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ABSTRACT:

This dissertation consists of two stand-alone parts. We begin with an exploration of the

magnitude of an enriched category. Introduced by Leinster in [8], magnitude is a rig valued

invariant of an enriched category sharing many properties with the Euler characteristic of

topological spaces. When the enriching category is simply the category of sets, magnitude

– like the Euler characteristic of topological spaces – obeys a sort of multiplicativity over

fibrations, and also can be computed in many cases via an associated homology theory. First

we show that multiplicativity over fibrations again holds when the enriching category is the

2-category of categories, Cat. Second, motivated in large part by [4], we give a survey of the

problem of computing magnitude via a homology theory in a general enriched categorical

setting. Though we present no new results in this section, we do outline some successes and

many of the difficulties encountered in this area as well as provide a promising direction for

future research.

The second part of the dissertation extends from the work of [2]. In that paper it is

shown that strict monoidal, monoidal, and skew monoidal categories are in one to one

correspondence with maps from the Catalan simplicial set – so named because its simplices

can be counted by the Catalan numbers – into one of three carefully chosen nerves of Cat.

We extend and simplify this result by showing that there is a single nerve, N∆(N2Cat), such

that the three monoidal-type categories already mentioned as well as lax monoidal categories

and Σ-monoidal categories can each be understood as maps from the Catalan simplicial set

to N∆(N2Cat). This provides a general framework for defining and studying monoidal-type

categories. A detailed examination of these maps actually provides for the definition of a

new monoidal-type category which is a joint generalization of the five mentioned above.

This part can presently be found on the arxiv at arXiv:1507.05205, and is also currently

submitted for publication in a slightly modified form.
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ORGANIZATION:

This dissertation consists of two stand-alone parts.

The first part – Topological qualities of enriched category magnitude – is concerned with

the magnitude of enriched categories. The second part – The classification of monoidal-type

categories – is concerned with the Catalan simplicial set and its classification properties with

respect to monoidal-type categories.

This second part can presently be found on the arXiv at arXiv:1507.05205, and is also

currently submitted for publication in a slightly modified form.
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1. Topological qualities of enriched category magnitude

The magnitude of an enriched category was first described in the context of finite cat-

egories – categories with a finite number of objects and finite hom-sets – where it bore

the name ‘Euler characteristic’. The Euler characteristic of a category – a rational num-

ber associated to that category – earns its namesake due to a number of shared properties

with the familiar Euler characteristic of topological spaces. Properly understood, the Euler

characteristic of a category is:

(i) a homotopy invariant;

(ii) multiplicative over cartesian product;

(iii) additive over disjoint union;

(iv) multiplicative over fibrations;

(v) and is computable via an associated homology theory.

More generally, for any enriching monoidal category V, the magnitude of a V-enriched

category also (properly understood) shares properties (i)–(iii). It is presently unknown

whether the final two properties, (iv) and (v), are also shared for any enriching V.

In part 1 of this dissertation, we explore the properties (iv) and (v). In section 1.1, we

will define the magnitude of an enriched category as well as its basic properties including

(i)–(iii) above. In section 1.2 we explain the multiplicativity of the Euler characteristic on

the total space of a fibration for finite categories, and show that the magnitude of Cat-

enriched categories also shares this property. Finally, in section 1.3 we take up the problem

of computing magnitude of an enriched category via a homology theory associated to that

enriched category. I have been unable to produce a homology theory for enriched categories

which can be used to compute magnitude in general. Rather, this section gives a survey

of the problem, including: a description of the finite categorical case; a success story in

the context of the magnitude of finite graphs due to [4]; an account of the difficulties in

generalizing the approach used there; and lastly, a promising direction for future research.

1.1. The magnitude of an enriched category. Suppose (V,⊗, I) is a monoidal category

and write V-Cat for the category of V-enriched categories with enriched functors. In many

cases, the objects of V come with a natural notion of ‘size’ which respects the monoidal

product: if V = FinSet, the category of finite sets, then the size of an object X ∈ FinSet is

simply its cardinality; if V = FinVect, the category of finite dimensional vector spaces, then
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the size is just dimension; if V is a suitable category of topological spaces, then size can

be taken to be Euler characteristic [14]. The magnitude of a finite V-category – that is, a

category enriched in V with a finite number of objects – can then be thought of as a notion

of size of the V-category, induced from the notion of size of the objects of V.

Suppose that K is a commutative rig (i.e. semiring) with multiplication • and multiplica-

tive identity 1, and that we are given a multiplicative gauge function

| − | : (ob(V),⊗, I) // (K, •, 1)

which sends isomorphic objects to the same element in K. For an object v ∈ V, we think

of |v| as the size of v. (For example, when V = FinSet, the gauge returns cardinality of the

set as an element of K = Q.) In this context, the magnitude of a finite enriched category

A ∈ V-Cat can be computed (should it exist) according to the following procedure.

Let n be the number of objects in A and define the n× n matrix ZA by

(ZA)i,j := |A(ai, aj)|.

That is, the (i, j)th entry of ZA is the size (given by the gauge function) of the mapping

object between the ith and jth objects of A. The matrix ZA is therefore an element of the

matrix rig Mn(K) and so can be understood as a linear map on Kn.

A weighting for a matrix A ∈Mn(K) is a column vector w ∈ Kn satisfying the weighting

equations
∑

1≤j≤nAijwj = 1 for all 1 ≤ i ≤ n. That is, Aw = (1, 1, ..., 1)>. Similarly, a

coweighting for A is a row vector c satisfying the coweighting equations
∑

1≤i≤n ciAij = 1

for all 1 ≤ j ≤ n. In other words, cA = (1, 1, ..., 1). Weightings and coweightings need not

exist for every A, e.g. A = 0. On the other extreme, a matrix has a unique weighting and

coweighting if it is invertible. There are also noninvertible matrices with both weightings and

coweightings and these need not be unique.1 Nevertheless, all weightings and coweightings

for a matrix A do share an important property in common:

Proposition 1.1.1. If a matrix A ∈Mn(K) has a weighting w and a coweighting c, then:

∑
1≤j≤n

wj =
∑

1≤i≤n

ci.

1If A ∈M2(R) is given by Aij = 1 for all 1 ≤ i, j ≤ 2, then weightings and coweightings for A come in a

one parameter family.
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The short proof can be found in Lemma 1.1.2 of [8].

In the context of the matrix ZA, a weight w for ZA satisfies the weighting equations∑
b∈A
|A(a, b)|wb = 1

for each a ∈ A and similarly for a coweight c. For simplicity, we define a (co)weight vector

for the enriched category A to be a (co)weight vector for the matrix ZA. We can now state

the definition of magnitude.

Definition 1.1.2. Suppose (V,⊗, I) is a monoidal category, K a commutative rig, | − | a

gauge function, and A ∈ V-Cat finite. Then if A has both a weighting w and coweighting c,

we define the magnitude of A:

|A| :=
∑
b∈A

wb =
∑
a∈A

ca.

The magnitude of a finite V-category A is therefore an element of the rig K associated

to A. Magnitude shares a number of properties with the Euler characteristic of topological

spaces as we see in the following proposition.

Proposition 1.1.3. Let A and B be finite V-categories. Then we have:

(1) If both A and B have magnitude and there is an enriched functor X : A // B with

either a left or right adjoint, then |A| = |B|.

(2) If A ' B, then A has magnitude if and only if B does, and in this case |A| = |B|.

(3) If both A and B have magnitude, then so does their monoidal product A ⊗ B and

|A⊗ B| = |A||B|.2

(4) If A and B have magnitude, then so does their coproduct A + B with |A + B| =

|A|+ |B|.3

The proof(s) can be found in section 1.4 of [8].

We can understand the first two items of Proposition 1.1.3 as analogous to the fact that

Euler characteristic of topological spaces is a homotopy invariant, where adjoint functors

play the role of homotopy equivalence. Magnitude is therefore an adjoint invariant of finite

2The monoidal product ⊗ of V-categories exists when V is symmetric.
3The coproduct + of V-categories exists when V has an initial object ∞ with v ⊗∞ ∼= ∞ ∼= ∞⊗ v for

all v ∈ V.
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V-categories. The latter two items are analogous to the statements that Euler characteristic

is multiplicative over cartesian product and additive over disjoint union. It is also worth

noting that (again like Euler characteristic) there are some finite V-categories A without

magnitude (we also may say that the magnitude of such categories is undefined), because

the matrix ZA need not have both a weighting and coweighting.

Magnitude of enriched categories is also a remarkably general concept, specializing to

specific invariants for every choice of V and gauge function. In the three cases of V =

FinSet, FinVect, and an appropriate subcategory of Top, with their respective notions of size,

magnitude becomes an invariant of categories, linear categories, and topologically enriched

categories respectively. We shall describe more possibilities for V later on in this paper.

One instance of magnitude which has received a great deal of attention is the case when

V = FinSet so that V-Cat is the full subcategory of Cat consisting of those categories with

finite hom-sets. By finite category we mean a category with a finite number of objects and

finite hom-sets, that is, a finite FinSet-category. The magnitude of finite categories shares

two additional properties with the Euler characteristic of a topological space. Consequently,

it also goes by the name of Euler characteristic of a category and we will write χ(A) for

the Euler characteristic/magnitude of the finite category A. In the rest of Part 1 of this

dissertation, we will rigorously present these two additional properties – multiplicativity

over fibrations, and computability via homology – shared by topological and categorical

Euler characteristics. We will also show some of the work that has gone into exploring these

properties for magnitude of V-categories outside of the context where V = FinSet.

1.2. Magnitude and fibrations. We have already mentioned that the Euler characteristic

of topological spaces is multiplicative over topological product: χ(X × Y ) = χ(X)χ(Y ) for

topological spaces X and Y each with Euler characteristic. This is also the case for very

general notions of ‘twisted’ products. If p : E // B is a Q-orientable (Hurewicz) fibration

with fiber F and B path-connected, then if any two of B,E or F have Euler characteristic,

then so does the third and χ(E) = χ(F )χ(B). (See Proposition 13.5.1 of [15]) The category

of categories Cat also has a distinguished class of maps known as (Grothendieck) fibrations,

and we shall see that an analogous result holds for the Euler characteristic of categories.

The total space E of a fibration of categories p : E // B can be considered as resulting

from the Grothendieck construction. Given a pseudo-functor X : B // Cat we can define a
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new category EX, the Grothendieck construction applied to X:

Ob EX := {(b, x) | b ∈ Ob B and x ∈ Ob Xb}.

EX((b, x), (b′, x′)) := {(f, φ) | f : b // b′ and φ : (Xf)(x) // x′}.

(f ′, φ′) ◦ (f, φ) := (f ′ ◦ f, φ′ ◦ (Xf ′)(φ)) : (b, x) // (b′, x′) // (b′′, x′′).

The category EX comes with a projection p : EX // B by mapping (b, x) to b and (f, φ)

to f . Thus the fiber of p over an object b ∈ B is the category Xb. This projection is a

fibration, and conversely, every total space of a fibration is equivalent to a category EX for

some X : B // Cat.4

Proposition 1.2.1. Let B be a finite category, X : B // Cat a pseudo-functor such that

Xb is finite for each b ∈ B. Suppose B and Xb for each b ∈ B have Euler characteristic.

Denoting a weight vector for B by wB we then have:

χ(EX) =
∑
b∈B

wB
b χ(Xb).

This proposition should be understood as the analogue of the multiplicativity of topologi-

cal Euler characteristic over fibrations. One way of parsing the somewhat more complicated

formula for χ(EX) in the categorical case is that the fibers Xb need not be equivalent (or

related by an adjoint pair of functors), whereas the fibers of a topological fibration are each

homotopically equivalent, hence have the same Euler characteristic. The proof of Propo-

sition 1.2.1 can be found in [7], but we record it here in full. We will need the following

lemma:

Lemma 1.2.2. Let B be a finite category, X : B // Cat a pseudo-functor such that Xb is

finite for each b ∈ B. Suppose we have weight vectors wB for B and wXb for Xb for each

b ∈ B. Then we can define a weight vector w for EX by:

w(b,x) := wB
bw

Xb
x .

Proof. We need only show that the purported definition satisfies the weighting equation for

all (b′, x′) ∈ EX:

4See http://ncatlab.org/nlab/show/Grothendieck+fibration.
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∑
(b,x)∈EX

|EX((b′, x′), (b, x))|w(b,x) = 1.

We have:

∑
(b,x)∈EX

|EX((b′, x′), (b, x))|w(b,x) =
∑
b∈B

∑
x∈Xb

|EX((b′, x′), (b, x))|wXbx wB
b(1.2.1)

=
∑
b∈B

∑
x∈Xb

 ∑
f∈B(b′,b)

|Xb((Xf)(x′), x)|

wXbx wB
b(1.2.2)

=
∑
b∈B

∑
f∈B(b′,b)

(∑
x∈Xb

|Xb((Xf)(x′), x)|wXbx

)
wB
b(1.2.3)

=
∑
b∈B

∑
f∈B(b′,b)

wB
b(1.2.4)

=
∑
b∈B
|B(b′, b)|wB

b(1.2.5)

=1.(1.2.6)

Together with the analogous lemma for coweight vectors, we have that if B and Xb have

Euler characteristic, hence both weight and coweight vectors, then EX has both weight

and coweight vectors with formulas given by the above lemma. Under the hypotheses of

Proposition 1.2.1, we have therefore:

χ(EX) =
∑

(b,x)∈EX

w(b,x) =
∑
b∈B

∑
x∈Xb

wXbx wB
b =

∑
b∈B

wB
b χ(Xb).

This concludes the proof of Proposition 1.2.1.

Recalling that the Euler characteristic of a finite category is just the magnitude of that

category viewed as a FinSet-enriched category, one might hope that there is a statement

generalizing Proposition 1.2.1 to the context of magnitude for V-enriched categories for any

V. The immediate difficulty is trying to make sense of the Grothendieck construction in the

context of enriched categories; if B ∈ V-Cat is finite, we cannot in general consider enriched

functors X : B // V-Cat because, in general, V-Cat is not itself a V-category (nor can it

be made into one in some natural way). Nevertheless, there are two enriching categories
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besides FinSet where we do have a similar result. The first is when V = R≥0, the non-

negative real numbers with monoidal product +; see Theorem 2.3.11 of [8]. The second is

when V = FinCat, the 2-category of finite categories with cartesian product × and unit I,

the one object category. In what follows, we will write 2Cat to denote Cat-Cat, the category

of strict 2-categories. By a finite 2-category we will mean a finite FinCat-Cat, that is, a strict

2-category with finite objects, finite 1-cells, and finite 2-cells.

In order to make sense of magnitude of finite 2-categories, we must provide a rig K and

multiplicative gauge function FinCat // K. The upshot of Proposition 1.1.3 is that the

Euler characteristic χ : FinCat // Q is a multiplicative isomorphism invariant function,

hence can be used as a gauge function. (So K = Q in this case.) Let us rename this as

χ1 : FinCat //Q. Of course, it may be that χ1(A) is not defined for some finite category A

– if A has no weight or coweight vector – but this will not cause problems for us. Now that

we have a gauge for V = Cat, we can follow the procedure to produce magnitude for finite

2-categories, which we will call χ2. If B ∈ 2Cat is finite such that χ1(B(bi, bj)) is undefined

for some objects bi and bj , making the matrix (ZB)i,j undefined, we will simply say χ2(B)

is undefined as well.5

In order to reproduce Proposition 1.2.1 in this context, we must first define a Grothendieck

construction E for finite 2-categories.6

Definition 1.2.3. Let B ∈ 2Cat, and X : B // 2Cat be a Cat-enriched functor of strict

2-categories, where the latter is viewed as an object of 2Cat by forgetting the 3-cells. We

define the 2-category of elements EX ∈ 2Cat as follows.

obEX := {(a ∈ obB, x ∈ obXa)} =
∐
a∈obB

Xa.

As for the hom-categories, we proceed in the following way. For a pair of objects (a, x)

and (b, y), define the functor Xaxby : B(a, b)op // Cat by the composite:

B(a, b) 2Cat(Xa,Xb) Xb Catop.
Xa,b evx Xb(−, y)

5This procedure can be continued inductively; By Proposition 1.1.3, χ2 is multiplicative and isomorphism

insensitive, and hence can again be used as a gauge function for the finite objects of 2Cat, or Fin2Cat. This

gives a magnitude for finite 3-categories, χ3, and so on.
6See http://ncatlab.org/nlab/show/n-fibration for a more general (contravariant) version of this

construction.
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By evx we mean the functor taking a Cat-functor F : Xa //Xb to Fx ∈ Xb and an enriched

transformation H : F ⇒ G to its component at x, Hx : Fx //Gx. Here we view B(a, b) as

a strict 2-category with only identity 2-cells so that all four objects type check as objects of

2Cat. Explicitly this composite gives:

Xaxby(f : a // b) := Xb((Xf)(x), y).

Xaxby(h : f ⇒ g) := Xh∗x : Xb((Xg)(x), y) //Xb((Xf)(x), y).

Here (Xh)∗x is composition with (Xh)x, hence mapping an object p ∈ Xb((Xg)(x), y) to the

object (p ◦ (Xh)x) ∈ Xb((Xf)(x), y). Morphisms s : p⇒ q : (Xg)(x) // y are horizontally

composed with the identity on (Xh)x, that is, (Xh)∗x : s 7→ s ◦ (Xh)x.

Finally, for the morphisms of EX, we define the hom-category using the Grothendieck

construction a dimension lower:

EX(a, x)(b, y) := E(Xaxby).

Thus we have:

obEX(a, x)(b, y) = {(f, η)|f ∈ obB(a, b), η ∈ obXb((Xf)(x), y)}

=
∐

f∈obB(a,b)

Xb((Xf)(x), y).

EX(a, x)(b, y)(f, η)(g, µ) = {(h, ε)|h : f ⇒ g ∈ B(a, b), ε : µ ◦ (Xh)x ⇒ η}

=
∐

h∈C(a,b)(f,g)

Xb((Xf)(x), y)(µ ◦ (Xh)x, η).

