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Executive summary

Magnitude is a real-valued invariant of metric spaces.

It seems not to have been previously investigated.

Conjecturally, it captures a great deal of geometric information.

It arose from a general study of ‘size’ in mathematics.



Plan

1. Where does magnitude come from?

2. The magnitude of a finite space

3. The magnitude of a compact space

4. The convex magnitude conjecture



1. Where does magnitude come from?



Concepts of counting and size

Sets

cardinality

Topological spaces

Euler characteristic Euler characteristic

Categories

Metric spaces

magnitude

Enriched categories

magnitude

A category has: A metric space has:

objects a, b, . . . points a, b, . . .
sets Hom(a, b) numbers d(a, b)
composition operations triangle inequalities

Hom(a, b)× Hom(b, c)→ Hom(a, c) d(a, b) + d(b, c) ≥ d(a, c)



2. The magnitude of a finite space



The definition
Let A = {a1, . . . , an} be a finite metric space.

Write Z or ZA for the n × n matrix given by Zij = e−d(ai ,aj ).

A weighting on A is a column vector w ∈ Rn such that

Zw =

1
...
1

 .

Suppose there is at least one weighting w on A. The magnitude of A is

|A| =
∑
j

wj ∈ R.

This is independent of the weighting chosen.

E.g.: Usually Z is invertible. Then A has magnitude

|A| =
∑
i ,j

(Z−1)ij .



Examples

• |∅| = 0 and | • | = 1.

•
∣∣•← t →•

∣∣ = 1 + tanh(t/2):

0

1

2

t

• If d(ai , aj) =∞ for all i 6= j then |{a1, . . . , an}| = n.



Digression: magnitude as maximum diversity
Take a probability distribution p on a finite metric space A = {a1, . . . , an}.
Its entropy (of order 1) is

HA(p) = −
n∑

i=1

pi log(ZAp)i

Ecological interpretation:

• points of A represent species

• distances represent differences between species

• probabilities represent frequencies

• exponential of entropy measures biological diversity.

Given a list of species, which distribution maximizes diversity?

Theorem: Under hypotheses,

• the maximizing distribution p is the weighting w , normalized

• the maximum diversity is the magnitude: max
p

eHA(p) = |A|.



Magnitude functions
Magnitude changes unpredictably as a space is rescaled.

For a space A and t > 0, let tA be A scaled up by a factor of t.

The magnitude function of A is the function t 7→ |tA| on (0,∞).
(It may have a finite number of singularities.)

E.g.: The magnitude function of •← 1→• is t 7→ 1 + tanh(t/2).

E.g.: Magnitude functions can be wild for small t, but behave well for large t:
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Positive definite spaces

A (possibly infinite) metric space A is positive definite if
for each finite B ⊆ A, the matrix ZB is positive definite.

Examples of positive definite spaces:

• Euclidean space RN

• the sphere SN with the geodesic metric.

For finite positive definite spaces, magnitude behaves intuitively, e.g.:

• the magnitude is always defined

• |A| ≥ 1 for nonempty A

• if B ⊆ A then |B| ≤ |A|.



3. The magnitude of a compact space



Extending the definition beyond finite spaces

How could we define the magnitude of an infinite space?

• Idea: approximate it by finite spaces.

• Alternative idea: replace sums by integrals.
(Then weightings become measures or distributions.)

Meckes has shown: for compact, positive definite spaces, both ideas work.

Moreover, they give the same answer.



The definition

Theorem (Meckes)

Let A be a positive definite compact metric space (e.g. A ⊆ RN).

Let B1 ⊆ B2 ⊆ · · · ⊆ A be finite subspaces with
⋃

Bi = A.

Then lim
i→∞
|Bi | exists and depends only on A (not on the sequence (Bi )).

The magnitude |A| of A is defined as lim
i→∞
|Bi |.

Digression: Meckes has also shown:

|A| = sup

{
µ(A)2∫

A

∫
A e−d(x ,y) dµ(x) dµ(y)

∣∣∣∣ signed Borel measures µ on A

}
.



Examples

• |[0, t]| = 1 + 1
2 t.

• For A = [0, p]× [0, q] with the `1 (taxicab) metric,

|A| = (1 + 1
2 p)(1 + 1

2 q)

= 1 + 1
4 perimeter(A) + 1

4 area(A).

So the magnitude function of A is

t 7→ |tA| = 1 + 1
4 perimeter(A) · t + 1

4 area(A) · t2

(a polynomial of degree 2).



Magnitude dimension
Let A be a compact positive definite metric space (e.g. A ⊆ RN).

The magnitude dimension of A is

dimmag A = inf
{

r ≥ 0 :
|tA|
tr

is bounded for t � 0
}
.

Examples:

• Finite sets have magnitude dimension 0.

• Line segments have magnitude dimension 1.

• The Cantor set has magnitude dimension log3 2.

• The N-sphere with geodesic metric has magnitude dimension N.

Theorem (with Meckes): For compact A ⊆ RN ,

dimHausdorff(A) ≤ dimmag(A) ≤ N.

