Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

assoc. prof. Janez Povh, Ph.D.¹

¹UNM - Faculty of information studies

Edinburgh, 16. September 2014
Outline

Application of SDP to comb. optim.
 Max Cut
 Graph partitioning problem

Application of SDP to RAG
 Commutative RAG
 Non-commutative RAG
Some notation

- I - unit matrix,
- $X \in \mathbb{R}^{m \times n} \Rightarrow x = \text{vec}(X) \in \mathbb{R}^{mn}$
- $\langle x, y \rangle = x^T y = \sum_i x_i y_i$
- $\langle A, B \rangle = \text{tr}(A^T B) = \sum_{i,j} a_{ij} b_{ij}$
- e - vector of all ones.
The Max Cut problem

Given weighted graph $G = (V, E)$ with edge weights W:
The Max Cut problem

- Given weighted graph $G = (V, E)$ with edge weights W.
- Find $S \subset V$ with maximum cut edges.
MCP - formally

Motivation: network design, cluster analysis.
MCP - formally

- **Motivation**: network design, cluster analysis.

- **Def. MCP**

 Given a weighted graph \(G = (V, E) \) with edge weights \(W \), find a subset \(S \subset V \) such that

 \[
 \text{cut}(S) := \sum_{i \in S, j \in V \setminus S} w_{ij}
 \]

 is maximum.
MCP - int. prog. formulation

Def. MCP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \quad \frac{1}{4} \sum_{i,j} w_{ij}(1 - x_i x_j)$$

$x \in \{-1, 1\}^n$
Def. **MCP**

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - x_i x_j)$$

$x \in \{-1, 1\}^n$

Solution for MCP: $S = \{i : x_i = 1\}$.

Thm.: (Karp, 1972) MCP is an NP-complete problem.

Thm.: MCP is polynomial if graph is **planar** (Orlova, Dorfman), **weakly** bipartite (Grötchal, Pulleyblank), graphs **without long odd cycles** (Grötchal and Nemhauser), **line** graphs (Arbib), graphs with **bounded tree width** (Bodlaender, Jansen) and some others.
MCP - relaxation

Def. MCP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \quad \frac{1}{4} \sum_{i,j} w_{ij} (1 - x_i x_j)$$

$$x \in \{-1, 1\}^n$$
MCP - relaxation

Def. MCP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - x_i x_j)$$

$x \in \{-1, 1\}^n$

Def. MCP-SDP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - \langle v_i, v_j \rangle)$$

$v_i \in S_{n-1}$
MCP - relaxation

Def. MCP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - x_i x_j)$$

$x \in \{-1, 1\}^n$

Def. MCP-SDP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - \langle v_i, v_j \rangle)$$

$v_i \in S_{n-1}$

Idea: Introduce $Y = [y_{ij}], \ y_{ij} = \langle v_i, v_j \rangle$.

Janez Povh
MCP - relaxation

Def. MCP-SDP

Given weighted graph $G = (V, E)$ with edge weights W, solve

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - \langle v_i, v_j \rangle)$$

$$v_i \in S_{n-1}$$
MCP - relaxation

Def. MCP-SDP

Given weighted graph \(G = (V, E) \) with edge weights \(W \), solve

\[
\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - \langle v_i, v_j \rangle)
\]
\[v_i \in S_{n-1}\]

Def. MCP-SDP

Given weighted graph \(G = (V, E) \) with edge weights \(W \), solve

\[
\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - y_{ij})
\]
\[Y \succeq 0, \quad y_{ii} = 1 \ \forall i.\]
MCP - relaxation

Def. MCP-SDP

Given weighted graph \(G = (V, E) \) with edge weights \(W \), solve

\[
\max \quad \frac{1}{4} \sum_{i,j} w_{ij} (1 - \langle v_i, v_j \rangle)
\]

\[
v_i \in S_{n-1}
\]

Def. MCP-SDP

Given weighted graph \(G = (V, E) \) with edge weights \(W \), solve

\[
\max \quad \frac{1}{4} \sum_{i,j} w_{ij} (1 - y_{ij})
\]

\[
Y \succeq 0, \quad y_{ii} = 1 \ \forall i.
\]

Back: Compute \(v_i \in \mathbb{R}^n \) such that \(\langle v_i, v_j \rangle = y_{ij} \).
How to obtain a good cut?

1. **Input:** \(\{v_i\} \) obtained from SDP relaxation MCP-SDP.
2. Generate random \(r \in S_{n-1} \).
3. **Define** \(S = \{i : \langle r, v_i \rangle \geq 0\} \).

Thm.: (Goemans, Williamson, 1995) Let \(r \in S_{n-1} \) be obtained by uniform distribution yielding \(S \). Then

\[
\mathbb{E}(\text{cut}(S)) > 0.87856 \cdot \text{cut}(S^{opt}).
\]
Solving to optimality

- Common approach: Branch and Bound.
- Good lower bound and upper bounds are needed.
- Good upper bounds obtained by SDP relaxations (improved by further constraints - see Rendl, Rinaldi, Wiegele 2010).
- Biq Mac (Wiegele) - web based solver for MCP (up to 300 vertices).
- Solving MCP and MkCP in practise: heuristics.
The graph partitioning problem - a picture

- Partition the nodes of a graph into sets with prescribed sizes such that the number of edges between different sets is minimal.

\[
\text{Slika: } \text{cut}(S_1, S_2, S_3) = 4
\]
Motivations and complexity

- GP problem appears in floor planning, analysis of networks etc.
- GP is connected with vertex separator problem and bandwidth problem.
Motivations and complexity