(Xf)(x) (Xg)(x)

y

η µ

(Xh)x

ε

Composition in EX is given by functors EX(a, x)(b, y)×EX(b, y)(c, z) //EX(a, x)(c, z).

Given objects (f, η) ∈ EX(a, x)(b, y) and (g, µ) ∈ EX(b, y)(c, z), define the composite
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(g, µ)◦(f, η) := (g◦f, µ◦(Xg)(η)). Given morphisms (h, ε) ∈ EX(a, x)(b, y)(f, η)(f ′, η′) and

(j, δ) ∈ EX(b, y)(c, z)(g, µ)(g′, µ′), define the composite (j, δ) ◦ (h, ε) := (j ◦ h, δ ◦ (Xg)(ε)).

The non-filled portions of the following diagram commute and show this composite.

(Xg)(y) (Xg′)(y)

z

(Xg)((Xf ′)(x))

(Xg)((Xf)(x)) (Xg′)((Xf ′)(x))
(X(j ◦ h))x

(Xg)(η) (Xg′)(η′)

(Xg)((Xh)x)

(Xg)(η′)

(Xj)(Xf ′)(x)

(Xg)(ε)

µ µ′

(Xj)y

δ

This is an associative assignment and furthermore the object (1a, 1x) with its identity form

an identity for this composition in the category EX(a, x)(a, x).

Armed with a Grothendieck construction for Cat-functors into 2Cat, we can state and

prove the analogue to Proposition 1.2.1.

Proposition 1.2.4. Let B be a finite 2-category, X : B // 2Cat a Cat-functor such that

Xb is finite for each b ∈ B. Suppose χ2(B) and χ2(Xb) exists for each b ∈ B. Denoting a

weight vector for B by wB we then have:

χ2(EX) =
∑
b∈B

wB
b χ2(Xb).

As before, this follows easily from a lemma:
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Lemma 1.2.5. Let B be a finite 2-category and X : B // 2Cat a Cat-functor such that Xb

is finite for each b ∈ B. Suppose we have weight vectors wB for B and wXb for Xb for each

b ∈ B. In particular this means that χ1(B(a, b)) and χ1(Xb(x, y)) exists for all a, b ∈ B and

x, y ∈ Xb. Then we can define a weight vector w for EX by:

w(a,x) := wB
aw

Xa
x .

Proof. We simply need to show the claimed weighting satisfies the weight equations.∑
(b,y)∈EX

χ1(EX(a, x)(b, y))wB
bw

Xb
y =

∑
b∈B

∑
y∈Xb

χ1(EX(a, x)(b, y))wXby wB
b

=
∑
b∈B

∑
y∈Xb

 ∑
f∈B(a,b)

χ1(Xb((Xf)(x), y))w
B(a,b)
f

wXby wB
b

=
∑
b∈B

∑
f∈B(a,b)

∑
y∈Xb

χ1(Xb((Xf)(x), y))wXby

w
B(a,b)
f wB

b

=
∑
b∈B

∑
f∈B(a,b)

w
B(a,b)
f wB

b

=
∑
b∈B

χ1(B(a, b))wB
b

=1.

Proof. (Of Proposition 1.2.4)

The hypotheses together with Lemma 1.2.5 and its analogue for coweight vectors imply both

a weight and coweight for EX exist and are given by the formula above. Therefore we can

compute:

χ2(EX) =
∑

(a,x)∈obEX

wa,x =
∑
a∈obB

∑
x∈obXa

wB
aw

Xa
x =

∑
a∈obB

(
wB
a

∑
x∈obXa

wXax

)

=
∑
a∈obB

wB
aχ2(Xa).
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1.3. Magnitude and homology. One way to compute the Euler characteristic of a topo-

logical space X is to first compute its (singular) homology groups H∗(X) and take the

alternating sum of their dimensions:

(?) χ(X) =
∑
i=0

(−1)irank(Hi(X)).

Indeed, the modern viewpoint on the topological Euler characteristic is that it is simply a

decategorification of the homology groups. It turns out that there is also a homology theory

for categories which decategorifies to the categorical Euler characteristic in the same way.

If A is a skeletal category which contains no endomorphisms except identities, then

by Proposition 2.11 of [7], its Euler characteristic can be computed in terms of the non-

degenerate i-simplices of its nerve7 N(A)ndgi as:

(??) χ(A) =
∑
i=0

(−1)i|N(A)ndgi |.

We can associate to any simplicial set a chain complex under one direction of the Dold-Kan

correspondence and can then compute the homology of the chain complex in the usual way.

In this sense the nerve N(A)∗ can be thought of as providing a sequence of homology groups

NH(A)∗ for the category A. Moreover, it is a corollary of the Dold-Kan correspondence

that taking the alternating sum of the non-degenerate simplices of N(A)∗ – as we have done

in (??) – gives the same result as taking the alternating sum of the ranks of the homology

groups NH(A)∗. Therefore (??) realizes the Euler characteristic of a category χ as the de-

categorification of a homology theory for categories, at least in some special circumstances.

We now turn to the following question: Is the magnitude of enriched categories a decategori-

fication of a homology theory for enriched categories? Specifically, such a general magnitude

homology theory (GMHT) should not depend on the choice of the enriching category V and

have a number of other properties which we will outline later in this section.

At the time of writing this dissertation, to the best of my understanding, there are no

known GMHT’s in the literature. Indeed, I myself have tried to produce a GMHT and

have not met with much success. My own attempts began with [4]; it produces a homology

theory for finite graphs which decategorifies to the magnitude of graphs (viewed as enriched

categories in a way we will describe), and I was hopeful their methods may generalize to a

7Recall N(A)∗ is the simplicial set whose i-simplices consist in i-tuples of composable morphisms in A.

A simplex is non-degenerate if it contains no identity morphisms.
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full blown GMHT. What follows is a brief account of the relevant portions of that paper, as

well as a description of the difficulties in generalizing their methods. Finally, I will present

a general homology theory of V-categories which does not depend on V and which I believe

shows great promise, but ultimately has yet to bear fruit in the search for a GMHT.

The key observation which makes a GMHT plausible is a rewrite of (??) for enriched

categories. If A ∈ V-Cat is finite with |A(ai, ai)| = 1 for all objects ai ∈ A, and the

right hand side of the following is finite, by a straightforward adaptation of the proof of

Proposition 2.11 of [7] we can compute the magnitude of A as:

(? ? ?) |A| =
∑
i=0

(−1)i
∑

a0 6=...6=ai

|A(a0, a1)⊗ ...⊗ A(ai−1, ai)|.

It seems therefore that if there is a GMHT, it ought to decategorify to precisely the right

hand side of (? ? ?). A first and significant issue is that the summed elements |A(a0, a1) ⊗

... ⊗ A(ai−1, ai)| lie in the rig K, which may a priori be any rig whatsoever, while on the

other hand, taking an alternating sum of ranks of homology groups will always produce

an integer. This issue is tackled nicely in [4] by creating not a sequence, but a bi-graded

collection of homology groups where one of the gradings tracks these K elements. Let us

turn now to this homology theory for finite graphs as introduced in [4].

A finite graph8 can be viewed as a metric space with shortest edge path metric, and as a

metric space, can then be viewed as an enriched category as in [5]. The enriching category is

V = Z∞ := (Z≥0∪{∞}) with arrows corresponding to ≥, + for monoidal product, and 0 for

unit. The typical gauge function in this context takes values in a ring of rational functions

in one variable, K = Q(q). The gauge | − | : Z∞ // Q(q) sends a non-negative integer

d 7→ qd and ∞ 7→ 0. The magnitude |G| of a graph G is just its magnitude viewed as a

Z∞-category. Writing d(x, y) for the hom-object (i.e. distance) between vertices x and y,

we can compute this magnitude via (? ? ?)9 as:

|G| =
∑
i=0

(−1)i
∑

a0 6=...6=ai

qd(a0,a1)+...+d(ai−1,ai).

8By ‘graph’ we mean undirected graph with no loops or multiple edges.
9In the context of graphs, the right hand side is sensible as a formal power series as an element of Q(q)

even if the summation is infinite. This equation therefore holds true for all graphs: See Proposition 3.9 of

[9]
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The bi-graded homology groups of [4] stem from a sequence of magnitude chain complexes

MC∗,l(G) associated to the graph G, where l ∈ Z∞. They define:

MCi,l(G) :=

Z{(a0, a1, ..., ai) ∈ Gi+1 | d(a0, a1) + ...+ d(ai−1, ai) = l and aj 6= aj+1 for all 0 ≤ j < i}.

The boundary maps ∂ : MCi,l(G) //MCi−1,l(G) are produced as an alternating sum of face-

like maps: ∂ :=
∑i
j=0(−1)jdj where for 0 ≤ j ≤ i the function dj : MCi,l(G) //MCi−1,l(G)

is given by dj(a0, ..., aj , ..., ai) = (a0, ..., âj , ..., ai) if d(a0, a1) + ... + d(aj−1, aj+1) + ... +

d(ai−1, ai) = l and 0 otherwise. One can check that ∂2 = 0, though this is a surprisingly

subtle point, as we shall see.

With these definitions, one can rewrite equation (1.3) directly in terms of the magnitude

chain complexes:

|G| =
∑
i=0

(−1)i
∑
l=0

rank(MCi,l(G))ql.

Similarly, we can pass to the homology – the graph magnitude homology of G – of each chain

complex: MHi,l(G) := Hi(MC∗,l). Once more we have:

(†) |G| =
∑
i=0

(−1)i
∑
l=0

rank(MHi,l(G))ql.

Remark 1.3.1. The condition that aj 6= aj+1 for all 0 ≤ j < i in the definition of MCi,l(G)

is not strictly necessary. The chain complexes formed without that condition will be chain

homotopic to the complexes MC∗,l(G) – again by an aspect of the Dold-Kan correspondence

– and hence give rise to the same homology groups MH∗,l(G).

The graph magnitude homology has some very desirable properties beyond its role in

equation (†). Firstly, it is a functorial assignment; Given a distance decreasing map of

graphs f : G //H, there is an induced map f# : MC∗,l(G) //MC∗,l(H) for each l which

sends (a0, ..., ai) 7→ (fa0, ..., fai) if the latter is in MCi,l(H) and 0 otherwise. This in turn

induces a map on homology f# : MH∗,l(G) //MH∗,l(H) by passing to equivalence classes.
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This makes MH∗,l(−) a functor taking graphs and distance decreasing maps to groups with

group homomorphisms. With this notation in mind, we have:

Proposition 1.3.2. (See Corollary 16, Theorem 21, and Proposition 17 of [4])

Let G and H be finite graphs. Then we have:

(1) A distance decreasing map f : G // H is an isomorphism if and only if f# :

MH∗,l(G) //MH∗,l(H) is an isomorphism for all l.

(2) (Kunneth Theorem) Let × denote the cartesian product of graphs. The following

is short exact:

0 //MH∗,∗(G)⊗MH∗,∗(H) //MH∗,∗(G×H)

// Tor(MH∗−1,∗(G),MH∗,∗(H)) // 0.

Here, the second map is induced by the exterior product10.

(3) (Additivity) Writing G+H for the disjoint union of the graphs and e1, e2 for the

inclusions of G and H into that disjoint union, we have that the induced map below

is an isomorphism.

(e1)# ⊕ (e2)# : MH∗,∗(G)⊕MH∗,∗(H) //MH∗,∗(G+H).

Remark 1.3.3. Magnitude homology of graphs also satisfies a form of the Mayer-Vietoris

sequence which allows computation of the homology of certain kinds of unions of graphs. See

Section 6 of [4].

Together with equation (†), Proposition 1.3.2 should be viewed as a 1-to-1 categorifica-

tion of Proposition 1.1.3.11 Proposition 1.3.2 can be taken as a list of requirements for a full

GMHT.

A GMHT ought to be: adjoint functor invariant in the sense that if A and B are V-

categories connected by a pair of adjoint functors, these functors should induce isomorphisms

10See definition 20 of [4]
11An adjoint pair of enriched functors between graphs viewed as enriched categories is necessarily an

isomorphism of graphs. This explains why item (1) of Proposition 1.3.2 seems much stronger than the

corresponding items (1) and (2) of Proposition 1.1.3.
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on homology; multiplicative over product in the sense of the Kunneth theorem; additive over

coproduct; and of course decategorify to magnitude without depending on the choice of V.

As we have said, no such GMHT is known. We turn now to exploring some of the

difficulties in adapting the approach of [4] to a more general context. In what follows, we shall

assume that the V-categories under consideration all have the property that |A(a, a)| = 1

for all a ∈ A and that the right hand side of equation (? ? ?) is always sensible (finite, or

understandable as a formal power series).

A straightforward adaptation of magnitude homology for graphs to general V-categories

would be to define a sequence of chain complexes indexed by objects of V. Let A ∈ V-Cat

and define the following bigraded collection of free groups:

MCi,v(A) :=

Z{(a0, ..., ai) ∈ obAi+1 | A(a0, a1)⊗ ...⊗ A(ai−1, ai) ∼= v and aj 6= aj+1 for all 0 ≤ j < i}.

Here the grading is given by i ∈ N and v ∈ V.12

With this definition, we can compute the magnitude |A| of A by the following rewrite of

equation (? ? ?).

|A| =
∑
i=0

(−1)i
∑
v∈obV

rank(MCi,v(A)).

We can again set ∂ :=
∑i
j=0(−1)jdj where by analogy:

dj(a0, ..., aj , ..., ai) :=


(a0, .., âj , ..., ai) if

(
A(a0,a1)⊗...⊗A(aj−1,aj+1)⊗...

...⊗A(ai−1,ai)

)
∼= v

0 otherwise

These definitions would induce a GMHT for V-categories as it does for graphs, if not

for one key problem: the differential ∂ =
∑
j(−1)jdj does not necessarily satisfy ∂2 = 0

when V 6= Z∞. For graphs, ∂2 = 0 because the face maps dj commute (dkdj = dj−1dk

whenever k < j) but this does not happen in general. Suppose A has four objects 0, 1, 2,

and 3. Consider the following commutative diagram in V where each edge is a composition

morphism:

12Alternatively, and perhaps more naturally, we could require that |A(a0, a1)⊗ ...⊗A(ai−1, ai)| = v and

take v ∈ K.
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A(0, 1)⊗ A(1, 2)⊗ A(2, 3)

A(0, 2)⊗ A(2, 3) A(0, 1)⊗ A(1, 3)

A(0, 3)

If A(0, 1) ⊗ A(1, 2) ⊗ A(2, 3) ∼= A(0, 2) ⊗ A(2, 3) ∼= A(0, 3) ∼= v, then d1d1(0, 1, 2, 3) =

d1(0, 2, 3) = (0, 3). But this situation does not imply in general that three objects on the

right hand side are also isomorphic. If the objects A(0, 1)⊗ A(1, 2)⊗ A(2, 3) and A(0, 1)⊗

A(1, 3) are not isomorphic, then A(0, 1) ⊗ A(1, 3) � v and so d2(0, 1, 2, 3) = 0 and hence

d1d2(0, 1, 2, 3) = 0 6= (0, 3). This does not happen in the context of graphs because if both

edges on the left hand side are equalities, then so must the two edges on the right as can be

easily checked.

Therefore the free groups MC∗,v(A) do not in general assemble into a chain complex

with ∂ as above, and therefore do not provide a homology theory. We may consider different

boundary maps ∂ on these sets with the hopes of finding one which makes them into a chain

complex, but no interesting examples are known. The alternative is to attempt to tweak the

definition of MC∗,v(A). In what follows, we drop the condition that aj 6= aj+1 for all 0 ≤

j < i to simplify our definitions in accordance with Remark 1.3.1.

(1) Define:

MCi,v(A) := Z{(a0, ..., ai) ∈ obAi+1 | ∃φ : v // A(a0, a1)⊗ ...⊗ A(ai−1, ai)}.

For each v ∈ V, this is a chain complex with ∂ an alternating sum of dj : (a0, .., ai) 7→

(a0, ..., âj , ..., ai). But the condition that there exists a map from v is no condition

at all for many enriching V’s. For example, when V = FinSet, there exist functions

between every pair of non-empty sets. In this sense MCi,v(A) is too large, or, said

another way, contains too little information.

(2) Define:

MCi,v(A) := Z{(a0, ..., ai, φ) ∈ obAi+1 ×morV | φ : v // A(a0, a1)⊗ ...⊗ A(ai−1, ai).}
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This is a chain complex with ∂ an alternating sum of face maps:

dj : (a0, ..., ai, φ) 7→ (a0, ..., âj , ..., ai, ◦j ◦ φ).

Where here we write ◦j for the composition morphism with domain A(aj−1, aj) ⊗

A(aj , aj+1) and codomain A(aj−1, aj+1). But in this case, the alternating sum only

goes from j = 1 to j = i − 1 because there is no natural choice of face maps d0

or di: If we take e.g d0 to omit a0, there is no natural way to change φ into a

map v // A(a1, a2) ⊗ ... ⊗ A(ai−1, ai). While this definition solves the problem of

the previous by reintroducing information with the inclusion of φ, it turns out that

missing d0 and di is a significant problem; for general homological algebra reasons,

the associated homology theory is trivial.13

(3) Again define:

MCi,v(A) := Z{(a0, ..., ai, φ) ∈ obAi+1 ×morV | φ : v // A(a0, a1)⊗ ...⊗ A(ai−1, ai)}.

But this time, define d0 to omit a0 only if A(a0, a1) ∼= I the unit for ⊗ and is

otherwise 0, and similarly for di. We can compose φ with the unit isomorphisms λ

and ρ of the monoidal category to produce the requisite map v //A(a1, a2)⊗ ...⊗

A(ai−1, ai). Unfortunately, these maps d0 and di do not commute with the others

as they should, so that ∂ as an alternating sum of the face maps once fails to satisfy

∂2 = 0.

