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[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

I’m excited that over on this thread

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#com m ents] , Mike Shulman has

proposed a very plausible theory of magnitude homology. I think his creation could be really important! It’s

general enough that it can be applied in lots of different contexts, meaning that lots of different kinds of

mathematician will end up wanting to use it.

However, the story of magnitude homology has so far only been told in that comments thread, which is very

long, intricately nested, and probably only being followed by a tiny handful of people. And because I think this

story deserves a really wide readership, I’m going to start afresh here and explain it from the beginning.

Magnitude is a numerical invariant of enriched categories

[https://golem .ph.utexas.edu/category /201 1 /06/the_m agnitude_of_an_enriched_c.htm l] . Magnitude homology is

an algebraic invariant of enriched categories. The Euler characteristic of magnitude homology is magnitude, and

in that sense, magnitude homology is a categorification of magnitude. Let me explain!

[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

I’ll explain twice: a short version, then a long version. After that, there’s a section going into some of

the details that I wanted to keep tucked out of the way. Choose the level of detail you want!

So that I don’t have to keep saying it, almost everything here that’s new is due to Mike Shulman, who put these

ideas together on the other thread

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#com m ents] . Some aspects were

present in work that Aaron Greenspan did during his master’s year with me (2014–15); you can read his MSc

thesis here [http://www.m aths.ed.ac.uk/~tl/docs/Greenspan_MSc_Thesis.pdf] . But Aaron and I didn’t get very

far, and it was Mike who made the decisive contributions and to whom this theory should be attributed.

The short version

I won’t actually give the definition here — I’ll just sketch its shape.

Let  be a semicartesian monoidal category. Semicartesian means that the unit object of  is terminal. This

isn’t as unnatural a condition as it might seem!

[https://golem .ph.utexas.edu/category /201 6/08/m onoidal_categories_with_proje.htm l]

Let  be a small -category (  category enriched [https://en.wikipedia.org/wiki/Enriched_category #Definition]

in ). Small means that the collection of objects of  is small (a set).

Let  be a small functor. In this context, small means that  is the left Kan extension of its restriction

to some small full subcategory of . This condition holds automatically if the category  is small, as it often will

be for us.

From this data, we define a sequence  of abelian groups, called the (magnitude) homology of 

 with coefficients in . Dually, given instead a contravariant functor , there is a sequence 

 of cohomology groups. But we’ll concentrate on homology.

As for any notion of homology, we can attempt to form the Euler characteristic

Depending on  and , it may or may not be possible to make sense of this infinite sum.
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Examples:

When  and  is chosen suitably, we recover the notion of homology and Euler characteristic of an

ordinary category. What do “homology” and “Euler characteristic” mean for an ordinary category? There

are several equivalent answers; one is that they’re just the homology and Euler characteristic of the

topological space associated to the category, called its geometric realization or classifying space. The

Euler characteristic of a category is also called

[https://golem .ph.utexas.edu/category /201 1 /06/the_m agnitude_of_an_enriched_c.htm l] its magnitude.

When  is the poset , made monoidal by taking  to be addition, graphs can be

understood as special -categories. By choosing suitable values of , we obtain Hepworth and

Willerton’s [https://golem .ph.utexas.edu/category /201 5/05/categorify ing_the_m agnitude_of.htm l]

magnitude homology of a graph [https://arxiv .org/abs/1 505.041 25] . Its Euler characteristic is the

magnitude [http://golem .ph.utexas.edu/category /201 4/01 /the_m agnitude_of_a_graph.htm l] of a graph

[http://arxiv .org/abs/1 401 .4623 ] .

When  is the poset , made monoidal by taking  to be addition, metric spaces can be

understood as special -categories. By choosing suitable values of , we obtain a new notion of the

magnitude homology of a metric space. Subject to convergence issues that haven’t been fully worked out

yet, its Euler characteristic is the magnitude [http://www.m ath.illinois.edu/docum enta/v ol-1 8/27 .htm l]

of a [https://golem .ph.utexas.edu/category /201 1 /01 /m agnitude_of_m etric_spaces_a_r.htm l] metric space

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l] .

The long version

Again, let’s start by fixing a semicartesian monoidal category . I’ll use the letter  for a typical object of ,

because an important motivating case is where , and in that case the objects of  are thought of as

lengths.

Aside   Actually, you can be a bit more general and work with an arbitrary monoidal category 

equipped with an augmentation, as described here

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c051 059] , or you can

do something more general still

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c051 244] . But I’ll

stick with the simpler hypothesis of semicartesianness.

Step 1   Let  be a small -category. We define a kind of nerve . The nerve of an ordinary category is a

single simplicial set, but for us  will be a functor  into the category  of simplicial sets. For 

, the simplicial set  is defined by

( ). The degeneracy maps are given by inserting identities. The inner face maps are given by composition.

The outer face maps are defined using the unique maps from the first factor  and the last factor 

 to the unit object of . (There are unique such maps because  is semicartesian.)

Mike wrote  instead of . I guess he intended the M to stand for magnitude and the S to stand for simplicial.

I’m using  because I want to emphasize that it’s a kind of nerve. Still, half of me regrets removing the notation

MS from a construction described by Mike Shulman.

Steps 2 and 3   Let  be the composite functor

Here  is the category of simplicial abelian groups,  is the category of chain complexes of abelian groups,

and the functor  is induced by the free abelian group functor . The unlabelled

functor  sends a simplicial abelian group to either its unnormalized chain complex or its normalized

chain complex. It won’t matter which we use, for reasons I’ll explain in the details section below.

Notice that  isn’t a single chain complex; it’s a functor into the category of chain complexes. There’s one

chain complex  for each object  of .

Step 4   Now we bring in the other piece of data: a small functor , which I’ll call the functor of

coefficients. Actually, everything that follows makes sense in the more general context of a functor 
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coefficients. Actually, everything that follows makes sense in the more general context of a functor 

, where  is thought of as a subcategory of  by viewing an abelian group as a chain complex

concentrated in degree zero. But we don’t seem to have found a purpose for that extra generality, so I’ll stick

with .

We form the tensor product of  with . By definition, this is the chain complex

defined by the coend formula

The tensor product on the right-hand side is the tensor product of chain complexes

[https://ncatlab.org/nlab/show/tensor+product+of+chain+com plexes] . Under our assumption that  is

concentrated in degree zero, its th component is simply .

Explicitly, this coend is the coproduct over all  of the chain complexes , quotiented out by

one relation for each map  in . Which relation? Well, given such a map, you can write down two maps

from  to the coproduct I just mentioned, and the relation states that they’re equal.

This coend exists because of the smallness assumption on . Indeed, by definition of small functor, there exists

some small full subcategory  of  such that  is the left Kan extension of  along the inclusion .

Then  exists because  has small colimits, and you can show that it has the defining universal

property of the coend above. So  exists and is equal to .

We have now constructed from  and  a single chain complex .

If you choose to use unnormalized chains, you can unwind the coend formula to get a simple explicit formula for 

:

with the differential that you’d guess. (This formula does assume that  is a functor from  into  rather than 

. For -valued , the formula becomes slightly more complicated.) I don’t think there’s such a simple

formula for normalized chains, at least for general .

Step 5   The (magnitude) homology of  with coefficients in , written as , is the homology

of the chain complex . In other words,  is the th homology group of , for 

.

For the definition of cohomology, let  instead be a small contravariant functor . Then we can form

the chain complex

The  on the right-hand side denotes the closed structure

[https://ncatlab.org/nlab/show/internal+hom +of+chain+com plexes] on the monoidal category of chain complexes.

And , the cohomology of  with coefficients in , is defined as the homology of the chain

complex .

Everything is functorial in the way it should be: homology  is covariant in , cohomology  is

contravariant in , and both are covariant in the functor  of coefficients.

Example: ordinary categories

When , a small -category is just a small category .

The functor  sends  to the th power of the ordinary nerve. So, we might suggestively

write  as  instead.

Now let’s think about the functor of coefficients, which is some small functor . For  to be small

means exactly that there is some small full subcategory  of  such that  is the left Kan extension of 

along the inclusion . For instance, choose an abelian group  and define  to be the coproduct 

of  copies of . Then  is small, since if we take  to be the full subcategory consisting of just the one-

element set then  is the left Kan extension of its restriction to . Let’s write  as .
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element set then  is the left Kan extension of its restriction to . Let’s write  as .

The general definition gives us homology groups  for every small category  and abelian group .

These homology groups, more normally written as , are actually something familiar. In simplicial

terms, they’re simply the homology of the ordinary nerve of  (with coefficients in ). In terms of topological

spaces, they’re just the homology of the geometric realization (classifying space) of .

Example: graphs

Let , a poset seen as a category. The objects of  are the natural numbers together with ,

there’s exactly one map  when , and there are no maps  when . It’s a monoidal category

under addition. Any graph  can be seen as a -category: the objects are the vertices, and  is the

number of edges in a shortest path from  to  (understood to be  if there is no such path at all).