- GP problem appears in floor planning, analysis of networks etc.
- GP is connected with vertex separator problem and bandwidth problem.
- If $k = 2$, $m_1 = \lceil \frac{n}{2} \rceil$, $m_2 = \lfloor \frac{n}{2} \rfloor$, we get an NP-complete graph bisection problem as a special case.
Application to the graph partitioning problem

- **INPUT** Graph $G = (V, E)$, $k \in \mathbb{N}$, $m = (m_1, \ldots, m_k) \in \mathbb{N}^k$.

\[\text{Problem: find a partition of graph nodes into sets } S_1, \ldots, S_k \text{ with } |S_i| = m_i, \text{ which gives minimum cut edges.} \]

\[\text{OPT GPP} = \min \frac{1}{2} \langle X, A X B \rangle \quad \text{s.t.} \quad X \in \mathbb{R}^{n \times k}, \quad X^T X = \mathbf{M} := \text{Diag}(m) \cdot \text{diag}(XX^T) = u A \ldots \text{adjacency matrix of } G, \quad B = J - I. \]
Application to the graph partitioning problem

- **INPUT** Graph $G = (V, E)$, $k \in \mathbb{N}$, $\mathbf{m} = (m_1, \ldots, m_k) \in \mathbb{N}^k$.
- **Problem**: find a partition of graph nodes into sets S_1, \ldots, S_k with $|S_i| = m_i$, which gives minimum cut edges.
Application to the graph partitioning problem

- **INPUT** Graph $G = (V, E)$, $k \in \mathbb{N}$, $\mathbf{m} = (m_1, \ldots, m_k) \in \mathbb{N}^k$.
- **Problem:** find a partition of graph nodes into sets $S_1, \ldots S_k$ with $|S_i| = m_i$, which gives minimum cut edges.

\[
\text{OPT}_{\text{GPP}} = \min \frac{1}{2} \langle \mathbf{X}, \mathbf{AXB} \rangle \\
\text{s. t. } \mathbf{X} \in \mathbb{R}^{n \times k}, \\
\quad \mathbf{X}^T \mathbf{X} = \mathbf{M} := \text{Diag}(\mathbf{m}) \\
\quad \text{diag}(\mathbf{XX}^T) = u_n
\]

Application to the graph partitioning problem

- **INPUT** Graph \(G = (V, E) \), \(k \in \mathbb{N} \), \(m = (m_1, \ldots, m_k) \in \mathbb{N}^k \).

- **Problem**: find a partition of graph nodes into sets \(S_1, \ldots, S_k \) with \(|S_i| = m_i \), which gives minimum cut edges.

\[
\text{OPT}_{GPP} = \min \frac{1}{2} \langle X, AXB \rangle
\]

\[
\text{s. t. } \quad X \in \mathbb{R}_{+}^{n \times k},
X^T X = M := \text{Diag}(m)
\]

\[
\text{diag}(XX^T) = u_n
\]

\(A \ldots \) adjacency matrix of \(G \), \(B = J - I \).
Adding redundant constraints

Every partition matrix X satisfies $XM^{-1}X^T \preceq I$, $e_n^TXe_k = n$.

$$OPT_{GPP} = \min \frac{1}{2} \langle X, AXB \rangle$$\hspace{1cm}s.t. \hspace{0.5cm}X \in \mathbb{R}^{n \times k}_+, \hspace{1cm}X^TX = M := \text{Diag}(m) \hspace{1cm}\text{diag}(XX^T) = u_n \hspace{1cm}XM^{-1}X^T \preceq I$$

We use $x = \text{vec}(X)$ and $\langle X, AXB \rangle = \langle B \otimes A, xx^T \rangle$.
We introduce $V = xx^T \in S^{+}_{kn}$.

$$OPT_{GPP} \geq OPT_{DH} = \min \langle B \otimes A, V \rangle$$

$V \in S^{+}_{kn}$, $W \in S^{+}_n$

$$\sum_{i=1}^{k} \frac{1}{m_i} V^{ii} + W = I, \quad \langle I, V^{ij} \rangle = m_i \delta_{ij}, \forall i, j$$

$$\langle I \otimes E_{ii}, V \rangle = 1, \quad 1 \leq i \leq n$$
We introduce $V = xx^T \in S_{kn}^+$.

$$OPT_{GPP} \geq OPT_{DH} = \min \langle B \otimes A, V \rangle$$

$V \in S_{kn}^+, W \in S_n^+$

$$\sum_{i=1}^{k} \frac{1}{m_i} V^{ii} + W = I, \quad \langle I, V^{ij} \rangle = m_i \delta_{ij}, \quad \forall i, j$$

$$\langle I \otimes E_{ii}, V \rangle = 1, \quad 1 \leq i \leq n$$

Thm. (P. 2009) The semidefinite bound OPT_{DH} is exactly the Donath-Hoffman eigenvalue bound for OPT_{GPP}

$$OPT_{DH} = \max \left\{ \frac{1}{2} \sum_{i=1}^{k} m_{k-i+1} \lambda_i (L + D) : D = \text{Diag}(d), \; e^T d = 0 \right\}$$
Improved SDP bounds for GPP

