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The aim of this talk

Explain magnitude, a numerical
invariant of metric spaces

Magnitude of metric spaces:

• has its origins in category theory
• is closely related to . . .

I geometric measure
I maximum entropy
I quantification of biodiversity
I potential analysis

• may be relevant to data analysis. . . ?
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1. Where magnitude comes from



Schanuel on how to think about Euler characteristic

Stephen Schanuel, ‘Negative sets have Euler char-
acteristic and dimension’ (1991):

Euler’s analysis, which demonstrated that
in counting suitably ‘finite’ spaces one can
get well-defined negative integers, was a
revolutionary advance in the idea of cardi-
nal number—perhaps even more important
than Cantor’s extension to infinite sets, if
we judge by the number of areas in mathe-
matics where the impact is pervasive.

How is Euler characteristic χ similar to cardinality?

• On finite discrete spaces, χ equals cardinality

• χ(X ∪ Y ) = χ(X ) + χ(Y )− χ(X ∩ Y ), under suitable hypotheses

• χ(X × Y ) = χ(X )× χ(Y ).



Categories and spaces

A category is a directed graph (‘objects’ and ‘arrows’),
together with a rule for composing arrows
and an identity arrow on each object.

Every category A gives rise in a canonical way to a topological space BA,
called its classifying space.

E.g.:

• If A = (• • •) then BA = (• • •) (discrete space).

• If A =

(
• ^

�
•
)

then BA = S1 = .



The Euler characteristic of a category

We could define the Euler characteristic of a category A to be the Euler
characteristic of its classifying space BA (at least, when χ(BA) is defined).

For finite A, there is an equivalent combinatorial definition:

Given a category A, let ZA be the matrix whose rows and columns are
indexed by the objects of A, and with entries

ZA(a, b) = number of arrows from a to b.

When ZA is invertible, the Euler characteristic of A is

χ(A) =
∑

objects a,b

Z−1A (a, b) ∈ Q

—the sum of all the entries of the inverse matrix of ZA.

Theorem: χ(A) = χ(BA), under finiteness hypotheses.



A general definition of size

Categories are a special case of a more general concept: enriched categories.

(I won’t give the definition.)

The definition of Euler characteristic generalizes smoothly from categories to
enriched categories, where it is renamed as magnitude.

(I won’t give the definition.)

So, one can speak of the magnitude of an enriched category.

This has connections to Möbius inversion in combinatorics, invariants of
associative algebras, a new graded homology theory for graphs, . . .

Metric spaces are also a special case of enriched categories.

So, we can speak of the magnitude of a metric space.

I will give the definition—explicitly!



2. The magnitude of a finite
metric space



The definition

Let A be a finite metric space.

Write ZA for the A× A matrix with entries

ZA(a, b) = e−d(a,b)

(a, b ∈ A). (Why e−distance? Because e−(x+y) = e−xe−y .)

If ZA is invertible (which it is if A ⊆ Rn), the magnitude of A is

|A| =
∑
a,b∈A

Z−1A (a, b) ∈ R

—the sum of all the entries of the inverse matrix of ZA.



First examples

• |∅| = 0.

• |•| = 1.

•
∣∣•← L→•

∣∣ = sum of entries of

(
e−0 e−L

e−L e−0

)−1
=

2

1 + e−L

0

1

2

L

• If d(a, b) =∞ for all a 6= b then |A| = cardinality(A).

Slogan: Magnitude is the ‘effective number of points’.



Example: a 3-point space (Willerton)
Take the 3-point space

A =

• When t is small, A looks like a 1-point space.

• When t is moderate, A looks like a 2-point space.
• When t is large, A looks like a 3-point space.

•
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Example: a 3-point space (Willerton)
Take the 3-point space

A =

• When t is small, A looks like a 1-point space.
• When t is moderate, A looks like a 2-point space.
• When t is large, A looks like a 3-point space.

Indeed, the magnitude of A as a function of t is:



Magnitude functions

Magnitude assigns to each metric space not just a number, but a function.

For t > 0, write tA for A scaled up by a factor of t.

The magnitude function of a metric space A is the partially-defined function

(0,∞) → R
t 7→ |tA|.

E.g.: the magnitude function of A = (•← L→•) is

0

1

2
|tA|

t

2/(1 + e−Lt)

A magnitude function has only finitely many singularities (none if A ⊆ Rn).