This story continues with a variety of other possible definitions, some more or less exotic

and all ultimately unsatisfactory for one reason or the other. We believe, however, the most

promising definition is the one we turn to define next. The inspiration for what follows

is a combination of the above ideas with classical singular homology of topological spaces.

We will construct homology groups for A ∈ V-Cat from a simplicial set whose k-simplices

consist in the enriched functors from simple ‘k-simplex’ V-categories to A. Our k-simplex

V-categories can be thought of as the topological k-simplices, but with objects of V labelling

the edges. Call a monoidal category (V,⊗, I) magnitudinal if it is closed, has an initial

object ∞, and has the property that if v, w ∈ V with v ⊗ w ∼= I, then it must be that

13From a simplicial point of view, underlying MCi,v(A) is an augmented simplicial set with extra degen-

eracies. See e.g. Section 4.5 of [13]
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v ∼= I ∼= w. Every enriching category V mentioned thus far is magnitudinal and we assume

in what follows that V is always magnitudinal.

Given objects v1, ..., vk ∈ V, we can form the free V-category on the directed graph which

has k + 1 vertices 0, ..., k, and edges from j − 1 to j labelled by vj for all 1 < j ≤ k. The

resulting V-category – which we shall denote Fk(v1, ..., vk) – can be explicitly described: It

has k + 1 objects 0, .., k ; the hom-object from j − 1 to j is vj ; the hom-object from j to j

is I; the hom-object from j to j′ with j < j′ is the tensor vj ⊗ ... ⊗ vj′−1; the hom-object

from j′ to j with j < j′ is ∞. Composition

Fk(v1, ..., vk)(j, j′)⊗ Fk(v1, ..., vk)(j′, j′′) // Fk(v1, ..., vk)(j, j′′)

is the identity if j < j′ < j′′; is λ if j = j′ ≤ j′′; is ρ if j ≤ j′ = j′′; and is the unique

map from the initial object ∞ otherwise.14 Because Fk(v1, ..., vk) is free, to define a functor

φ : Fk(v1, ..., vk) // A where A ∈ V-Cat, it suffices to choose objects φ(0), ..., φ(k) ∈ A and

maps φj−1,j : vj // A(φ(j − 1), φ(j)) for all 0 < j ≤ k. As a result, we can consider Fk as

a functor Vk // V-Cat.

For a fixed v ∈ V, we define the category Vkv to be the full subcategory of Vk consisting

of those tuples (v1, ..., vk) such that v1 ⊗ ...⊗ vk ∼= v. The functor Fk restricts to a functor

Fk : Vkv // V-Cat.

Definition 1.3.4. Define the lax-coslice category Cat//(V-Cat) to have pairs

(A ∈ Cat, X : A // V-Cat) for objects. A morphism (A, X) // (B, Y ) consists in a functor

ε∗ : B // A and a natural transformation ε∗ : X ◦ ε∗ ⇒ Y :

B A

V-Cat

(A, X)

(B, Y )

Y X

ε∗

ε∗

(ε∗, ε
∗)

Composition is given in the expected way as: (µ∗, µ
∗) ◦ (ε∗, ε

∗) = (µ∗ ◦ ε∗, ε∗ • (µ∗ ◦ 1ε∗))

where here we write • for vertical composition of natural transformations.

14It is a consequence of V being closed that v ⊗∞ ∼=∞ ∼=∞⊗ v for all v ∈ V. Thus if either j′ < j or

j′′ < j′, the source of the composition map is isomorphic to ∞.
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Writing ∆ for the simplex category, we can define a cosimplicial object

F (−, v) : ∆ // Cat//(V-Cat)

for every object v ∈ V as follows. For an object [k] ∈ ∆, define

F (k, v) := (Vkv , Fk : Vkv // V-Cat).

Writing di and si for the coface and codgeneracy maps in ∆, we will define the coface maps

F (di, v) = (δi, δ
i) : F (k − 1, v) // F (k, v) and codegeneracy maps F (si, v) = (σi, σ

i) :

F (k + 1, v) // F (k, v) for 0 ≤ i ≤ k as follows:

δi(v1, ..., vk) :=


(v1, ..., vi ⊗ vi+1, .., vk) if 1 ≤ i ≤ k − 1

(v2, ..., vk) if i = 0 and v1
∼= I

(v1, ..., vk−1) if i = k and vk ∼= I

And define the transformation...

δi : Fk−1 ◦ δi ⇒ Fk

δiv1,...,vk
: Fk−1(δi(v1, ..., vk)) // Fk(v1, ..., vk)

... to be the map defined by sending each object j to di(j), and the identity on each mapping

object. As for the codegeneracy maps, define:

σi(v1, ..., vk) := (v1, ..., vi, I, vi+1, ..., vk)

And define the transformation...

σi : Fk+1 ◦ σi ⇒ Fk

σiv1,...,vk
: Fk+1(σi(v1, ..., vk)) // Fk(v1, ..., vk)

... to be the map defined by sending each object j to si(j), and again the identity on each

mapping object, recalling that Fk(v1, ..., vk)(i, i) = I.

It is straightforward to check that coface maps commute with coface maps and codegener-

acy maps commute with codegeneracy maps according to the requirements for a cosimplicial

object. We do, however, make use of the property v ⊗w ∼= I implies v ∼= I ∼= w in verifying

that outer face maps commute, e.g. that (δ0, δ
0) ◦ (δ0, δ

0) = (δ1, δ
1) ◦ (δ0, δ

0). There is a

slight wrinkle here that (σi, σ
i) ◦ (δi, δ

i) is not the identity on the nose, but instead is an
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isomorphism making use of ρ. As every monoidal category V is monoidally equivalent to a

strict-monoidal category – one in which in particular ρ and λ are identities – we do not take

this to be problematic. We are now ready to define the simplicial set which in turn is used

to define the homology theory.

Definition 1.3.5. Let A ∈ V-Cat and identify A with the functor from the terminal category

A : 1 // V-Cat sending the lone object to A. Then for v ∈ V define the singular magnitude

simplicial set MS∗,v(A) : ∆op // Set by MS∗,v(A) = (Cat//V-Cat)(F (∗, v), (1,A)). An

element of MSk,v(A) is thus a pair which we in this circumstance will write (w∗, φ
∗). Here

w∗ : 1 // Vk can be identified with a k-tuple (w1, ..., wk), and φ∗ : Fk ◦ w∗ ⇒ A can be

identified with an enriched functor φ : Fk(w1, ..., wk) // A. Therefore, we have:

MSk,v(A) := (Cat//V-Cat)(F (k, v), (1,A)) =
⋃

(v1,...,vk)∈Vkv

V-Fun(Fk(v1, ..., vk),A).

The face and degeneracy maps di and si are given by precomposition with the coface and

codegeneracy maps (δi, δ
i) and (σi, σ

i) respectively. In terms of the identifications above,

this amounts to the following:

di(φ : Fk(w1, ..., wk) // A) = φ ◦ δiw1,...,wk
: Fk−1(δi(w1, ..., wk)) // Fk(w1, ..., wk) // A

si(φ : Fk(w1, ..., wk) // A) = φ ◦ σiw1,...,wk
: Fk+1(σi(w1, ..., wk)) // Fk(w1, ..., wk) // A

The corresponding homology theory – the singular magnitude homology – is denoted: MSH∗,v(A).

The singular magnitude simplicial set construction is also functorial,

MS∗,v(−) : V-Cat // sSet.

A V-functor F : A // B induces a map of simplicial sets F# : MS∗,v(A) // MS∗,v(B)

by sending a k-simplex φ to F#(φ) := F ◦ φ. This map in turn induces a map F# :

MSH∗,v(A) //MSH∗,v(B) by passing to equivalence classes.

There are many promising aspects of singular magnitude homology. The first is that it

can be defined for any V-category whatsoever for any magnitudinal (V,⊗, I). The second

is that, despite this generality, it contains the pertinent information necessary to categorify

magnitude in the spirit of [4]; we have indexed the homology groups by objects v ∈ V, and so

will be able to convert the integer valued ranks of the homology groups into values of K by
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computing rank(MSHk,v(A))|v|. This was a necessary step in reconstructing the K-valued

magnitude of graphs in [4]. Furthermore, the analogy with singular homology of topological

spaces gives good reason to think that there may be a proof of a Kunneth theorem based in

the topological technique of acyclic models. Finally, the homology theory is invariant under

adjoint functors. We will prove this to conclude this chapter of the dissertation.

Unfortunately, singular magnitude homology is not a GMHT, at least in its present form.

The largest problem is that there is no known way of decategorifying singular magnitude

homology to produce the magnitude of enriched categories in every case.15 Secondly, while

additivity of MSH∗,v(−) is easy to prove in the case when the initial object ∞ of V is

not the target of any maps in V – as when V = FinSet or V = Z∞ – we have no proof

one way or the other about additivity of MSH∗,v(−) when ∞ is the target of maps in

V, like when V = FinVect. Using FinVect as the enriching category brings a second and

seemingly more extreme problem as well; for A ∈ FinVect-Cat, the sets MSk,v(A) are almost

always uncountably infinite. Indeed, even the homology groups MSHk,v(A) turn out to

be of infinite rank in many examples. Nevertheless, our problems are mostly problems of

over-abundance and not deficiency. Hopefully there are ways to cut out excess information

to witness this homology theory or a variant of it as a GMHT.

Proposition 1.3.6. Let (V,⊗, I) be a magnitudinal monoidal category, and F,G : A // B

a pair of V-functors between A,B ∈ V-Cat. Suppose that H : F ⇒ G is a V-natural trans-

formation. Then H induces a simplicial homotopy H# : F# ' G# : MS∗,v(A) //MS∗,v(B)

for every v ∈ V.

Proof. A simplicial homotopyH# : F# ' G# consists in maps hi : MSk,v(A) //MSk+1,v(B)

for 0 ≤ i ≤ k such that d0h0 = G#, dk+1hk = F#, and:

dihj =


hj−1di if i < j

hjdi−1 if i > j

dihi−1 if i = j 6= 0

sihj =


hj+1si if i ≤ j

hjsi−1 if i > j

15There are, however, ad-hoc ways of doing so depending on the enriching category V. For example,

when V = FinSet and writing I for the one point set, the simplicial set MS∗,I(A) is precisely the nerve N(A)

and hence on its own decategorifies to magnitude.
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Let φ : Fk(v1, ..., vk) //A be an element of MSk,v(A). We will define hi(φ) in MSk+1,v(B)

as follows. The domain of hi(φ) will be X := Fk+1(v1, ..., vi, I, vi+1, ..., vk). Thus vj =

X(j− 1, j) for all 0 < j ≤ i, I = X(i, i+ 1), and vj−1 = X(j− 1, j) for all i+ 1 < j ≤ k+ 1.

To define hi(φ) : X //B it suffices to define objects bj := hi(φ)(j) for all 0 ≤ j ≤ k+ 1 and

maps hi(φ)j−1,j : X(j − 1, j) // B(bj−1, bj) for all 0 < j ≤ k + 1. We define:

bj :=


Fφ(j) if 0 ≤ j ≤ i

Gφ(j − 1) if i+ 1 ≤ j ≤ k + 1

hi(φ)j−1,j :=



Fφ(j−1),φ(j)φj−1,j : vj // A(φ(j − 1), φ(j)) // B(Fφ(j − 1), Fφ(j))

if 0 < j ≤ i

Hφ(i) : I // B(Fφ(i), Gφ(i))

if j = i+ 1

Gφ(j−2),φ(j−1)φj−2,j−1 : vj−1
// A(φ(j − 2), φ(j − 1))

// B(Gφ(j − 2), Gφ(j − 1))

if i < j − 1 ≤ k

Note that as h0(φ) has source Fk+1(I, v1, ..., vk), d0h0(φ) is simply h0(φ) restricted to the

objects 1 ≤ j ≤ k+1 and is thus precisely G#(φ). Similarly, we see that dk+1hk(φ) = F#(φ).

Each of these identities can be checked in a straightforward way by definition, though once

again some of these equations hold only on the nose if V were a strict monoidal category.

We will show only the sense in which dihi = dihi−1 here.

Given φ : Fk(v1, ..., vk) // A, hi(φ) has domain Fk+1(v1, ..., vi−1, vi, I, vi+1, ..., vk) while

hi−1(φ) has domain Fk+1(v1, ..., vi−1, I, vi, vi+1, ..., vk). The ith face dihi(φ) therefore has

domain Fk(v1, .., vi−1, vi ⊗ I, vi+1, ..., vk), which is not precisely the same as the domain of

dihi−1(φ) which is Fk(v1, ..., vi−1, I ⊗ vi, vi+1, ..., vk), though the two domains are naturally

isomorphic. Nevertheless, the objects j with 0 ≤ j ≤ i−1 are mapped to F (φ(j)) and those

with i ≤ j ≤ k are mapped to G(φ(j)) in both cases. Similarly, for j with 0 < j ≤ i − 1,

the action on mapping objects consists in Fφ(j−1),φ(j)φj−1,j while for j with i < j ≤ k, the

action on mapping objects is Gφ(j),φ(j−1)φj−1,j in both cases. The only possible difference

between the enriched functors dihi(φ) and dihi−1(φ) then is their action on the mapping

objects between the object i− 1 and i. These two maps are given as composites...
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dihi(φ)i−1,i : vi ⊗ I // B(Fφ(i− 1), Fφ(i))⊗ B(Fφ(i), Gφ(i)) // B(Fφ(i− 1)), Gφ(i))).

dihi−1(φ)i−1,i : I ⊗ vi // B(Fφ(i− 1), Gφ(i− 1))⊗ B(Gφ(i− 1), Gφ(i))

// B(Fφ(i− 1), Gφ(i)).

... where the latter maps are simply given by composition in the enriched category B, and

the former maps are given by F ⊗H and H ⊗G respectively. As H is an enriched natural

transformation, these two maps would be precisely equal if V were strict monoidal.

Corollary 1.3.7. If F : A // B and G : B // A are a pair of adjoint V-functors, then F

and G induce isomorphisms between the homology MSH∗,v(A) and MSH∗,v(B).

Proof. This amounts to a standard bit of homological algebra. F and G being adjoint mean

we have V-natural transformations 1⇒ GF and FG⇒ 1 (if F is left adjoint, for example)

and so 1# ' (GF )# = G#F# and F#G# = (FG)# ' 1# as simplicial maps. Homotopies

of simplicial maps induce the same maps on homology, hence 1 = G#F# and F#G# = 1.

2. The classification of monoidal-type categories

The presence of natural transformations in the 2-category of categories Cat gives a rich

vocabulary for describing the ways in which a “tensor product” functor ⊗ : A×A //A for a

category A may be associative and unital. We have firstly the strict monoidal categories, in

which ⊗ is strictly associative and unital; weakening the definition slightly gives monoidal

categories in the sense of [11], in which ⊗ is associative and unital only up to coherent

natural isomorphism; and one possible further weakening yields skew monoidal categories –

introduced by Szlachányi in [16] – in which ⊗ is associative and unital up to coherent, but

not necessarily invertible, natural transformation.

In the latter two cases, it is worth saying something about our use of the word ‘coherent’.

For a monoidal category, the coherence of the associativity and unitality natural isomor-

phisms means that they render commutative the so-called pentagon and triangle diagrams.
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According to a well known coherence theorem of Maclane’s [12], the commutativity of these

diagrams implies the commutativity of any well-formed diagram built out of these natural

isomorphisms. For skew monoidal categories, the coherence conditions require the commuta-

tivity of not two but five diagrams; and by contrast to the monoidal case, the commuativity

of these diagrams does not imply the commutativity of all diagrams built from the natural

transformations. So where do these five diagrams come from? Why are they the ‘right’

notion of coherence for skew monoidal categories?

One possible answer to this question is given in The Catalan simplicial set [2] ; a key

insight is that the theory of simplicial sets provides a uniform framework for describing the

data and coherence of monoidal-type categories. For example, the data and coherence of a

monoidal category consists in: a category, a pair of functors, three natural isomorphisms,

and two commutative diagrams thereof. As we go down this list we see that functors mediate

between categories, natural transformations mediate between functors, and that commuta-

tive diagrams mediate between transformations. Such structure suggests the simplices and

face maps of a simplicial set, and indeed this can be formalized in terms of the pseudo nerve

Np(Cat) of the monoidal 2-category Cat.

Explicitly, Np(Cat) is a simplicial set with a single 0-simplex and (small) categories for

1-simplices. The 2-simplices are binary functors T : A × B // C where A,B, and C are

the functor’s three faces. The 3-simplices are natural isomorphisms filling in squares of

four such functors (the four faces) and higher simplices are commutative diagrams of such

natural transformations. All the data and coherence of a monoidal category live within

Np(Cat): Specifically, a 1-simplex, a pair of 2-simplices, three 3-simplices, and a pair of

4-simplices, themselves suitably related by face maps. By changing the strictness of the

3-simplices, we obtain nerves N⊗(Cat) and Ns(Cat) suited to the description of strict and

skew monoidal categories respectively. For example, the five coherence diagrams in a skew

monoidal category can be understood as five 4-simplices in Ns(Cat).

We may wonder whether strict, skew, or plain monoidal categories are shadows of a

fixed simplicial set, just as paths in a topological space are shadows of the interval. It is

shown in [2] that this is indeed the case. It defines the Catalan simplicial set C, recalled in

Section 2.1 below, and shows that simplicial maps from C to Np(Cat), respectively N⊗(Cat)

and Ns(Cat), are in one to one correspondence with monoidal, respectively strict and skew
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monoidal, categories. Now the structure of C itself provides an a priori justification for the

five coherence diagrams for skew monoidal categories: they are just what is required for a

map C //Ns(Cat).

Many other kinds of ‘monoidal object’ contained in a (higher-)categorical structure can

be classified by maps out of C into suitably chosen nerves. As shown in [2] and [1], we may

classify each of the following structures in this way:

(1) Monoids in a fixed monoidal category (including the case of strict monoidal cate-

gories – which are monoids in Cat).