- If we add $e_n^T X e_k = n$ (actually: $\langle X, J_n X J_k \rangle = n^2$), we obtain:

$$OPT_{GPP} \geq OPT_{new1} = \min \langle B \otimes A, V \rangle$$

$$V \in S^{+}_{kn}, \quad W \in S^{+}_n$$

$$\sum_{i=1}^{k} \frac{1}{m_i} V^{ii} + W = I, \quad \langle I, V^{ij} \rangle = m_i \delta_{ij}, \quad \forall i, j$$

$$\langle I \otimes E_{ii}, V \rangle = 1, \quad 1 \leq i \leq n$$

$$\langle J_{kn}, V \rangle = n^2.$$
If we further add $x_{ij}x_{i\ell} = 0 \ \forall i, j, \ell, j \neq \ell$, we obtain:

$$OPT_{GPP} \geq OPT_{\text{new2}} = \min \langle B \otimes A, V \rangle$$

$s \in S_{kn}^+, \ W \in S_n^+$

$$\sum_{i=1}^{k} \frac{1}{m_i} V^{ii} + W = I, \ \langle I, V^{ij} \rangle = m_i \delta_{ij}, \ \forall i, j$$

$$\langle I \otimes E_{ii}, V \rangle = 1, \ \ 1 \leq i \leq n$$

$$\langle J_{kn}, V \rangle = n^2$$

$$\langle E_{j\ell} \otimes E_{ii}, V \rangle = 0 \ \forall i, j, \ell, j \neq \ell.$$
Numerical results

| name | n | $|E|$ | OPT_{DH} | OPT_{new1} | OPT_{new2} | PRGP [WoZh 99] |
|--------|-----|------|------------|--------------|--------------|----------------|
| g50.01 | 50 | 111 | 17.922 | 22.762 | 23.570 | 23.549 |
| g50.02 | 50 | 256 | 81.956 | 95.920 | 99.983 | 99.423 |
| g50.03 | 50 | 342 | 124.718 | 148.701 | 152.231 | 151.225 |
| g50.04 | 50 | 478 | 204.303 | 236.697 | 242.578 | 242.063 |
| g50.05 | 50 | 611 | 287.204 | 332.791 | 338.494 | 338.529 |
| g50.06 | 50 | 759 | 378.250 | 440.780 | 443.184 | 442.966 |
| g50.07 | 50 | 897 | 470.157 | 544.238 | 550.335 | 549.934 |
| g50.08 | 50 | 984 | 530.486 | 615.035 | 620.326 | 620.168 |
| g50.09 | 50 | 1098 | 618.867 | 719.456 | 722.990 | 722.270 |

Tabela: Semidefinite lower bounds for Graph partitioning problem, where $m = (5, 10, 15, 20)$
Stronger relaxations

- **Further strengthening:** adding new constraints, redundant from original constraints:
 - Triangle constraints for 0-1 programs.
 - Row sum/column sum constraints.
 - **Completely positive constraint:**

Def. X is *completely positive* iff $X = \sum_{i=1}^{r} x_i x_i^T$ for some $r \in \mathbb{N}$ and $x_i \geq 0$.

Def. The cone of *completely positive* matrices \mathcal{CP}.

Def. The cone of *copositive* matrices $\mathcal{COP} = \{ A \in S : x^T A x \geq 0 \ \forall x \geq 0 \}$.
Second main result

Theorem 2 (P., 2009) Adding completely positive constraint $V \in CP_{kn}$ to OPT_{new1} we obtain the **exact value** for GPP.

$$OPT_{GPP} = \min \langle B \otimes A, V \rangle$$

$V \in CP_{kn}, W \in S_n^+$

$$\sum_i \frac{1}{m_i} V^{ii} + W = I, \quad \langle I, V^{ij} \rangle = m_i \delta_{ij}, \ \forall i, j$$

$$\langle I \otimes E_{ii}, V \rangle = 1, \ 1 \leq i \leq n$$

$$\langle J_{kn}, V \rangle = n^2.$$

Proof technique:

- If V is feasible solution of completely positive program, then

$$V = \sum_i \lambda_i x_i x_i^T,$$

where $x_i = \text{vec}(X_i)$ and X_i feasible for GPP.

- We explore the structure of the equations.
The contribution of copositive formulation

- The GPP problem remains NP-hard.
- GPP can be rewritten as completely positive program using other techniques (Burer 2008, P. 2007, P. 2009).
- We can approximate OPT_{GPP} using semidefinite approximations of cone \mathcal{CP}_{kn} (De Klerk, Pasechnik, 2002) or direct heuristics (Bomze, Jarre, Rendl, 2009; Duer, Bundfuss, 2008, 2009).
Real algebraic geometry

Problem: Let $f \in \mathbb{R}[x]$. Is $f(x) \geq 0$ for all $x \in \mathbb{R}^n$?
Real algebraic geometry

Problem: Let $f \in \mathbb{R}[x]$. Is $f(x) \geq 0$ for all $x \in \mathbb{R}^n$?

Ex. Motzkin polynomial:

$$M(x, y) = x^2y^4 + x^4y^2 + 1 - 3x^2y^2$$
Real algebraic geometry

Problem: Let $f \in \mathbb{R}[x]$. Is $f(x) \geq 0$ for all $x \in \mathbb{R}^n$?

