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Preamble

Hello.
Admin: email addresses; sections in outline 6= lectures; pace.
Overall plan: interested in unique characterizations of . . .

entropy

SSSSSSSSSSSSSS means norms

measures of (bio)diversity

There are many ways to measure diversity: long controversy.
Ideal: be able to say ‘If you want your diversity measure to have properties

X, Y and Z, then it must be one of the following measures.’
Similar results have been proved for entropy, means and norms.
This is a tiny part of the field of functional equations!
One ulterior motive: for me to learn something about FEs. I’m not an

expert, and towards end, this will get to edge of research (i.e. I’ll be making it
up as I go along).

Tools:

• native wit

• elementary real analysis

• (new!) some probabilistic methods.

One ref: Aczél and Daróczy, On Measures of Information and Their Char-
acterizations. (Comments.) Other refs: will give as we go along.

1 Warm-up
Week I (7 Feb)

Which functions f satisfy f(x + y) = f(x) + f(y)? Which functions of two
variables can be separated as a product of functions of one variable?

This section is an intro to basic techniques. We may or may not need the
actual results we prove.

∗School of Mathematics, University of Edinburgh; Tom.Leinster@ed.ac.uk. Last edited on
14 February 2017
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The Cauchy functional equation

The Cauchy FE on a function f : R→ R is

∀x, y ∈ R, f(x+ y) = f(x) + f(y). (1)

There are some obvious solutions. Are they the only ones? Weak result first,
to illustrate technique.

Proposition 1.1 Let f : R → R be a differentiable function. TFAE (the fol-
lowing are equivalent):

i. f satisfies (1)

ii. there exists c ∈ R such that

∀x ∈ R, f(x) = cx.

If these conditions hold then c = f(1).

Proof (ii)⇒(i) and last part: obvious.
Now assume (i). Differentiate both sides of (1) with respect to x:

∀x, y ∈ R, f ′(x+ y) = f ′(x).

Take x = 0: then f ′(y) = f ′(0) for all y ∈ R. So f ′ is constant, so there exist
c, d ∈ R such that

∀x ∈ R, f(x) = cx+ d.

Substituting back into (1) gives d = 0, proving (ii). �

‘Differentiable’ is a much stronger condition than necessary!

Theorem 1.2 As for Proposition 1.1, but with ‘continuous’ in place of ‘differ-
entiable’.

Proof Let f be a continuous function satisfying (1).

• f(0 + 0) = f(0) + f(0), so f(0) = 0.

• f(x) + f(−x) = f(x + (−x)) = f(0) = 0, so f(−x) = −f(x). Cf. group
homomorphisms.

• Next, f(nx) = nf(x) for all x ∈ R and n ∈ Z. For n > 0, true by
induction. For n = 0, says f(0) = 0. For n < 0, have −n > 0 and so
f(nx) = −f(−nx) = −(−nf(x)) = nf(x).

• In particular, f(n) = nf(1) for all n ∈ Z.

• For m,n ∈ Z with n 6= 0, we have

f(n ·m/n) = f(m) = mf(1)

but also
f(n ·m/n) = nf(m/n),

so f(m/n) = (m/n)f(1). Hence f(x) = f(1)x for all x ∈ Q.
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• Now f and x 7→ f(1)x are continuous functions on R agreeing on Q, hence
are equal. �

Remarks 1.3 i. ‘Continuous’ can be relaxed further still. It was pointed
out in class that continuity at 0 is enough. ‘Measurable’ is also enough
(Fréchet, ‘Pri la funkcia ekvacio f(x + y) = f(x) + f(y)’, 1913). Even
weaker: ‘bounded on some set of positive measure’. But never mind! For
this course, I’ll be content to assume continuity.

ii. To get a ‘weird’ solution of Cauchy FE (i.e. not of the form x 7→ cx), need
existence of a non-measurable function. So, need some form of choice. So,
can’t really construct one.

iii. Assuming choice, weird solutions exist. Choose basis B for the vector
space R over Q. Pick b0 6= b1 in B and a function φ : B → R such that
φ(b0) = 0 and φ(b1) = 1. Extend to Q-linear map f : R → R. Then
f(b0) = 0 with b0 6= 0, but f 6≡ 0 since f(b1) = 1. So f cannot be of the
form x 7→ cx. But f satisfies the Cauchy functional equation, by linearity.

