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The question in the title probably sounds a bit peculiar; but I 

hope to persuade you that it has a unique sensible interpretation, and 

to show you several ways (at least for a potato shaped like a ball) to 

compute the answer. But my real goal is more ambitious: I hope to 

reform your intuition about geometry, to get you to incorporate into 

your picture of Euclidean geometry the sweeping changes in fundamental 

notions stemming from the work of Euler, Gauss, Riemann, Minkowski, and 

many others. For this reason I say very little about proofs (except to 

indicate where they can be found), and try to show the ideas in the 

simplest setting where they make their appearance. 

Our topic is volume, area, length, and number. We begin with length. 

Imagine an idealized measuring stick, say of length one inch as pictured 

below. (I have drawn the heavy dots to emphasize that I'm thinking of 

a closed segment.) 

Now this is really a rather poor instrument for measuring lengths. 

The defect is that if we magnify the segment by a factor of two, the 

resulting segment is not the disjoint union of two copies of the 

original; the two pieces have a one-point overlap. 

• ., 

This suggests that our original segment was infinitesimally larger 

than one inch; its true size is 1 in + i, the 1 for the one extra point. 

The basic lesson to be drawn from the geometers since Euclid is that it 

is not only possible, but even desirable, to keep track of this infini- 

tesimal excess. So the "total size" of a solid figure in Euclidean 

space should not be a pure volume, but a formal sum of terms volume + 

area + length + number (so formally polynomials in the quantity in=inch). 

Let's calculate some examples: 
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i) 

2) 

A closed line segment of length 

A closed rectangle has size 

Win + 1 I I ~ ~ I  

Lin + 1 

(Lin + i) 

L inches has size Lin + I. 

(Win + i) = LWin 2 + (L + W) in + 1 

3) A right triangle has its size computed as Euclid did, except that 

to take account of the excess 

Bin + 1 

Ain + 1 

we must use 

Size(T~T') = sizeT + sizeT' - size(T~T') 

(Ain + l) (Bin + i) = 2sizeT - (Cin + i) 

AB. 2 A+B+C. 
sizeT = --~in + ~ l n  + 1 

By now, perhaps you have begun to guess the significance of the 

terms in the size. The "area" is just the area as Euclid would have 

computed it. The "length" is one-half the perimeter. (One explanation 

for the factor ½: the boundary is only half exposed, so that for a 

two-dimensional creature to paint the exposed boundary requires only 

half as much paint as if he were to paint the one-dimensional figures 

which are the boundaries of our rectangle and triangle. These bound- 

aries, as geometric figures in their own right, have their usual 

lengths.) The "number" of the figure is what came to be called the 

"Euler characteristic" after Euler's proofs that the number of a 

two-sphere is 2, and some investigations of one-dimensional figures. 

Before going further, we must look a bit more closely at the 

number of a figure. Since the time of Euclid, there have been two 

great advances in our notion of cardinal number. From Cantor we learned 

to count infinite discrete sets, and from Euler we learned to count 

extended bodies. Of these two advances, Euler's has been by far the 

more important; but we seem, most of us, to have spent more effort 

retraining our intuitions to incorporate Cantor's ideas than Euler's. 
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Let's try to remedy that, at least a little, now. First an elementary 

observation about counting: 

number(AU B) = number (A) + number (B) - number (An B) 

as this pile of potatoes illustrates 

6 = 4 + 5 - 3  

Of course any child could observe that, but how many of them have 

observed that the next example illustrates the same phenomenon? 

6 = 4 + 5 - 3  

Each object, be it a small potato or a large one or even a piece of a 

potato, counts as one. 