So, we’re going to get a homology theory of graphs.

What about the coefficients? Well, the first point is that we don’t have to worry about the smallness condition.

The category  is small, so it’s automatic that any functor on  is small too.

The second, important, point is that every object  of  gives rise to a functor , defined by

( ). We’re going to use  as our functor of coefficients.

So, for any graph  and natural number , we get homology groups . It turns out that  is

exactly what Richard Hepworth and Simon Willerton called [https://arxiv .org/abs/1 505.041 25] the magnitude

homology group .

I’ll repeat Richard and Simon’s definition here, so that you can see concretely what Mike’s general theory

actually produces in a specific situation. Let  be a graph. For integers , let  be the free abelian

group on the set

For , define  by

Then define  by . This gives a chain complex  for each

natural number . The Hepworth–Willerton magnitude homology  group  is defined to be its 

th homology.

So, this two-case formula for the differential, involving the triangle inequality, somehow comes out of Mike’s

general definition. I’ll explain how in the details section below.

Incidentally, Richard and Simon proved a Künneth theorem, an excision theorem and a Mayer–Vietoris

theorems for their magnitude homology of graphs. Can these be generalized magnitude homology of arbitrary

enriched categories?

Example: metric spaces

Let  be the poset , made into a monoidal category in the same way that  was. As Lawvere

pointed out long ago [https://golem .ph.utexas.edu/category /201 4/02/m etric_spaces_generalized_logi.htm l] ,

any metric space can be seen as a -category.

So, we get a homology theory of metric spaces. More exactly, we have a graded abelian group  for each

metric space  and functor . Exactly as for graphs, every element  gives rise to a

functor , taking value  at  and  elsewhere. So we get a group  for each  and 

.

Explicitly, this group  turns out to be the same as the group  that you get from Hepworth and

Willerton’s definition above by simply crossing out the word “graph” and replacing it by “metric space”, and

letting  range over  rather than .
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letting  range over  rather than .

But here’s the thing. There are some metric spaces, including most finite ones, where the triangle inequality is

never an equality (except in the obvious trivial situations). For such spaces, the Hepworth–Willerton differential

 is always . Hence the homology groups are the same as the chain groups, which tend to be rather large. For

instance, that’s almost always the case when  is a random finite collection of points in Euclidean space. So

homology fails to do its usual job of summarizing useful information about the space.

In that situation, we might prefer to use different coefficients. So, let’s think again about the construction of the

functor  from the object . This construction makes sense for any partially ordered set , and it

also makes sense not only for single elements (objects) of , but arbitrary intervals in .

What I mean is the following. An interval  in a poset  is a subset with the property that if  in 

with  then . For any interval , there’s a functor  defined on objects by

It’s defined on maps by sending everything to either a zero map or the identity on . For instance, if  is a trivial

interval  then  is the functor  that we met before.

I observed a few paragraphs back that when  is a finite metric space,  typically isn’t very interesting.

However, it seems likely that  is more interesting for nontrivial intervals . The idea

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c051 1 7 3 ] is that it introduces some

blurring, to compensate for the fact that the triangle inequality is never exactly an equality. And here we get into

territory that seems close to that of persistent homology

[https://www.m ath.upenn.edu/~ghrist/preprints/barcodes.pdf] … but this connection still needs to be explored!

Decategorification: from homology to magnitude

For any homology theory of any kind of object , we can attempt to define the Euler characteristic of  as the

alternating sum of the ranks of the homology groups. We immediately have to ask whether that sum makes

sense.

It may be that only finitely many of the homology groups are nontrivial, in which case there’s no problem. Or it

may be that infinitely many of the groups are nontrivial, but the Euler characteristic can be made sense of using

one or other technique for summing divergent series [https://en.wikipedia.org/wiki/Div ergent_series] . Or, it

may be that the sum is beyond salvation. Typically, if you want the Euler characteristic to make sense — or even

just in order for the ranks to be finite — you’ll need to impose some sort of finiteness condition on the object that

you’re taking the homology of.

The idea — perhaps the entire point of magnitude homology — is that its Euler characteristic should be equal to

magnitude. For some enriching categories , we have a theorem saying exactly that. For others, we don’t… but

we do have some formal calculations suggesting that there’s a theorem waiting to be found. We haven’t got to the

bottom of this yet.

I’ll say something about the general situation, then I’ll explain the state of the art in the three examples above.

In general, for a semicartesian monoidal category , a small -category , and a small functor , we

want to define the Euler characteristic of  with coefficients in  as

Here’s how it looks in our three running examples: categories, graphs and metric spaces.

In the case , we’re talking about the Euler characteristic of a category . Take , as

defined above [#ordinary ] . Then the homology group  is equal to , the th homology

of the category  with coefficients in . That’s the same as the th homology of the nerve (or its

geometric realization).

To make sense of , we impose a finiteness condition. Assume that the category  is finite, skeletal,

and contains no nontrivial endomorphisms. Then the nerve of  has only finitely many nondegenerate

simplices, from which it follows that only finitely many of the homology groups are nontrivial. So, the sum

is finite and  makes sense.

Under these finiteness hypotheses, what actually is ? Since  is the th homology of the

ℓ [0, ∞] N ∪ {∞}

∂ 0
X

:V → Abδℓ ℓ ∈ V V

V V

J V ≤ ≤ℓ1 ℓ2 ℓ3 V

, ∈ Jℓ1 ℓ3 ∈ Jℓ2 J ⊆ V :V → AbδJ

(ℓ) = {δJ
Z
0

if ℓ ∈ J,
otherwise.

Z J

{ℓ} δJ δℓ

X (X; )H∗ δℓ

(X; )H∗ δJ J ⊆ [0, ∞]

X X

V

V V X A:V → Ab
X A

χ(X;A) = (−1 rank( (X;A)).∑
n≥0

)n Hn

V = Set X A = − ⋅ Z
(X;A)Hn (X; Z)Hn n

X Z n

χ(X; Z) X

X

χ(X; Z)

χ(X; Z) (X; Z)Hn n



Under these finiteness hypotheses, what actually is ? Since  is the th homology of the

nerve of  with integer coefficients,  is the ordinary (simplicial/topological) Euler characteristic

of the nerve of . And it’s a theorem  [http://www.m ath.uni-bielefeld.de/docum enta/v ol-1 3 /02.htm l] that

this is equal to the Euler characteristic of the category , defined combinatorially

[http://www.m ath.uni-bielefeld.de/docum enta/v ol-1 3 /02.htm l] and also called the “magnitude” of .

So for a small category , the Euler characteristic of the magnitude homology  is indeed the

magnitude of . In other words: magnitude homology categorifies magnitude.

Take a graph , seen as a category enriched in . For each natural number , we can

try to define the Euler characteristic

I said earlier that these homology groups are the same as Hepworth and Willerton’s homology groups 

, and I described them explicitly.

To make sure that the ranks are all finite, let’s assume that the graph  is finite. That alone is enough to

guarantee that the sum defining  is finite. Why? Well, from the definition of the chain groups 

, it’s clear that  is trivial when . Hence the same is true of , which

means that the sum defining  might as well run only from  to .

At the moment, our graph has not one Euler characteristic but an infinite sequence of them:

Let’s assemble them into a single formal power series over :

where  is a formal variable. (You might wonder what’s happened to . In principle, it should be

present in the sum. However, if we adopt the convention that  then it might as well not be. It will

become clear when we look at metric spaces that this is the right convention to adopt.)

On the other hand, viewing graphs as enriched categories leads to the notion of the magnitude of a

graph [https://arxiv .org/abs/1 401 .4623 ] . The magnitude of a finite graph  is a formal expression in a

variable , and can be understood either as a rational function in  or as a power series in . Hepworth and

Willerton showed [https://arxiv .org/abs/1 505.041 25] that the power series  above is precisely the

magnitude of , seen as a power series.

So in the case of graphs too, magnitude homology categorifies magnitude.

Finally, consider a metric space , viewed as a category enriched in . For each , we

want to define

I have no idea what these homology groups look like when  is a familiar geometric object such as a disk

or line, so I don’t know how often these ranks are finite. But they’re certainly finite if  has only finitely

many points, so let’s assume that.

The sum on the right-hand side is, then, automatically finite. To see this, the argument is almost the same

as for graphs. For graphs, we used the fact that the distance between two distinct vertices is always at least 

, from which it followed that the homology groups  can only be nonzero when . Now in a

finite metric space, distances can of course be less than , but finiteness implies that there’s a minimal

nonzero distance: , say. Then  can only be nonzero when . That’s why the sum is finite.

We’ve now assigned to our metric space not one Euler characteristic but a one-parameter family of them.

That is, we’ve got an integer  for each . Actually, all but countably many of these

integers are zero. Better still, for each real  there are only finitely many  such that .