Variants (got by using the group isomorphism (R,+) ∼= ((0,∞), 1) defined
by exp and log):

Corollary 1.4 i. Let f : R→ (0,∞) be a continuous function. TFAE:

• f(x+ y) = f(x)f(y) for all x, y

• there exists c ∈ R such that f(x) = ecx for all x.

ii. Let f : (0,∞)→ R be a continuous function. TFAE:

• f(xy) = f(x) + f(y) for all x, y

• there exists c ∈ R such that f(x) = c log x for all x.

iii. Let f : (0,∞)→ (0,∞) be a continuous function. TFAE:

• f(xy) = f(x)f(y) for all x, y

• there exists c ∈ R such that f(x) = xc for all x.

Proof For (i), define g : R → R by g(x) = log f(x). Then g is continuous and
satisfies Cauchy FE, so g(x) = cx for some constant c, and then f(x) = ecx.

(ii) and (iii): similarly, putting g(x) = f(ex) and g(x) = log f(ex). �

Related:

Theorem 1.5 (Erdős?) Let f : Z+ → (0,∞) be a function satisfying f(mn) =
f(m)f(n) for all m,n ∈ Z+. (There are loads of solutions: can freely choose
f(p) for every prime p. But . . . ) Suppose that either f(1) ≤ f(2) ≤ · · · or

lim
n→∞

f(n+ 1)

f(n)
= 1.

Then there exists c ∈ R such that f(n) = nc for all n.

Proof Omitted. �
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Separation of variables

When can a function of two variables be written as a product/sum of two
functions of one variable? We’ll do sums, but can convert to products as in
Corollary 1.4.

Let X and Y be sets and

f : X × Y → R

a function. Or can replace R by any abelian group. We seek functions

g : X → R, h : Y → R

such that
∀x ∈ X, y ∈ Y, f(x, y) = g(x) + h(y). (2)

Basic questions:

A Are there any pairs of functions (g, h) satisfying (2)?

B How can we construct all such pairs?

C How many such pairs are there? Clear that if there are any, there are many,
by adding/subtracting constants.

I got up to here in the first class, and was going to lecture the rest of this
section in the second class, but in the end decided not to. What I actually
lectured resumes at the start of Section 2. But for completeness, here’s the rest
of this section.

Attempt to recover g and h from f . Key insight:

f(x, y)− f(x0, y) = g(x)− g(x0)

(x, x0 ∈ X, y ∈ Y ). No hs involved!
First lemma: g and h are determined by f , up to additive constant.

Lemma 1.6 Let g : X → R and h : Y → R be functions. Define f : X×Y → R
by (2). Let x0 ∈ X and y0 ∈ Y .

Then there exist c, d ∈ R such that c+ d = f(x0, y0) and

g(x) = f(x, y0)− c ∀x ∈ X, (3)

h(y) = f(x0, y)− d ∀y ∈ Y. (4)

Proof Put y = y0 in (2): then

g(x) = f(x, y0)− c ∀x ∈ X

where c = h(y0). Similarly

h(y) = f(x0, y)− d ∀y ∈ Y

where d = g(x0). Now

c+ d = g(x0) + h(y0) = f(x0, y0)

by (2). �
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But given f (and x0 and y0), is every pair (g, h) of this form a solution
of (2)? Not necessarily (but it’s easy to say when). . .

Lemma 1.7 Let f : X × Y → R be a function. Let x0 ∈ X, y0 ∈ Y , and
c, d ∈ R with c+ d = f(x0, y0). Define g : X → R by (3) and h : Y → R by (4).
If

f(x, y0) + f(x0, y) = f(x, y) + f(x0, y0) ∀x ∈ X, y ∈ Y

then
f(x, y) = g(x) + h(y) ∀x ∈ X, y ∈ Y.

Proof For all x ∈ X and y ∈ Y ,

g(x) + h(y) = f(x, y0) + f(x0, y)− c− d = f(x, y0) + f(x0, y)− f(x0, y0),

etc. �

Can now answer the basic questions.
Existence of decompositions (A):

Proposition 1.8 Let f : X × Y → R. TFAE:

i. there exist g : X → R and h : Y → R such that

f(x, y) = g(x) + h(y) ∀x ∈ X, y ∈ Y

ii. f(x, y′) + f(x′, y) = f(x, y) + f(x′, y′) for all x, x′, y, y′.