It is increasing for t � 0, and lim
t→∞

|tA| = cardinality(A).



3. Digression:
entropy and diversity



Shannon and Rényi entropies
Let A be a finite set and p =

(
p(a)

)
a∈A a probability distribution on A.

The Shannon entropy of p is

H1(p) = −
∑
a∈A

p(a) log p(a).

This is the limiting case as q → 1 of the Rényi entropy of order q ∈ [0,∞]:

Hq(p) =
1

1− q
log
∑
a∈A

p(a)q.

Now suppose that A carries a metric. We can define more generally:

Hmet
q (p) =

1

1− q
log
∑
a∈A

p(a) · (ZAp)(a)q−1

where ZAp is the matrix ZA times the column vector p.

E.g.: when all distances are ∞, Hmet
q reduces to Hq.

Discovery (with Christina Cobbold) Most of the biodiversity
measures most commonly used in ecology are special cases of Hmet

q .



Maximum entropy and magnitude

Let A be a finite set. Let’s try to maximize exp Hq(p) over all p. Facts:

• There is a single distribution p maximizing exp Hq(p) for all q ∈ [0,∞]
simultaneously. (It’s the uniform distribution.)

• Moreover, supp

(
exp Hq(p)

)
is the same for all q. It’s the cardinality of A.

More generally, let A be a finite metric space. Can we maximize exp Hmet
q (p)?

Theorem:

• There is a single distribution p maximizing exp Hmet
q (p) for all q ∈ [0,∞]

simultaneously. (It’s not uniform!)

• Moreover, supp
(
exp Hmet

q (p)
)

is the same for all q.
It’s closely related to the magnitude of A.
(In fact, it’s equal to the magnitude of a certain subspace of A.)

Moral: magnitude ≈ maximum entropy.



End of digression



4. The magnitude of a compact
metric space



The definition

A metric space X is positive definite if for every finite A ⊆ X , the matrix ZA

is positive definite.

E.g.: Rn with the Euclidean or taxicab metric, hyperbolic space,
any ultrametric space.

Theorem (Meckes)

All sensible ways of extending the definition of magnitude from finite metric
spaces to compact positive definite spaces are equivalent.

E.g.: For a compact positive definite space A, we can define

|A| = sup{|B| : finite B ⊆ A}.

Or equivalently, we can choose a sequence (Bn) of finite subsets with
Bn → A in the Hausdorff metric, then define |A| = limn→∞ |Bn|.
The definition can also be expressed directly, without using finite
approximations.



Example: the magnitude of a box

The straight line [0, L] of length L has magnitude 1 + 1
2L.

So [0, L] has magnitude function

t 7→ |t[0, L]| = |[0, tL]| = 1
H

Euler characteristic

+ 1
2L
H

length

· t1J
dimension

For metric spaces A and B, let A×1 B be their ‘`1 product’, given by

dA×1B

(
(a, b), (a′, b′)

)
= dA(a, a′) + dB(b, b′).

Lemma |A×1 B| = |A| |B|.
It follows that the rectangle [0, L1]×1 [0, L2] has magnitude function

t 7→ 1
N

Euler characteristic

+ 1
2(L1 +

N

semiperimeter

L2)t + 1
4L1

N
area

L2t2
J

dimension

So, the magnitude function of a rectangle knows its Euler characteristic,
perimeter, area and dimension!



5. Magnitude encodes geometric
information



Convex sets
Write `n1 = R×1 · · · ×1 R (that is, Rn with the taxicab metric).

Theorem Let A ⊆ `n1 be a convex body. Then its magnitude function
t 7→ |tA| is a polynomial whose degree is dim A and whose coefficients are
certain geometric measures of A (e.g. top coeff = 2−n vol(A)).

Conjecture (with Willerton) For convex A ⊆ R2 with Euclidean metric,

|tA| = χ(A) + 1
4 perimeter(A) · t + 1

2π area(A) · t2.

Can test this numerically using finite approximations.

E.g.: (Willerton)
Let A be the unit 2-disc,
approximated by 25132 points.

The magnitude function of A is:

|tA|



Other spaces
Two sample theorems:

Theorem (Juan-Antonio Barceló & Tony Carbery)
For compact A ⊆ Rn,

vol(A) = cn lim
t→∞

|tA|
tn

where cn is a known constant.