Ex. Motzkin polynomial:

$$M(x, y) = x^2 y^4 + x^4 y^2 + 1 - 3x^2 y^2$$

$$(x^2 + y^2 + 1) M(x, y) = (x^2 y - y)^2 + (x y^2 - x)^2 + (x^2 y^2 - 1)^2 +$$

$$+ \frac{1}{4}(xy^3 - x^3 y)^2 + \frac{3}{4}(xy^3 + x^3 y - 2xy)^2$$
Problem: Let \(f \in \mathbb{R}[x] \). Is \(f(x) \geq 0 \) for all \(x \in \mathbb{R}^n \)?
Problem: Let \(f \in \mathbb{R}[x] \). Is \(f(x) \geq 0 \) for all \(x \in \mathbb{R}^n \)?

Ex. \(f_A(x) = \sum_{i,j} a_{ij}x_i^2x_j^2 \geq 0 \) for all \(x \in \mathbb{R}^n \) \(\text{IFF} \) \(A \) is copositive.

Rem. The strong membership problems for \(CP \) and \(COP \) are NP-hard (Dickinson and Gijben, 2014).

- The Hilbert **17th problem** (1900): Is every non-negative polynomial with real coefficients a sum of squares of rational functions?
 - Positive answer by Emil Artin in 1927.
 - **Additional question:** Is every non-negative polynomial with real coefficients a sum of squares of real polynomials?
 - The answer: **NO** (known already by Hilbert).
Def. Let $PSD_{n,d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.
Def. Let $PSD_{n,d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.

Def. $f \in \mathbb{R}[x]$ is sum of squares (SOS) iff $f = \sum_i p_i^2$ for some $p_i \in \mathbb{R}[x]$.
Def. Let $PSD_{n,d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.

Def. $f \in \mathbb{R}[x]$ is sum of squares (SOS) iff $f = \sum_i p_i^2$ for some $p_i \in \mathbb{R}[x]$.

Def. Let $SOS_{n,2d}$ be the set (cone) of polynomials in n vars with degree $\leq 2d$, which are SOS.
Positivity of polynomials

Def. Let $PSD_{n,d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.

Def. $f \in \mathbb{R}[x]$ is sum of squares (SOS) iff $f = \sum_i p_i^2$ for some $p_i \in \mathbb{R}[x]$.

Def. Let $SOS_{n,2d}$ be the set (cone) of polynomials in n vars with degree $\leq 2d$, which are SOS.

Thm. $PSD_{n,2d} = SOS_{n,2d}$ iff

- $2d = 2$;
- $n = 1$;
- $n = 2, \ 2d = 4$.
Positivity of polynomials

Def. Let $PSD_{n,d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.

Def. $f \in \mathbb{R}[x]$ is sum of squares (SOS) iff $f = \sum_i p_i^2$ for some $p_i \in \mathbb{R}[x]$.

Def. Let $SOS_{n,2d}$ be the set (cone) of polynomials in n vars with degree $\leq 2d$, which are SOS.

Thm. $PSD_{n,2d} = SOS_{n,2d}$ iff

- $2d = 2$;
- $n = 1$;
- $n = 2$, $2d = 4$.

Ex. Motzkin polynomial:

$$M(x_1, x_2) = x_1^2 x_2^4 + x_1^4 x_2^2 + 1 - 3x_1^2 x_2^2 \in PSD_{2,6} \setminus SOS_{2,6}.$$
SOS polynomials

Lem. If $f \in SOS_{n,2d}$, then $f(x) \in PSD$.

Quest. How to figure out whether $f \in SOS_{n,2d}$?

Answ. with SDP.
Lem. If \(f \in SOS_{n,2d} \), then \(f(x) \in PSD \).

Lem. Let \(f = \sum_i p_i q_i^2 \) with \(p_i \in PSD \). Then \(f(x) \in PSD \).
SOS polynomials

Lem. If \(f \in SOS_{n,2d} \), then \(f(x) \in PSD \).

Lem. Let \(f = \sum_i p_i q_i^2 \) with \(p_i \in PSD \). Then \(f(x) \in PSD \).

Lem. Let \((1 + p)f = \sum_i p_i q_i^2 \) with \(p, p_i \in PSD \). Then \(f(x) \in PSD \).
SOS polynomials

\textbf{Lem.} If $f \in \text{SOS}_{n,2d}$, then $f(x) \in \text{PSD}$.

\textbf{Lem.} Let $f = \sum_i p_i q_i^2$ with $p_i \in \text{PSD}$. Then $f(x) \in \text{PSD}$.

\textbf{Lem.} Let $(1 + p)f = \sum_i p_i q_i^2$ with $p, p_i \in \text{PSD}$. Then $f(x) \in \text{PSD}$.

\textbf{Rem.} SOS is a cone in $\mathbb{R}[x]$. It is convex, pointed, closed, full dimensional cone.
SOS polynomials

Lem. If \(f \in \text{SOS}_{n,2d} \), then \(f(x) \in \text{PSD} \).

Lem. Let \(f = \sum_i p_i q_i^2 \) with \(p_i \in \text{PSD} \). Then \(f(x) \in \text{PSD} \).

Lem. Let \((1 + p)f = \sum_i p_i q_i^2 \) with \(p, p_i \in \text{PSD} \). Then \(f(x) \in \text{PSD} \).

Rem. \(\text{SOS} \) is a cone in \(\mathbb{R}[x] \). It is convex, pointed, closed, full dimensional cone.

Quest.: How to figure out whether \(f \in \text{SOS}_{n,2d} \)?
SOS polynomials

Lem. If $f \in \text{SOS}_{n,2d}$, then $f(x) \in PSD$.

Lem. Let $f = \sum_i p_i q_i^2$ with $p_i \in PSD$. Then $f(x) \in PSD$.