Proof (i)⇒(ii): trivial.
(ii)⇒(i): trivial if X = ∅ or Y = ∅. Otherwise, choose x0 ∈ X and y0 ∈ Y ;

then use Lemma 1.7 with c = 0 and d = f(x0, y0). �

Classification of decompositions (B):

Proposition 1.9 Let f : X × Y → R be a function satisfying the equivalent
conditions of Proposition 1.8, and let x0 ∈ X and y0 ∈ Y . Then a pair of
functions (g : X → R, h : Y → R) satisfies (2) if and only if there exist c, d ∈ R
satisfying c+ d = f(x0, y0), (3) and (4).

Proof Follows from Lemmas 1.6 and 1.7. �

Number of decompositions (C) (really: dim of solution-space):

Corollary 1.10 Let f : X × Y → R with X,Y nonempty. Either there are no
pairs (g, h) satisfying (2), or for any pair (g, h) satisfying (2), the set of all such
pairs is the 1-dimensional space

{(g + a, h− a) : a ∈ R}. �
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2 Shannon entropy
Week II (14 Feb)

Recap, including Erdős theorem. No separation of variables!
The many meanings of the word entropy. Ordinary entropy, relative entropy,

conditional entropy, joint entropy, cross entropy; entropy on finite and infinite
spaces; quantum versions; entropy in topological dynamics; . . . . Today we stick
to the very simplest kind: Shannon entropy of a probability distribution on a
finite set.

Let p = (p1, . . . , pn) be a probability distribution on {1, . . . , n} (i.e. pi ≥ 0,∑
pi = 1). The (Shannon) entropy of p is

H(p) = −
∑

i : pi>0

pi log pi =
∑

i : pi>0

pi log
1

pi
.

The sum is over all i ∈ {1, . . . , n} such that pi 6= 0; equivalently, can sum over
all i ∈ {1, . . . , n} but with the convention that 0 log 0 = 0.

Ways of thinking about entropy:

• Disorder.

• Uniformity. Will see that uniform distribution has greatest entropy among
all distributions on {1, . . . , n}.

• Expected surprise. Think of log(1/pi) as your surprise at learning that an
event of probability pi has occurred. The smaller pi is, the more surprised
you are. Then H(p) is the expected value of the surprise: how surprised
you expect to be!

• Information. Similar to expected surprise. Think of log(1/pi) as the infor-
mation that you gain by observing an event of probability pi. The smaller
pi is, the rarer the event is, so the more remarkable it is. Then H(p) is
the average amount of information per event.

• Lack of information (!). Dual viewpoints in information theory. E.g. if p
represents noise, high entropy means more noise. Won’t go into this.

• Genericity. In context of thermodynamics, entropy measures how generic
a state a system is in. Closely related to ‘lack of information’.

First properties:

• H(p) ≥ 0 for all p, with equality iff p = (0, . . . , 0, 1, 0, . . . , 0). Least
uniform distribution.

• H(p) ≤ log n for all p, with equality iff p = (1/n, . . . , 1/n). Most uniform
distribution. Proof that H(p) ≤ log n uses concavity of log:

H(p) =
∑

i : pi>0

pi log
(

1
pi

)
≤ log

( ∑
i : pi>0

pi
1
pi

)
≤ log n.

• H(p) is continuous in p. (Uses limx→0+ x log x = 0.)
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Remark 2.1 Base of logarithm usually taken to be e (for theory) or 2 (for
examples and in information theory/digital communication). Changing base of
logarithm scales H by constant factor—harmless!

Examples 2.2 Use log2 here.

i. Uniform distribution on 2k elements:

H( 1
2k
, . . . , 1

2k
) = log2(2k) = k.

Interpretation: knowing results of k fair coin tosses gives k bits of infor-
mation.

ii.

H( 1
2 ,

1
4 ,

1
8 ,

1
8 ) = 1

2 log2 2 + 1
4 log2 4 + 1

8 log2 8 + 1
8 log2 8

= 1
2 · 1 + 1

4 · 2 + 1
8 · 3 + 1

8 · 3
= 1 3

4 .

Interpretation: consider a language with alphabet A, B, C, D, with fre-
quencies 1/2, 1/4, 1/8, 1/8. We want to send messages encoded in binary.
Compare Morse code: use short code sequences for common letters. The
most efficient unambiguous code encodes a letter of frequency 2−k as a
binary string of length k: e.g. here, could use

A: 0, B: 10, C: 110, D: 111.

Then code messages are unambiguous: e.g. 11010011110 can only be
CBADB. Since k = log2(1/2−k), mean number of bits per letter is then∑

i pi log(1/pi) = H(p) = 1 3
4 .

iii. That example was special in that all the probabilities were integer powers
of 2. But. . . Can still make sense of this when probabilities aren’t
powers of 2 (Shannon’s first theorem). E.g. frequency distribution p =
(p1, . . . , p26) of letters in English has H(p) ≈ 4, so can encode English in
about 4 bits/letter. So, it’s as if English had only 16 letters, used equally
often.

