Codensity and the ultrafilter monad

Tom Leinster
Edinburgh

These slides: available on my web page

n-Category Café posts: 1, 2, 3, 4

The moral of this talk

Whenever you meet a functor,
ask
“What is its codensity monad?”
Plan

1. What codensity monads are

With codensity monads as part of our toolkit:

 The notion of . . . automatically gives rise to the notion of . . .

2. finiteness of a set
3. finite-dimensionality of a vector space
4. finiteness of a family

 ultrafilter
double dualization
ultraproduct
1. What codensity monads are

(Isbell, Ulmer; Appelgate & Tierney, A. Kock)
Loosely

The codensity monad of a functor $G : \mathcal{B} \to \mathcal{A}$ is what the composite of G with its left adjoint would be if G had a left adjoint.

Grammar: given a functor $G : \mathcal{B} \to \mathcal{A}$, the codensity monad T^G of G is a certain monad on \mathcal{A}.

It is defined as long as \mathcal{A} has enough limits.

The definition will be given later.
Characterization of the codensity monad

Motivation: Let $G : \mathcal{B} \to \mathcal{A}$ be a functor that does have a left adjoint, F. We have categories and functors

![Diagram]

and this is initial among all maps in CAT / \mathcal{A} from G to a monadic functor.

Theorem (Dubuc) Let $G : \mathcal{B} \to \mathcal{A}$ be a functor whose codensity monad T^G is defined. Then

![Diagram]

is initial among all maps in CAT / \mathcal{A} from G to a monadic functor.

Corollary Let G be a functor with a left adjoint, F. Then $T^G = G \circ F$.
Three definitions of the codensity monad

Let $G : \mathcal{B} \to \mathcal{A}$ be a functor. Three equivalent definitions:

- The **codensity monad** of G is the right Kan extension of G along itself:

 $\mathcal{B} \xrightarrow{G} \mathcal{A} \xrightarrow{\downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow} \mathcal{A}$

 (and is defined iff the Kan extension exists).

- $T^G(A) = \int_B [\mathcal{A}(A, G(B)), G(B)] = \lim_{B \in \mathcal{B}, f : A \to G(B)} G(B)$.

- Recall: if $F : \mathcal{A} \to \mathcal{B}$ with \mathcal{A} small and \mathcal{B} cocomplete, get adjunction

 $\mathcal{B} \xleftarrow{T} [\mathcal{A}^{\text{op}}, \text{Set}] \xrightarrow{\text{Hom}(F, -)} \xrightarrow{- \otimes F} \mathcal{A}^{\text{op}}, \text{Set}]$, e.g.

 $\text{Top} \xleftarrow{T} [\Delta^{\text{op}}, \text{Set}] \xrightarrow{|-|}$.
Three definitions of the codensity monad

Let $G: \mathcal{B} \rightarrow \mathcal{A}$ be a functor. Three equivalent definitions:

- The **codensity monad** of G is the right Kan extension of G along itself:

$$
\begin{array}{ccc}
\mathcal{B} & \xrightarrow{G} & \mathcal{A} \\
\downarrow & \searrow \searrow & \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
\mathcal{A} & \xrightarrow{T_G} & \mathcal{A}
\end{array}
$$

(and is defined iff the Kan extension exists).

- $T_G^G(A) = \int_B \left[\mathcal{A}(A, G(B)), G(B) \right] = \lim_{B \in \mathcal{B}, f: A \rightarrow G(B)} \mathcal{A}(A, G(B))$.

- If \mathcal{B} is small and \mathcal{A} is complete, get adjunction

$$
\begin{array}{ccc}
\mathcal{A} & \xleftarrow{\text{Hom}(_, G)} & \mathcal{B}, \text{Set}^{\text{op}} \\
\downarrow & \searrow \uparrow & \\
\text{Hom}(_, G) & \xrightarrow{\text{Hom}(_, G)}
\end{array}
$$

and T_G^G is the induced monad on \mathcal{A}.
Two short but nontrivial examples

1. Let \mathcal{A} be a category and $X \in \mathcal{A}$. The codensity monad of $1 \xrightarrow{X} \mathcal{A}$ is the endomorphism monad $\text{End}(X)$ of X, given by

$$\left(\text{End}(X)\right)(A) = [\mathcal{A}(A, X), X].$$

By Dubuc, for any monad S on \mathcal{A}, an S-algebra structure on X amounts to a map of monads $S \xrightarrow{} \text{End}(X)$.

2. The codensity monad of $G : \text{Field} \hookrightarrow \text{CRing}$ is given by

$$T^G(A) = \prod_{p \in \text{Spec}(A)} \text{Frac}(A/p)$$

($A \in \text{CRing}$). For example,

$$T^G(\mathbb{Z}) = \mathbb{Q} \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \times \cdots,$$

$$T^G(\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/\text{rad}(n)\mathbb{Z}$$

where $\text{rad}(n)$ is the product of the distinct prime factors of n.
2. Ultrafilters
What ultrafilters are

Lemma (Galvin and Horn) Let X be a set and $\mathcal{U} \subseteq \mathcal{P}(X)$. The following are equivalent:

- \mathcal{U} is an ultrafilter
- whenever $X = X_1 \amalg \cdots \amalg X_n$, there is a unique i such that $X_i \in \mathcal{U}$.

There is a monad U on Set, the ultrafilter monad, with

$$U(X) = \{\text{ultrafilters on } X\}$$

($X \in \text{Set}$).
Ultrafilters as measures

Let \(X \in \text{Set} \) and \(\mathcal{U} \in U(X) \). Think of elements of \(\mathcal{U} \) as ‘sets of measure 1’.

Lemma (everyone) An ultrafilter on a set \(X \) is essentially the same thing as a finitely additive probability measure on \(X \) taking values in \(\{0, 1\} \).