(I’ll explain why in the details section.) So, it’s not too crazy to write down the formal expression
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There are a couple of ways to think about the expression on the right-hand side. You can treat  as a

formal variable and the expression as a Hahn [https://en.wikipedia.org/wiki/Hahn_series] series

[https://ncatlab.org/nlab/show/Hahn+series] (like a power series, but with non-integer real powers

allowed). Or you can (attempt to) evaluate at a particular value of  in  or  or some other setting where

the sum makes analytic sense.

So far no one knows how exactly we should proceed from here, but it looks as if the story goes something

like this.

Remember, we’re trying to show that magnitude homology categorifies magnitude, which in this instance

means that  should be equal to the magnitude of a metric space . That’s a real number, and it’s

defined in terms of negative exponentials  of distances , so let’s put . (This explains why we

can ignore , since then .) I’m not claiming that anything converges! You can treat 

as a formal variable for the time being, although at some stage we’ll want to interpret it as an actual real

number.

It’s a useful little lemma that when you have a bounded chain complex , the alternating sum of the ranks

of the groups  is equal to the alternating sum of the homology groups . So,

where  denotes the Hepworth–Willerton chain groups that I defined earlier. Substituting this into the

definition of  gives

That’s potentially a doubly infinite sum. But we can do some formal calculations leading to the conclusion

that  is indeed equal to the magnitude of the metric space  (that is, the sum of all the entries of the

inverse of the matrix ). Again, that’s deferred to the details section below. It’s not clear how

to make rigorous sense of it, but I’m confident that it can somehow be done.

So, magnitude homology categorifies magnitude in all three of our examples… well, definitely in the first

two cases, and tentatively in the third. Of course, we’d like to make a general statement to the effect that

homology categorifies magnitude over an arbitrary base category . The metric space case illustrates some of

the difficulties that we might expect to encounter in making a general statement.

Details and proofs

The rest of this post mostly consists of supporting details that we figured out in the other thread

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l] . I’ve mostly only bothered to

include the points that weren’t immediately obvious to us (or me, at least).

If you’ve read this far, bravo! You can think of what follows as an appendix.

From simplicial abelian groups to chain complexes

The relationship between simplicial abelian groups and chain complexes is a classical part of homological

algebra, but there’s at least one aspect of it that some of us in the old thread

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#com m ents] hadn’t previously

appreciated.

First, the definitions. Let  be a simplicial abelian group. The unnormalized chain complex  is defined

by , the differentials being the alternating sums of the face maps. The degenerate elements of 

generate a subgroup , which assemble to give a subcomplex of . The normalized chain complex

is .

Now here are two facts. First, there’s an isomorphism of chain complexes , natural in .

Second, the projection and inclusion maps between  and  are mutually inverse up to a chain

homotopy that is natural in  (in the obvious sense). That naturality will be crucial for us. We therefore say that 

 and  are naturally chain homotopy equivalent.

χ(X) = χ(X; ) .∑
ℓ∈[0,∞)

δℓ q
ℓ

q

q R C

χ(X) X

e−d d q = e−1

ℓ = ∞ = = 0qℓ e−∞ e−1

C

Cn (C)Hn

χ(X; ) = (−1 rank( (X))δℓ ∑
n≥0

)n MCn,ℓ

MC
χ(X)

χ(X) = (−1 rank( (X)) .∑
n≥0

)n ∑
ℓ∈[0,∞)

MCn,ℓ e−ℓ

χ(X) X

(e−d(x,y) )x,y∈X

V

G C(G)
(G) =Cn Gn (G)Cn

(G)Dn C(G)
C(G)/D(G)

C(G) ≅D(G) ⊕
C(G)

D(G)
G

C(G) C(G)/D(G)
G

C(G) C(G)/D(G)



 and  are naturally chain homotopy equivalent.

The functoriality of the nerve construction

Given a monoidal category  and a small -category , we defined a functor

by

Obviously  is functorial in : any -functor  induces a map of simplicial sets 

 for each , and this map is natural in .

Less obvious is that  is functorial in the following 2-dimensional sense. Take -functors

and a -natural transformation . The claim is that for each , there’s an induced simplicial

homotopy  from  to . Moreover,  is natural in .

How does this work? I’m pretty much a klutz with things simplicial, so let me explain it in a concrete way and

refer to this comment of Mike’s

[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c051 21 5] for a more abstract

perspective.

Fix . We have our two maps

By definition, a simplicial homotopy  from  to  is a map  of

simplicial sets that satisfies the appropriate boundary conditions. Here  means the representable simplicial set

. There are two maps from the terminal simplicial set  to , corresponding to the two maps 

 in . The “boundary conditions” are that the two composites in the diagram

are equal to  and .

Concretely, a simplicial homotopy  from  to  consists of a map of sets

for each map  in . When  is the map with constant value ,    is required to be equal to 

, and when  has constant value ,    is required to be equal to . The maps  also have to

satisfy some other equations which I don’t need to mention.

There are  maps  in , so what this means really explicitly is that a simplicial homotopy from 

 to  consists of an ordered list of  functions  for each . The first

has to be , the last has to be , and the whole lot have to hang together in some reasonable way. So

roughly speaking, a simplicial homotopy is a kind of discrete path between two simplicial maps, as you’d

probably expect.

We’re supposed to be building a simplicial homotopy from  to  out of a -natural transformation 

. So, let’s recall what a -natural transformation actually is. More or less by definition,  consists of a

map

C(G) C(G)/D(G)

V V X

N(X): → sSetV op

N(X)(ℓ = V (ℓ,X( , ) ⊗ ⋯ ⊗ X( , )).)n ∐
,…, ∈Xx0 xn

x0 x1 xn−1 xn

N X V F :X → Y

N(F :N(X)(ℓ) → N(Y )(ℓ))ℓ ℓ ∈ V ℓ

N V

F ,G :X ⇉ Y

V α :F → G ℓ ∈ V

αℓ N(F)ℓ N(G)ℓ αℓ ℓ

ℓ

N(F ,N(G :N(X)(ℓ) ⇉ N(Y .)ℓ )ℓ )ℓ

N(F)ℓ N(G)ℓ h :N(X)(ℓ) × → N(Y )(ℓ)Δ1

Δ1

Δ(−, [1]) 1 = Δ0 Δ1

[0] ⇉ [1] Δ

N(X)(ℓ) ≅N(X)(ℓ) × 1 ⇉ N(X)(ℓ) × N(Y )(ℓ)Δ1 −→−
h

N(F)ℓ N(G)ℓ

h N(F)ℓ N(G)ℓ

:N(X)(ℓ → N(Y )(ℓhϕ )n )n

ϕ: [n] → [1] = {0, 1} Δ ϕ 0 hϕ

N(F)ℓ,n h 1 hϕ N(G)ℓ,n hϕ

n+ 2 [n] → [1] Δ

N(F) N(G) n+ 2 N(X)(ℓ → N(Y )(ℓ)n )n n ≥ 0
N(F)ℓ,n N(G)ℓ,n

N(F) N(G) V

α :F → G V α

:X(x, x' ) → Y (F(x),G(x' ))αx,x'



in  for each  (subject to some axioms). For instance, when , this map sends  to

the diagonal of the naturality square for .

Now let . For any objects  of , we can build from ,  and  a sequence of  maps in ,

which for ease of typesetting I’ll show for  (and you’ll guess the general pattern):

These  maps in  induce, in the obvious way,  maps of sets

for each . The domain and codomain here are just  and : so we have  maps 

. The first of these maps is  and the last is . Some checking reveals that

these maps, taken over all , do indeed determine a simplicial homotopy from  to . Moreover,

everything is obviously natural in . So that’s our natural simplicial homotopy!

Functoriality of the tensor product

Let  be a small functor. For any functor , we can form the tensor product

which is a chain complex. Obviously this determines a functor

A little less obviously,  transforms any natural chain homotopy into a chain homotopy.

In other words, take functors  and natural transformations . (So,  and  consist of

chain maps  for each , natural in .) Suppose we also have a chain homotopy 

 for each , and that  is natural in . The claim is that there’s an induced chain homotopy 

between the chain maps

To show this, the key point is that a chain homotopy between the chain maps  can be

understood as a chain map  satisfying appropriate boundary conditions. Here  (for “interval”)

is the chain complex

with the two copies of  in degrees  and . Once you adopt this viewpoint, it’s straightforward to prove the

claim, using only the associativity of  and the fact that  distributes over colimits.

An important consequence is that if two functors  are naturally chain homotopy equivalent,

then the complexes  and  are chain homotopy equivalent.

It doesn’t matter whether you normalize your chains

Let  be a small -category. The functor  was defined by first building from  a certain

functor , then turning simplicial sets into chain complexes. I (or rather Mike) said that it

doesn’t matter whether you do that last step with unnormalized or normalized chains. Why not?