Will now explain a more subtle property of entropy. Begin with example.

Example 2.3 Flip a coin. If it’s heads, roll a die. If it’s tails, draw from a pack
of cards. So final outcome is either a number between 1 and 6 or a card. There
are 6 + 52 = 58 possible final outcomes, with probabilities as shown (assuming
everything unbiased):

1/12

......

1/12 1/104 1/104

1/21/2

COIN

...... ......

DIE CARDS

1/521/521/61/6

How much information do you expect to get from observing the outcome?

7



• You know result of coin flip, giving H(1/2, 1/2) = 1 bit of info.

• With probability 1/2, you know result of die roll: H(1/6, . . . , 1/6) = log2 6
bits of info.

• With probability 1/2, you know result of card draw: H(1/52, . . . , 1/52) =
log2 52 bits.

In total:
1 + 1

2 log2 6 + 1
2 log2 52

bits of info. This suggests

H
(

1
12 , . . . ,

1
12︸ ︷︷ ︸

6

, 1
104 , . . . ,

1
104︸ ︷︷ ︸

52

)
= 1 + 1

2 log2 6 + 1
2 log2 52.

Can check true! Now formulate general rule.

The chain rule Write

∆n = {probability distributions on {1, . . . , n}}.

Geometrically, this is a simplex of dimension n− 1. Given

w ∈ ∆n, p1 ∈ ∆k1
, . . . ,pn ∈ ∆kn

,

get composite distribution

w ◦ (p1, . . . ,pn) = (w1p
1
1, . . . , w1p

1
k1
, . . . , wnp

n
1 , . . . , wnp

n
kn

) ∈ ∆k1+···+kn

......

......

............

w

p p1 n

(For cognoscenti: this defines an operad structure on the simplices.)
Easy calculation1 proves chain rule:

H(w ◦ (p1, . . . ,pn)) = H(w) +

n∑
i=1

wiH(pi).

Special case: p1 = · · · = pn. For w ∈ ∆n and p ∈ ∆m, write

w ⊗ p = w ◦ (p, . . . ,p︸ ︷︷ ︸
n

) = (w1p1, . . . , w1pm, . . . , wnp1, . . . , wnpm) ∈ ∆nm.

1This is completely straightforward, but can be made even more transparent by first observ-
ing that the function f(x) = −x log x is a ‘nonlinear derivation’, i.e. f(xy) = xf(y)+f(x)y. In
fact, −x log x is the only measurable function F with this property (up to a constant factor),
since if we put g(x) = F (x)/x then g(xy) = g(y) + g(x) and so g(x) ∝ log x.
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This is joint probability distribution if the two things are independent. Then
chain rule implies multiplicativity:

H(w ⊗ p) = H(w) +H(p).

Interpretation: information from two independent observations is sum of infor-
mation from each.

Where are the functional equations?
For each n ≥ 1, have function H : ∆n → R+ = [0,∞). Faddeev2 showed:

Theorem 2.4 (Faddeev, 1956) Take functions
(
I : ∆n → R+

)
n≥1. TFAE:

i. the functions I are continuous and satisfy the chain rule;

ii. I = cH for some c ∈ R+.

That is: up to a constant factor, Shannon entropy is uniquely characterized
by continuity and chain rule.

Should we be disappointed to get scalar multiples of H, not H itself? No:
recall that different scalar multiples correspond to different choices of the base
for log.

Rest of this section: proof of Faddeev’s theorem.
Certainly (ii)⇒(i). Now take I satisfying (i).
Write un = (1/n, . . . , 1/n) ∈ ∆n. Strategy: think about the sequence(

I(un)
)
n≥1. It should be (c log n)n≥1 for some constant c.

Lemma 2.5 i. I(umn) = I(um) + I(un) for all m,n ≥ 1.

ii. I(u1) = 0.

Proof For (i), umn = um ⊗ un, so

I(umn) = I(um ⊗ un) = I(um) + I(un)

(by multiplicativity). For (ii), take m = n = 1 in (i). �

Theorem 1.5 (Erdős) would now tell us that I(un) = c log n for some constant
c (putting f(n) = exp(I(un))). But to conclude that, we need one of the two
alternative hypotheses of Theorem 1.5 to be satisfied. We prove the second one,
on limits. This takes some effort.