(2) Monoidal categories.

(3) Skew monoidal categories.

(4) Monads in a bicategory.

(5) Monoidales in a monoidal bicategory.

(6) Skew monoidales in a monoidal bicategory.

(7) Monoidal bicategories.

(8) Skew monoidal bicategories.16

As with skew monoidal categories, these classifying results simultaneously justify other-

wise complex and ad-hoc definitions. It also suggests that new kinds of monoidal object

may be defined directly in terms of maps from C into any reasonably defined nerve.

The story of this paper begins with a missing item from the above list: is it possible to

exhibit monoidal (∞, 1)-categories in the sense of [10] as maps out of C? The idea is as

follows. There is a quasi-category qCat whose 0-cells are small quasi-categories, whose 1-

cells are quasi-functors, and whose higher cells are suitable quasi-invertible transformations.

If we set aside problems of strict associativity, qCat becomes a simplicial monoid under

binary product of quasi-categories, and so can be seen as a one-object simplicially enriched

category. By taking its homotopy coherent nerve – originally introduced in [3] – we obtain

a simplicial set N∆(qCat) that should contain all the data required to define a monoidal

(∞, 1)-category, so that these should be definable in terms of maps C //N∆(qCat). There

16The result about skew monoidal bicategories holds only after a mild restriction is placed on the maps

out of C ; see [1] Section 5.2.
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is, however, an analogous construction in ordinary category theory which deserves attention

first, and which is the main subject of our present investigation.

Like qCat, the 2-category Cat of categories, functors, and natural transformations can be

viewed under the nerve construction as a simplicial set. If we once again ignore problems

of strict associativity, this simplicial set is a simplicial monoid under product of categories,

and hence as a one-object simplicially enriched category, which we will refer to as N2(Cat).

Applying the homotopy coherent nerve yields a simplical set N∆(N2Cat), and we can now

consider maps C //N∆(N2Cat). Far from being a simple warm up for the higher categorical

case, these maps hold great interest in their own right: in some sense, they unify an extensive

array of monoidal-type categories.

As strict monoidal categories include into monoidal categories, and monoidal categories

include into skew monoidal categories [16], so the three corresponding nerves admit parallel

inclusions: N⊗(Cat) ⊆ Np(Cat) ⊆ Ns(Cat). Thus each strict monoidal, monoidal, or skew

monoidal category can be understood as an element of the set sSet(C, Ns(Cat)). On the

contrary, not every sort of monoidal-type category can be understood in this way; there is

another common variant of monoidal structure which evades classification by Ns(Cat) and C.

The definition of a lax monoidal structure on a category A approaches the idea of weakened

associativity by introducing n-ary operations ⊗n : An //A for each n ≥ 0, which we think

of as “parenthesis free” n-ary multiplications. As the associativity of a binary operation is

given by relationships between higher arity composites of itself, the functors ⊗n are used

to mediate between possible such composites. As before, strict monoidal implies monoidal

implies lax monoidal, but there are lax monoidal categories which are not skew and vice

versa. Consequently, there are lax monoidal categories which cannot be understood as maps

C //Ns(Cat). This is where N∆(N2Cat) comes into play.

In Section 2.3 of this paper, we assign a simplicial map C // N∆(N2Cat) to each lax

monoidal category in such a way that the original lax monoidal category can be com-

pletely reconstructed from the assignment. This gives an injective map taking lax monoidal

categories into sSet(C, N∆(N2Cat)). Though we do not explicitly characterize the im-

age of our assignment, it shows that sSet(C, N∆(N2Cat)) can classify lax monoidal cate-

gories in the spirit of the results of [2] and [1]. In Section 2.4 we show that the nerve

Ns(Cat) classifying skew monoidal categories also includes into N∆(N2Cat). This shows
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that each kind of monoidal category mentioned thus far can be identified with a map

C // N∆(N2Cat). In Section 2.5 we examine other kinds of monoidal categories arising

as maps in sSet(C, N∆(N2Cat)) and among them find Σ-monoidal categories as in [6]. In

this sense, the set sSet(C, N∆(N2Cat)) is rich enough to classify an extensive spectrum of

monoidal-type structures in category theory. Furthermore, in Sections 2.2 and 2.5 we see

that there are maps C //N∆(N2Cat) corresponding to yet a weaker type of monoidal-type

category not yet defined in the literature.

Future work will include an examination of maps from C into the homotopy coherent nerve

of various higher and enriched categories in the hopes of capturing a full range of possible

monoidal objects in many more contexts. This of course includes the original motivation

where the category in question is that of quasi-categories.

Acknowledgements: I would like to thank Richard Garner for drawing my attention

to this topic and for his illuminating comments, suggestions, and advice throughout the

investigation.

2.1. Definitions and notation: C and N∆(N2Cat). In this section we recall important

definitions and introduce some helpful notations and shorthands. We write I for the terminal

category, and ∆ for the simplicial category with finite ordered sets [n] := {0 < 1 < ... < n}

for objects, and order preserving maps. These morphisms are generated by the coface maps

δi : [n− 1] // [n] and codegeneracy maps σi : [n+ 1] // [n] given by:

δi(p) :=


p if p < i

p+ 1 if p ≥ i
σi(p) :=


p if p ≤ i

p− 1 if p > i

We write sSet for the functor category Fun(∆op,Set) and refer to its objects as simplicial sets.

A simplicial set X : ∆op // Set thus gives rise to an indexed sequence of sets Xn := X[n],

face maps di = Xδi, and degeneracy maps si = Xσi. As X is contravariant, the face and

degeneracy maps have now reversed direction: di : Xn
// Xn−1 and si : Xn

// Xn+1.

By slight abuse we may write ‘face’ (‘coface’, ‘degeneracy’, ‘codegeneracy’) map to refer

to a composite of face (coface, degeneracy, codegeneracy) maps. This should always be

made clear by the context. At times we may simply use d or s to refer to a non-specific



34

face or degeneracy map, and will always take δ and σ to be the corresponding coface and

codegeneracy map.

An element x ∈ Xn is an n-simplex, and is referred to as degenerate whenever x is in the

image of a degeneracy map. When m ≤ n, x ∈ Xn is the degeneracy of y ∈ Xm when x is

the image of y under an n−m fold composition of degeneracy maps Xm
//Xn. We refer

to the (n − 1)-simplex di(x) as the ithface of x. More generally, we can identify arbitrary

subsets C = {c0 < c1 < ... < cm} ⊆ [n] with the morphism δC : [m] // [n] of ∆ which

sends i to ci. For x ∈ Xn, denote xC := X(δC)(x) = dCx ∈ Xm. We think of and refer to

this m-simplex as the Cth-face of x.17 For two element subsets {p < q} ⊆ [n], we drop the

brackets and write simply xp,q or xpq for the {p, q}th face of x. In this notation, the spine

of the simplex x is the collection of successive 1-faces sp(x) := {x01, x12, ..., xn−1,n}. It will

be convenient to introduce the set C− := C − {maxC} and successor function s : C− // C

taking c to the next greatest element of C. In this notation, sp(xC) = {xc,sc | c ∈ C−}.

For an n-simplex x ∈ Xn, the boundary of x consists in the collection of its faces

{d0(x), d1(x), ..., dn(x)}. Commutativity relations among coface maps δi give rise to re-

lations amongst the faces of the boundary : dj(di(x)) = dj(di+1(x)) for all 0 ≤ i ≤ j < n.

An n-boundary in X is a collection of (n − 1)-simplices {x0, ..., xn} satisfying the same re-

lationship: dj(xi) = dj(xi+1) for all 0 ≤ i ≤ j < n. An n-boundary may in general be the

boundary of one, many, or no n-simplices. A simplicial set is called r-coskeletal when for

each n > r and each n-boundary {x0, ..., xn}, there is a unique n-simplex x with di(x) = xi

for 0 ≤ i ≤ n. This establishes a bijection between n-boundaries, which are collections of

(n − 1)-simplices, and n-simplices. Thus a definition of an r-coskeletal simplicial set need

only specify the simplices up to dimension r, as all higher dimensional simplices are then

determined by these bijections. Similarly, a map from a simplicial set Y into an r-coskeletal

simplicial set X is given by a map from the r-th truncation of Y to X. In otherwords, such

a map is determined by where it sends simplices of dimension ≤ r.

Definition 2.1.1. The Catalan simplicial set C is the simplicial set defined by the following

data:

• A unique 0-simplex: ∗.

17With this notation, we might equally well write the face di(x) as x[n]−i.
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• Two 1-simplices: 0 = s0(∗), and 1.

• Five 2-simplices:

∗

∗∗

00

0

s0(0)

,

∗

∗∗

10

1

s0(1)

,

∗

∗∗

01

1

s1(1)

,

∗

∗∗

00

u

1 ,

∗

∗∗

11

1

m

Which we may also write as:

s0(0) : 0 ∨ 0 // 0 , s0(1) : 0 ∨ 1 // 1 , s1(1) : 1 ∨ 0 // 1 , u : 0 ∨ 0 // 1 , m : 1 ∨ 1 // 1

• Higher-dimensional simplices are determined by 2-coskeletality.

Importantly for the proofs to follow, the k-simplices of C for k ≥ 3 are determined by

their 2-simplex faces by coskeletality, and the 2-simplices are determined by their 1-simplex

faces by definition. As a result, all simplices of C are determined by their collection of

1-simplex faces. Thus we may identify x with the set {xp,q | 0 ≤ p < q ≤ n} and xC with

{xc,c′ | c < c′ ∈ C}.

The intuition behind the remarkable classifying properties of C is revealed by thinking

of 2-simplices in C as maps and higher simplices as diagrams of such maps. If we think of

the non-degenerate 2-simplex m : 1 ∨ 1 // 1 as a ‘monoidal product’ of some kind, then

the 3-simplex filling the boundary {m,m,m,m} can be thought of as encoding some kind

of associativity of m.

1 ∨ 1 ∨ 1 1 ∨ 1

11 ∨ 1

1 ∨m

m ∨ 1

m

m

These ideas are made precise in a variety of contexts in [2]. Among their many results

are those concerned with the skew monoidal categories of the introduction.

Definition 2.1.2. A skew monoidal category (A,⊗,⊗0, α, λ, ρ) consists in:

• A category A.

• A functor ⊗ : A×A //A.
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• A functor ⊗0 : I //A. (i.e an object of A)

• A natural tranformation:

α : ⊗ ◦ (⊗× 1A)⇒ ⊗ ◦ (1A ×⊗)

• Natural transformations:

λ : ⊗ ◦ (⊗0 × 1A)⇒ 1A , ρ : 1A ⇒ ⊗ ◦ (1A ×⊗0)

These natural transformations must additionally commute in five diagrams.

Associativity:

The following pentagon commutes where each edge involves a single application of

α:

⊗ ◦ (⊗× 1) ◦ (⊗× 1× 1)

⊗ ◦ (⊗× 1) ◦ (1×⊗× 1)

⊗ ◦ (⊗×⊗)

⊗ ◦ (1×⊗) ◦ (1×⊗× 1)

⊗ ◦ (1×⊗) ◦ (1× 1×⊗)

Unitality:

Writing u := ⊗0(∗), and denoting ab := a⊗b = ⊗(a, b), the following must commute

for every a, b ∈ A:

uu

uu

λuρu

1u

ab

u(ab)(ua)b

λabλa1b

αu,a,b

ab

a(bu)(ab)u

1aρbρab

αa,b,u

(au)b a(ub)

abab

αa,u,b

ρa1b 1aλb



37

The authors of [2] show that skew monoidal categories correspond precisely to maps out

of C and into Ns(Cat), the skew nerve of Cat.18 This will be defined formally in Section 2.4.

Proposition 2.1.3. [2] Skew monoidal categories are in one to one correspondence with

simplicial maps C //Ns(Cat).19

Lax monoidal categories are a second sort of weakened monoidal category characterized

by the introduction of n-ary product operations. The higher dimensional simplices of C

capture these higher order products as well, as we will show shortly.

Definition 2.1.4. A lax monoidal category (A,⊗n, γ, ι) consists in:

• A category A.

• Functors ⊗n : An //A for each n ∈ N. (⊗0 : I //A)

• Natural transformations for each n, k1, ..., kn ∈ N:

γn,k1,...kn : ⊗n ◦
(
⊗k1 × ...×⊗kn

)
⇒ ⊗k1+...+kn

• A natural transformation ι : 1A ⇒ ⊗1.

These natural transformations must additionally satisfy two axioms.

Associativity:

For each double sequence n, k1, ..., kn,m11, ...,m1k1 ,m21, ...,m2k2 , ...,mn1, ...,mnkn ,

the following square commutes:

18It should be mentioned Ns(Cat) is referred to as the lax nerve in [2] which we have changed here so as

to not suggest a relation to lax monoidal categories.

19This can be found in [2] Proposition 4.3.
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⊗n ◦ (⊗k1 × ...×⊗kn) ◦ ((⊗m11 × ...×⊗m1k1 )× ...× (⊗mn1 × ...×⊗mnkn ))

⊗n ◦
(
⊗m11+...+m1k1×...
...×⊗mn1+...+mnkn

)
⊗k1+...+kn ◦

(
(⊗m11×...×⊗m1k1 )×...
...×(⊗mn1×...×⊗mnkn )

)

⊗m11+...+m1k1
+...+mn1+...+mnkn

1 ◦
(
γk1,m11,...,m1k1

×...
...×γmn1,...,mnkn

)

γn,m11+...+m1k1
,...,mn1+...+mnkn

γn,k1,...,kn ◦ 1

γk1+...+kn,m11,...,m1k1
,...,mn1,...,mnkn

Unitality:

The following two triangles commute:

1A ◦ ⊗n = ⊗n = ⊗n ◦ (1A × ...× 1A)

⊗n ◦ (⊗1 × ...×⊗1)⊗1 ◦ ⊗n

⊗n

1 ◦ ι× ...× ι

γn,1,...,1

ι ◦ 1

γ1,n

1

In particular, the data of a lax monoidal category includes a binary functor ⊗2 : A ×

A // A. Though it is not required to be associative or even associative up to natural

isomorphism, we are given a pair of natural transformations:

γ2,2,1 • (1 ◦ (1× ι)) : ⊗2 ◦ (⊗2 × 1)⇒ ⊗3.

γ2,1,2 • (1 ◦ (ι× 1)) : ⊗2 ◦ (1×⊗2)⇒ ⊗3.
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where we use ‘•’ to denote vertical composition. Writing ⊗n(a1, ..., an) = (a1⊗ ...⊗an), the

above natural transformations give us maps:

((a⊗ b)⊗ c))→ (a⊗ b⊗ c)← (a⊗ (b⊗ c)).

In this way, the n-ary product operations mediate between composites of lower arity oper-

ations, and hence say something about a weakened form of associativity.

Whereas skew monoidal categories can be understood as maps C // Ns(Cat), we will

see that lax monoidal categories can be understood as maps C // N∆(N2Cat), a nerve

containing Ns(Cat) in a way we will make precise in Section 2.4. We turn now to define this

nerve.

Definition 2.1.5. The homotopy coherent nerve N∆(U) of a simplicially enriched category

U is the simplicial set defined on objects by N∆(U)n := sSetCat(S[n], U). The enriched

category S[n] has as objects the elements 0, 1, ..., n ∈ [n]. For each pair of objects p ≤ q,

the simplical mapping object S[n](p, q) is the categorical nerve of the poset whose objects

are subsets of {p, p+ 1, ..., q} containing both p and q and ordered by inclusion. (For q < p,

S[n](p, q) = ∅.) Here are some examples of simplices in these simplicial mapping objects:

• ({0, 3}) ∈ S[3](0, 3)0.

• ({0, 3} ⊂ [3]) ∈ S[3](0, 3)1.

• ({0, 3} ⊂ {0, 1, 3} ⊂ [3]) ∈ S[3](0, 3)2.

• ({0, 3} ⊂ {0, 1, 3} = {0, 1, 3}) ∈ S[3](0, 3)2.

• ({1, 4, 5} ⊂ {1, 2, 4, 5}) ∈ S[9](1, 5)1.

We will be careful to reserve the symbol ‘⊂’ to mean a proper inclusion, and will use ‘⊆’

otherwise.

Composition maps S[n](p, r)×S[n](r, q) //S[n](p, q) are given by the union of subsets in

dimension 0, and unions of inclusions of subsets in higher dimensions. The identity elements

are therefore {p} ∈ S[n](p, p)0. N∆(U)n then consists of all simplicially enriched functors

out of S[n] and into U .

The coface and codegeneracy maps of ∆ extend to enriched coface functors δi : S[n −

1] //S[n] and codegeneracy functors σi : S[n+1] //S[n]. On objects, these functors match

their counterparts in ∆, while on mapping objects, δi : S[n− 1](p, q) //S[n](δip, δiq) sends



40

a subset C in dimension 0 to its direct image δiC = {δic0, ..., δicm}, and sends inclusions

to their direct images in higher dimensions. Codegeneracy functors are defined similarly.

Finally, the face and degeneracy maps of N∆(U) are defined via precomposition with these

enriched functors: di : N∆(U)n // N∆(U)n−1 is given by di(L) = L ◦ δi for L ∈ N∆(U)n,

and similarly for si.

In what follows, we will focus specifically on the homotopy coherent nerve of Cat, viewed

as a simplicially enriched category in the following way. There is a standard nerve functor

N2 : 2Cat // sSet which preserves products, thus taking monoids in 2Cat to monoids in

sSet. Monoids in sSet can in turn be viewed as one object simplicially enriched categories

with the monoid as the lone simplicial mapping object. In summation, we have a nerve

N2 : Mon2Cat // sSetCat which takes a monoid in 2Cat to a one object simplicially enriched

category. We would like to apply this nerve to Cat, an object of 2Cat. Unfortunately, Cat

is not a monoid, strictly speaking. With × as a binary operation and the terminal category

I as unit, Cat is itself a monoidal category, a not-quite-monoid of 2Cat: the operation ×

is associative and unital merely up to natural isomorphism. However, according to the

coherence theorem [12], we know that Cat is monoidally equivalent to another 2-category

which is an actual monoid. By N2(Cat) we mean N2 applied to this equivalent category. In

practice, we consider the following definition.