We seem to get into trouble if our pile includes a doughnut: 

number (AU B) = number (A) + number (B) - number (AnB) 

= 1 + 1 - 2 = 0  

So we're forced to count a doughnut as zero, if we want counting to be 

finitely additive when an extended body (or pile) is written as a union 

of parts which are not clopen. Of course, we're neglecting, for nowp 

the important question of what sorts of bodies and what sorts of parts 

are to be allowed; what is apparent is that some sort of "combinatorial 
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finiteness" is needed. To avoid these difficulties, let's restrict our 

attention for the moment to finite compact polyhedra, for which there 

is no difficulty in making precise the definitions of number, etc. and 

in proving the basic propositions. (But we reserve the right to draw 

examples from more general cases which have been worked out over the 

past century or so.) 

We should illustrate at least one use of this refined notion of 

size, Steiner's formula. Even supposing one is interested only in the 

area of plane figures, one can ask for the area of the set of all points 

at distance at most R inches from a convex plane region T 

In the picture, it's clear that the large region decomposes as 

T U (rectangles) V (sectors of a disc), and the total area is 

Total area = l-Area(T) + (2R in) Length(T) + (~R2in 2) Number(T), 

recalling that the length of T is one-half its perimeter. This is 

quite general, for any compact convex set in N dimensions, and is 

Steiner's formula. (The coefficients are just the n-dimensional measure 

of a ball of radius R in in n-space, here for n = O, I, 2.) The right 

side of Steiner's formula computes something even if T is not convex: 

one must think of the left side as the N-dimensional volume-integral 

of the function whose value at any point p is the number (=Euler 

characteristic) of the intersection of T with the closed ball of 

radius R in centered at p Of course, when T is compact convex, 

this intersection is also, so this number is either 1 or O, and the 

function becomes the characteristic function of the large region. This 

illustrates a general phenomenon in the whole subject: all problems 

reduce to the problem of correctly understanding number; length, area, 

etc. then are relatively easy to understand. 

Another illustration of the primacy of number comes from the 

integral-geometric interpretation of length, etc. for, say, a figure 

in 3-space. To calculate the length (= 1-dimensional measure) look at 

all 2-planes in 3-space (because 2 = 3 - i). Now on the space of planes 

there's a measure, unique up to a constant factor, invariant under rigid 

notions, giving open sets of planes positive measure and compact sets 

of planes finite measure; normalize it so that the set of planes meeting 
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a line segment of length 1 inch has measure 1 inch. (It is best to 

think of this measure as valued in lengths, rather than pure numbers.) 

Now to calculate the length of our figure, simply integrate, over the 

space of planes, the function whose value at any plane is the "number 

of times the plane hits the figure", which must of course be interpreted 

as the Euler characteristic of the intersection of the plane with the 

figure. Similarly, to calculate the area of a figure, normalize the 

(area-valued) measure on the spece of lines so that the set of lines 

meeting a square of side 1 in has measure 1 in 2 , and proceed as be- 

fore. 

Returning now to the example which illustrated Steiner's formula, 

we can notice a bit more. The area, length, and number are not merely 

quantities associated to our triangle, but are the integrals, or total 

measure~of measures supported on the triangle: the area measure is 

the usual one; the length measure is one-half the usual length measure 

on the edges; and the number measure associates to the lower left vertex 

the measure ¼ and to each of the other vertices the measure 3/8, cor- 

responding to the fractions of disc situated at each vertex in our 

picture. Federer has shown that for a class of subsets of Euclidean 

space called "sets of positive reach", significantly generalizing closed 

convex sets, one can use this idea to precisely define the measures, and 

to prove their relevant properties. For closed convex sets, Minkowski 

studied these quantities, which he called "Quermassintegralen". Un- 

fortunately, he normalized them and indexed them in such a way as to 

obscure their geometric interpretation as length, area, etc. 

The formula for the zero-dimensional measure is called the "Gauss- 

Bonnet formula", especially in the case of smooth manifolds with boundary. 