Theorem (Willerton) The magnitude function of a homogeneous
Riemannian n-manifold M is given asymptotically as t →∞ by

|tM| = an vol(M) · tn + bn tsc(M) · tn−2 + O(tn−4)

where an and bn are known constants and tsc denotes total scalar curvature.

E.g. when n = 2:

|tM| = 1
2π area(M) · t2 + χ(M) + O(t−2).



6. Magnitude encodes dimension



Dimension is the asymptotic growth of magnitude

We’ve seen that in various examples, the magnitude function t 7→ |tA| is a
polynomial (asymptotically, at least) whose degree is the dimension of A.

The (asymptotic) growth of a function f : (0,∞)→ R is lim
t→∞

log f (t)

log t
∈ R.

E.g.: The growth of a polynomial is its degree.

The Minkowski dimension of a metric space A is

lim
ε→0

log(number of ε-balls needed to cover A)

log(1/ε)
∈ R+.

This is one of several notions of fractional dimension, usually equal to the
Hausdorff dimension.

Theorem (Meckes) For compact subsets of Rn, the Minkowski dimension
is equal to the growth of the magnitude function.

So, Minkowski dimension can be recovered from magnitude.



Dimension at different scales (Willerton)

Consider a long thin rectangle:

• At small scales, it looks 0-dimensional.

• At medium scales, it looks 1-dimensional.

• At large scales, it looks 2-dimensional.

·
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Dimension at different scales (Willerton)

Consider a long thin rectangle:

• At small scales, it looks 0-dimensional.

• At medium scales, it looks 1-dimensional.

• At large scales, it looks 2-dimensional.

The magnitude function sees all this!

Here’s how. . .



Dimension at different scales (Willerton)
For a function f : (0,∞)→ R, the instantaneous growth of f at t ∈ (0,∞) is

d(log f (t))

d(log t)
= slope of the log-log graph of f at t.

E.g.: If f (t) = Ctn then d(log f (t))
d(log t) = n for all t.

For a space A, the magnitude dimension of A at scale t is

dim(A, t) =
d(log |tA|)

d(log t)
.

E.g.: For A = [0, 50000]× [0, 1] ⊆ `21:

10−8 10−4 1 104
0

1

2

t

dim(A, t)

X



Dimension at different scales

Let A = , with subspace metric from R2.

• When t is small, tA looks 0-dimensional.

• When t is moderate, tA looks nearly 1-dimensional.

• When t is large, tA looks 0-dimensional again.

•
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Dimension at different scales

Let A = , with subspace metric from R2.

• When t is small, tA looks 0-dimensional.

• When t is moderate, tA looks nearly 1-dimensional.

• When t is large, tA looks 0-dimensional again.

The magnitude function picks all this up.
Indeed, here’s the magnitude dimension of A at different scales:

0 10 20 30 40 50
0

0.5

1.0

t

dim(A, t)



Summary



The idea of magnitude

Philosophically: magnitude is part of a large family of ‘invariants of size’
spanning mathematics. Other members of this family are cardinality,
Euler characteristic, measure, entropy, . . .

Explicitly: to get the magnitude |A| of a finite metric space A, invert
the matrix

(
e−d(a,b)

)
a,b∈A then add up all its entries.

Interpretation 1: The magnitude of a finite space can be thought of as
the ‘effective number of points’.

Interpretation 2: It is also very closely related to the maximum entropy
of a probability distribution on the space (using a metric-sensitive
notion of entropy).



The geometric content of magnitude

The definition of magnitude extends smoothly to compact sets in Rn.

Given a metric space A, we should consider all its rescalings tA.

The magnitude function of A is |tA| as a function of t.

The magnitude function of A contains lots of information about A.

E.g.:

• for compact subsets of Rn, it knows the volume

• for compact subsets of Rn, it knows the Minkowski dimension

• in other contexts, it knows invariants such as Euler characteristic,
total scalar curvature, perimeter, intrinsic volumes, . . .



Why am I talking about magnitude at ATMCS?
Because of the role played by finite metric spaces, e.g.

A =

t

|tA|

A =

0 10 20 30 40 500

0.5

1.0

t

dim(A,t)

Because every time my collaborator Simon Willerton speaks on this,
someone asks ‘Is this related to persistent homology?’

And mainly: to find out whether this theory may be resonant —
or even useful — to you.