Definition 2.1.6. The simplicially enriched category N2(Cat) is defined by the following

data:

• A unique object, ∗.

Its mapping object N2(Cat)(∗, ∗) is characterized by:

• 0-simplices are Categories B.

• 1-simplices are functors T : B1
//B0.

• 2-simplices are natural transformations η : T12 ◦ T01 ⇒ T02.

• 3-simplices are commutative diagrams of natural transformations:
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T23 ◦ T12 ◦ T01

T13 ◦ T01T23 ◦ T02

T03

1 ◦ η123

η013

η012 ◦ 1

η023

• Higher-dimensional simplices are given by 3-coskeletality.

Composition in N2(Cat) is given by × while the identity map for composition consists in

a 0-simplex of N2(Cat)(∗, ∗): I. Face maps in N2(Cat)(∗, ∗) are given as suggested by the

notation above,

e.g d1(η : T12 ◦T01
//T02) = T02, and degeneracy maps are given by inserting identity maps

in the expected ways. We assume that we have the following equalities:

(A×B)× C = A× (B × C).

A× I = A = I ×A.

It is worth noting that 3-coskeletality of N2(Cat)(∗, ∗) shows us that every simplex is

determined by its 3-faces, but also we see that the 3-simplices are determined by their 3-

boundaries: there is at most one 3-simplex with a given 3-boundary. Thus, every simplex

of N2(Cat)(∗, ∗) is determined by its 2-faces.

We can give an informal description of simplices of N∆(N2Cat). It has a single 0-simplex:

the unique map S[0] //N2(Cat). Its 1-simplices can be thought of as categories A, while its

2-simplices consist in functors T : A01 × A12
// A02. A 3-simplex L : S[3] //N2(Cat) is a

diagram consisting of five such functors, four of which are the 3-simplex’s faces. We can see

this diagram most clearly by thinking of the image of L on the simplicial mapping object

S[3](0, 3). S[3](0, 3) has four 0-simplices (subsets of [3] containing {0, 3}), five 1-simplices

(inclusions of those subsets), and two 2-simplices (double inclusions). The image therefore
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consists in four categories, five functors, and two natural transformations. This data fits

into the following diagram:

{0, 1, 2, 3} {0, 1, 3}

{0, 2, 3} {0, 3}

A01 ×A12 ×A23 A01 ×A13

A02 ×A23 A03

1A01 × T123

T012 × 1A23

T023

T013

η{0,1,3}

η{0,2,3}

S[3](0, 3) L(S[3](0, 3))

Higher dimensional simplices L : S[n] // N2(Cat) are again helpfully summarized via

their image of the simplicial mapping object S[n](0, n). Such a simplex will provide: a cate-

gory for each subset of [n] containing {0, n}; a functor between such categories whenever the

subset indexing the first contains the subset indexing the second; a natural transformation

between a composite of such functors and a third such functor for each double containment;

a commutative diagram of such natural transformations for every triple and higher contain-

ment of subsets. If C ∈ S[n](0, n)0, because C = ∪c∈C−{c, sc} and L must send unions to

products, we have then that L(C) =
∏
c∈C− L({c, sc}), where the right hand side comes from

L’s action on the simplicial mapping objects S[n](c, sc). Functors and natural transforma-

tions may be given as products in this way as well. Notably, the images of the simplices of

S[n](0, n) of the form {0, n} ⊆ [n] and {0, n} ⊆ C ⊆ [n] are of particular importance: the

image of every other 1 and 2-simplex of any simplicial mapping object S[n] appears as the

data of a proper face of L. For example, if L is a 3-simplex, we can see from the above that

the functor L({0, 3} ⊂ {0, 2, 3}) is actually the functor associated with the 2-simplex d1(L).

This phenomena continues into the higher dimensions. In what follows, we will study the

structure of N∆(N2Cat) in much greater detail and rigour.

We are now ready to state and prove the three main results. In Section 2.3 of this paper

we will, in the spirit of Proposition 2.1.3, prove:
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Proposition 2.1.7. There is an assignment of a map α : C // N∆(N2Cat) to each lax

monoidal (A,⊗n, ι, γ) such that (A,⊗n, ι, γ) can be recovered completely from α.

In Section 2.4 we will extend and unify the previous results concerning skew monoidal

categories by showing that:

Proposition 2.1.8. There is a monomorphism β : Ns(Cat) //N∆(N2Cat).

Combined with Proposition 2.1.3, we will then have that skew monoidal categories corre-

spond to maps C //N∆(N2Cat) as well.

In Section 2.5 we will define Σ-monoidal categories for a countable signature Σ, and prove:

Proposition 2.1.9. There is an assignment of a map σ : C // N∆(N2Cat) to each Σ-

monoidal category (A,Σ, γ) such that (A,Σ, γ) can be recovered completely from σ.

Taken together, our three results along with the crucial Proposition 2.2.6 characterizing

maps C //N∆(N2Cat) show that maps C //N∆(N2Cat) are a natural setting to understand

a great many monoidal-type categories, including ones not yet defined in the literature. As

a first and significant step, we will examine arbitrary maps C //N∆(N2Cat) in detail and

identify an alternative way of defining them in terms of a simple list of data subject to some

few coherence requirements.

2.2. Defining maps into N∆(N2Cat). Defining maps into N∆(N2Cat) is not as daunting

as it might first appear. In this section, we will explore these maps and develop a succinct

way of producing them. In what follows, let X be an arbitrary simplicial set.

Proposition 2.2.1. A map φ : X //N∆(N2Cat) is determined by the values:

(1) φ1(x)({0, 1}) for each non-degenerate x ∈ X1.

(2) φn(x)({0, n} ⊂ [n]) for each non-degenerate x ∈ Xn, n ≥ 2.

(3) φn(x)({0, n} ⊂ C ⊂ [n]) for each non-degenerate x ∈ Xn, n ≥ 3, and non-degenerate

({0, n} ⊂ C ⊂ [n]) ∈ S[n](0, n)2.

Moreover, these values can be explicitly described:

(1) φ1(x)({0, 1}) = Ax, a category.

(2) φn(x)({0, n} ⊂ [n]) = T x :
∏

i∈[n]−
Axi,i+1 //Ax0,n , a functor.
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(3) φn(x)({0, n} ⊂ C ⊂ [n]) = ηxC : (T xC ◦
∏
c∈C−

T x[c,sc]) ⇒ T x, a natural transforma-

tion.20

Proof. Suppose that φ : X // N∆(N2Cat) and that we know the values specified in items

(1), (2), and (3) above. We will show that all other values of φ can be determined from

these.

For x ∈ Xn, φn(x) : S[n] // N2(Cat) is trivial on objects because N2(Cat) has a single

object ∗. We consider then its action on the mapping spaces S[n](p, q) of S[n]. For brevity,

we call a k-simplex of a mapping space of S[n] a k-simplex of S[n]. Note that if x ∈ X

is degenerate, because φ commutes with degeneracy maps, its value on x is determined by

its value on the unique non-degenerate simplex mapping to x, hence it suffices to consider

non-degenerate simplices. In what follows, we suppose x is always non-degenerate.

As φn(x) is an enriched functor, it must respect composition in S[n]. For C a 0-simplex

of S[n], we have:

φn(x)(C) = φn(x)

( ⋃
c∈C−
{c, sc}

)
=
∏
c∈C−

φn(x)({c, sc}).

This shows that φn(x) is determined on 0-simplices of S[n] by its values on subsets of the

form {p, q} with 0 ≤ p < q ≤ n. For each such {p, q} there is the coface map δp,q : S[1] //S[n]

sending 0 to p and 1 to q. This gives:

φn(x)({p, q}) = φn(x)(δp,q{0, 1}) = φn(x) ◦ δp,q({0, 1}) = φ1(xp,q)({0, 1}).

The last equality follows from φ commuting with face maps. If xp,q is degenerate, then

because φ commutes with degeneracy maps, we must have φ1(xp,q)({0, 1}) = I while if

xp,q is non-degenerate, its value is specified by item (1). Hence φn(x) is specified on all

0-simplices by the data of item (1).

Again because φn(x) respects composition, φn(x) is determined on arbitrary 1-simplices

(C0 ⊆ C1) by 1 simplices of the form ({p, q} ⊆ C). Because φ commutes with face maps, we

have:

20Here it may very well be that any of xi,i+1, xC, or x[c,sc] is degenerate, or even that [c, sc] = {c, sc} so

that xc,sc is a 1-simplex. By Ay and T y we mean always φn(y)({0, 1}) and φn(y)({0, n} ⊆ [n]) respectively,

even when y is degenerate or n = 1.
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φn(x)({p, q} ⊆ C) = φn(x)(δC({0,m} ⊆ [m])) = φm(xC)({0,m} ⊆ [m]).

Such data is specified in item (2) in the case xC is non-degenerate. If however xC is the

degeneracy of some non-degenerate simplex y of dimension l, xC = sy, we have:

φm(xC)({0,m} ⊆ [m]) = φm(sy)({0,m} ⊆ [m]) =φl(y)({σ0, σm} ⊆ σ[m])

=φl(y)({0, l} ⊆ [l]).

Thus this is determined again by the data of item (2).21.

Similarly, the value of φn(x) on 2-simplices is determined by its values on simplices

({0, n} ⊆ C ⊆ [n]) as a result of both respecting composition and commuting with face

maps. It is therefore determined by item (3), noting that we may need to commute with

degeneracy maps as above. Finally, because φn(x)(C0 ⊆ C1 ⊆ ... ⊆ Ck) must be a k-

simplex of N2(Cat), it is hence determined by its 2-faces. Because φn(x) commutes with

face and degeneracy maps, these 2-faces are determined by the value of φn(x) on the 2-faces

of (C0 ⊆ C1 ⊆ ... ⊆ Ck) and hence by the data of item (3) as above.

As for the explicit descriptions, φ1(1)({0, 1}) is a category, φn(x)({0, n} ⊂ [n]), a functor,

and φn(x)({0, n} ⊂ C ⊂ [n]) a transformation from a composite of functors, all in light of

the definition of N2(Cat). We know that the codomain of the functor T x is :

d0T
x = d0φn(x)({0, n} ⊂ [n]) = φn(x)(d0({0, n} ⊂ [n])) = φn(x)({0, n}) =φ1(x0,n)({0, 1})

=Ax0,n .

Its domain is:

d1T
x = d1φn(x)({0, n} ⊂ [n]) = φn(x)(d1({0, n} ⊂ [n])) =φn(x)([n])

=
∏

i∈[n]−

φ1(xi,i+1)({0, 1}) =
∏

i∈[n]−

Axi,i+1 .

We can see the codomain of ηxC by considering:

21In the case that σ0 = 0, σm = 1, then y is a 1-simplex and φ1(y)({0, 1} ⊆ [1]) = 1φ1(y)({0,1})
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d1η
x
C = d1φn(x)({0, n} ⊂ C ⊂ [n]) = φn(x)(d1({0, n} ⊂ C ⊂ [n])) = φn(x)({0, n} ⊂ [n]) = T x.

And can see its domain by considering both of:

d0η
x
C = φn(x)(d0({0, n} ⊂ C ⊂ [n])) = φn(x)(({0, n} ⊂ C)) = T xC .

d2η
x
C = φn(x)(d2({0, n} ⊂ C ⊂ [n])) = φn(x)(C ⊂ [n]) =

∏
c∈C−

φn(x)({c, sc} ⊆ [c, sc])

=
∏
c∈C−

T x[c,sc] .

There is also a converse to the above proposition which tells us exactly the conditions

a collection of categories, functors, and natural transformations needs to satisfy in order

to extend to a map X //N∆(N2Cat). We state it properly (Proposition 2.2.6) and prove

it below, but will first need some key observations about the homotopy coherent nerve

construction. Let U be a simplicially enriched category. We know that n-simplices of N∆(U)

are given by simplicially enriched functors S[n] //U . The mapping simplicial sets of S[n] are

freely generated via union by simplices of the form {p, q}, {p, q} ⊆ C1, {p, q} ⊆ C1 ⊆ C2, and

so on, as we have seen in the preceding proof. Therefore a map L : S[n] //U is determined

by where it sends the objects 0, 1, ..., n, and where it sends the generating simplices of the

mapping sets just listed. If we are in the situation that the simplicial mapping objects of

U are uniformly r-coskeletal for some r ≥ 0, then L : S[n] // U is determined by where it

sends the objects and generating simplices of dimension ≤ r, that is, generating simplices

up to those of the form {p, q} ⊆ C1 ⊆ ... ⊆ Cr.

The simplicially enriched category N2(Cat) has a 3-coskeletal simplicial mapping object.

Indeed, it is ‘nearly’ 2-coskeletal, as every 3-boundary is the boundary of at most one 3-

simplex. Writing it all out explicitly, we get the following lemma.

Lemma 2.2.2. To define a simplicially enriched functor L : S[n] //N2(Cat), it suffices to

define

(1) A category L({p, q}) for all 0 ≤ p < q ≤ n.
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(2) A functor

L({p, q} ⊆ C) :
∏
c∈C−

L({c, sc}) // L({p, q})

for each {p, q} ⊆ C such that L({p, q} = {p, q}) = 1L({p,q}).

(3) A transformation

L({p, q} ⊆ C1 ⊆ C2) : L({p, q} ⊆ C1) ◦
∏
c∈C−1

L({c, sc} ⊆ C2 ∩ [c, sc])⇒ L({p, q} ⊆ C2)

for each {p, q} ⊆ C1 ⊆ C2 such that L({p, q} ⊆ C1 ⊆ C2) = 1L({p,q}⊆C2) if C1 =

{p, q} or C1 = C2.

And such that, for every non-degenerate ({p, q} ⊂ C1 ⊂ C2 ⊂ C3) ∈ S[n](p, q)3:

L({p, q} ⊂ C2 ⊂ C3) • (L({p, q} ⊂ C1 ⊂ C2) ◦ 1) =(?)

L({p, q} ⊂ C1 ⊂ C3) •

1 ◦
∏
c∈C−1

L({c, sc} ⊆ C2 ∩ [c, sc] ⊆ C3 ∩ [c, sc])

 .

Here the specification of domains and codomains of L({p, q} ⊆ C) and L({p, q} ⊆ C1 ⊆

C2) is precisely what is required for L restricted to simplicial mapping objects of S[n] to

commute with face maps. The qualification that, e.g. L({p, q} = {p, q}) = 1L({p,q}) is

what is required for L restricted to simplicial mapping objects to commute with degeneracy

maps. Finally, had the mapping object of N2(Cat) truly been 2-coskeletal, we could have

done away with equation (?). Be that as it may, the 3-boundary consisting of the four

natural transformations appearing in equation (?) is the boundary of a 3-simplex precisely

when those transformations commute, i.e, when (?) is satisfied. Finally, if any of the ‘⊂’s

of ({p, q} ⊂ C1 ⊂ C2 ⊂ C3) had been ‘=’s, this commutativity would have been given

automatically explaining why we needn’t consider such cases.

Proposition 2.2.6 – the converse to Proposition 2.2.1 – takes a bit of work to state correctly.

Towards these ends, we will need the following three technical lemmas.

Lemma 2.2.3. Let X be a simplicial set, σ : [n] // [n− 1] an arbitrary codegeneracy map

with corresponding degeneracy s. Let C ⊆ [n] with |C| = m + 1. Then for all y ∈ Xn−1,

(sy)C = s′(yσC) where s′ is a degeneracy map or an identity, and is the latter if and only if

|C| = |σC| = m+ 1.
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Proof. Let δC : [m] // [n] be the composition of coface maps sending i 7→ ci. We have that

σδC can be rewritten as a surjection followed by an injection. We know that |σδC[m]| =

|σC| = m+ 1 or m, which tells us that the surjection in the rewrite either has target [m] or

[m − 1], hence is an identity or a codegeneracy map which we denote in either case as σ′.

So we have σδC = δσCσ
′. In terms of faces and degeneracies we then have dCs = s′dσC and

so have:

(sy)C = dCsy = s′dσCy = s′(yσC).

Lemma 2.2.4. Let Ax be a category for each x ∈ X1 such that Asy = I for the degeneracy

of a 0-simplex y. For every n ≥ 1 and x ∈ Xn, define the symbols:

dom(x) :=
∏

i∈[n]−

Axi,i+1 , cod(x) := Ax0,n .

Then we have:

(i) dom(x) = Ax = cod(x) if x ∈ X1.

(ii) dom(sx) = dom(x) and cod(sx) = cod(x) for any degeneracy map s.

And for every {0, n} ⊆ C ⊆ [n],

(iii) dom(xC) =
∏
c∈C−

Axc,sc and cod(xC) = Axc0,cm .

Proof. We consider each item in turn.

(i) If x ∈ X1, then as [1]− = {0}, dom(x) = Ax0,1 = Ax = cod(x).

(ii) If sx is the degeneracy of a simplex x ∈ Xn, then by Lemma 2.2.3, (sx)i,i+1 =

s′(xσi,σi+1) where s′ is the degeneracy map X0
//X1 if σi = σ(i + 1), i.e if σ = σi,

and is otherwise the identity. Suppose then that σ = σk for some k ∈ [n]. Then we

have:
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dom(sx) =As
′(xσ0,σ1) ×As

′(xσ1,σ2) × ...×As
′(xσk,σk+1) × ...×As

′(xσn−1,σn) ×As
′(xσn,σn+1)

=Ax0,1 ×Ax1,2 × ...×As
′(xk,k) × ...×Axn−2,n−1 ×Axn−1,n

=Ax0,1 ×Ax1,2 × ...× I × ...×Axn−2,n−1 ×Axn−1,n

=dom(x).