Earlier in this “details” section, I recalled the fact that the two chain complexes coming from a simplicial abelian

V x, x' ∈ X V = Set f ∈ X(x, x' )
f

n ≥ 0 , …,x0 xn X F G α n+ 2 V

n = 3

C( , ) ⊗ C( , ) ⊗ C( , )x0 x1 x1 x2 x2 x3

C( , ) ⊗ C( , ) ⊗ C( , )x0 x1 x1 x2 x2 x3

C( , ) ⊗ C( , ) ⊗ C( , )x0 x1 x1 x2 x2 x3

C( , ) ⊗ C( , ) ⊗ C( , )x0 x1 x1 x2 x2 x3
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⟶ D(F ,F ) ⊗ D(F ,G ) ⊗ D(G ,G ),x0 x1 x1 x2 x2 x3

⟶ D(F ,G ) ⊗ D(G ,G ) ⊗ D(G ,G ),x0 x1 x1 x2 x2 x3

⟶ D(G ,G ) ⊗ D(G ,G ) ⊗ D(G ,G ).x0 x1 x1 x2 x2 x3

n+ 2 V n+ 2
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ℓ ∈ V N(X)(ℓ)n N(Y )(ℓ)n n+ 2
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n N(F)ℓ N(G)ℓ

ℓ

A:V → Ch B: → ChV op

B A = B(ℓ) ⊗ A(ℓ),⊗V ∫
ℓ∈V
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group  are not only chain homotopy equivalent, but chain homotopy equivalent in a way that’s natural in . We

can apply this fact to the simplicial abelian group , for each . It implies that the two chain

complexes coming from  are chain homotopy equivalent naturally in . Or, said another way, the two

versions of  that you get by choosing the “unnormalized” or “normalized” option are naturally

chain homotopy equivalent.

But we just saw that when two functors  are naturally chain homotopy equivalent, their tensor

products with  are chain homotopy equivalent. So, the two versions of  have the same tensor product with

, up to chain homotopy equivalence. In other words, the chain homotopy equivalence class of  is

unaffected by which version of  you choose to use. The homology  of that chain complex is,

therefore, also unaffected by this choice.

Invariance of magnitude homology under equivalence of categories

It’s a fact that the magnitude of an enriched category is invariant not only under equivalence, but even under the

existence of an adjunction (at least, if both magnitudes are well-defined). Something similar is true for magnitude

homology, as follows.

Let  be -functors between small -categories. We’ll show that if there exists a -natural

transformation from  to  then the maps

induced by  and  are equal (for any coefficients ). It will follow that whenever you have -categories that

are equivalent, or even just connected by an adjunction, their homologies are isomorphic. (Even “adjunction”

can be weakened further, but I’ll leave that as an exercise.)

The proof is mostly a matter of assembling previous observations. Take a -natural transformation 

. We have functors

natural transformations

and (as we saw previously) a natural simplicial homotopy from  induced by . When we pass

from simplicial sets to chain complexes, this natural simplicial homotopy turns into a natural chain homotopy

(Lemma 8.3.13 of Weibel’s book). So, the natural transformations  and  between the functors

are naturally chain homotopic. It follows from another of the previous observations that the chain maps

are chain homotopic. Hence they induce the same map  on homology, as claimed.

Homology of graphs and of metric spaces

Earlier, I claimed that Mike’s general theory of homology of enriched categories reproduces Richard Hepworth

and Simon Willerton’s theory of magnitude homology of graphs, by choosing the coefficients suitably. It’s trivial

to extend Richard and Simon’s theory from graphs to metric spaces, as I did earlier; and I claimed that this too is

captured by the general theory.

I’ll prove this now in the case of metric spaces. It will then be completely clear how it works for graphs.

Let  be a metric space, seen as a category enriched in . Let  be a real number, and recall the

functor  from earlier. The aim is to show that the groups  and  are isomorphic,

where the latter is defined à la Hepworth–Willerton.

The nerve functor  is given by

G G

Z ⋅N(X)(ℓ) ℓ ∈ V

Z ⋅N(X)(ℓ) ℓ
C(X): → ChV op

B,B' : ⇉ ChV op

A C(X)
A C(X) A⊗V

C(X) (C;A)H∗

F ,G :X ⇉ Y V V V

F G

(X;A) ⇉ (Y ;A)H∗ H∗

F G A V

V

α :F → G :X → Y

N(X),N(Y ): ⇉ sSet,V op

N(F),N(G):N(X) ⇉ N(Y ),

N(F) → N(G) α

C(F) C(G)

C(X),C(Y ): ⇉ ChV op

C(F) A, C(G) A : C(X) A ⇉ C(Y ) A⊗V ⊗V ⊗V ⊗V

(X;A) → (Y ;A)H∗ H∗

X V = [0, ∞] ℓ ≥ 0
:V → Abδℓ (X, )Hn δℓ (X)MHn,ℓ

N(X): → sSetV op



The unnormalized chain group  is simply the free abelian group on this set, but in order to make the

connection with Richard and Simon’s definition, we’re going to use the normalized version of . It’s not too

hard to see that the normalized  is the free abelian group on the set

with differentials , where

Now we have to compute . I know two ways to do this. You can use the definition of coend directly,

as Mike does here [https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c051 059] .

Alternatively, note that for any functor of coefficients ,

where the last step is by the density formula. We’re interested in the case , and then the expression 

in the last line is either  if the distances sum to , or  if not. So

That’s exactly Richard and Simon’s chain group . With a little more thought, you can see that the

differentials agree too. Thus, the chain complexes  and  are isomorphic. It follows that

their homologies are isomorphic, as claimed.

Decategorification for metric spaces

The final stretch of this marathon post is devoted to finite metric spaces — specifically, how the magnitude of a

finite metric space can be obtained as the Euler characteristic of its magnitude homology. Here’s where there are

some gaps.

Let  be a finite metric space. For each , we have the Euler characteristic

The ranks here are finite because the sets  are manifestly finite. We saw earlier that the sum itself is

finite, but let me repeat the argument slightly more carefully. First, these homology groups are the same as the

Hepworth–Willerton homology groups. Second, the Hepworth–Willerton chain groups  are trivial

when , where  is the minimum nonzero distance occurring in . So, the same is true of the homology

groups .

Let  be the set of (extended) real numbers occurring as finite sums  of

distances in . Although this set is usually infinite, it’s always countable. Better still,  is finite for all

real . It’s easy to prove this, again using the fact that there’s a minimum nonzero distance.

For a number  that’s not in , the Hepworth–Willerton chain groups  are trivial, so the homology

groups  are trivial too. Hence . Or in other words:  only stands a

N(X)(ℓ' = {( , …, ):d( , ) + ⋯ + d( , ) ≤ ℓ'}.)n x0 xn x0 x1 xn−1 xn

C(X)(ℓ' )n
C(X)
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i=0 )i ∂i

( , …, ) = {∂i x0 xn
( , …, , , …, )x0 xi−1 xi+1 xn

0
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otherwise.
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∐
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groups  are trivial too. Hence . Or in other words:  only stands a

chance of being nonzero if  belongs to the countable set .

So, in the definition

that scary-looking sum over all  might as well only be over the relatively tame range .

Now let’s do a formal calculation. Back in the main part of the post (just before the start [#details] of this

“details” section), I observed that

Now  is the free abelian group on the set

so  is the cardinality of this set. Hence, working formally,

Let  be the square matrix with rows and columns indexed by the points of , and entries .

Write  for the  identity matrix, and write  for the sum of all the entries of a matrix . Then

So our earlier formula

now gives

Again formally speaking, the part inside the brackets is a geometric series whose sum is . So, the conclusion

is that

The right-hand side is by definition the magnitude of the metric space  (at least, assuming that  is invertible).

So, using non-rigorous formal methods, we’ve achieved our goal. That is, we’ve shown that the magnitude of a

finite metric space is the Euler characteristic of its magnitude homology.

We know how to make some of this rigorous. The basic idea is that to sum a possibly-divergent series 

, we “vary the value of ” by replacing it with a formal variable . Thus, we define the formal

power series , hope that  is formally equal to a rational function, hope that the rational

function  doesn’t have a pole at , and if not, interpret  as .

That’s a time-honoured technique for summing divergent series. To apply it in this situation, here’s a little

theorem about matrices that essentially appears in a paper by Clemens Berger and me

[http://intlpress.com /HHA/v 1 0/n1 /a3 /] :

Theorem Let  be a square matrix of real numbers. Then:
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The formal power series  is rational.

If  is invertible, the value of the rational function  at  is (defined and) equal to 

.

This result provides a respectable way to interpret the last part of the unrigorous argument presented above —

the bit about the geometric series. But the earlier parts remain to be made rigorous.
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Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Incidentally, I agonized over notation.

I called the base category . Everyone agrees on that. (Well, if I was Latexing I’d use , but on the blog it’s
easier to stick to a plain .)

Usually in enriched category theory, the objects of the base category  are called things like  (or ). I’ve
used  instead, for two reasons. First, I didn’t use  and  because I wanted them for something else.
Second,  is what we used in earlier conversations, it’s what Richard and Simon used, and in the important
examples of graphs and metric spaces, it stands for length.