Lemma 2.6 I(1, 0) = 0.

Proof We compute I(1, 0, 0) in two ways. First,

I(1, 0, 0) = I((1, 0) ◦ ((1, 0),u1)) = I(1, 0) + 1 · I(1, 0) + 0 · I(u1) = 2I(1, 0).

Second,

I(1, 0, 0) = I((1, 0) ◦ (u1,u2)) = I(1, 0) + 1 · I(u1) + 0 · I(u2) = I(1, 0)

since I(u1) = 0. Hence I(1, 0) = 0. �

2Dmitry Faddeev, father of the physicist Ludvig Faddeev.
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To use Erdős, need I(un+1)− I(un)→ 0 as n→∞. Can nearly prove that:

Lemma 2.7 I(un+1)− n
n+1I(un)→ 0 as n→∞.

Proof We have
un+1 =

(
n

n+1 ,
1
n

)
◦ (un,u1),

so by the chain rule and I(u1) = 0,

I(un+1) = I
(

n
n+1 ,

1
n

)
+ n

n+1I(un).

So
I(un+1)− n

n+1I(un) = I
(

n
n+1 ,

1
n+1

)
→ I(1, 0) = 0

as n→∞, by continuity and Lemma 2.6. �

To improve this to I(un+1)−I(un)→ 0, use a general result that has nothing
to do with entropy:

Lemma 2.8 Let (an)n≥1 be a sequence in R such that an+1 − n
n+1an → 0 as

n→∞. Then an+1 − an → 0 as n→∞.

Proof Omitted; uses Cesàro convergence.3

Although I omitted this proof in class, I’ll include it here. I’ll follow the
argument in Feinstein, The Foundations of Information Theory, around p.7.

It is enough to prove that an/(n + 1) → 0 as n → ∞. Write b1 = a1 and
bn = an − n−1

n an−1 for n ≥ 2. Then nan = nbn + (n− 1)an−1 for all n ≥ 2, so

nan = nbn + (n− 1)bn−1 + · · ·+ 1b1

for all n ≥ 1. Dividing through by n(n+ 1) gives

an
n+ 1

= 1
2 ·mean(b1, b2, b2, b3, b3, b3, . . . , bn, . . . , bn︸ ︷︷ ︸

n

).

Since bn → 0 as n→∞, the sequence

b1, b2, b2, b3, b3, b3, . . . , bn, . . . , bn︸ ︷︷ ︸
n

, . . .

also converges to 0. Now a general result of Cesàro states that if a sequence
(xr) converges to ` then the sequence (x̄r) also converges to `, where x̄r =
(x1 + · · ·+ xr)/r. Applying this to the sequence above implies that

mean(b1, b2, b2, b3, b3, b3, . . . , bn, . . . , bn︸ ︷︷ ︸
n

)→ 0 as n→∞.

Hence an/(n+ 1)→ 0 as n→∞, as required. �

We can now deduce what I(un) is:

Lemma 2.9 There exists c ∈ R+ such that I(un) = c log n for all n ≥ 1.

3Xı̄ĺıng Zhāng pointed out that this is also a consequence of Stolz’s lemma—or as Wikipedia
calls it, the Stolz–Cesàro theorem.
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Proof We have I(umn) = I(um) + I(un), and by last two lemmas,

I(un+1)− I(un)→ 0 as n→∞.

So can apply Erdős’s theorem (1.5) with f(n) = exp(I(un)) to get f(n) = nc

for some constant c ∈ R. So I(un) = c log n, and c ≥ 0 since I maps into R+.�

We now know that I = cH on the uniform distributions un. It might seem
like we still have a mountain to climb to get to I = cH for all distributions.
But in fact, it’s easy.

Lemma 2.10 I(p) = cH(p) whenever p1, . . . , pn are rational.

Proof Write

p =

(
k1
k
, . . . ,

kn
k

)
where k1, . . . , kn ∈ Z and k = k1 + · · ·+ kn. Then

p ◦ (uk1
, . . . ,ukn

) = uk.

Since I satisfies the chain rule and I(ur) = cH(ur) for all r,

I(p) +

n∑
i=1

pi · cH(uki) = cH(uk).

But since cH also satisfies the chain rule,

cH(p) +

n∑
i=1

pi · cH(uki
) = cH(uk),

giving the result. �

Theorem 2.4 follows by continuity.

Next time: relative entropy.

11


	Warm-up
	Shannon entropy