Lem. Let $(1 + p)f = \sum_i p_i q_i^2$ with $p, p_i \in PSD$. Then $f(x) \in PSD$.

Rem. \text{SOS} is a cone in $\mathbb{R}[x]$. It is convex, pointed, closed, full dimensional cone.

Quest.: How to figure out whether $f \in \text{SOS}_{n,2d}$? **Answ.:** with SDP.
Let \(p(x_1, x_2) = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4 \).\n
\(p \) is SOS since

\[
p(x_1, x_2) = \frac{1}{2}((2x_1^2 - 3x_2^2 + x_1x_2)^2 + (x_2^2 + 3x_1x_2)^2).
\]
Let \(p(x_1, x_2) = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4. \)

\(p \) is SOS since

\[
p(x_1, x_2) = \frac{1}{2}((2x_1^2 - 3x_2^2 + x_1x_2)^2 + (x_2^2 + 3x_1x_2)^2).
\]

We can obtain sos decomp. by **Gram matrix method**:

Thm. Let \(f \in \mathbb{R}[x] \) with degree \(2d \). \(f \) is SOS IFF there exists \(Q \succeq 0 \) such that

\[
f(x) = V_d^T Q V_d,
\]

where \(V_d \) is the vector of all monomials of degree \(\leq d \).
Let \(p(x_1, x_2) = 2x_1^4 + 2x_1^3x_2 - x_1^2x_2^2 + 5x_2^4 \).

Corresponding SDP:

\[
\begin{align*}
\text{min} & \quad 0 \\
p. p. & \quad Q = \begin{bmatrix} 2 & a & 1 \\ a & 5 & 0 \\ 1 & 0 & b \end{bmatrix} \succeq 0, \\
2a + b & = -1.
\end{align*}
\]

where \(V_2 = (x_1^2, x_2^2, x_1x_2)^T \).
If $b = 5$ we get

$$Q = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 \\ 0 & 1 & 3 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & -3 & 1 \\ 0 & 1 & 3 \end{bmatrix} \succeq 0.$$

Therefore:

$$p(x_1, x_2) = \frac{1}{2}((2x_1^2 - 3x_2^2 + x_1 x_2)^2 + (x_2^2 + 3x_1 x_2)^2).$$
Complexity of SOS SDP

- There are $\binom{n+d-1}{d}$ monomials of degree d. This is the order of Q.
Complexity of SOS SDP

- There are \(\binom{n+d-1}{d} \) monomials of degree \(d \). This is the order of \(Q \).

Thm. It is enough to consider only the monomials from one half of the **Newton polytope**:

\[
\begin{align*}
\text{Newton polytope for } f &= 1 + 2y^2 - 4x^5 \\
&= y = x, \quad y = 2, \quad x = 5
\end{align*}
\]
Thm. (Pólya, 1929, Hardy, Littlewood, Pólya, 1988, Powers, Reznick, 2001) Let $f \in \mathbb{R}[x]$ be a homogeneous polynomial on \mathbb{R}^n such that $f(x) > 0$ for all $x \in \mathbb{R}_+^n \setminus \{0\}$. Then for some $r \in \mathbb{N}$, we have that all the coefficients of $(e^T x)^r f(x)$ are non-negative (positive).

Application: In copositive programming - LP ali SDP certificates for copositivity: if $(\sum_i x_i^2)^r \sum_{i,j} A_{i,j} x_i^2 x_j^2$ has non-negative coefficients then A is copositive (LP problem).
Thm. (Putinar, 1993) Let $m \in \mathbb{N}$ and $f, g_1 = 1, g_2, \ldots, g_m \in \mathbb{R}[x]$. If $f(x) > 0$ for all $x \in K := \{x \in \mathbb{R}^n : g_i(x) \geq 0, \text{ for } i = 1, \ldots, m\} \setminus \{0\}$,

then there exists $s_1, \ldots, s_m \in \text{SOS}$ such that

$$ f(x) = \sum_{i=1}^{m} s_i g_i(x), \text{ provided e.g. } K \text{ compact.} $$
Application in optimization

- \(f_{\inf} = \inf \{ f(x) : x \in K \} = \sup \{ \varepsilon : f(x) - \varepsilon \geq 0 \text{ for all } x \in K \} \)

- \(f_{\inf} \geq f_{\operatorname{sos}} = \sup \{ \varepsilon : f(x) - \varepsilon = \sum_i s_i g_i, \ s_i \in \operatorname{SOS} \} \).
Application in optimization

- $f_{\inf} = \inf \{ f(x) : x \in K \} = \sup \{ \varepsilon : f(x) - \varepsilon \geq 0 \text{ for all } x \in K \}$
- $f_{\inf} \geq f_{sos} = \sup \{ \varepsilon : f(x) - \varepsilon = \sum_i s_i g_i, \ s_i \in SOS \}.$
- $f_{sos}^{(t)} = \sup \{ \varepsilon : f(x) - \varepsilon = \sum_i s_i g_i, \ s_i \in SOS, \ \deg(s_i g_i) \leq 2t \}$
Application in optimization

\[f_{\inf} = \inf \{ f(x) : x \in K \} = \sup \{ \varepsilon : f(x) - \varepsilon \geq 0 \text{ for all } x \in K \} \]

\[f_{\inf} \geq f_{sos} = \sup \{ \varepsilon : f(x) - \varepsilon = \sum_i s_i g_i, \ s_i \in \text{SOS} \} \]

\[f_{sos}^{(t)} = \sup \{ \varepsilon : f(x) - \varepsilon = \sum_i s_i g_i, \ s_i \in \text{SOS}, \ \deg(s_i g_i) \leq 2t \} \]

Thm.\(\lim_{t \to \infty} f_{sos}^{(t)} = f_{sos} = f_{\inf} \) provided e.g. \(K \) compact.
Read more in...