Usually I’d call an enriched category something like  or , at the opposite end of the alphabet from .
But Mike used  for the coefficients (reasonably enough), so I wanted to avoid that. He used  for the
category. However, he also used C to stand for chain, and just about everyone writing on homological
algebra does the same, so I wanted to avoid that. I chose , because it’s a normal kind of letter for a graph,
a metric space, or generally something that you might take the homology of.

I used ,  and  for the nerve, chain complex and homology functors. Mike used ,  and , with
M standing for magnitude. As I said in the post, I think it’s good to use  to signal that it’s a nerve
construction, but I’m agnostic on whether the  and  should have s in front of them.

I don’t know whether Mike’s homology theory should be called “magnitude homology” or simply
“homology”. Since magnitude homology is the categorification of homology in the same sense as
Khovanov homology is the categorification of the Jones polynomial, calling it “magnitude homology” is
like saying “Jones polynomial homology” (or more euphonically, “Jones homology”) instead of
“Khovanov homology”. That would seem entirely reasonable. On the other hand, if there are no other
theories of homology for enriched categories, maybe it should just be called “homology” without
adornment.

But that comes with a risk. If Mike writes this up and just calls it “homology”, someone else will call it
“Shulman homology” and the name will stick. Much as he’ll deserve that, I’m a firm believer that
descriptive names are better than named-after-people names — e.g. “Kullback–Leibler divergence” vs.
“relative entropy”. In particular, “magnitude homology” is better than “Shulman homology” (sorry,
Mike!). To avert the possibility of the terminology heading that way, the correct tactic must be to call it
magnitude homology from the start :-)

I’m writing all this here because I want everyone to use this comments thread to discuss notation and
terminology rather than mathematical substance, of course.

Posted by: Tom Leinster on September 6, 2016 2:04 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

As for “ ”, I was just copying the notation used by Hepworth and Willerton
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As for “ ”, I was just copying the notation used by Hepworth and Willerton
[https://arxiv .org/abs/1 505.041 25] for the same thing in the case of graphs (Remark 44). I only realized later

that it was also my initials. (-:O I’m very happy to call it  instead.

Posted by: Mike Shulman on September 6, 2016 2:07 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

I’m writing all this here because I want everyone to use this comments thread to discuss
notation and terminology rather than mathematical substance, of course.

Being British, I realise that you mean this literally; so with regard to your comments about ‘Shulman
homology’, I note that in the post you use the term ‘Hepworth-Willerton chain groups’.

Anyway, nice “summary”.

Posted by: Simon Willerton on September 6, 2016 10:33 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

nice “summary”.

Thanks! I know you’re kidding, in some respects at least; this might be the longest post I’ve ever written. But I
do hope that the “short version” does function as a summary. Even the long version doesn’t take that long to
get to the definition, and the pace of it was intended to be leisurely.

Re terminology named after people, I’m aware of my hypocrisy, and actually this gives me an insight into why
so many things in mathematics are named after people rather than having useful descriptive names. It’s not
because there are legions of mathematicians who think it’s better that way — it’s simply easier.

So, I want a name for the chain groups that you and Richard called , to distinguish them from the ones in
Mike’s theory. What should I call them? I lazily named them after the two of you, but as you know, I’d prefer
to use a descriptive name instead. What do you suggest?

(This is a test of both your linguistic flair and your selflessness. If you don’t suggest anything good, those chain
groups will go on being named after you.)

Posted by: Tom Leinster on September 6, 2016 10:51 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

As long as you’re trying to write something for a pretty general audience, would you define “V-
category”? By analogy with “R-algebra” I would assume it’s a category equipped with a functor from V. But then
you say base, so I’d think a functor to V.

Posted by: Allen Knutson on September 6, 2016 3:06 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Oh, sorry. “ -category” is a synonym for “category enriched in 
[https://en.wikipedia.org/wiki/Enriched_category #Definition] ”. I’ve edited the post to say this.

Posted by: Tom Leinster on September 6, 2016 3:10 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Thanks Tom for such a monumental summary of those findings!

In case people from relevant fields tune in, it would be good to hear of potentially interesting magnitude
homologies for enrichment by different semicartesian categories.

From the other thread, we have the possibility of enrichment in convex spaces
[https://golem .ph.utexas.edu/category /201 6/08/m onoidal_categories_with_proje.htm l#c051 1 62] .

And there was a risky punt
[https://golem .ph.utexas.edu/category /201 6/08/m onoidal_categories_with_proje.htm l#c051 23 8] on Bruhat-Tits

buildings.

Posted by: David Corfield on September 6, 2016 8:49 AM | Permalink | Reply to this
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Posted by: David Corfield on September 6, 2016 8:49 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

monumental

Haha, yes, it’s a whopper!

Apart from wanting to tell the world about magnitude homology, there’s a secret reason why I wanted to get
everything typed up now. The semester that’s about to start for me is very heavy on teaching and admin, and
I’m going to have extremely limited time for anything else. So I wanted to make a good record of exactly where
we’re at (as far as my understanding permits) in order that I can come back to it later when I’ve forgotten all
the details.

Thanks for linking to those developing ideas on the monoidal categories with projections
[https://golem .ph.utexas.edu/category /201 6/08/m onoidal_categories_with_proje.htm l#com m ents] thread. I’ve

been reading them without contributing. It would be spectacular if the Bruhat–Tits idea came off.

Posted by: Tom Leinster on September 6, 2016 9:00 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

The semester that’s about to start for me is very heavy on teaching and admin, and I’m
going to have extremely limited time for anything else. So I wanted to make a good record of
exactly where we’re at (as far as my understanding permits) in order that I can come back to it
later when I’ve forgotten all the details.

Sounds great to me; I’m also embarking on a very busy semester, and additionally we are expecting our
second baby in November.

Posted by: Mike Shulman on September 6, 2016 2:13 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Many congratulations!

Posted by: Richard Williamson on September 6, 2016 7:50 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Congratulations!

Posted by: Tom Leinster on September 6, 2016 3:54 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Thanks!

Posted by: Mike Shulman on September 6, 2016 6:12 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Given that constant drive in certain parts to homotopify everything in sight, what scope for a
homology from enriching in semicartesian monoidal -categories?

We have a very sketchy entry at nLab for cartesian monoidal (infinity,1)-category
[https://ncatlab.org/nlab/show/cartesian+m onoidal+%28infinity ,1 %29-category ] .

Can a semicartesian version be far away?

We also have an entry enriched (infinity,1)-category
[https://ncatlab.org/nlab/show/enriched+%28infinity ,1 %29-category ] . Enrichment seems to be possible

[https://arxiv .org/abs/1 3 1 2.3 1 7 8] in an arbitrary monoidal ∞-category.

Posted by: David Corfield on September 6, 2016 11:50 AM | Permalink | Reply to this

(∞, 1)



Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

No bites yet? With everyone heading out of the sunlit uplands of Summer research into the dark
valleys of Autumn teaching, can we not just put down a marker here?

From that Gepner and Hausgeng article [https://arxiv .org/abs/1 3 1 2.3 1 7 8] I mentioned:

despite the large amount of work that has been carried out on the foundations of ∞-category
theory, above all by Joyal and Lurie, the theory is in many ways still in its infancy, and the
analogues of many concepts from ordinary category theory remain to be explored. In this paper
we begin to study the natural analogue in the ∞-categorical context of one such concept, namely
that of enriched categories.

our theory gives a good setting in which to develop ∞-categorical analogues of many concepts
from enriched category theory, as we hope to demonstrate in future work.

The theory we set up in this article is the first completely general theory of weak enrichment.

Seeing that everything tends to go through right to the  case when things are done properly, can we say
that it’s plausible that magnitude homology carries over here?

Instead of coefficients in , perhaps spectra.

I see such a thing as the Simplicial nerve of an A-infinity category  [https://arxiv .org/abs/1 3 1 2.21 27 ] is

being devised.

Is there anything to compare in the  world with Lawvere’s surprising ?

Posted by: David Corfield on September 7, 2016 10:06 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Wow, thank you for this very impressive writeup! I want to emphasize that the definition and its
properties developed over the course of a lengthly discussion with (mainly) Tom, so he should definitely also get
some credit. Richard Williamson also made some useful contributions, such as the sufficiency of natural chain
homotopy and pushing me to think harder about the smallness hypothesis on .

In particular, last night I independently performed the “unwinding” of the coend that Tom mentions above to get

and noticed that this formula doesn’t depend on  being a small functor! So actually, the magnitude homology
can be defined for any functor  (and I’m sure that  works too).

In particular, this perspective that de-emphasizes smallness gives a different perspective on the ordinary case.
The functor  that Tom used to get out ordinary homology of ordinary categories has another name: it’s the
free abelian group functor! So the homology of an ordinary category with  coefficients is its magnitude
homology with coefficients in the free abelian group functor.