(But magnitude dimension and Hausdorff dimension sometimes disagree.)



4. The Convex Magnitude Conjecture



The conjecture (in 2 dimensions)

Recall that for rectangles A in R2 with the `1 metric,

|A| = 1 + 1
4 perimeter(A) + 1

4 area(A).

Conjecture (with Willerton)

For compact convex A ⊆ R2 (with the Euclidean metric),

|A| = χ(A) + 1
4 perimeter(A) + 1

2π area(A).

Equivalently: for compact convex A ⊆ R2 and t > 0,

|tA| = χ(A) + 1
4 perimeter(A) · t + 1

2π area(A) · t2.

In particular: the magnitude function of a convex planar set is a polynomial,
from which we can recover its Euler characteristic, perimeter and area.



The conjecture (in arbitrary dimension)
Let ωi denote the volume of the i-dimensional unit ball.

Let Vi denote i-dimensional intrinsic volume.

Conjecture (with Willerton)

For compact convex A ⊆ RN (with the Euclidean metric),

|A| =
N∑
i=0

1

i !ωi
Vi (A).

Equivalently: for compact convex A ⊆ RN and t > 0,

|tA| =
N∑
i=0

1

i !ωi
Vi (A) · t i .

In particular: the magnitude function of a convex set in RN is a polynomial,
from which we can recover all of its intrinsic volumes.



A gap

There is not a single example for which the conjecture is known to be true,
apart from line segments.

That is: apart from line segments, there is no compact convex set whose
magnitude is known.

E.g. the magnitude of the unit disk is unknown.

(Nor is there is a single example for which it is known to be false.)



Evidence for the conjecture, I

Recall: the conjecture states that for compact convex A ⊆ R2,

|tA| = χ(A) + 1
4 perimeter(A) · t + 1

2π area(A) · t2.

• The conjecture holds when A is a line segment.

• Both sides are monotone in A.

• Both sides have the same growth as t →∞.

• |tA| ≥ χ(A) and |tA| ≥ 1
2πarea(A) · t2.

• Numerical (Willerton): computer calculations for disk, square, etc.

• Heuristic argument (Willerton) for why the top coefficient should be 1
2π .



Evidence, II: arguments by analogy

Recall: the conjecture states that for compact convex A ⊆ R2,

|tA| = χ(A) + 1
4 perimeter(A) · t + 1

2π area(A) · t2.

Theorem: For compact convex A ⊆ R2 with the `1 metric,

|tA| = χ(A) + 1
2

[
length(π1A) + length(π2A)

]
· t + 1

4 area(A) · t2.

Theorem (Willerton): For homogeneous Riemannian 2-manifolds A,

|tA| = O(t−2) + χ(A) + 1
2π area(A) · t2

as t →∞.



Evidence, III: PDE approach

Recall: the conjecture states that for compact convex A ⊆ R2,

|tA| = χ(A) + 1
4 perimeter(A) · t + 1

2π area(A) · t2.

Juan Antonio Barcelo and Tony Carbery (following Meckes) have a PDE
approach, best adapted to magnitude of convex sets in odd dimensions.

For compact convex A ⊆ R3, they define a quantity [A] in terms of the
solution to a certain PDE.

• A nonrigorous argument suggests that [A] = |A|.
• A rigorous argument shows that when A is the ball,

[A] is exactly what the convex magnitude conjecture predicts.

Similar arguments probably work for the N-ball whenever N is odd.



How could we prove the conjecture?

Recall: the conjecture states that for compact convex A ⊆ R2,

|tA| = χ(A) + 1
4 perimeter(A) · t + 1

2π area(A) · t2.

If the conjecture holds then magnitude is a convex valuation:

|A ∪ B| = |A|+ |B| − |A ∩ B| for all convex A,B,A ∪ B.

Almost-conversely, by Hadwiger’s theorem, the conjecture holds as long as:

• magnitude is a convex valuation, and

• the conjecture holds for at least one 2-dimensional set.

But currently, no one knows how to do either step.



What’s the point?

• It’s hard.

• If the conjecture is true, it exhibits the intrinsic volumes of convex sets
as intrinsic metric invariants — independent of their embedding in RN .
(Compare the Weyl tube formula.)

• It suggests an approach to geometric measure that works for spaces
that are irregular, or not embedded in any standard space such as RN .

• The categorical origins suggest that magnitude is a canonical quantity
of mathematics: a cousin of cardinality and Euler characteristic,
and therefore worth studying.



The conjecture, in one slide

For B = {b1, . . . , bn} ⊆ RN , define Zij = e−d(bi ,bj ) and |B| =
∑
i ,j

(Z−1)ij .

For compact A ⊆ RN , choose finite sets B1 ⊆ B2 ⊆ · · · ⊆ A with
⋃

Bi = A,
then define |A| = lim

i→∞
|Bi |.

Conjecture (2-dimensional case): For compact convex A ⊆ R2,

|A| = χ(A) + 1
4 perimeter(A) + 1

2π area(A).
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