Similarly, cod(sx) = (sx)0,n+1 = s′(xσ0,σn+1) = x0,n = cod(x) because s′ is always the

identity (as n ≥ 1).

(iii) Given x ∈ Xn and {0, n} ⊆ C ⊆ [n], we have xci,ci+1 = (xC)i,i+1 simply by composing

the face maps δC and δi,i+1. The result follows.

Lemma 2.2.5. Let Ax be a category for each x ∈ X1 such that Asy = I for the degeneracy

of a 0-simplex y. For each n ≥ 1 and x ∈ Xn, let T x : dom(x) // cod(x) be a functor such

that T x = 1Ax if x ∈ X1 and T sx = T x. For every n ≥ 1, x ∈ Xn, and {0, n} ⊆ C ⊆ [n],

define the symbols:

dom(x,C) := T xC ◦
∏
c∈C−

T x[c,sc] , cod(x,C) := T x. 22

Then we have:

(i) dom(x,C) = T x = cod(x,C) if C = {0, n} or C = [n].

(ii) dom(sx,C) = dom(x, σC) and cod(sx,C) = cod(x, σC) for any degeneracy map s.

And for every {0, n} ⊆ A ⊆ B ⊆ [n],

(iii) dom(xB, δ
−1
B A) = T xA ◦

∏
a∈A−

T xB∩[a,sa] and cod(xB, δ
−1
B A) = T xB .

Proof. We consider each item in turn.

(i) If {0, n} ⊆ C ⊆ [n] and C = {0, n}, then xC = x0,n is a 1-simplex, hence T xC = 1 and

dom(x,C) = 1 ◦ T x[0,n] = T x. If C = [n], then xC = x, and T x[c,sc] = T xi,i+1 for some i,

and is hence an identity. Thus dom(x,C) = T x ◦
∏

1 = T x.

22The composite of dom(x,C) is well defined by item (iii) of Lemma 2.2.4
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(ii) If sx is the degeneracy of a simplex x ∈ Xn and {0, n} ⊆ C ⊆ [n], then by Lemma 2.2.3,

(sx)C = s′(xσC) and (sx)[c,sc] = s′(x[σc,σsc]) so that T (sx)C = T xσC and T (sx)[c,sc] =

T x[σc,σsc] . If σ = σk and not both of k, k + 1 ∈ C, then the product
∏
c∈C− T

x[c,sc] is

exactly the product
∏
d∈σ(C)− T

x[σd,σsd] . Otherwise, the two products differ by a factor

of T s
′(x[k,k]) = 1

A
s′(x[k,k])

= 1I , and hence can be ignored. This shows dom(sx,C) =

dom(x, σC). We also have cod(sx,C) = T sx = T x = cod(x, σC) by assumption.

(iii) This last item follows from item (iii) of Lemma 2.2.4 and simply composing face maps.

We are now ready to state and prove the converse to Proposition 2.2.1.

Proposition 2.2.6. Let X be a simplicial set, and suppose we are given:

(1) A category Ax for each 1-simplex x ∈ X1 such that:

(1.a) : Asy = I for the degeneracy of a 0-simplex y ∈ X0.

(2) A functor

T x :
∏

i∈[n]−

Axi,i+1 //Ax0,n .

for each n ≥ 1 and x ∈ Xn such that:

(2.a) : T x = 1Ax when n = 1.

(2.b) : T sx = T x for any degeneracy map s.

(3) A natural transformation

ηxC : T xC ◦
∏
c∈C−

T x[c,sc] ⇒ T x.

for each n ≥ 1, x ∈ Xn, and {0, n} ⊆ C ⊆ [n] such that:

(3.a) : ηxC = 1Tx whenever C = {0, n} or C = [n].

(3.b) : ηsxC = ηxσC for any degeneracy map s.

Then, there exists a unique map φ : X //N∆(N2Cat) extending the above data with...

(1) φ1(x)({0, 1}) = Ax for each x ∈ X1.

(2) φn(x)({0, n} ⊆ [n]) = T x for each n ≥ 1 and x ∈ Xn.

(3) φn(x)({0, n} ⊆ C ⊆ [n]) = ηxC for each n ≥ 1, x ∈ Xn, and {0, n} ⊆ C ⊆ [n].
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...if and only if for every n ≥ 4 and non-degenerate x ∈ Xn and non-degenerate

({0, n} ⊂ A ⊂ B ⊂ [n]) ∈ S[n](0, n)3, we have:

(†) ηxB •
(
ηxB

δ−1
B A
◦ 1
)

= ηxA •

(
1 ◦

∏
a∈A−

η
x[a,sa]

δ−1
[a,sa]

B∩[a,sa]

)
.

Where each η fits into one of the four triangular faces of the diagram below 23:

∏
i∈[n]−

Axi,i+1
∏

a∈A−
Axa,sa

∏
b∈B−

Axb,sb
Ax0,n

∏
a∈A−

T x[a,sa]

∏
b∈B−

T x[b,sb]

T x

T xB

T xA

∏
a∈A−

T xB∩[a,sa]

Proof. Given an extension φ (which is necessarily unique by Proposition 2.2.1) the equation

(†) precisely asserts that φn(x)({0, n} ⊂ A ⊂ B ⊂ [n]) is indeed a 3-simplex of N2(Cat)(∗, ∗).

That is, it asserts that the diagram of natural transformations associated to the boundary

of φn(x)({0, n} ⊂ A ⊂ B ⊂ [n]) is commutative.

Conversely, given the data of items (1), (2), and (3), such that equation (†) is true, we

must assign to each x ∈ Xn an enriched functor φn(x) : S[n] //N2(Cat). By Lemma 2.2.2,

we must therefore give assignments:

(1) A category φn(x)({p, q}) for all 0 ≤ p < q ≤ n.

(2) A functor

φn(x)({p, q} ⊆ C) :
∏
c∈C−

φn(x)({c, sc}) // φn(x)({p, q})

for each {p, q} ⊆ C.

23See in particular item (iii) of Lemma 2.2.5
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(3) A transformation

φn(x)({p, q} ⊆ C1 ⊆ C2) :

φn(x)({p, q} ⊆ C1) ◦
∏
c∈C−1

φn(x)({c, sc} ⊆ C2 ∩ [c, sc])⇒ φn(x)({p, q} ⊆ C2)

for each {p, q} ⊆ C1 ⊆ C2.

Then for an arbitrary x ∈ Xn, we define:

(1) φn(x)({p, q}) := Axp,q .

(2) φn(x)({p, q} ⊆ C) := T xC .

(3) φn(x)({p, q} ⊆ C1 ⊆ C2) := η
xC2

δ−1
C2

C1
.

Note first that φn(x)({p, q} ⊆ C) = T xC should be a functor with domain
∏
c∈C− φn(x)({c, sc})

and codomain φn(x)({p, q}), or rather, should be a functor:

T xC :
∏
c∈C−

Axc,sc //Axp,q .

This is so by item (iii) of Lemma 2.2.4, as the stipulations (2.a) and (2.b) of the statement

of the proposition verify the hypotheses of that lemma. The natural transformation η
xC2

δ−1
C2

C1

should be a natural transformation with domain and codomain:

η
xC2

δ−1
C2

C1
: T xC1 ◦

∏
c′∈C1

T xC2∩[c′,sc′] ⇒ T xC2 .

This follows from item (iii) of Lemma 2.2.5, as again the additional stipulations (3.a) and

(3.b) verify the hypotheses of that lemma.

Note also that to use Lemma 2.2.2, we must have that φn(x)({p, q} = {p, q}) = 1φn(x)({p,q}).

This follows from the stipulation (2.a). Similarly, Lemma 2.2.2 also requires that φn(x)({p, q} ⊆

C1 ⊆ C2) is 1φn(x)({p,q}⊆C2) if either ‘⊆’ is an ‘=’. This follows from the stipulation (3.a).

By Lemma 2.2.2, these assignments extend to an enriched functor φn(x) if for every

({p, q} ⊂ C1 ⊂ C2 ⊂ C3) ∈ S[n](0, n)3, we have:
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φn(x)({p, q} ⊂ C2 ⊂ C3) • (φn(x)({p, q} ⊂ C1 ⊂ C2) ◦ 1) =

φn(x)({p, q} ⊂ C1 ⊂ C3) •

1 ◦
∏
c∈C−1

φn(x)({c, sc} ⊆ C2 ∩ [c, sc] ⊆ C3 ∩ [c, sc])

 .

Tracing through the definitions and the assignments in Lemma 2.2.2, this is precisely the

equation (†) with respect to δ−1
C3

({p, q} ⊂ C1 ⊂ C2 ⊂ C3), and is hence true by hypothesis.

We have thus far shown that to each x ∈ Xn, we can assign an enriched functor φn(x) ∈

N∆(N2Cat)n. We must now check that φ commutes with face and degeneracy maps and so

is a simplicial map. For each x ∈ Xn+1 and δ : [n] // [n+ 1] with corresponding face map

d, we must show that φn(dx) = φn+1(x) ◦ δ : S[n] //N2(Cat). As such, it suffices to check

that their action is the same on generating simplices. This follows more or less by definition,

and we show only the 2-dimensional generating simplex case:

φn(dx)({p, q} ⊆ C1 ⊆ C2) =η
dxC2

δ−1
C2

C1

=η
xδC2

δ−1
δC2

δC1

=φn+1(x)({δp, δq} ⊆ δC1 ⊆ δC2).

For degeneracy maps we must show that for arbitrary x ∈ Xn−1 and σ : [n] // [n − 1],

we have φn(sx) = φn−1(x) ◦ σ : S[n] // N2(Cat). Again it suffices to check equality on

generating simplices. Recalling Lemma 2.2.3, we have:

(i) φn(sx)({p, q}) = A(sx)p,q = As
′(xσp,σq) = Axσp,σq = (φn−1(x) ◦ σ) ({p, q}).

(ii) φn(sx)({p, q} ⊆ C) = T (sx)C = T s
′(xσC) = T xσC = (φn−1(x) ◦ σ) ({p, q} ⊆ C).

(iii) φn(sx)({p, q} ⊆ C1 ⊆ C2) = η
(sx)C2

δ−1
C2

C1
= η

s′(xσC2
)

δ−1
C2

C1

= η
xσC2

σ′δ−1
C2

C1
= η

xσC2

δ−1
σC2

σC1
= (φn−1(x) ◦ σ) ({p, q} ⊂ C1 ⊂ C2).

The fourth equation of item (iii) follows because we have δσC2σ
′ = σδC2 as in the proof

of Lemma 2.2.3.
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We will make use of the general version of Proposition 2.2.6, but care most about the

specific case when X = C. In this case the proposition simplifies nicely because there are

only two 1-simplices, 0, 1 ∈ C1, and only 1 is non-degenerate. Furthermore, in light of the

results to follow, we can think an arbitrary map φ : C // N∆(N2Cat) as a truly general

kind of monoidal-type category. When X = C, Proposition 2.2.6 can be taken to be a

presentation of a monoidal-type category in the usual dichotomy of data (1), (2), and (3),

subject to coherence (†). Writing
∑

sp(x) for the total number of ‘1’s in sp(x) for a simplex

x ∈ C, we have that an arbitrary map φ : C //N∆(N2Cat) can be defined by:

(1) A category A = A1, and write A0 = I.

(2) A functor

T x :
∏

i∈[n]−

Axi,i+1 = A
∑

sp(x) //A.

for each n ≥ 1 and x ∈ Cn subject to (2.a) and (2.b).

(3) A natural transformation

ηxC : (T xC ◦
∏
c∈C−

T x[c,sc])⇒ T x.

for each face n ≥ 1, x ∈ Cn, and {0, n} ⊆ C ⊆ [n] subject to (3.a) and (3.b).

The natural transformations of item (3) must be coherent insofar as the equation (†) is

satisfied for every {0, n} ⊂ A ⊂ B ⊂ [n]:

ηxB •
(
ηxB

δ−1
B A
◦ 1
)

= ηxA •

(
1 ◦

∏
a∈A−

η
x[a,sa]

δ−1
[a,sa]

B∩[a,sa]

)
.

2.3. Classifying lax monoidal categories. In this section, we will prove Proposition

2.1.7. Given a lax monoidal category (A,⊗n, ι, γ), we first define the classifying map α, then

verify its well definedness, and lastly show that given α we can reconstruct (A,⊗n, ι, γ).

Definition 2.3.1. The Lax Monoidal Category Classifying Map

Let (A,⊗n, ι, γ) be a lax monoidal category. We assign to A the map α : C //N∆(N2Cat)

using Proposition 2.2.6. We define the map as follows:

(1) Let Ax := A if x = 1 and I otherwise.
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(2) Let T x := ⊗
∑

sp(x) : A
∑

sp(x) // A if x is non-degenerate with dimension ≥ 2.

Otherwise T x is defined in accord with stipulations (2.a) and (2.b) of Proposition

2.2.6. In particular, T x := 1Ax if x has dimension 1, or is the degeneracy of a

1-simplex.

(3) For each non-degenerate x ∈ Cn with n ≥ 3 and {0, n} ⊂ C ⊂ [n], let

ηxC := γ • (ι ◦
∏

ι) : (T xC ◦
∏
c∈C−

T x[c,sc])⇒ T x.

Where γ is short-hand for the appropriately sized associativity transformation γn,k1,...,kn ,

and ι : T x // T x is defined by:

Otherwise ηxC is defined in accord with stipulations (3.a) and (3.b) of Proposition

2.2.6. In particular, we may have ηxC = 1Tx if, for example, x ∈ Cn and C = [n] or

C = {0, n}.

This transformation γ • (ι◦
∏
ι) encodes a simple idea: ι◦

∏
ι converts all 1A’s appearing

in any factor of either composite of the domain into ⊗1’s, so that by the time γ is applied,

only ⊗n functor factors remain.

This data extends to a map α : C //N∆(N2Cat) via Proposition 2.2.6 because we have

the following:

Proposition 2.3.2. Let (A,⊗n, ι, γ) be a lax monoidal category, and let Ax, T x, ηxC be de-

fined as above. Then for every n ≥ 4, {0, n} ⊂ A ⊂ B ⊂ [n] and non-degenerate x ∈ Cn,

equation (†) is satisfied:

ηxB •
(
ηxB

δ−1
B A
◦ 1
)

= ηxA •

(
1 ◦

∏
a∈A−

η
x[a,sa]

δ−1
[a,sa]

B∩[a,sa]

)
.

As x ∈ Cn is a fixed non-degenerate simplex throughout the proof, we will simply omit

‘x’ from our notation. We will write Ai,i+1 := Axi,i+1 , T := T x, TC := T xC and ηC := ηxC for

any {0, n} ⊆ C ⊆ [n]. We write ηCD := ηxC

δ−1
C D

for any {0, n} ⊆ D ⊆ C ⊆ [n]. In this notation,

we will prove:

ηB • (ηBA ◦ 1) = ηA •

(
1 ◦

∏
a∈A−

η
[a,sa]
B∩[a,sa]

)
.



56

It will be convenient to recall that these natural transformations each fit into one of the four

triangular faces of:

∏
i∈[n]−

Ai,i+1
∏

a∈A−
Aa,sa

∏
b∈B−

Ab,sb =
∏

a∈A−
b∈B∩[a,sa]−

Ab,sb
A0,n

∏
a∈A−

T[a,sa]

∏
b∈B−

T[b,sb]

T

TB

TA

∏
a∈A−

TB∩[a,sa]

Figure (‡)

Proof. (of Proposition 2.3.2)

Because x is non-degenerate and there are no ‘=’s in {0, n} ⊂ A ⊂ B ⊂ [n] , we know

that both ηA and ηB are of the form γ • ι by definition. However, xB or x[a,sa] may be

degenerate, and/or we may have ‘=’ in {a, sa} ⊆ B ∩ [a, sa] ⊆ [a, sa] for any a ∈ A−. As

a result, ηBA or η
[a,sa]
[a,sa]∩B may be given via stipulations (3.a) and/or (3.b) as identity natural

transformations. For example, if xB was the degeneracy of a 2-simplex y, then ηBA = 1Ty as

can easily be checked. This shows we will need to think about how all three of γ, ι, and

identity natural transformations interact in the proof. Luckily, we need only consider two

cases: when ηBA = γ • ι, and when it is an identity.

Let us first assume that ηBA = γ • ι. Define the set:

Γ = {a ∈ A− | η[a,sa]
B∩[a,sa] is defined by γ • ι}.

