

measure µ ∈ P(H). In fact, by iterating (2.29) (assuming zero initial data) we obtain

E[‖u(k)‖L2 ] ≤ e

e− 1

√
B0

and hence µ ∈ P1(H). As Tk is Feller, this implies T ∗kµ = µ and thus Theorem 2.4 yields

the following corollary.

Corollary 2.5. There exists an invariant measure µ ∈ P1(H) such that

‖T ∗k ν − µ‖∗Lip ≤ C(1 +M1(ν))κk

for any ν ∈ P1(H).

Given any u ∈ H, δu ∈ P1(H) and T ∗k δu = pk(u, ·). Therefore, Corollary 2.5 implies

pk(u, ·) ⇀ µ for any u ∈ H,
as k →∞. Then, for any f ∈ Cb(H) and for any u ∈ H, we have

Tkf(u) = 〈Tkf, δu〉 = 〈f, T ∗k δu〉 = 〈f, pk(u, ·)〉 −→ 〈f, µ〉. (2.49)

Corollary 2.6. The (KickNSE) has a unique invariant measure in P(H).

Proof. Let ν ∈ P(H) be another invariant measure. Then by (2.49), we have

〈f, ν〉 = 〈f, T ∗k ν〉 = 〈Tkf, ν〉
−→ 〈〈f, µ〉1, ν〉
= 〈f, µ〉.

That is, 〈f, ν〉 = 〈f, µ〉 for any f ∈ Cb(H) and hence ν = µ. �

3. On ergodicity

In the previous section, we went to great lengths to prove that the invariant measure we

constructed by the (comparatively simple) Bogolyubov-Krylov method is in fact the unique

invariant measure for (KickNSE) (Corollary 2.6). It turns out that this uniqueness result

now implies rather strong and previously inaccessible qualitative information on the long

time behaviour of (KickNSE). To see a framework of these implications, we state them in

a general fashion.

Given a measure space (X,F , µ), we consider a measure preserving map T : X → X; that

is, for every A ∈ F , we have (T#µ)(A) = µ(A). In particular, the measure µ is invariant

under the map T . Invariance alone yields some interesting consequences:

• Poincare recurrence theorem: Given µ(A) > 0, there exists n ∈ N such that

µ(T−nA ∩A) > 0.

• Furstenberg recurrence theorem:10 If µ(A) > 0, then for all k ∈ N, there exists

n ∈ N such that

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0.

10This result was used to prove some famous results in number theory such as Szemeredi’s theorem,
Roth’s theorem, and the van der Waerden theorem.



18 J. FORLANO

• Von Neumann theorem: Let I denote the σ-algebra of sets which are invariant

under T . Then, for F ∈ L2(X,F , µ), we have

lim
N→∞

1

N

N−1∑

n=0

F (Tnx) = E[f | I](x)

for µ-almost every x ∈ X.

• Birkhoff’s theorem: The statement is as in Von Neumann’s theorem above except

the assumption F ∈ L2(X,F , µ) is replaced by F ∈ L1(X,F , µ).

Definition 3.1. A measure preserving map T is said to be ergodic if whenever T−1A = A,

we have µ(A) = 0 or 1.

In other words, the map T is ergodic if the only invariant sets are trivial.

There are many equivalent ways to define ergodicity and we state a few of these below.

Theorem 3.2. The following are equivalent:

(i) T is ergodic with respect to µ

(ii) If F is measurable and F ◦ T = F , then F is constant a.e.

(iii) If F ∈ L2(µ) and F ◦ T = F , then F is constant a.e.

(iii) If F ∈ L1(µ), we have

lim
N→∞

1

N

N∑

n=1

F (Tnx) =

ˆ

Fdµ µ− a.e. x

(v) If µ(A) > 0, we have

µ

( ∞⋃

n=0

T−nA
)

= 1.

(vi) If µ(A), µ(B) > 0, then there exists n such that

µ(T−nA ∩B) > 0.

(vii) We have

lim
N→∞

1

N

N∑

n=1

µ(T−nA ∩B) = µ(A)µ(B).

We denote by Λ the collection of invariant probability measures for a given Markov

semigroup. It is easy to see that Λ is convex. It turns out the ergodic measures hold a

special place in Λ.

Theorem 3.3. The set of extremal points of Λ is equal to the set of ergodic probability

measures.

Immediately following this theorem, we have:

Corollary 3.4. A unique invariant measure is ergodic.

We proved in Corollary 2.6 that µ is the unique invariant measure under Tk. Hence, µ is

ergodic for Tk and thus the seven other statements in Theorem 3.2 hold for the dynamics

of (KickNSE).
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A uniqueness result also holds in the case of the white forced NSE where, for instance,

we make the following modifications to the argument in Subsection 2.4:

KickNSE White NSE

d(k) ≤ d0 d(t) ≤ d0

R(k) ≤ R0 R(t) ≤ R0

√
t− T∗, T∗ + 1 ≤ t ≤ k

use an ‘adjusted’ Girsanov theorem

See [1, page 57] for a more complete list of the differences.

4. Further issues to study

• Random attractors: see [4, Section 4.2].

• The Eulerian limit: consider the equation

∂tu− νLu+B(u) =
√
ν∂tζ, (4.1)

where ν > 0 is the kinematic viscosity. For each ν > 0 we have a unique invariant

measure µν for the flow of the corresponding ν-equation (4.1). The idea is to send

ν → 0 and thereby construct an invariant measure for the incompressible Euler

equation (ν = 0 in (4.1)). See for instance [1, Section 10], [2, Section 5]. This

idea has been applied for Schrödinger-Heat type equations [3] and for construct-

ing invariant measures supported on smooth functions for the (purely dispersive)

Benjamin-Ono equation [5].
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