How do we get NC polynomials?

Formal **construction:**

1. Start with NC letters $\mathbf{x} := (x_1, \ldots, x_n)$ and operation "multiplication".
2. Consider $\langle \mathbf{x} \rangle$ - monoid freely generated by \mathbf{x} (empty word is 1).
3. Free algebra $\mathbb{R}\langle \mathbf{x} \rangle$: noncommutative (nc) polynomials.
4. Add **involution** \ast which:
 - fixes $\mathbb{R} \cup \{\mathbf{x}\}$ pointwise
 - and reverses words, e.g. $(x_1x_2^2x_3 - 2x_3^3)^* = x_3x_2^2x_1 - 2x_3^3$.
5. $\text{Sym} \mathbb{R}\langle \mathbf{x} \rangle$ - the set of all symmetric elements:

$$\text{Sym} \mathbb{R}\langle \mathbf{x} \rangle = \{ f \in \mathbb{R}\langle \mathbf{x} \rangle \mid f = f^* \}.$$
Why NC polys are relevant?

1. Lots of applications in **control theory, systems engineering** and **optimization** (see Helton, McCullough, Oliveira, Putinar, 2008),
2. Applications to **quantum physics** (Pironio, Navascués, Acín, 2010)
3. Applications in **quantum information science** (Pál and T. Vértesi, 2009),
4. **Quantum chemistry** (e.g. to compute the ground-state electronic energy of atoms or molecules) - see cf. Mazziotti, 2004.
5. Certificates of positivity via sums of squares are used to get general bounds on **quantum correlations** (cf. Glauber, 1963).
6. The Bessis-Moussa-Villani conjecture (BMV) from **quantum statistical mechanics** is tackled by NC polynomials (Klep, Schweighofer, 2009; Cafuta, Klep, Povh, 2011)
The BMV conjecture

1. **Bessis - Moussa - Villani (BMV) conjecture (1975):**
 - For symmetric matrices A, B with B positive semidefinite, the function
 $$\Phi^{A,B} : \mathbb{R} \to \mathbb{R}, t \mapsto \text{tr}(e^{A-tB})$$
 is the Laplace transform of a positive measure $\mu^{A,B}$ on $[0, \infty)$:
 $$\text{tr}(e^{A-tB}) = \int_0^\infty e^{-tx} d\mu^{A,B}(x).$$
The BMV conjecture

1. **Bessis - Moussa - Villani (BMV) conjecture (1975):**
 - For symmetric matrices A, B with B positive semidefinite, the function
 $$\Phi^{A,B} : \mathbb{R} \rightarrow \mathbb{R}, \ t \mapsto \text{tr}(e^{A-tB})$$
 is the Laplace transform of a positive measure $\mu^{A,B}$ on $[0, \infty)$:
 $$\text{tr}(e^{A-tB}) = \int_0^{\infty} e^{-tx} d\mu^{A,B}(x).$$
 - **BMV equivalently** (Lieb–Seiringer, 2004): The polynomial
 $$\text{tr}((A + tB)^m) \in \mathbb{R}[t] = \sum_{k=0}^{m} t^k \text{tr}(S_{m,k}(A, B))$$
 has only nonnegative coefficients whenever A, B are PSD of order s, for all m.

2. The conjecture was recently proved by H.R. Stahl: Proof of the BMV conjecture, 2011.
The BMV conjecture

 - For symmetric matrices A, B with B positive semidefinite, the function
 \[\Phi^{A,B} : \mathbb{R} \rightarrow \mathbb{R}, \ t \mapsto \text{tr}(e^{A-tB}) \]
 is the Laplace transform of a positive measure $\mu^{A,B}$ on $[0, \infty)$:
 \[\text{tr}(e^{A-tB}) = \int_0^\infty e^{-tx} d\mu^{A,B}(x). \]
 - **BMV equivalently** (Lieb–Seiringer, 2004): The polynomial
 \[\text{tr}((A + tB)^m) \in \mathbb{R}[t] = \sum_{k=0}^{m} t^k \text{tr}(S_{m,k}(A, B)) \]
 has only nonnegative coefficients whenever A, B are PSD of order s, for all m.

2. The conjecture was recently proved by H.R. Stahl: Proof of the BMV conjecture, 2011.
Positivity of NC polynomials

1. \(f(x) \geq 0? \)
Positivity of NC polynomials

1. \(f(x) \geq 0? \)

2. Is \(f(x) \geq 0 \) component-wise?
Positivity of NC polynomials

1. $f(x) \geq 0$?

2. Is $f(x) \geq 0$ component-wise?

3. Is $f(x) \succeq 0$?
Positivity of NC polynomials

1. \(f(x) \geq 0? \)
2. Is \(f(x) \geq 0 \) component-wise?
3. Is \(f(x) \succeq 0? \)
4. Is \(\text{tr } f(x) \geq 0? \)
Positivity of NC polynomials

1. \(f(x) \geq 0? \)

2. Is \(f(x) \geq 0 \) component-wise?

3. Is \(f(x) \succeq 0? \)

4. Is \(\text{tr} f(x) \geq 0? \)

5. We stick to: “Is \(f(x) \succeq 0? \)”
Main questions

Given: real polynomial f in non-commuting variables $\mathbf{x} = (x_1, \ldots, x_n)$.

