Sparse Principal Component Analysis via Alternating Maximization and Efficient Parallel Implementations

Martin Takáč

The University of Edinburgh

Joint work with

- Peter Richtárik (Edinburgh University)
- Selin Damla Ahipasaoglu (Singapore University of Technology and Design)

Based on:

Optimization and Big Data, May 1–3, 2013
Overview

- Where is PCA useful?
- Why Sparse PCA?
- Different formulations for SPCA
- Alternating maximization algorithm
- Parallel implementations
- 24AM library
- Numerical experiments
What is Principal Component Analysis (PCA)?

PCA is a tool used for factor analysis and dimension reduction in virtually all areas of science and engineering, e.g.:

- machine learning
- genetics
- statistics
- finance
- computer networks
What is Principal Component Analysis (PCA)?

PCA is a tool used for factor analysis and dimension reduction in virtually all areas of science and engineering, e.g.:

- machine learning
- statistics
- genetics
- finance
- computer networks

Let $A \in \mathbb{R}^{n \times p}$ denote a data matrix encoding n samples (observations) of p variables (features).

PCA aims to extract a few linear combinations of the columns of A, called principal components (PCs), pointing in mutually orthogonal directions, together explaining as much variance in the data as possible.
The first PC is obtained by solving

$$\max \{ \text{Var} \{ x^T A \} : \|x\|_2 = 1 \} = \max \{ \|A x\|^2 : \|x\|_2 = 1 \},$$ \hspace{0.5cm} (1)

where $\| \cdot \|$ is a suitable norm for measuring variance

- classical PCA employs the L_2 norm in the objective
- robust PCA uses the L_1 norm
The first PC is obtained by solving

$$\max\{\text{Var}\{x^TA\} : \|x\|_2 = 1\} = \max\{\|Ax\|^2 : \|x\|_2 \leq 1\},$$

(1)

where $\|\cdot\|$ is a suitable norm for measuring variance

- classical PCA employs the L_2 norm in the objective
- robust PCA uses the L_1 norm

Some terminology:

- the solution x of (1) is called the **loading vector**
- Ax (normalized) is the first PC

Further PCs can be obtained in the same way with A replaced by a new matrix in a process called **deflation**. For example the second PC can be found by solving (1) with a new matrix $A := A(1 - x_1x_1^T)$, where x_1 is the first loading vector.
Using PCA for Visualisation

We have 16 images in each of 3 different categories. Each image is “somehow” represented by a vector $x \in \mathbb{R}^{5,000}$.

Our Task: We would like to visualize these images in 3D space.
Using PCA for Visualisation

We have 16 images in each of 3 different categories. Each image is “somehow” represented by a vector $x \in \mathbb{R}^{5,000}$.

Our Task: We would like to visualize these images in 3D space
Using PCA for Visualisation

We have 16 images in each of 3 different categories. Each image is “somehow” represented by a vector $x \in \mathbb{R}^{5,000}$.

Our Task: We would like to visualize these images in 3D space.

Random projection to 3D (left) vs. projection onto 3 loading vectors obtained by PCA (right)
Why Sparse PCA?

- loading vectors obtained by PCA are almost always dense
- sometimes sparse loading vectors are desirable to enhance the interpretability of the components and are easier to store

Example:
Assume we have n newspaper articles with a total of p distinct words. We can build a matrix $A \in \mathbb{R}^{n \times p}$ such that $A_{j,i}$ counts the number of appearances of word i in article j. After some scaling and normalization we can apply SPCA. Now, non-zero values in the loading vector can be associated with words – those words can be used to characterize articles – for the result you have to wait for a few slides :)
Why Sparse PCA?

- loading vectors obtained by PCA are almost always **dense**
- sometimes sparse loading vectors are desirable to enhance the **interpretability** of the components and are **easier to store**

Example:
Assume we have n newspaper articles with a total of p distinct words. We can build a matrix $A \in \mathbb{R}^{n \times p}$ such that $A_{j,i}$ counts the number of appearances of word i in article j.

After some scaling and normalization we can apply SPCA. Now, **non-zero values in the loading vector can be associated with words** – those words can be used to characterize articles – for the result you have to wait for a few slides :)

How can we Enforce Sparsity?

Adding a Penalty to an Objective Function

Let $P(x)$ be a sparsity inducing penalty

$$\max \{ \|Ax\| - \gamma P(x) : \|x\|_2 \leq 1, \gamma > 0 \}$$

Adding a Sparsity Inducing Constraint

Let $C(x)$ be a sparsity inducing constraint

$$\max \{ \|Ax\| : \|x\|_2 \leq 1, C(x) \leq k, k > 0 \}$$

Candidates for $P(x)$ and $C(x)$:

- $\|x\|_1 = \sum_{i=1}^{p} |x_i|$
- $\|x\|_0 = |\{ i : x_i \neq 0 \}|$
How can we Enforce Sparsity?

Adding a Penalty to an Objective Function

Let $\mathcal{P}(x)$ be a sparsity inducing penalty

$$\max \{ \|Ax\| - \gamma \mathcal{P}(x) : \|x\|_2 \leq 1 \}, \quad \gamma > 0$$
How can we Enforce Sparsity?

Adding a Penalty to an Objective Function

Let \(P(x) \) be a sparsity inducing penalty

\[
\max \{ \|Ax\| - \gamma P(x) : \|x\|_2 \leq 1 \}, \quad \gamma > 0
\]

Adding a Sparsity Inducing Constraint

Let \(C(x) \) be a sparsity inducing constraint

\[
\max \{ \|Ax\| : \|x\|_2 \leq 1, C(x) \leq k \}, \quad k > 0
\]
How can we Enforce Sparsity?