If an ultrafilter is a kind of measure, what is integration?

Given a finite set \(B \), define

\[
\int_X f \, d\mathcal{U} : \text{Set}(X, B) \longrightarrow B
\]

as follows:

for \(f \in \text{Set}(X, B) \), let \(\int_X f \, d\mathcal{U} \) be the unique element of \(B \) whose fibre under \(f \) belongs to \(\mathcal{U} \).

Justification of terminology: This ‘integration’ is uniquely characterized by:

- the integral of a constant function is that constant; and
- changing a function on a set of measure 0 doesn’t change its integral.
Measures correspond to integration operators

Let X be a set. Given $\mathcal{U} \in U(X)$, we obtain a family of maps

$$\left(\text{Set}(X, B) \xrightarrow{\int_X - d\mathcal{U}} B \right)_{B \in \text{FinSet}}$$

natural in B. That is: given $\mathcal{U} \in U(X)$, we obtain an element

$$\int_X - d\mathcal{U} \in T^G(X)$$

where T^G is the codensity monad of $G : \text{FinSet} \hookrightarrow \text{Set}$. So, we have

$$U(X) \quad \xrightarrow{\mathcal{U}} \quad T^G(X)$$

In fact, this defines an isomorphism of monads $U \xrightarrow{} T^G$. Hence:

Theorem (i) (Kennison and Gildenhuys) The codensity monad of $\text{FinSet} \hookrightarrow \text{Set}$ is the ultrafilter monad.

(ii) (Manes) The algebras for this monad are the compact Hausdorff spaces.
Moral of this section

The notion of finiteness of a set automatically gives rise to the notions of ultrafilter and compact Hausdorff space.
3. Double dualization
The linear analogue of the ultrafilter theorem

Theorem (i) The codensity monad of $\text{FDVect} \hookrightarrow \text{Vect}$ is double dualization. (ii) The algebras for this monad are the linearly compact vector spaces (certain topological vector spaces).

Table of analogues:

<table>
<thead>
<tr>
<th>sets</th>
<th>vector spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite sets</td>
<td>finite-dimensional vector spaces</td>
</tr>
<tr>
<td>ultrafilters</td>
<td>elements of the double dual</td>
</tr>
<tr>
<td>compact Hausdorff spaces</td>
<td>linearly compact vector spaces.</td>
</tr>
</tbody>
</table>
Moral of this section

The notion of finite-dimensionality of a vector space automatically gives rise to the notions of double dualization and linearly compact vector space.
4. Ultra-products
What ultraproducts are

Let \(S = (S_x)_{x \in X} \) be a family of sets.

An element of the product \(\prod S = \prod_{x \in X} S_x \) is a family of elements \((s_x)_{x \in X} \).

Now let \(\mathcal{U} \) be an ultrafilter on \(X \). We’ll define the ultraproduct \(\prod_{\mathcal{U}} S \).

Informally: An element of \(\prod_{\mathcal{U}} S \) is a family of elements \((s_x) \) defined almost everywhere and taken up to almost everywhere equality.

Formally: An element of \(\prod_{\mathcal{U}} S \) is an equivalence class of families \((s_x)_{x \in Y} \) with \(Y \in \mathcal{U} \), where

\[
(s_x)_{x \in Y} \sim (t_x)_{x \in Z} \iff \{ x \in Y \cap Z : s_x = t_x \} \in \mathcal{U}.
\]

Alternatively: \(\prod_{\mathcal{U}} S \) is the colimit of

\[
(U, \subseteq)^{op} \to \text{Set} \quad Y \mapsto \prod_{x \in Y} S_x.
\]

Can define ultraproducts similarly in any category with enough (co)limits.
The ultraproduct monad

Let \mathcal{E} be a category with small products and filtered colimits.

Define a category $\text{Fam}(\mathcal{E})$ as follows:

- an object is a family $(S_x)_{x \in X}$ of objects of \mathcal{E}, indexed over some set X
- a map $(S_x)_{x \in X} \to (R_y)_{y \in Y}$ is a map of sets $f : X \to Y$ together with a map $R_{f(x)} \to S_x$ for each $x \in X$.

Given a family $S = (S_x)_{x \in X}$ of objects of \mathcal{E}, we get a new family

$$\left(\prod_{U \in \mathcal{U}(X)} S \right)_{U \in \mathcal{U}(X)}$$

of objects of \mathcal{E}.

Fact (Ellerman; Kennison) This assignation is part of a monad on $\text{Fam}(\mathcal{E})$, the ultraproduct monad for \mathcal{E}.
Ultraproducts are inevitable

Let $\text{FinFam}(\mathcal{E})$ be the full subcategory of $\text{Fam}(\mathcal{E})$ consisting of the families $(S_x)_{x \in X}$ in which X is finite.

Theorem (i) (with Anon.) The codensity monad of $\text{FinFam}(\mathcal{E}) \hookrightarrow \text{Fam}(\mathcal{E})$ is the ultraproduct monad.

(ii) (Kennison) When $\mathcal{E} = \textbf{Set}$, the algebras for this monad are the sheaves on compact Hausdorff spaces.
Moral of this section

The notion of finiteness of a family automatically gives rise to the notions of ultraproduct and sheaf on a compact Hausdorff space.
Summary
Summary

- The codensity monad of a functor G is a substitute for $G \circ F$ (where $F \dashv G$) that makes sense even when G has no left adjoint.

- Routinely asking ‘what is the codensity monad?’ is worthwhile.

- For example, it establishes that the following concepts are categorically inevitable:

 - ultrafilter
 - double dual vector space
 - ultraproduct
 - compact Hausdorff space
 - linearly compact vector space
 - sheaf on a compact Hausdorff space.