One example, simpler than our 

number(isosceles right triangle) = ¼ + 3/8 + 3/8 = 1 

is familiar to all children. To count the number of pieces of rope in 

a tangled mess of rope, it is unnecessary to separate the pieces; the 

number of the pile is concentrated at the ends of the pieces, each end 

counting one-half. It is a short step, conceptually, from this to the 

idea that the number of a solid object is also the integral of some 

local quantity; for a 3-manifold with boundary, for example a potato, 

in Euclidean 3-space, the Euler characteristic is the integral of a 

measure dm concentrated on the surface of the body: 
o 

dm ° = (44) IRIIR21 ds, 

where ds is the usual surface area measure, and R 1 and R 2 are the 
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"principal radii of curvature" at a point. Note that since R 1 and R 2 
-2 

have the dimensions of length, our measure has dimension (lengt~ • area, 

so is a pure number, as it should be. This formula generalizes to give 

formulas for the k-dimensional measures dm k for an n-manifold M with 

smooth -boundary %M in n-space, for k = O,...,n-l; 

= -I R~II ) ds dm k Cn, k Pn-l-k(Rl ,..., _ 

where Pi is the i-th elementary symmetric function (homogeneous of 

degree i), ds is the usual (n-l)-dimensional surface area measure, 

and Cn, k is a constant which can easily be computed, for example, by 

specializing to the case of a ball, for which we know m k from Steiner's 

formula. For instance, for the potato, or solid body in 3-space, 

dm 2 = ½ ds, 

dm I = (2w)-I(R~ 1 + R~ I) ds, 

dm ° was calculated above, and dm 3 is the usual volume measure re- 

stricted to M (It is a peculiarity of smooth figures that the lower- 

dimensional measures are spread all over the boundary. For polyhedra, 

dm k is concentrated on the k-cells; but if you imagine approximating 

M by polyhedra you see why the measures get spread out.) 

The observation that m (sn), the Euler characteristic of the 
o 

n-sphere, is 2 if n is even, O if n is odd, generalizes. 

2 dmk(M) if n-k is odd 
dmk(~M) = 

O if n-k is even. 

Hence if we take n odd and ~M = @ , so a manifold without boundary, 

then not only is fdm ° = mo(M) = O , but in fact dmo(M) is identically 

zero, so ]fdmo(M) = O for any integrable function f . More generally, 

for a manifold M without boundary, dmk(M) = 0 in all odd codimens- 

ions, since it's ½ dmk(~M). Thus for instance for a 2-manifold with 

boundary (say in 3-space) the length measure is just one half the length 

measure on the boundary curves, and not spread over the surface; while 

the number measure is spread all over, like the area measure. 

Let's look at one more example, to help visualize the measures: a 

solid cylinder M of radius R and height H (This is topologically, 

though not smoothly, a manifold with boundary; so all of the preceding 

paragraph applies to it ). M = Dx I, where D is a disk of radius R, 

and I an interval of length H So the total measure is given by 
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m(M) = (m2(D) + ml(D) + mo(D))(ml(I) + me(I)) 

= {~R 2 + ~R + I)(H + i) 

= ~R2H + ( ~R 2 + ~RH) + ( ~R + H) + 1 

where the homogeneous term of degree k gives mk(M) The formulas 

for m3, m2, and m ° are just the usual ones for volume, half of sur- 

face area, and Euler characteristic; but note the convenience of com- 

bining the terms into a single "polynomial", even for computing the 

surface area. More interesting is the analogous formula for dm ; 

for instance the length measure 

dml(M) = dmo(D ) ~ dml(I) + dml(D)~ dmo(I). 

Thus the length measure on a cylinder is the sum of two simpler (product) 

measures: 

dmo(D) s dml(I) is the product of the measure uniformly distributed 

over the circle ~D , with total measure (the pure number) 1 , multi- 

plied by the length measure on the interval; so this term is uniformly 

distributed over the lateral surface of our cylinder, with total measure 

H (a length). 

dml(D) w dmo(I) is the product of the length measure on D , which 

is uniformly distributed over the circle ~ D , giving each arc a 

measure of ½ its length, multiplied by the pure number measure on I 

which gives each endpoint measure ½ ; so this term is concentrated 

on the top and bottom rims of our cylinder, and gives to each arc 

measure ¼ its length. 