Q 1: Is $f(A) \succeq 0$ for all n-tuples of symmetric matrices $A = (A_1, \ldots, A_n)$ of the same size?
Main questions

Given: real polynomial f in non-commuting variables $\mathbf{x} = (x_1, \ldots, x_n)$.

Q 1: Is $f(A) \succeq 0$ for all n-tuples of symmetric matrices $A = (A_1, \ldots, A_n)$ of the same size?

Q 2: Find the smallest eigenvalue of f, i.e. compute

$$\lambda_{\min}(f) = \inf \langle f(A)v, v \rangle$$

A an n-tuple of symmetric matrices,

v a unit vector.
Sums of hermitian squares (SOHS)

\[\text{SOHS} = \{ \sum_i g_i^* g_i : g_i \in \mathbb{R}\langle x \rangle \} \subset Sym \mathbb{R}\langle x \rangle. \]

\[\text{SOHS}_d = \{ \sum_i g_i^* g_i : g_i \in \mathbb{R}\langle x \rangle, \ deg(g_i^* g_i) \leq d \} \subset Sym \mathbb{R}\langle x \rangle. \]
Sums of hermitian squares (SOHS)

- \(\text{SOHS} = \{ \sum_i g_i^* g_i : g_i \in \mathbb{R}\langle x \rangle \} \subset \text{Sym} \mathbb{R}\langle x \rangle. \)
- \(\text{SOHS}_d = \{ \sum_i g_i^* g_i : g_i \in \mathbb{R}\langle x \rangle, \text{deg}(g_i^* g_i) \leq d \} \subset \text{Sym} \mathbb{R}\langle x \rangle \)
Examples

1. Let $f = x_1 x_2 + x_2 x_1 + 4 - x_1^2 - x_2^2$. It is not non-negative (take $x_1 = 0$, $x_2 = 3i$).
Examples

1. Let \(f = x_1x_2 + x_2x_1 + 4 - x_1^2 - x_2^2 \). It is not non-negative (take \(x_1 = 0, x_2 = 3I \)).
2. Let \(f = (x_1 \ast x_2 + x_2)(x_1 \ast x_2 + x_2) + 2 \). It is non-negative.
Examples

1. Let $f = x_1 x_2 + x_2 x_1 + 4 - x_1^2 - x_2^2$. It is not non-negative (take $x_1 = 0$, $x_2 = 3i$).

2. Let $f = (x_1 * x_2 + x_2) * (x_1 * x_2 + x_2) + 2$. It is non-negative.
Question 1

Recall: Question 1.

Is \(f(A) \succeq 0 \) for all \(n \)-tuples of symmetric matrices \(A = (A_1, \ldots, A_n) \) of the same size?
Recall: Question 1.

\[
f(A) \succeq 0
\]
for all n-tuples of symmetric matrices \(A = (A_1, \ldots, A_n) \) of the same size?

Thm.: (Helton, Annals of math., 2002)

\[
f \in \mathbb{R}\langle x \rangle \text{ is SOHS } \iff f(x) \succeq 0 \text{ whenever we replace } x_i \text{ by symmetric matrices } A_i \text{ of dimension } k \times k, \forall k \geq 1.
\]
Problem 1: Given: \(f \in \mathbb{R}\langle x \rangle \), is \(f \in \text{SOHS} \)?

If YES: Provide (SDP) certificate!
If NO: Provide (SDP) certificate!
Prop.: Suppose \(f \in \mathbb{R}\langle x \rangle \) is of degree \(\leq 2d \). Then \(f \in SOHS \) if and only if there exists a positive semidefinite (PSD) matrix \(G \) satisfying

\[
f = W_d^* GW_d,
\]

where

\[
W_d = \{ p \in \langle x \rangle : \deg(p) \leq d \}.
\]
SDP certificate for SOHS

Prop.: Suppose $f \in \mathbb{R}\langle x \rangle$ is of degree $\leq 2d$. Then $f \in SOHS$ if and only if there exists a positive semidefinite (PSD) matrix G satisfying

$$f = W_d^* GW_d,$$

where

$$W_d = \{ p \in \langle x \rangle : \deg(p) \leq d \}.$$

Rem.: Given such a PSD matrix G with rank r, the SOHS decomposition is

$$f = \sum_{i=1}^{r} g_i^* g_i,$$

where $g_i = H(i,:) W_d$, $G = H^T H$.

Prop.: Given $f = \sum_{w \in \langle x \rangle} a_w w$ of degree $2d$, then $f \in SOHS$ iff exists $G \succeq 0$ such that:

$$\sum_{p,q \in W_d, p^* q = w} G_{p,q} = a_w, \quad \forall w \in W_{2d}$$
SDP certificate for SOHS

Prop.: Given \(f = \sum_{w \in \langle x \rangle} a_w w \) of degree 2\(d \), then \(f \in SOHS \) iff exists \(G \succeq 0 \) such that:

\[
\sum_{\substack{p,q \in W_d \\text{such that} \quad p^* q = w}} G_{p,q} = a_w, \quad \forall w \in W_{2d}
\]

Note: "Is \(f \) in \(SOHS? \)" is SDP feasibility problem.
Prop.: Given $f = \sum_{w \in \langle x \rangle} a_w w$ of degree $2d$, then $f \in SOHS$ iff exists $G \succeq 0$ such that:

$$\sum_{p, q \in W_d, p^* q = w} G_{p, q} = a_w, \quad \forall w \in W_{2d}$$

Note: "Is f in SOHS?" is SDP feasibility problem.