This also makes for a somewhat simpler version of the generalization to non-semicartesian . In that case the
“coefficients” consist not only of  but also  and , and the nerve is replaced by
a two-sided simplicial bar construction

giving in place of the simple formula above

If  and we take  to be the identity functor, and specialize to the case when  has one object and is thus

just a ring, then I believe the homology of this simplicial abelian group gives the “relative Tor” . So
at least in that case, we get something known.

Posted by: Mike Shulman on September 6, 2016 2:04 PM | Permalink | Reply to this

Re: Magnitude Homology

(∞, 1)

Ab

(∞, 1) ([0, ∞], ≥ )

A

(C(X) A = A(X( , ) ⊗ … ⊗ X( , ))⊗V )n ⨁
,…, ∈Xx0 xn

x0 x1 xn−1 xn

A

A:V → Ab A:V → Ch

− ⋅ Z
Z

V

A:V → Ab F :X → V G : → VXop

B(G,X,F)(ℓ = V (ℓ,F( ) ⊗ X( , ) ⊗ ⋯ ⊗ X( , ) ⊗ G( )))n x0 x0 x1 xn−1 xn xn

A(F( ) ⊗ X( , ) ⊗ … ⊗ X( , ) ⊗ G( ))⨁
,…, ∈Xx0 xn

x0 x0 x1 xn−1 xn xn

V = Ab A X

(F ,G)TorX/Z
∗



Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

I fear I’m replying too quickly to this post, but I have to start catching up on other commitments
now so here goes…

We both noticed that for the unnormalized version of , there is an explicit formula for  that
makes sense regardless of whether  is small. So, you could write down a much shorter definition of magnitude
homology (let’s say in the case of a semicartesian monoidal category ):

The magnitude homology of a small -category , with coefficients in a functor , is
the homology of the chain complex whose th group is

and whose differential is given in the “obvious” way.

That’s great. But at some stage we want to use normalized chains, e.g. to make the connection with Hepworth
and Willerton’s magnitude homology for graphs. How do we do this without the assumption of smallness? Our
existing argument uses properties of the functor  — but no such functor exists if  is
not small.

I guess it’s all OK in the sense that when you unwind all the arguments sufficiently, they’re just elementary
algebraic manipulations that need no smallness condition. But that’s not a proof!

I’m sure that  works too

By my calculation, if we use the unnormalized version of  then for an arbitrary small functor ,

[For general monoidal category , not necessarily semicartesian,] the “coefficients” consist not
only of  but also  and .

I wonder whether this begins to resolves a question about coefficients that had been bothering me.

In what I think of as the “standard” or “classical” framework
[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c050956] , one takes the

(co)homology of an ordinary category  with coefficients in a functor . (Or maybe ; I
won’t attempt to get the variance right.) However, in the magnitude homology framework as described in my
post, the coefficents are a functor .

So, the two approaches simply use different kind of coefficient systems. They do agree in some sense: given an
abelian group , you can form either the functor from  to  with constant value  or the functor 
that takes copowers of , and the two homologies are then the same. But still, it puzzles me that the
coefficients are of different types.

In the approach you’re describing now, the magnitude homology of an ordinary category  would have
coefficients in a triple of functors  where

We still aren’t seeing a functor  here! (Though you could imagine using ,  and  to build one.)
What’s going on?

Posted by: Tom Leinster on September 6, 2016 3:39 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

at some stage we want to use normalized chains, e.g. to make the connection with
Hepworth and Willerton’s magnitude homology for graphs

Indeed. However, the calculation that unwinds the coend makes sense even before we make our simplicial
objects into chain complexes. That is, we have a simplicial abelian group whose th group is

and the unnormalized  is the unnormalized one associated to this. I suspect that the normalized

C(X) C(X) A⊗V

A

V

V X A:V → Ab
n

A(X( , ) ⊗ ⋯ ⊗ X( , ))⨁
,…, ∈Xx0 xn

x0 x1 xn−1 xn

− A: [ , Ch] → Ch⊗V V op A

A:V → Ch

C(X) A:V → Ch

(C(X) A = (X( , ) ⊗ ⋯ ⊗ X( , )).⊗V )n ⨁
i+j=n

⨁
,…, ∈Xx0 xi

Aj x0 x1 xi−1 xi

V

A:V → Ab F :X → V G : → VXop

X → AbXop X → Ab

Set → Ab

B X Ab B Set → Ab
B

X

(A,F ,G)

A:Set → Ab, F :X → Set, G : → Set.Xop

→ AbX(op) A F G

n

A(X( , ) ⊗ ⋯ ⊗ X( , )⨁
,…, ∈Xx0 xn

x0 x1 xn−1 xn

C(X) A⊗V



and the unnormalized  is the unnormalized one associated to this. I suspect that the normalized
version of  is just the normalized chain complex associated to this simplicial abelian group. In
fact, I think this should follow from abstract nonsense: the normalized and unnormalized chain complexes
associated to a simplicial abelian group should be obtained by tensoring it with some canonical cosimplicial
chain complexes, an operation which commutes with . If this is true, then we should be fine.

Posted by: Mike Shulman on September 6, 2016 8:05 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

In what I think of as the “standard” or “classical” framework, one takes the (co)homology
of an ordinary category  with coefficients in a functor …. However, in the
magnitude homology framework as described in my post, the coefficents are a functor 

.

Good question! I hadn’t thought of that.

One thing we can do is replace  and  by a single -functor , where  is a -category with
copowers, and then take  to be a functor . Then the chain groups become

where  denotes the copower . Given  and  we take  and . If
we instead take , we get the “magnitude Hochshild homology” suggested by Richard here
[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c051 23 7 ] .

And in the case , we could start with  and take , , and 
(or, if we instead used , then ). I don’t know whether this reproduces the usual
homology of a category with coefficients in , but at least it has the same input.

Posted by: Mike Shulman on September 6, 2016 8:15 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

With the appearance of ‘relative Tor’, I’d just like to mention, for when people come back to this
story, that over on the other thread I outline a possible construction of a ‘Hochschild homology/cohomology’
theory as well using Mike’s ideas, just using a slightly different collection of simplicial sets. Assuming that I’ve
not made a mistake, it’d be interesting to know whether the corresponding Euler characteristic is interesting;
what it detects for graphs, metric spaces, etc.

Posted by: Richard Williamson on September 6, 2016 8:01 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Perhaps this has already been said, but the nerve of a metric space reminds me of the various
complexes used in the study of persistent homology. In fact, I think it’s exactly the filtered Cech complex they
use there.

It also occurs to me that once you’ve taken the nerve, you have a nice simplicial presheaf on  and for a lot of
purposes, you might just stop there! You can do a lot of homotopy theory with simplicial presheaves. This would
be even more interesting if  carries the structure of a site, to get a more interesting model structure on
simplicial presheaves.

It seems natural to ask what are the derived functors of the homology and cohomology functors you’ve defined.
But maybe the nerve of a -category is automatically bifibrant in a suitable model structure on simplicial
presheaves, so that these functors are “already derived”?

Another thing this suggests is that you might lift a model structure from simplicial presheaves on  to a model
structure on -categories, and then ask how it relates to other model structures on -categories.

Posted by: Tim Campion on September 6, 2016 2:09 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

From the brief foray into it that I mentioned here
[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c050980] , aren’t the Cech and

Rips complexes as used in persistent homology somewhat different? The Cech one looks for inhabited
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intersections of balls of a given radius, while the Rips looks at limiting edge lengths.

As I mentioned also there, there is ‘squeezing’ of a kind going on.

Posted by: David Corfield on September 6, 2016 2:19 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Yes, I think everyone who’s run into persistent homology feels some resonance here! It would be
really fantastic if someone could make a definite connection — actually prove some theorems — and I think
we’re close to the stage where that’s a real possibility.

In fact, when John started this conversation with the question
[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c05091 3 ]

Is there any way to generalize the Hepworth–Willerton homology from graphs to general finite
metric spaces?

my instant reply was

I would love it if someone found a way to do this.

Aaron Greenspan and I spent a while trying to do it ourselves, but we didn’t get too far. Then
recently, I was at a fantastic applied topology conference [http://atm cs7 .appliedtopology .org/]

where all the talk of persistent homology revived my urge to do it.

My talk [http://www.m aths.ed.ac.uk/~tl/turin/turin.pdf] at that conference was an attempt to get applied

topologists interested in magnitude. The very last slide summarizes some of the connections between the two
subjects that I envisaged.

Then later in that thread, starting here
[https://golem .ph.utexas.edu/category /201 6/08/a_surv ey _of_m agnitude.htm l#c05097 5] , David started talking

about persistent homology too, going into more detail — e.g. about Čech and Rips complexes. You really need
signposts for a thread that long!

As he just said, there’s a difference between the Čech and Rips complexes, and page 3 of the paper by Ghrist
he linked to [https://www.m ath.upenn.edu/~ghrist/preprints/barcodes.pdf] is a good source for this.

