Stochastic Dual Coordinate Ascent with Adaptive Probabilities

Dominik Csiba1 Zheng Qu1 Peter Richtárik1

1University of Edinburgh

Optimization and Big Data 2015
6. - 8. May, Edinburgh
Motivation

Empirical Risk Minimization

- Object-label pairs \((A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\) appear naturally in the world with unknown distribution \(\mathcal{D}\).
Motivation

Empirical Risk Minimization

- Object-label pairs \((A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\) appear naturally in the world with unknown distribution \(D\).
- Find a vector \(w \in \mathbb{R}^d\) such that for \((A_i, y_i) \sim D\) we get

\[
A_i^T w \approx y_i.
\]
Motivation
Empirical Risk Minimization

- Object-label pairs \((A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\) appear naturally in the world with unknown distribution \(D\).
- Find a vector \(w \in \mathbb{R}^d\) such that for \((A_i, y_i) \sim D\) we get
 \[
 A_i^T w \approx y_i.
 \]
- More precisely, we wish to find \(w\) solving
 \[
 \min_w \mathbb{E}_{(A_i, y_i) \sim D} \left[\text{loss}(A_i^T w, y_i) \right]
 \]
Motivation

Empirical Risk Minimization

- Object-label pairs \((A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\) appear naturally in the world with unknown distribution \(\mathcal{D}\).
- Find a vector \(w \in \mathbb{R}^d\) such that for \((A_i, y_i) \sim \mathcal{D}\) we get
 \[A_i^T w \approx y_i.\]
- More precisely, we wish to find \(w\) solving
 \[
 \min_w \mathbb{E}_{(A_i, y_i) \sim \mathcal{D}} \left[\text{loss}(A_i^T w, y_i) \right]
 \]

1. Draw sample pairs \((A_i, y_i)_{i=1}^n\) from \(\mathcal{D}\).
Motivation

Empirical Risk Minimization

- Object-label pairs \((A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\) appear naturally in the world with unknown distribution \(D\).
- Find a vector \(w \in \mathbb{R}^d\) such that for \((A_i, y_i) \sim D\) we get
 \[
 A_i^T w \approx y_i.
 \]
- More precisely, we wish to find \(w\) solving
 \[
 \min_w \mathbb{E}_{(A_i, y_i) \sim D} \left[\text{loss}(A_i^T w, y_i) \right]
 \]

1. Draw sample pairs \((A_i, y_i)_{i=1}^n\) from \(D\).
2. Take the empirical average
 \[
 \min_w \frac{1}{n} \sum_{i=1}^n \text{loss}(A_i^T w, y_i)
 \]
Motivation

Problem

Primal

\[
\min_{w \in \mathbb{R}^d} \left[P(w) \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \phi_i(A_i^T w) + \lambda g(w) \right]
\]
Motivation

Problem

Primal

\[
\min_{w \in \mathbb{R}^d} \left[P(w) \triangleq \frac{1}{n} \sum_{i=1}^{n} \phi_i(A_i^\top w) + \lambda g(w) \right]
\]

Dual

\[
\max_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^{n} A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^{n} \phi_i^*(-\alpha_i) \right]
\]
Main Contributions

- Two new algorithms
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
Main Contributions

- **Two new algorithms**
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA

- **Properties**
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA

- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
 - First convergence guarantee for adaptive probability distribution

AdaSDCA enjoys better rate than the best known rate for SDCA with importance sampling.
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
 - First convergence guarantee for adaptive probability distribution
- Convergence Rate

AdaSDCA enjoys better rate than the best known rate for SDCA with importance sampling.
Main Contributions

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
 - First convergence guarantee for adaptive probability distribution
- Convergence Rate
 - AdaSDCA enjoys better rate than the best known rate for SDCA with importance sampling
Importance Sampling

\[T \geq \left(n + \frac{1}{n} \sum_{i=1}^{n} \frac{v_i}{\lambda \gamma} \right) \log \left(\frac{c}{\epsilon} \right) \Rightarrow \mathbb{E}[P(w^T) - D(\alpha^T)] \leq \epsilon \]
Experiments

cov1 dataset, \(d = 54, n = 581,012 \)

Smooth Hinge loss with \(L_2 \) regularizer
Experiments

synthetic dataset, $d = 100$, $n = 10,000,000$, sparsity = 0.1

Smooth Hinge loss with L_2 regularizer
Thank you for your attention!