An operadic characterization of Shannon entropy

Tom Leinster*

Rough notes, 30 April 2011

This is a recasting of Fadeev’s theorem, as stated in Rényi’s paper ‘On measures of entropy
and information’.

Plan: first I give the definition of lax map of operad algebras. This is a standard 2-
categorical definition. Then I spend a while unwinding the definition. Finally, I show that
when applied in a particular situation, the axioms in the definition are almost the same as
Fadeev’s axioms for entropy. This gives the operadic characterization of Shannon entropy.

This result arose from conversations with Steve Lack.

1 The definition of lax map

Let & be a category with finite limits and P be a symmetric operad in &. Let X and Y be
(strict) P-algebras in Cat(&). A lax map (f,¢) : X — Y is a functor f : X — Y together
with a natural transformation g

P,ox X" —» P, xY"
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for each n € N, satisfying the following three axioms. In all the diagrams, it’s supposed to be
obvious what the vertical arrows are.

i. For all n,kq,...,k, € N, writing &k = > k;,
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ii. The composite natural transformation

X

|

Poxx' 2L p xyt?

2N

X Y
is the identity.
iii. For each n € N and permutation o € S,
P,ox X" 2 poyn P,ox X" 2 poyn
U*Xll 7 la*xl lxa*l 7 llxa*
PoxXx" 2 posyr = poxxr 2L pocyn
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2 Unwinding the definition

There are other ways of phrasing this. If & has well-behaved colimits (e.g. if it’s Set or Top)
then the operad P induces a 2-monad on Cat(&). An algebra for this 2-monad is precisely a
P-algebra in Cat(&), and a lax map of algebras for this 2-monad is precisely a lax map in the
sense above.

If & = Set then we can also say it explicitly. The algebra structure on X gives us for each
operation p € P, a functor p : X" — X; similarly for Y. The natural transformation ¢ gives

us, for each operation p € P, and objects x1,...,x, € X, a map
® = Opiay,mn p(f(z1),- -, f(xn)) - f(ﬁ(xlﬂ e 7$n))
in the category Y. This is to satisfy naturality in zi,...,x, and the three axioms above.

Axiom (i) says that the composite

PO D), FEE), B h), o ) B2 p(f@iat, ol ek, akn)

e FE@E, ), Bl ah))
is equal to
po ) (@), - F@E) =2 Fo o) (@h, o2k,

Axiom (ii) says that ¢ : 1p(f(z)) — f(1p(z)) is the identity on f(x). Axiom (iii) says that

o Tp(f(xl)7vf(xn)) - f(Tp($1,,$n))

is equal to

¢ :p(f(xo1),-- s f(Ton) = [F(P(To1s- - Ton))-



When & = Top, the conditions on ¢ are the same except that ¢p.,, . ., must also vary
continuously (in the space of arrows of Y') with p and x4, ..., 2.

The terminal category 1 has a unique P-algebra structure. A lax point of a P-algebra Y
in Cat(&) is a lax map 1 — Y. (These are also sometimes called internal P-algebras in Y:
e.g. consider the case where P is the terminal operad.)

From now on, assume that & is Set or Top. A lax point of Y consists of a functor f : 1 — Y,
that is, an object y € Y, together with a map

¢=0p: DY, Yy) — Y

for each operation p € P, satisfying axioms. The naturality axiom is always satisfied, trivially.
Axiom (i) is that the composite

e — (P ) ¢
p(pl(ya7y)7apn(ya7y)) p" p(yvvy) — Y

is equal to

— ¢

po(pla"'7pn)(y7 7y) — Y.
Axiom (ii) is that ¢ : 1p(y) — y is the identity. Axiom (iii) is that ¢, = ¢p. When & = Top,
we have the further axiom that ¢, varies continuously with p.

Suppose further that Y is a monoid M = (M, -, 1) in &, viewed as a one-object category.
For (M,-,1) to be a P-algebra in Cat(&) means that the object M of & is a P-algebra and
that each map p : M™ — M is a monoid homomorphism. A lax point of M consists of an
element ¢, € M for each n € N and p € P,, satisfying axioms. I will now write ¢, as ¢(p).
Axiom (i) is that

¢(p° (pla R 7pn)) = ¢(p) : ﬁ(¢(p1)7 R ¢(pn))
Axiom (ii) is that ¢(1p) = 1. Axiom (iii) is that ¢(op) = ¢(p). If & = Top, we have the
further axiom that ¢ : P, — M is continuous for each n € N.

3 The result

Now take & = Top, and take P to be the operad A in which A, is the standard topological
(n — 1)-simplex

{pef0,00)"| Y pi=1}

The operadic composition is as follows: given p € A,,,r1 € Ag,,...,rn € Ag

n?
— 1 k1 1 kn
Po(T1yevyTn) = (D179, o s DITTY, o ovy Dulpye ey Dnlp™)-

Like any convex subset of R™, the space R is naturally a A-algebra in Top. For each p € A,,,
the map
p: R* — R
X g Zz DPiZ;

is additive. Hence the monoid (R, +,0) is a (one-object) P-algebra in Cat(Top), which I will
just call R.

A lax point of R consists of a function H : A,, — R for each n € N, satisfying the following
axioms. Axiom (i) is that

H(po(rla"'arn)) :H(p)+p(H(Tl)77H(rn))

(p € Ay, 1 € Ay,), that is,

H(po(ri,...,mn)) = H(p) JFZZHH(W)-



Axiom (ii) is that H(1) = 0, where the ‘(1)’ on the left-hand side is the unique element of A;.
Axiom (iii) is that H is symmetric in its arguments. We also have the axiom that for each n,
the function H : A,, — R is continuous.

A special case of axiom (i) is where r; = (¢t,1 —t) and ro = --- =1, = (1); this is then one
of the Fadeev axioms. Symmetry and continuity are also on Fadeev’s list. So our axioms imply
all the Fadeev axioms except normalization (H(1/2,1/2) = 1). Conversely, the Fadeev axioms
except normalization imply ours: axiom (i) follows by induction from the special case just
mentioned, and axiom (ii) is redundant (by taking n = k; =1 and p = vy = (1) in axiom (i)).

Fadeev’s theorem therefore states that the lax points of R are exactly the real multiples of
Shannon entropy.