Notice that if we fix H and let R tend to zero, so that our 

cylinder tends to a line segment of length H , then the measures 

dmk(M) tend to those for the segment. This is an instance of a general 

continuity property of the measures, but the correct formulation of 

the appropriate notion of convergence of variable figures has been 

worked out only in special cases, for example for sets of positive 

reach by Federer. For compact convex sets, things are particularly 

simple, as Minkowski already knew: the sets are close if and only if 

they're close in the Hausdorff metric 

d(A,B) = sup({d(a,B), a,A}U~d(b,A), b~B} ). 

Indeed, for (compact) convex sets A,B, the measures have many 

nice properties, for instance: dmk(A) ~0; AGB implies mk(A) ~ mk(B). 
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Thus the length of B is greater than the length of A ; clearly this 

needn't hold if A and B are not convex, as a long spring in a small 

cylinder demonstrates; and dmk(A) ~ 0 is false even for k = O for 

non-convex A For non-convex A , there's a version of positivity: 

m(A) ~ O, not coefficientwise as for convex A , but only in the order- 

ing in which the term of highest degree dominates. For convex A , 

a lot is known about the possible values of the vector 

(l=mo(A), ml(A),..., mn(A) ); the isoperimetric inequality is one 

constraint, and others are known, but I do not believe that a complete 

description of the image of this vector as A ranges over compact 

convex sets is known, even for n = 3 

To realize the utility of having the measures dm k , instead of 

just the total m k = Jdm k , consider Pappus' formulas for the volume 

and surface area of a solid of revolution. These, you will recall, say 

that if we revolve the plane figure K (in the upper half-plane) about 

the x-axis to give a solid K , then 

m 3~) = m 2(K)- 2~ Y2 and 

m 2 (~) = m I (K)" 27 Yl ' 

where Yk is the result of averaging the distance y of a point from 

the x-axis, with respect to the measure dmk(K) (Of course, the 

second formula is usually multiplied by 2 , then saying that the sur- 

face area 2m2(~) is the perimeter 2ml(K) times the average over the 

boundary curve of the y-coordinate times 2n .) But the important 

fact to notice is that Yk cannot be computed from m k ; we need to 

know dm k to do the averaging. Putting Pappus' theorems in this form 

immediately suggests another theorem: 

m I (~) = m O (K) - 2~ Yo 

This is also true, unless K meets the axis of revolution in a set of 

positive length L = ml(K~ axis); then L must be added to the right 

side. For one dimension lower, the main term disappears, but the cor- 

rection does not: 

mo('~) = mo(K,~ axis), 

so the general form is 

mk(~) = mk-i (K)'2~ Yk-i + mk(Knaxis)" 
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It's now easy to use these formulas to get alternative calculations 

of m k for ball and cylinder, as well as for cones and so on. 

All this has been greatly generalized, but much remains to be 

done. We have not emphasized the fact that a figure K has its own 

intrinsic (geodesic) metric dK(X,y), in terms of which the measures 

dm k should have an invariant description, which I don't know how to 

give in a nice way. Closely connected with this are two other problems: 

what characterizes the metric spaces K which bear these measures, 

and how does one describe closeness between such K's? 

I hope that our parade of familiar objects viewed in terms of 

their associated measures dm will have persuaded you that the "length 

of a potato" is a useful notion, and that these lower dimensional 

terms in the measure of a solid are simple enough to be taught in ele- 

mentary calculus. I have performed the experiment; some of my students 

enjoyed it. 

I have left one mystery to the end: what is the actual value of 

the length of a ball? You can work it out by calculating the volume 

of a ball of radius R + S by applying Steiner's formula to a ball of 

radius S Or you can use our formulas for solids of revolution. 

Or you can use the integral-geometric approach. It's twice the diameter. 
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