SDP:

$$\inf \langle I, G \rangle \quad (\text{SDP}_{\text{SOHS}}) \quad \text{s.t.} \quad \langle A_w, G \rangle = a_w + a_{w^*} \quad \forall w \in W_{2d}$$

$$G \succeq 0.$$

where

$$(A_w)_{u, v} = \begin{cases} 2; & \text{if } u^* v \in \{w, w^*\}, \ w^* = w, \\ 1; & \text{if } u^* v \in \{w, w^*\}, \ w^* \neq w, \\ 0; & \text{otherwise.} \end{cases}$$
Optimization of NC polys.

Problem: Given $f \in \text{Sym} \mathbb{R}\langle x \rangle$

find smallest eigenvalue of f:

$$\lambda_{\text{min}}(f) = \inf \langle f(A)v, v \rangle$$

A an n-tuple of symmetric matrices,
v a unit vector.
Problem: Given $f \in \text{Sym} \mathbb{R}\langle x \rangle$

find smallest eigenvalue of f:

$$\lambda_{\text{min}}(f) = \inf \langle f(A)v, v \rangle$$

A an n-tuple of symmetric matrices,
v a unit vector.

By Helton-McCullough SOHS theorem:

$$\lambda_{\text{min}}(f) = \sup \lambda$$

s. t. $f - \lambda \in \text{SOHS}_{d}$. (SDP_{eig-min})
Prop: The dual to \((SDP_{\text{eig-min}})\) is

\[
L_{\text{sohs}} = \inf \langle G_f, H \rangle
\]

s.t.

\[
H \in S^+, \quad H_{1,1} = 1
\]

\[
H_{p,q} = H_{r,s} \quad \text{for all } p, q, r, s, \quad p^* q = r^* s.
\]

\[(DSDP_{\text{eig-min}})_d\]
Prop: The dual to \((\text{SDP}_{\text{eig-min}})\) is

\[
L_{\text{sohs}} = \inf \langle G_f, H \rangle \\
\text{s.t.} \quad H \in S^+ \\
H_{1,1} = 1 \\
H_{p,q} = H_{r,s} \quad \text{for all } p, q, r, s, \quad p^* q = r^* s.
\]

\(\text{(DSDP}_{\text{eig-min}})_{d}\)

Prop.:

\[
L_{\text{sohs}} = \lambda_{\min}(f).
\]
Thm.: (Cafuta, Klep, P., 2010) Let $f \in \mathbb{R}\langle x\rangle_{\leq 2d}$.

(a) Then $\lambda_{\text{min}}(f)$ is attained if and only if there is a feasible point L for $(\text{DSDP}_{\text{eig-min}})_{d+1}$ satisfying $L(f) = L_{\text{sohs}} = \lambda_{\text{min}}(f)$.

(b) If L_{sohs} is attained, we can find symmetric $s \times s$ matrices A_1, \ldots, A_n and unit vector v such that

$$
\lambda_{\text{min}}(f) = \langle f(A)v, v \rangle.
$$

Proof:

- Gelfand-Naimark-Segal (GNS) construction
- use flat extensions
Example

\[
\begin{align*}
\text{>> } f &= (1 - 3*x*y + y*x)'*(1 - 3*x*y + y*x) + (-1 + x^2)^2 + (-y+y^2)^2; \\
\text{>> } \text{NCmin}(f) \\
\lambda_{\text{min}}(f) &= 0. \\
\text{>> } [X,fX,eig_val,eig_vec]=\text{NCopt}(f)
\end{align*}
\]
Example - cnt.

\[A = \begin{bmatrix}
0.9644 & -0.0379 & -0.1276 & 0.0879 \\
-0.0379 & -0.9828 & 0.1588 & 0.0235 \\
-0.1276 & 0.1588 & 0.4923 & 0.2253 \\
0.0879 & 0.0235 & 0.2253 & -0.9790 \\
\end{bmatrix} \]

\[B = \begin{bmatrix}
0.8367 & 0.1790 & 0.3326 & 0.0832 \\
0.1790 & 0.0215 & 0.1388 & 0.5320 \\
0.3326 & 0.1388 & -0.0227 & -0.6871 \\
0.0832 & 0.5320 & -0.6871 & -0.1778 \\
\end{bmatrix} \]

\[f(A, B) = \begin{bmatrix}
0.7978 & 1.2130 & 0.8094 & 0.6920 \\
1.2130 & 3.3989 & -2.6498 & -0.0064 \\
0.8094 & -2.6498 & 10.5185 & 3.0781 \\
0.6920 & -0.0064 & 3.0781 & 7.9733 \\
\end{bmatrix} \]

\[\lambda_{\min}(f) = \lambda_{\min}(f(A, B)) = 0.0000, \]

\[v = \begin{bmatrix}
-0.8741 \\
0.4515 \\
0.1789 \\
0.0072 \\
\end{bmatrix}^t. \]

Note: Commutative min. of \(f \) is 0.0625 (for \(x = 1, \ y = 1/2 \)).
1. \(f \in SOHS_d \) has low complexity (size of matrix is \(O(kd/2) \)) (Newton chip method from P., Klep, 2010)