So that a ∈ (A−)\Γ only if η
[a,sa]
B∩[a,sa] = 1T[a,sa]

. Consider the following diagram:
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T
A
◦
∏

a
∈
A
−
T
B
∩

[a
,s
a
]
◦
∏

b
∈
B
−
T

[b
,s
b
]
=

T
A
◦
∏

a
∈
A
−

  T B
∩

[a
,s
a
]
◦

∏
b
∈

(
B
∩

[a
,s
a
])
−
T

[b
,s
b
]

 
T
A
◦

( ∏ a
∈

Γ

( T
B
∩

[a
,s
a
]
◦

∏
b
∈

(B
∩

[a
,s
a
])
−
T

[b
,s
b
]) ×

∏ a
6∈

Γ

( T
B
∩

[a
,s
a
]
◦

∏
b
∈

(B
∩

[a
,s
a
])
−
T

[b
,s
b
]))

T
A
◦( ∏ a
∈

Γ
T
B
∩

[a
,s
a
]
×
∏
a
6∈

Γ
T
B
∩

[a
,s
a
]

)

◦     
∏

b
∈

(B
∩

[a
,s
a
])
−

a
∈

Γ

T
[b
,s
b
]
×

∏
b
∈

(B
∩

[a
,s
a
])
−

a
6∈

Γ

T
[b
,s
b
]

     
T
A
◦

( ∏ a
∈

Γ

( T
B
∩

[a
,s
a
]
◦

∏
b
∈

(B
∩

[a
,s
a
])
−
T

[b
,s
b
]) ×

∏ a
6∈

Γ

( T
B
∩

[a
,s
a
]
◦

∏
b
∈

(B
∩

[a
,s
a
])
−
T

[b
,s
b
]))

T
A
◦

( ∏ a
∈

Γ

( T
B
∩

[a
,s
a
]
◦

∏
b
∈

(B
∩

[a
,s
a
])
−
T

[b
,s
b
]) ×

∏ a
6∈

Γ

( T
B
∩

[a
,s
a
]
◦

∏
b
∈

(B
∩

[a
,s
a
])
−
T

[b
,s
b
]))

T
B
◦

  
∏

b
∈

(B
∩

[a
,s
a
])
−

a
∈

Γ

T
[b
,s
b
]
×

∏
b
∈

(B
∩

[a
,s
a
])
−

a
6∈

Γ

T
[b
,s
b
]  

T
A
◦

( ∏ a
∈

Γ

T
[a
,s
a
]
×
∏ a
6∈

Γ

T
[a
,s
a
])

T
B
◦

  
∏

b
∈

(B
∩

[a
,s
a
])
−

a
∈

Γ

T
[b
,s
b
]
×

∏
b
∈

(B
∩

[a
,s
a
])
−

a
6∈

Γ

T
[b
,s
b
]  

T
T
A
◦

( ∏ a
∈

Γ

T
[a
,s
a
]
×
∏ a
6∈

Γ

T
[a
,s
a
])

SN

W
E

1

1

η
B A
◦
1

ι
◦
(ι
×
ι)
◦
(ι
×
ι)

ι
◦
((
ι
◦
ι)
×

(1
◦
1
))

1
◦
((
1
◦
1
)
×

(ι
◦
ι)
)

1
◦
(∏ γ

×
1
)

1
◦
(1

×
ι)

γ

1
◦
(ι
×
ι)

γ

1
◦
(∏ γ

×
∏ γ)

γ
◦
(1

×
1
)
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Due to interchange of horizontal composition with products, the middle node in this

diagram can be rewritten:

TA ◦

∏
a∈Γ

TB∩[a,sa] ◦
∏

b∈(B∩[a,sa])−

T[b,sb]

×∏
a6∈Γ

TB∩[a,sa] ◦
∏

b∈(B∩[a,sa])−

T[b,sb]

 =

TA ◦

∏
a∈Γ

TB∩[a,sa] ×
∏
a6∈Γ

TB∩[a,sa]

 ◦
 ∏
b∈(B∩[a,sa])−

a∈Γ

T[b,sb] ×
∏

b∈(B∩[a,sa])−

a6∈Γ

T[b,sb]

 .

The map out of this central node γ ◦ (1× 1) is written in regards to this second expression.

The notation for the other map out of this central node, 1◦
∏
γ×
∏
γ is written with regards

to the first.

First we claim that commutativity of the above diagram implies Proposition 2.3. As we

have assumed that ηBA is of the form γ • ι, we have that xB is not the degeneracy of a

2-simplex, and so not the degeneracy of a 1-simplex, and hence that TB is not an identity

map. Thus TB = TB. The composition of the left most edges is then:

γ • (1 ◦ (ι× ι)) •
(
ηBA ◦ 1

)
= ηB •

(
ηBA ◦ 1

)
.

The composition of the right most edges is:
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γ • (1 ◦ (1× ι)) •
(

1 ◦
(∏

γ × 1
))
• (ι ◦ ((ι ◦ ι)× (1 ◦ 1)))(2.3.1)

= γ • (ι ◦ (1× ι)) •
(

1 ◦
(∏

γ × 1
))
• (1 ◦ ((ι ◦ ι)× (1 ◦ 1)))(2.3.2)

= γ • (ι ◦ (ι× ι)) •
(

1 ◦
(∏

γ × 1
))
• (1 ◦ ((ι ◦ ι)× (1 ◦ 1)))(2.3.3)

= ηA •
(

1 ◦
(∏

γ × 1
))
• (1 ◦ ((ι ◦ ι)× (1 ◦ 1)))(2.3.4)

= ηA •
(

1 ◦
((∏

γ • (ι ◦ ι)
)
× (1 • (1 ◦ 1))

))
(2.3.5)

= ηA •

1 ◦

(∏
a∈Γ

η

)
×

∏
a 6∈Γ

η

(2.3.6)

= ηA •

(
1 ◦

∏
a∈A−

η
[a,sa]
B∩[a,sa]

)
.(2.3.7)

Equation 2.3.2 follows from commuting ι with the identity functor 1. Equation 2.3.3 follows

because for each a ∈ Γ, the map...

γ :

TB∩[a,sa] ◦
∏

b∈(B∩[a,sa])−

T[b,sb]

⇒ T[a,sa].

... cannot possibly have as codomain T[a,sa] = 1A, as the output of γ is always a tensor ⊗.

Hence we have T[a,sa] = T[a,sa] for every a ∈ Γ. This means:

1 = ι : T[a,sa] ⇒ T[a,sa].

Equation 2.3.4 is then the assumption that ηA is of the form γ • ι ◦
∏
ι. Equation 2.3.5 is

repeated applications of interchange of vertical composition. Equation 2.3.6 is just the def-

inition of η and Γ: The first grouping corresponds to η for a ∈ Γ which in turn corresponds

to all those η of the form γ • ι; The second grouping corresponds to all of the other η’s,

which are thus simply 1.

Thus the commutativity of the above diagram implies Proposition 2.3. We verify the com-

mutativity by verifying the commutativity of each sub diagram: N, W, S, E.
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N: This commutes trivially.

W: This commutes as a result of commuting ι with 1.

(γ ◦ (1× 1)) • (ι ◦ (ι× ι) ◦ (ι× ι))(2.3.8)

= (γ ◦ (ι× ι)) • (ι ◦ (ι× ι) ◦ (1× 1))(2.3.9)

= (1 ◦ (ι× ι)) • (γ ◦ (1× 1)) • (ι ◦ (ι× ι) ◦ (1× 1))(2.3.10)

= (1 ◦ (ι× ι)) • (γ • (ι ◦ (ι× ι))) ◦ ((1× 1) • (1× 1))(2.3.11)

= (1 ◦ (ι× ι)) •
(
ηBA ◦ (1× 1)

)
.(2.3.12)

S: Note that every vertex in this square consists of only products of ⊗’s (and 1I ’s, which

again, are ignored). The commutativity of this square is simply the associativity axiom

for γ coming from the definition of a lax monoidal category.

E: The eastern square E commutes if and only if the following square commutes:
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∏
a∈Γ

(
TB∩[a,sa] ◦

∏
b∈(B∩[a,sa])−

T[b,sb]

)
×
∏
a6∈Γ

(
TB∩[a,sa] ◦

∏
b∈(B∩[a,sa])−

T[b,sb]

)

∏
a∈Γ

T[a,sa] ×
∏
a∈Γ

T[a,sa]

∏
a∈Γ

T[a,sa] ×
∏
a∈Γ

T[a,sa]

∏
a∈Γ

(
TB∩[a,sa] ◦

∏
b∈(B∩[a,sa])−

T[b,sb]

)
×
∏
a6∈Γ

(
TB∩[a,sa] ◦

∏
b∈(B∩[a,sa])−

T[b,sb]

)

∏
γ ×

∏
1

∏
1×

∏
ι ◦ ι

∏
γ ×

∏
γ

∏
1×

∏
ι

The square commutes in the first component of the binary product trivially:

∏
γ •
∏

1 =
∏

1 •
∏

γ.

It suffices then to show that the square commutes in the second component, and decom-

posing the product
∏
a 6∈Γ

, we see it suffices to show that for each a 6∈ Γ we have:
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TB∩[a,sa] ◦
∏

b∈(B∩[a,sa])−
T[b,sb] T[a,sa]

T[a,sa]
TB∩[a,sa] ◦

∏
b∈(B∩[a,sa])−

T[b,sb]

1

ι ◦ ι

γ

ι

Now, T[a,sa] may be a tensor ⊗m, 1A, or 1I . If T[a,sa] = ⊗m, the map TB∩[a,sa] ◦
∏
T[b,sb]

may be 1A ◦ ⊗m or ⊗m ◦
∏

1A. The square in question therefore becomes one of:

⊗m = ⊗m ◦
∏

1A

⊗m⊗m ◦
∏
⊗1

1⊗m
ι

γ

⊗m = 1A ◦ ⊗m

⊗m⊗1 ◦ ⊗m

1⊗m
ι

γ

These triangles are precisely those appearing in the unitality axiom of the lax monoidal

category, hence commute by definition.

In the case when T[a,sa] = 1A, then the square reduces to the following:

1A ◦ 1A 1A

⊗1⊗1 ◦ ⊗1

1

ι ◦ ι

γ

ι

The unitality axiom in the definition of the lax monoidal category gives in particular that

the following triangle commutes:

⊗1 = ⊗1 ◦ 1A

⊗1⊗1 ◦ ⊗1

1⊗1

ι

γ

Commutativity of this triangle in turn implies commutativity of the square above, and

consequently of the square E in question.
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Finally if T[a,sa] = 1I , then all four vertices of the square in question are 1I , all four

natural transformations are simply 1, and commutativity follows.

We have been operating under the assumption that ηBA was of the form γ • ι. We must

now consider when it is an identity. First, let us suppose that ηBA = 11I . Thus TB = 1I and

hence A0,n = I. It is a special fact about C that if x0,n = 0, every 1-face of x must also be

0, and so x is a degeneracy of the 1-simplex 0. This contradicts our assumption that x is

non-degenerate. We need not worry about this case.

Now suppose that ηBA = 11A . This immediately implies that TB = 1A and TA = 1A.

Consequently, the products comprising their domains –
∏
a∈A− A

xa,sa and
∏
b∈B− A

xb,sb –

each contain only a single A, with the rest I. This then means that every product of functors

into those products must consist entirely of a product of 1I ’s, except for the functor which

targets the single A. Hence, there exist unique a′ ∈ A− and unique b′ ∈ B− such that:

T[a′,sa′] 6= 1I 6= T[b′,sb′].

Figure (‡) then reduces to:

∏
i∈[n]−

Axi,i+1

A

A A

T[a′,sa′]

T[b′,sb′]

T = ⊗
∑

sp(x)

1A

1A

1A

We must then verify:

ηA •
(

1 ◦ η[a′,sa′]
B∩[a′,sa′]

)
= ηB • (1 ◦ 1) .

Towards these end we note two further cases: η
[a′,sa′]
B∩[a′,sa′] = γ • ι or η

[a′,sa′]
B∩[a′,sa′] = 1T[a′,sa′] .
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In the first case, it must be that T[a′,sa′] is a tensor given by the number of A’s in its do-

main, hence, T[a′,sa′] = ⊗
∑

sp(x). We see then that η
[a′,sa′]
B∩[a′,sa′] = ηB and ηA = 1⊗

∑
sp(x) as

a result of the unitality axioms of the lax monoidal category. Hence the equation above is

verified. In the second case, it must be that T[a′,sa′] = 1A = T[b′,sb′], and we see by inspection

that ηA = ηB once again verifying the equation.

Proposition 2.3.3. The assignment (A,⊗n, γ, ι) 7→ α : C // N∆(N2Cat) classifies lax

monoidal categories. That is, given a map α, we can recover the data (A,⊗n, γ, ι).

Proof. Given α, we see that α1(1)({0, 1}) = A10,1 = A1 = A, hence we have recovered the

category A. For n ≥ 2, let µ ∈ Cn be the n-simplex with 1-faces µp,q = 1 for all p, q ∈ [n].

Then we have:

αn(µ)({0, n} ⊂ [n]) = Tµ = ⊗
∑

sp(µ) = ⊗n.

Hence we have recovered the n-ary operations ⊗n for n ≥ 2. We can recover ⊗0 from the

non-degenerate 2-simplex u : 0 ∨ 0 // 1. We have:

α2(u)({0, 2} ⊂ [2]) = Tu = ⊗
∑

sp(u) = ⊗0.

We can recover ⊗1 from the non-degenerate 3-simplex l ∈ C3 defined by the following 1-faces:

l0,1 = 0, l1,2 = 0, l2,3 = 1, l0,2 = 1, l1,3 = 1, l0,3 = 1.

We have:

α3(l)({0, 3} ⊂ [3]) = T l = ⊗
∑

sp(l) = ⊗1.

This 3 simplex l will also recover the natural transformation ι:

α3(l)({0, 3} ⊂ {0, 1, 3} ⊂ [3]) = ηl{0,1,3} : T l013 ◦
(
T l01 × T l123

)
⇒ T l[3].

As l013 = l123 = s1(1), T l013 = T l123 = 1A, and because l01 = 0 is a degenerate 1-simplex,

T l01 = 1I . The definition of ηl{0,1,3} becomes:
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ηl{0,1,3} = γ1,2 ◦ (ι× ι) : 1A ◦ 1A ⇒ ⊗1.

By the unitality axiom for the lax monoidal category, this composite is simply ι.

Finally, as for recovering each γn,k1,...,kn , when n ≥ 2 consider the simplex x defined as

follows. Off its spine, every 1-face xp,q = 1. Its spine, {xi,i+1}, a finite sequence of 0’s and

1’s , will have two 0’s for each ki = 0, two 0’s and a 1 for each ki = 1, and ki 1’s for each

ki ≥ 2, ordered with k1’s digits first and kn’s last. Let k̂i ∈ N stand for the number of digits

in the spine of x associated with ki, i.e 0̂ = 2, 1̂ = 3, k̂i = ki for ki ≥ 2. Then x ∈ Ck with

k :=
∑

1≤i≤n
k̂i. Writing ĵ :=

∑
1≤i≤j−1

k̂i, we see that the functor T x[ĵ, ˆj+1] corresponding to the

face x[ĵ, ˆj+1] is precisely ⊗kj by the above. We have therefore:

αk(µ)
(
{0, k} ⊆ {0, k̂1, k̂1 + k̂2, ..., k} ⊆ [k]

)
= γn,k1,...,kn : ⊗n◦(⊗k1×...×⊗kn)⇒ ⊗k1+...+kn .

The cases when n = 0 or n = 1 proceed similarly.

This concludes the proof of Proposition 2.1.7.

2.4. Classifying skew monoidal categories. In this section, we will prove Proposi-

tion 2.1.8: that the nerve Ns(Cat) appearing in the classifcation result of [2] embeds into

N∆(N2Cat).

Definition 2.4.1. The skew nerve Ns(Cat) of the monoidal bicategory Cat is the simplicial

set defined by the following:

• There is a unique 0-simplex, ∗.

• 1-simplices consist in categories B01.

• 2-simplices consist in functors B012 : B01 ×B12
//B02.

• 3-simplices are natural transformations B0123 : B013 ◦ (B012 × 1)⇒ B023 ◦ (1×B123):
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B01B12B23 B02B23

B01B13 B03

B012 × 1

1×B123
B0123

B013

B023

• A 4-simplex consists in a quintuple of appropriately formed natural transformations mak-

ing the following pentagon commute:

B014 ◦ (1×B124) ◦ (1× 1×B234)

B024 ◦ (B012 × 1) ◦ (1× 1×B234)B014 ◦ (1×B134) ◦ (1×B123 × 1)

B024 ◦ (1×B234) ◦ (B012 × 1× 1)B034 ◦ (B013 × 1) ◦ (1×B123 × 1)

B034 ◦ (B023 × 1) ◦ (B012 × 1× 1)

1

B0124 ◦ 1

B0234 ◦ 1

1 ◦ (1×B1234)

B0134 ◦ 1

1 ◦ (B0123 × 1)

• Higher-dimensional simplices are determined by 4-coskeletality.

As in the case of the definition of a monoidal category, the pentagon law above gives rise

to a coherence theorem which we now explain. The 2-faces of an n-simplex B ∈ Ns(Cat)

consist in functors for every triple of numbers p, q, r with 0 ≤ p < r < q ≤ n:

Bprq : Bpr ×Brq //Bpq.
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Given a subset of indices C = {p = c0 < ... < cm = q}, we then have a number of composite

functors formed of these 2 faces: ∏
c∈C−

Bc,sc //Bpq.

Moreover, we have a potential multitude of natural transformation 3-faces mediating between

such composites. For example, the pentagon diagram occurring in the definition of Ns(Cat)

shows all of the composite 2-face functors from
∏
i∈[4]− Bi,i+1

// B0,4, and shows all the

3-face natural transformations between them.

In the context of a simplex B ∈ Ns(Cat)n, the coherence theorem says that there is at

most one composite of 3-face natural transformations between composites of 2-face functors.

This is precisely the content of the commutativity of the pentagon above, and as in the

theorem of [12], commutativity of pentagons gives the result in full generality. Note also

that every 2-face functor composite
∏
c∈C− Bc,sc

// Bp,q is the source of a composite of

3-face transformations with target:

m(BC) := Bc0cm−1cm ◦ (Bc0cm−2cm−1
× 1) ◦ ... ◦ (Bc0c2c3 × 1) ◦ (Bc0c1c2 × 1).

In a 4-simplex B ∈ Ns(Cat)4, this 2-face functor is just the bottom vertex of the pentagon

above, m(B) = B034 ◦ (B023 × 1) ◦ (B012 × 1 × 1). Combined with the coherence theorem

we have the following.

Remark 2.4.2. Let B ∈ Ns(Cat)n with n ≥ 2, and C ⊆ [n]. For each composite of 2-face

functors T :
∏
c∈C− Bc,sc

// Bp,q, there exists a unique natural transformation formed of

composites of 3-face transformations T ⇒ m(BC).