(When consulting the literature, it’s useful to know that some people say “Vietoris complex” instead of “Rips
complex”. Others try to be even-handed by saying “Vietoris–Rips”. I guess there are other people still with
delicate alphabetic sensibilities who say “Rips–Vietoris” — the same people who speak of “Čech–Stone
compactification” :-))

Here’s a categorically pertinent point that I haven’t seen made explicitly in applied topology: the Rips complex
is something associated to a metric space, whereas the Čech complex is something associated to a subspace of
a metric space. In Ghrist’s paper and many other places, all the spaces concerned are embedded in , so that
distinction is invisible. But in principle that’s the way it is.

Posted by: Tom Leinster on September 6, 2016 4:00 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Right, unless I’m confused, the nerve of a metric space is not the same as its Cech or Rips complex,
although they all live in the same category (simplicial presheaves on ) and in each case the -simplices
are -tuples  satisfying some condition — the conditions are different in each case. In 
we require that . In the Cech complex we require that  in
some ambient metric space. And in the Rips complex we require that each  (so in particular, the
Rips complex is determined by its 1-skeleton, which apparently makes it more computationally tractable).

Posted by: Mike Shulman on September 6, 2016 6:13 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

I’m not quite sure what you mean by “derived functor” in this context. Tom explained why the
magnitude homology of a category is “homotopy invariant” as an operation on the category (respects
equivalences), by way of showing that the nerve itself is also homotopy invariant. The only question along
these lines I can think of that isn’t answered is whether the magnitude homology of a -category factors

through its nerve by a homotopy-invariant operation on , i.e. whether  depends only on the
homotopy type of . That is an interesting question, and I agree that the answer should be yes if  is
sufficiently cofibrant (I don’t think fibrancy is necessary, nor is it likely to happen unless we use some

“quasicategory-type” model structure on ).
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“quasicategory-type” model structure on ).

In fact, now that I think about it,  looks fairly cofibrant: in each simplicial degree it is a coproduct of
representables. This seems close to being projectively cofibrant, which in turn ought to be enough to make
everything homotopy-invariant. Projective cell complexes of simplicial presheaves are obtained by “gluing on
representable simplices”, i.e. pushing out along maps of the form ; so we
could try to construct  in this way by inducting up along  and at each step using all the possible values of

.

I think this could only fail because of degeneracies: if some  and a map 
 factors through the unit , then it will already be present

before we “glue on that cell”, whereas gluing on the cell would produce another copy of it that we don’t want. If
the unit maps  are all isomorphisms (as they must be for , for instance) then we should
be able to avoid this by only gluing on cells corresponding to the nondegenerate sequences with  for
all . Otherwise, we still do have to glue something on, but I suspect we can do something fancier to make it
work. For instance, suppose that

1. The unit maps  are all monomorphisms. This is automatic if  is semicartesian, since any
map out of a terminal object is mono, but I still have the general case in mind as well. Conditions like this
are also fairly common when we try to do homotopy theory involving enriched categories.

2. The Day tensor product on  satisfies the pushout-product axiom for monomorphisms. I don’t
recall seeing this condition anywhere before, nor have I thought about what sort of condition it imposes
on .

Then I suspect we can build a “degeneracies” monomorphism of presheaves 
 by repeated pushout-products of the monos 

 for all  such that . Taking the pushout-product of this with 
 we get a projective cofibration that we can glue on to make the degeneracies correct.

Here’s another thought that I may as well throw out there: it doesn’t feel quite right to me to regard  as a
simplicial presheaf on . I would rather regard it as a functor  where  is the category of
elements of the codiscrete simplicial set on the objects of , in which case we can just set

The simplicial presheaf that Tom called  is obtained by applying the Yoneda embedding and then left
Kan extending along the discrete opfibration . But  has the advantage that the “unwound
coend” formulation factors through it; it’s just obtained by composing with  rather than the Yoneda
embedding, and then left Kan extending to  (and then making a simplicial abelian group into a chain
complex). This feels to me like an even more obviously “homotopy-invariant operation”, except that I don’t
know what category  lives in (as  varies) or what homotopy theory it might have.

Posted by: Mike Shulman on September 6, 2016 6:14 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Here’s a cool feature of magnitude homology of metric spaces:

1st magnitude homology measures lack of convexity.

Here I’m talking about completely arbitrary metric spaces, not just finite ones.

To explain this, I’m going to use the Hepworth–Willerton approach to magnitude homology. Let  be a metric
space and  a real number. The first few of the associated chain groups are

Here I’m writing  for the free abelian group on a set . I’m also ignoring the case . (It’s trivial: 
 is  unless , in which case it’s .) The differential

is zero. So, its kernel is . The differential
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≠xi xi+1
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X
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A:V → Ab
Δop

N' (X) X

X
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(X)MC1,ℓ

(X)MC2,ℓ

= 0,

= Z ⋅ {( , ) : ≠ , d( , ) = ℓ},x0 x1 x0 x1 x0 x1

= Z ⋅ {( , , ) : ≠ ≠ , d( , ) + d( , ) = ℓ}.x0 x1 x2 x0 x1 x2 x0 x1 x1 x2

Z ⋅ S S ℓ = 0
(X)MCn,0 0 n = 0 Z ⋅X

∂ : (X) → (X)MC1,ℓ MC0,ℓ

(X)MC1,ℓ

∂ : (X) → (X)MC2,ℓ MC1,ℓ



is defined on generators by

Let’s say that a point  is between points  and  if , and strictly
between if also . Then the image of  is generated by the pairs  such that there exists a
point strictly between  and .

The 1st homology  is the quotient of the kernel just computed by the image just computed. In other
words,  is the free abelian group on the set of pairs  such that  and there is no point
strictly between  and .

A metric space is Menger convex if for any pair of distinct points there exists a point strictly between them.
Our calculation immediately implies:

Theorem  Let  be a metric space. Then  is Menger convex if and only if  for all 
.

Menger convexity looks like a rather weak condition, but it’s not. In fact, let  be a metric space with the
property that closed bounded subsets are compact. The following are equivalent:

 is Menger convex.

 is geodesic, i.e. for all , say distance  apart, there is an isometry  joining  and .

(This appears as Theorem 2.6.2 of Athanase Papadopoulos’s 2005 book Metric spaces, convexity and
nonpositive curvature, though I assume it’s much older than that.)

For instance:

Corollary    A closed set  is convex if and only if  for all .

Generally, the more a space fails to be convex, the larger the groups  will tend to be. That’s because there
will be more pairs of points with no point strictly between them, and these pairs are the generators of the first
homology groups.

You could be a bit more subtle and ask what happens at different length scales. For instance, consider the metric
space  with its usual metric. All the homology groups  vanish unless  is an integer.

: we have  (as for any space).

: the abelian group  is generated by pairs of points distance  apart with nothing in between
them. That’s all pairs of points distance  apart, and there are two such pairs for each integer (two,
because they’re ordered pairs).

: a pair of points of  distance 2 or more apart always has something strictly in between them, so 
.

Actually, this metric space is a graph, so presumably everything I’ve just said follows from the Hepworth–
Willerton paper [https://arxiv .org/abs/1 505.041 25] .

The point is that although the metric space  fails to be Menger convex, it only fails because of the points
distance  apart; for further-separated points it’s fine. And the intuition that  is “nearly but not quite Menger
convex” is given precise expression by the fact that  for all but one value of .

Posted by: Tom Leinster on September 6, 2016 4:55 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

First off, let me add my thanks for writing this post. The other thread long since outstripped both
my actual ability to follow it in real time, and any ambition I might have had to go back and make sense of it
later.

1st magnitude homology measures lack of convexity.

Awesome! This sounds like exactly the kind of geometric information we would hope to see encoded in a
homology theory for metric spaces.

Just before seeing this comment I was wondering if negative type could be characterized in terms of magnitude
homology. Any thoughts there?

∂ : (X) → (X)MC2,ℓ MC1,ℓ

∂( , , ) = {x0 x1 x2
−( , )x0 x2

0

if d( , ) + d( , ) = d( , ),x0 x1 x1 x2 x0 x2

otherwise.

x1 x0 x2 d( , ) + d( , ) = d( , )x0 x1 x1 x2 x0 x2

≠ ≠x0 x1 x2 ∂ ( , )x0 x2

x0 x2

(X)H1,ℓ

(X)H1,ℓ ( , )x0 x1 d( , ) = ℓx0 x1

x0 x1

X X (X) = 0H1,ℓ

ℓ ≥ 0

X

X

X x, y ∈ X D [0,D] → X x y

X ⊆ Rn (X) = 0H1,ℓ ℓ ≥ 0

(X)H1,ℓ

Z (Z)H*,ℓ ℓ

ℓ = 0 (Z) = 0H1,0

ℓ = 1 (Z)H1,1 1
1

ℓ ≥ 2 Z
(Z) = (Z) = ⋯ = 0H1,2 H1,3

Z
1 Z

(Z) = 0H1,ℓ ℓ



Incidentally, the hypothesis that no two points have a point strictly between them, or equivalently that the
triangle inequality is always strict, has come up a couple times. I can’t remember precisely where, but I’ve seen
a hypothesis similar to that somewhere before. (Maybe in Nik Weaver’s book Lipschitz Algebras
[https://books.google.com /books?isbn=981 023 87 3 8] ?) Here’s one way of producing many examples of spaces

with this property: given any metric space  and , the triangle inequality is always strict in the
metric space . It may be that the condition that I’m dimly remembering is actually that the metric is the

 power of a metric.

Posted by: Mark Meckes on September 6, 2016 6:18 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Damn, I thought I dimly remembered that there was a name for metric spaces in which the triangle
inequality is always strict, and that you (Mark) had once told me that name. I was trying to remember it a week
or two ago, but it seems that if you ever knew it, you’ve forgotten too!

Posted by: Tom Leinster on September 6, 2016 7:54 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

The first homology of a metric space says something about the existence of geodesic paths between
points. I haven’t got a full description of second homology, but it seems that it has something to do with
uniqueness/multiplicity of geodesics.

Specifically, I claim that  for any convex subset  of  and any . And I think the reason for
this is to do with the fact that in , there’s a unique shortest path between any two points.

The calculation is below, but before getting stuck in, let me point out that matters are very different for
graphs. I tend to think of graphs as the metric spaces that are as unlike subspaces of Euclidean space as it’s
possible to be. For instance, in any metric space we can ask how many midpoints exist between a given pair of
points. (By a midpoint I mean a point whose distance to each of the two given points is half the overall
distance.) In a subspace of , a given pair of points has at most one midpoint, but in a graph there can be any
number of them.

Anyway, Richard and Simon computed lots of examples of magnitude homology of graphs in their paper, and 
 very often isn’t zero. For instance, the 5-cycle  has

(and the rest are zero).

OK. Now I’ll prove my claim that when  is a convex subset of , the homology groups  are trivial for
all .

A typical element of  is a linear combination

where the sum is over all points  such that , the coefficients  are integers,
and all but finitely many coefficients are zero. By the formula for  I just mentioned
[https://golem .ph.utexas.edu/category /201 6/09/m agnitude_hom ology .htm l#c051 27 9] ,

So,  is a cycle if and only if for all  and  such that ,

Suppose now that  is a cycle. To prove my claim, I have to show that it is a boundary.

The sum  splits into two parts: those for which  is between  and , and those for which it’s
not. Those for which it’s not are boundaries, since by convexity we can choose some  strictly between  and ,
and then

(X, d) α ∈ (0, 1)
(X, )dα

α

(X) = 0H2,ℓ X Rn ℓ ≥ 0
Rn

Rn

H2 C5

( ) = , ( ) = , ( ) =H2,2 C5 Z20 H2,3 C5 Z40 H2,4 C5 Z20

X Rn (X)H2,ℓ

ℓ ≥ 0

(X)MC2,ℓ

α = (x, y, z)∑
x,y,z

axyz

x ≠ y ≠ z d(x, y) + d(y, z) = ℓ axyz
∂

∂(α) = − ( ) (x, z).∑
x≠z : d(x,z)=ℓ

∑
y strictly between x and z

axyz

α x z d(x, z) = ℓ

= 0.∑
y strictly between x and z

axyz

α

α = ∑ (x, y, z)axyz y x z

u y z



and then

So we can assume that  unless ,  and  are collinear. Now, fixing  and  such that , it’s
enough to prove that

is a boundary. But we know that

and from this it follows that  can be expressed as a -linear combination of expressions of the form

where  and  are both strictly between  and .

Now we use something special about  — something closely related to the uniqueness of geodesics. Whenever
we have points  and  both between  and , they must all lie on a line. That is, one of the following two
possibilities must occur:

, or

.

That’s not true for a general metric space. For instance, consider the geodesic metric on the sphere. My home (
) is between the north pole ( ) and the south pole ( ), and your home ( ) is too, but my home probably isn’t

between your home and the north pole or vice versa.

Back to the calculation. It remains to prove that when  and  are points strictly between  and , the element

of  is a boundary. If  that’s immediate. If not, we have four distinct points on a line, WLOG in
the order . And then , with

as required.

Posted by: Tom Leinster on September 6, 2016 8:57 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

That makes sense. The statement that  is a boundary if  is not between  and  is also
using something special about , right? Something like that if  is between  and , and  is between  and ,
then  and  are between  and ?

Now I’m tempted to conjecture something about . Like maybe that it’s zero unless , in which
case it’s generated by something to do with pairs of antipodal points. But that could be way off…

Posted by: Mike Shulman on September 6, 2016 10:15 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Yes, I agree that this step also uses something special about . I only spotted that after posting.

I’ve run into a few similar “betweenness” properties of metric spaces. I think at least one of them might even
have a name. But I’m not at all on top of them.

I was thinking that it would be good to compute  with its geodesic metric; is that what you had in

∂(x, y, u, z) = (x, y, z).

= 0axyz x y z x z d(x, z) = ℓ

: = (x, y, z)αxz ∑
y strictly between x and z

axyz

= 0,∑
y strictly between x and z

axyz

αxz Z

(x, , z) − (x, , z)y1 y2

y1 y2 x z

Rn

y1 y2 x z

d(x, ) + d( , ) + d( , z) = d(x, z)y1 y1 y2 y2

d(x, ) + d( , ) + d( , z) = d(x, z)y2 y2 y1 y1

y1 x z y2

y1 y2 x z

(x, , z) − (x, , z)y1 y2

(X)MC2,ℓ =y1 y2

x, , , zy1 y2 −(x, , , z) ∈ (X)y1 y2 MC3,ℓ

∂(−(x, , , z)) = (x, , z) − (x, , z),y1 y2 y1 y2

(x, y, z) y x z

Rn y x z z y w

y z x w

( )H2,ℓ S1 ℓ = π

Rn

( )H2,ℓ S1



I was thinking that it would be good to compute  with its geodesic metric; is that what you had in
mind? Oh, I guess it must be, because if it was the Euclidean metric then the differentials would all be zero.

Posted by: Tom Leinster on September 6, 2016 10:26 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Tom, thinking of the antipodal points on spheres case, did you miss out a word above
[https://golem .ph.utexas.edu/category /201 6/09/m agnitude_hom ology .htm l#c051 293 ] :

In a subspace of , a given pair of points has at most one midpoint, but in a graph there can be
any number of them?

Posted by: David Corfield on September 7, 2016 8:21 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Sorry for the noise, I’m thinking of the geodesic metric and you weren’t.

Posted by: David Corfield on September 7, 2016 8:39 AM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Wow! I think this is our first indication that the magnitude homology of an infinite metric space
carries interesting information.

What about ? (-:

Posted by: Mike Shulman on September 6, 2016 9:01 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

What about ? (-:

I see that you’re ahead of me! (4 minutes ahead of me, to be precise.)

Posted by: Mike Shulman on September 6, 2016 10:00 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

You were looking at the wrong table in our paper when you wrote

They are actually the chain groups, not the homology groups. The actual non-trivial ones are

I believe that  for a graph  is trivial if and only if the graph is discrete, ie. has no edges.

On the one hand if the graph is discrete then  is the only non-trivial homology group.

On the other hand, Owen Biesel told us
[https://golem .ph.utexas.edu/category /201 3 /04/tutte_poly nom ials_and_m agnitud.htm l#c043 7 66] that the

coefficient of  in graph magnitude is , whatever this is, but in particular it is at least ,
which is twice the number of edges of the graph.

The coefficient of  is , thus . So  is non-trivial if
the graph has any edges.

Posted by: Simon Willerton on September 6, 2016 11:02 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Nice! And thanks for the correction.

( )2,ℓ

Rn

H2

H2

( ) = , ( ) = , ( ) =H2,2 C5 Z20 H2,3 C5 Z40 H2,4 C5 Z20

( ) = , ( ) = .H2,2 C5 Z10 H2,3 C5 Z10

(G)H2,2 G

(G)H0,0

q2 2E+ 6Δ + 2Λ' 2E

q2 rank( (G)) − rank( (G))H2,2 H1,2 rank( (G)) ≥ 2EH2,2 (G)H2,2



Posted by: Tom Leinster on September 7, 2016 5:51 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Backing all the way up to the Euler characteristic / magnitude of a finite category: does this
construction shed any light on the meaning of weightings and coweightings (which don’t appear in this post at
all)?

Posted by: Mark Meckes on September 7, 2016 3:31 PM | Permalink | Reply to this

Re: Magnitude Homology
[http://golem .ph.utexas.edu/~distler/blog/m athm l.htm l]

Delurking to ask a non-mathematical question: is there any way to adjust the height of the vertical
boxes that contain the LaTeX-like formulas? (I’m trying to print this post for later reading and the large vertical
spacing is leading to a worrying number of pages.)

Posted by: Yemon Choi on September 7, 2016 5:33 PM | Permalink | Reply to this
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