Finally, we also have that m(B) = m(si(B)) for any B ∈ Ns(Cat)n with n ≥ 2 and

si : Ns(Cat)n //Ns(Cat)n+1 any degeneracy map. Again recalling Lemma 2.2.3, we have:

m(si(B)) =si(B)0,n,n+1 ◦ si(B)0,n−1,n ◦ ... ◦ si(B)0,i,i+1 ◦ ... ◦ si(B)0,1,2

=Bσi(0,n,n+1) ◦Bσi(0,n−1,n) ◦ ... ◦ s′(B0,i) ◦ ... ◦Bσi(0,1,2)

=B0,n−1,n ◦B0,n−2,n−1 ◦ ... ◦ 1B0,i
◦ ... ◦B0,1,2

=m(B).
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Definition 2.4.3. The Skew Nerve Embedding

We will again rely on Proposition 2.2.6. As we tend to write simplices in Ns(Cat) with

capital letters B, we will recall that proposition in slighty different terminology. To specify

a map β : Ns(Cat) //N∆(N2Cat), we must specify:

(1) A category for each 1-simplex B ∈ Ns(Cat)1. We will simply assign each 1-simplex

category B to itself, as this satisfies (1.a).

(2) A functor

T (B) :
∏

i∈[n]−

Bi,i+1
//B0,n.

For each n ≥ 1 and B ∈ Ns(Cat)n. Let T (B) = 1B when n = 1 in accordance

with (2.a), and otherwise let T (B) = m(B) when n ≥ 2, as by the above this is in

accordance with (2.b).

(3) A natural transformation

ηBC : m(BC) ◦
∏
c∈C−

m(B[c,sc])⇒ m(B).

For each n ≥ 1, B ∈ Ns(Cat)n and {0, n} ⊆ C ⊆ [n]. For 1 ≤ n ≤ 2, we take

ηBC := 1B in accordance with (3.a). Otherwise, take ηBC to be the unique such

transformation formed of composite of 3-faces of B in all cases given by Remark

2.4.2. It is easy to check that this assignment is in accordance with (3.b) given that

m(si(B)) = m(B).

This assignment gives rise to a map Ns(Cat) // N∆(N2Cat) if equation (†) is satisfied

for every n ≥ 4 and ({0, n} ⊂ A ⊂ B ⊂ [n]). This is again the case by the uniqueness clause

of 2.4.2.

Therefore by 2.2.6 we have a map β : Ns(Cat) //N∆(N2Cat) such that:

β(B)({0, 1}) = B0,1, β(B)({0, n} ⊆ [n]) = m(B), and β(B)({0, n} ⊆ C ⊆ [n]) = ηBC .

Proposition 2.4.4. The map βn : Ns(Cat)n // N∆(N2Cat)n is injective for each n ≥ 0.

Hence β is a faithful embedding.
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Proof. Let B,D ∈ Ns(Cat)n and βn(B) = βn(D). For each subset {p ≤ r ≤ q} ⊂ [n] we

have Bpq = βn(B)({p, q}) and Bprq = m(Bprq) = βn(B)({p, q} ⊆ {p, r, q}), hence B and D

have precisely the same 1 and 2-faces.

Note that for C = {c0 < c1 < c2 < c3}, we have that:

βn(B)({c0, c3} ⊂ C) = m(BC) = Bc0c2c3 ◦ (Bc0c1c2 × 1).

because β commutes with face maps. We therefore have:

βn(B)({c0, c3} ⊂ {c0, c1, c3} ⊂ C) : m(Bc0c1c3) ◦ (m(Bc0c1)×m(Bc1c2c3))⇒ m(BC)

= Bc0c1c2c3 : Bc0c1c3 ◦ (1×Bc1c2c3)⇒ Bc0c2c3 ◦ (Bc0c1c2 × 1).

This implies that B and D have the same 3-faces. As a result, commutative pentagons of

such transformations occur in B exactly when they occur in D, and so the two have the

same 4-faces. They have the same k-faces for k > 4 by 4−coskeletality.

This concludes the proof of Proposition 2.1.8.

2.5. Classifying Σ-monoidal categories and general maps in sSet(C, N∆(N2Cat)).

We have seen now that both lax monoidal categories (Section 2.3), skew monoidal categores

(Section 2.4), and hence both monoidal and strict monoidal categories, all can be understood

as maps in sSet(C, N∆(N2Cat)). The question we turn now to explore is then: what other

monoidal-type categories do we find in this simplicial set? We begin with a simple com-

parison of those β, α, and φ : C //N∆(N2Cat) corresponding to skew monoidal categories,

lax monoidal categories, and arbitrary maps respectively. Recalling Propositions 2.2.1 and

2.2.6, we have that these three maps determine and are determined by three types of data:

(1) A category A1 = A, where A0 = I.

(2) A functor

T x :
∏

i∈[n]−

Axi,i+1 = A
∑

sp(x) //A.

for each n ≥ 1 and x ∈ Cn subject to stipulations (2.a) and (2.b) of Proposition

2.2.6.
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(3) A natural transformation

ηxC : (T xC ◦
∏
c∈C−

T x[c,sc])⇒ T x.

for each face n ≥ 1, x ∈ Cn, and {0, n} ⊆ C ⊆ [n] subject to (3.a) and (3.b) of

Proposition 2.2.6.

And, this data is equivalent to defining a map C // N∆(N2Cat) whenever the natural

transformations of item (3) satisfy equation (†) of 2.2.6 for every {0, n} ⊂ A ⊂ B ⊂ [n]. Let

us then explore these three types of data associated to β, α, and φ. Recall the five 2-simplices

of C: We have s0(0) : 0 ∨ 0 // 0, s0(1) : 0 ∨ 1 // 1, s1(1) : 1 ∨ 0 // 1, u : 0 ∨ 0 // 1, and

m : 1∨1 //1. Here we write the simplex with 1-faces x0,1, x1,2, and x0,2 as x0,1∨x1,2
//x0,2.

(1) The category data associated to each of β, α, and φ is just the monoidal-type cate-

gory associated to the map.

(2) The functor data associated to the skew monoidal category map β is defined by a

pair of functors, ⊗2 := Tm, and ⊗0 := Tu. By the stipulations (2.a) and (2.b), this

alone gives T x for every simplex x ∈ C2. For an arbitrary x ∈ Cn, T x is defined in

terms of the image of its 2-faces:

T x := T x{0,1,n} ◦ (1× T x{1,2,n}) ◦ ... ◦ (1× T x{n−2,n−1,n}).

In contrast, the functor data associated to a lax monoidal category map α is

defined by functors ⊗n := Tµ for every n ≥ 0 where µ ∈ Cn is given by µp,q = 1 for

all 0 ≤ p < q ≤ n. For arbitrary x ∈ C, T x := ⊗
∑

sp(x).

Finally, φ may specify apriori unrelated functors T x : A
∑

sp(x) // A for every

non-degenerate x. Note that there are a countable infinite number of non-degenerate

simplices x with
∑

sp(x) = n for every n ≥ 0,24 and thus, φ may include the data

of an arbitrary (countable) number of n-ary functors for each n.

(3) Key differences in the natural transformation data associated to β, α, and φ, can

already be seen when considering only 3-simplices x ∈ C3. Let us represent such a

3-simplex with 1-faces xp,q, 0 ≤ p < q ≤ 3 as the diagram:

24Take a simplex with xi,i+1 = 1 for i ≤ n− 1, xi,i+1 = 0 for i ≥ n, and xp,q = 1 for q − p ≥ 2. There

is one simplex of this form in every dimension ≥ n, it is non-degenerate, and
∑

sp(x) = n.
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x0,1 ∨ x1,2 ∨ x2,3 x0,1 ∨ x1,3

x

x0,2 ∨ x2,3 x0,3

Consider then the pair of simplices l and r ∈ C3:

0 ∨ 0 ∨ 1 0 ∨ 1

l

1 ∨ 1 1

1 ∨ 0 ∨ 0 1 ∨ 1

r

1 ∨ 0 1

Associated to each of β, α, and φ is a functor T l : A
∑

sp(l) = IIA = A // A,

as well as functors T l{0,1,2} = Tu, T l{0,1,3} = T s0(1) = 1A, T l{0,2,3} = Tm, and

T l{1,2,3} = T s0(1) = 1A corresponding to the four arrows making up the edges of the

above squares. There are also the pair of natural transformations:

ηl{0,2,3} : T l{0,2,3} ◦ (T l{0,1,2} × T l{2,3})⇒ T l.

ηl{0,1,3} : T l{0,1,3} ◦ (T l{0,1} × T l{1,2,3})⇒ T l.

We get similar data for r, and we can represent all of it succinctly in the following

two diagrams:

IIA IA

AA A

1I × T l{1,2,3}

T l{0,2,3}

T l{0,1,3}T l

ηl{0,1,3}

ηl{0,2,3}

AII AA

AI A

1A × T r{1,2,3}

T r{0,1,2} × 1I

T r{0,2,3}

T r

ηr{0,1,3}

ηr{0,2,3}
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The remaining functors associated to the skew monoidal category map β are

defined T l := 1A and T r := ⊗2 ◦ (1A ×⊗0). Naming λ := ηl0,2,3 and ρ := ηr0,2,3, we

get the following diagrams:

IIA IA

AA A

1I × 1A

⊗0 × 1A

⊗2

1A

1

λ

AII AA

AI A

1A ×⊗0

1A × 1I

1A

⊗2

1

ρ

We see then λ and ρ arise naturally in this context. Associated to the lax monoidal

category map α are instead T l = ⊗1 = T r and the following diagrams:

IIA IA

AA A

1I × 1A

⊗0 × 1A

⊗2

1A
⊗1

ι

γ2,0,1

AII AA

AI A

1A ×⊗0

1A × 1I

1A

⊗2
⊗1

γ2,1,0

ι

So we see the transformation ι and two of the many γ transformations arise natu-

rally in this context as well. Finally, for the general map φ, there are, apriori no

relationships between these various functors and natural transformations, aside from

those relationships contributed by the other data of φ.

We have seen in particular that arbitrary maps φmay include the data of up to a countable

number of distinct n-ary functors for each n. Such a monoidal-type category is reminiscent

of the following definition of [6] which we present only informally here:

Definition 2.5.1. A Σ-monoidal category (A,Σ, γ) consists in a category A, a countable25

set Σk of k-ary functors Ak //A for each k ≥ 0, and natural isomorphisms γ between each

25The definition in [6] considers aribtrary cardinality.
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possible composite of functors of the same total arity. Each composition of these natural

isomorphisms with the same domain and codomain must be equal.

There is no canonical way of associating a map σ ∈ sSet(C, N∆(N2Cat)) to a Σ-monoidal

category (A,Σ, γ) because the definition presents all k-ary functors in Σk as morally indis-

tinguishable, whereas the k-ary functors arising in the image of a map C //N∆(N2Cat) can

be distinguished in many ways, for example, by the dimension of the simplex x mapping to

that functor. However, given a surjective function

hk : {x | x is nondegenerate with dimension ≥ 2 and
∑

sp(x) = k} // Σk.

for each k ≥ 0, we can define σ : C //N∆(N2Cat) by Proposition 2.2.6.

Definition 2.5.2. The Σ-Monoidal Classifying Map

(1) Let Ax := A if x = 1 and I otherwise.

(2) Let T x := h∑ sp(x)(x) : A
∑

sp(x) // A if x is non-degenerate with dimension ≥ 2.

Otherwise T x is defined in accordance with stipulations (2.a) and (2.b).

(3) Let ηxC : T xC ◦
∏
c∈C− T

x[c,sc] ⇒ T x be the unique γ natural isomorphism guaranteed

by the definition of Σ-monoidal category if n ≥ 3, and 1Tx otherwise, as this is in

accordance with (3.a) and (3.b).

The commutativity of equation (†) is implied directly by the commutativity of the isomor-

phisms γ given in the definition, and hence this data gives rise to a map σ : C //N∆(N2Cat).

This assignment also classifies Σ-monoidal categories.

Proposition 2.5.3. The assignment (A,Σ, γ) 7→ σ : C //N∆(N2Cat) classifies Σ-monoidal

categories. That is, given the map σ, we can recover the data (A,Σ, γ).

We get A from item (1), and each map from each Σk from item (2), using the fact that hk

is assumed to be surjective. We must therefore only show that every natural isomorphism

implied by the definition of Σ-monoidal categories can be generated – via horizontal com-

position, vertical composition, and by product – by the transformations ηxC of item (3). We

need a few lemmas which will incidently reveal some additional structure of general maps

φ.
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Lemma 2.5.4. Let φ : C // N∆(N2Cat) be a general map. Suppose x ∈ Cm such that∑
sp(x) = 1. Then there is a transformation E : 1A ⇒ T x generated by transformations ηyC

in the image of φ.

Proof. Let x ∈ Cm with
∑

sp(x) = 1. Let xi−1,i = 1 be the unique such 1-face in sp(x). If

i 6= 1, then:

ηx0,1,...,i−2,i,i+1,...,m : T x0,1,...,i−2,i,i+1,...,m ◦ (1I × ...× 1I × 1A × 1I × ...× 1I)⇒ T x.

Here, we get T xi−2,i−1,i = 1A because xi−2,i−1,i is necessarily s0(1), and hence degenerate.

So we get a transformation T x0,1,...,i−2,i,i+1,...,m ⇒ T x. On the other hand if i = 1 we have:

ηx0,2,...,m : T x0,2,...,m ◦ (1A × 1I × ...× 1I)⇒ T x.

This time T x0,1,2 = 1A because x0,1,2 = s1(1). In each case, the face x0,1,...,i−2,i,i+1,...,m and

x0,2,...,m both have a single 1 on the spine, and one fewer 0. By repeating the argument on

these faces inductively, we get a composite:

E : T x0,m = 1A ⇒ T x.

Lemma 2.5.5. Let φ : C //N∆(N2Cat) be a general map. Let x ∈ Cm with
∑

sp(x) = 0

and x not a degeneracy of 0. Then there is a transformation E : Tu ⇒ T x generated by

transformations ηyC in the image of φ.

Proof. We consider two cases. If x0,1,2 = s0(0) then T x0,2,3,...,n = T x, and we are finished by

induction. If on the other hand x0,1,2 = u, then
∑

sp(x0,2,3,...,n) = 1 and by the previous

lemma, we have a transformation F : 1A ⇒ T x0,2,3,...,n . We have:

ηx0,2,3,...,n : T x0,2,3,...,n ◦ (Tu × 1I × ...× 1I)⇒ T x

E := ηx0,2,3,...,n • (E ◦ 1) : Tu ⇒ T x.
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Lemma 2.5.6. Let φ : C // N∆(N2Cat) be a general map. For n ≥ 2, let µ ∈ Cn be

given by µp,q = 1 for all 0 ≤ p < q ≤ n, and let Tµ be the associated n-ary functor. Let

x ∈ Cm with
∑

sp(x) = n. Then there is a transformation E : T x ⇒ Tµ generated by

transformations ηyC in the image of φ.

Proof. Now, let µ ∈ Cn as above, and let x ∈ Cm with m ≥ n ≥ 2 with
∑

sp(x) = n.

Suppose that xi−1,i = 1 if and only if i ∈ I = {i1, ..., in}. Then the faces
∑

sp(x0,...,i1) =∑
sp(xi1,...,i2,) = ... =

∑
sp(xin−1,...,in−1,in,...,m) = 1 . Thus we have:

E1 × ...× En : 1⇒ T x0,...,i1 × ...× T xin−1,...,m .

We also have that x0,i1,...,in−1,m = µ because µ is the unique n-simplex with
∑

sp(µ) = n.

We have then:

ηx0,i1,i2,...,in−1,m : T x0,i1,...,in−1,m ◦ (T x0,...,i1 × ...× T xin−1,...,m)⇒ T x.

E := ηx0,i1,i2,...,in−1,m • (1◦E1× ...×En) : (Tµ ◦1)⇒ (Tµ ◦T x0,...,i1 × ...×T xin−1,...,m)⇒ T x.

Proof. (of Proposition 2.5.3) Given a map σ in the image of the assignment, we must show

that every natural isomorphism implied by the definition of Σ-monoidal categories can be

generated by transformations ηxC in the image of σ. As σ assigns to each ηxC a natural

isomorphism, the above three lemmas imply that for every k ≥ 0, each pair of elements

f, f ′ ∈ Σk are isomorophic to one another via isomorphisms in the image of σ. Let µn ∈ Cn
denote the unique n-simplex with

∑
sp(x) = n, i.e µnp,q = 1 for all 0 ≤ p < q ≤ n. Now,

given n = n1 + ...+ nk, fi ∈ Σni , f ∈ Σk, and g ∈ Σn, we must show that the isomorphism

γ : f ◦ (f1 × ... × fk) ⇒ g can be generated by ηxC’s. Without loss of generality we can

assume that fi = Tµ
ni

if ni ≥ 2, fi = 1A if ni = 1, and fi = Tu if ni = 0 and similarly for

f and g. Let x be the simplex with two consecutive 0’s on its spine for each ni = 0, with
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ni consecutive 1’s on its spine for each ni ≥ 1, and all other 1-faces xp,q = 1. Let the total

dimension of x be m. Then choosing C with {0,m} ⊆ C ⊆ [m] so that consecutive indicies

of C correspond to the part of sp(x) corresponding to each ni, we get the transformation:

ηxC : f ◦ (fn1
× ...× fnk)⇒ T x.

Note that xC = µk as it has only 1’s on its spine, and so T xC = f . Finally, as
∑

sp(x) = n,

we get a transformation E : T x ⇒ g = Tµ
n

. Together these show the isomorphism between

these n-ary functors to be generated by σ.

This concludes the proof of Propostion 2.1.9

We might therefore think of general maps φ : C //N∆(N2Cat) as specifying a category

along with an arbitrary (countable) number of n-ary functors for every n which are not

necessarily isomorphic. They are, however, related by an intricate web of natural transfor-

mations which mirror aspects of the structure of C. Perhaps one might therefore think of

the data associated to an abitrary map C //N∆(N2Cat) along with the equation (†) as in-

dicating the necessary structure and coherence needed to go about weakening the definition

of Σ-monoidal category to not require natural isomorphisms between all functors with the

same total arity.
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