Adding a Penalty to an Objective Function
Let $\mathcal{P}(x)$ be a sparsity inducing penalty

$$\max\{\|Ax\| - \gamma \mathcal{P}(x) : \|x\|_2 \leq 1\}, \quad \gamma > 0$$

Adding a Sparsity Inducing Constraint
Let $\mathcal{C}(x)$ be a sparsity inducing constraint

$$\max\{\|Ax\| : \|x\|_2 \leq 1, \mathcal{C}(x) \leq k\}, \quad k > 0$$

Candidates for $\mathcal{P}(x)$ and $\mathcal{C}(x)$:
- $\|x\|_1 = \sum_{i=1}^{P} |x_i|$
- $\|x\|_0 = |\{i : x_i \neq 0\}|$
Eight Sparse PCA Optimization Formulations

\begin{align*}
\text{OPT} = \max_{x \in X} f(x),
\end{align*}

Note: All our optimization problems are **NOT** convex problems!

<table>
<thead>
<tr>
<th>#</th>
<th>Var.</th>
<th>Sl</th>
<th>Sl usage</th>
<th>X</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L_2</td>
<td>L_0</td>
<td>const.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_0 \leq s}$</td>
<td>$|Ax|_2$</td>
</tr>
<tr>
<td>2</td>
<td>L_1</td>
<td>L_0</td>
<td>const.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_0 \leq s}$</td>
<td>$|Ax|_1$</td>
</tr>
<tr>
<td>3</td>
<td>L_2</td>
<td>L_1</td>
<td>const.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_1 \leq \sqrt{s}}$</td>
<td>$|Ax|_2$</td>
</tr>
<tr>
<td>4</td>
<td>L_1</td>
<td>L_1</td>
<td>const.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_1 \leq \sqrt{s}}$</td>
<td>$|Ax|_1$</td>
</tr>
<tr>
<td>5</td>
<td>L_2</td>
<td>L_0</td>
<td>pen.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>$|Ax|_2^2 - \gamma |x|_0$</td>
</tr>
<tr>
<td>6</td>
<td>L_1</td>
<td>L_0</td>
<td>pen.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>$|Ax|_1^2 - \gamma |x|_0$</td>
</tr>
<tr>
<td>7</td>
<td>L_2</td>
<td>L_1</td>
<td>pen.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>$|Ax|_2 - \gamma |x|_1$</td>
</tr>
<tr>
<td>8</td>
<td>L_1</td>
<td>L_1</td>
<td>pen.</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>$|Ax|_1 - \gamma |x|_1$</td>
</tr>
</tbody>
</table>
How do we Solve the SPCA Problem?

Alternating Maximization Algorithm (AM)
Suppose we have the following optimization problem

\[
\max_{x \in X} \max_{y \in Y} F(x, y) \tag{3}
\]

(2) can be reformulated as (3) and then apply AM algorithm!
How do we Solve the SPCA Problem?

Alternating Maximization Algorithm (AM)

Suppose we have the following optimization problem

\[
\max_{x \in X} \max_{y \in Y} F(x, y)
\]

(3)

Alternating Maximization Algorithm

Select initial point \(x^{(0)} \in \mathbb{R}^p; \ k \leftarrow 0 \)

Repeat

\[
\begin{align*}
y^{(k)} & \leftarrow y(x^{(k)}) := \arg \max_{y \in Y} F(x^{(k)}, y) \\
x^{(k+1)} & \leftarrow x(y^{(k)}) := \arg \max_{x \in X} F(x, y^{(k)})
\end{align*}
\]

Until a stopping criterion is satisfied
How do we Solve the SPCA Problem?

Alternating Maximization Algorithm (AM)
Suppose we have the following optimization problem

$$\max_{x \in X} \max_{y \in Y} F(x, y) \quad (3)$$

Alternating Maximization Algorithm

Select initial point $x^{(0)} \in \mathbb{R}^p$; $k \leftarrow 0$

Repeat

$$y^{(k)} \leftarrow y(x^{(k)}) := \arg \max_{y \in Y} F(x^{(k)}, y)$$
$$x^{(k+1)} \leftarrow x(y^{(k)}) := \arg \max_{x \in X} F(x, y^{(k)})$$

Until a stopping criterion is satisfied

All we have to do now is to show that (2) can be reformulated as (3) and then apply AM algorithm!
Problem Reformulations

<table>
<thead>
<tr>
<th>#</th>
<th>X</th>
<th>Y</th>
<th>$F(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_0 \leq s}$</td>
<td>${y \in \mathbb{R}^n : |y|_2 \leq 1}$</td>
<td>$y^T A x$</td>
</tr>
<tr>
<td>2</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_0 \leq s}$</td>
<td>${y \in \mathbb{R}^n : |y|_\infty \leq 1}$</td>
<td>$y^T A x$</td>
</tr>
<tr>
<td>3</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_1 \leq \sqrt{s}}$</td>
<td>${y \in \mathbb{R}^n : |y|_2 \leq 1}$</td>
<td>$y^T A x$</td>
</tr>
<tr>
<td>4</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1, |x|_1 \leq \sqrt{s}}$</td>
<td>${y \in \mathbb{R}^n : |y|_\infty \leq 1}$</td>
<td>$y^T A x$</td>
</tr>
<tr>
<td>5</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>${y \in \mathbb{R}^n : |y|_2 \leq 1}$</td>
<td>$(y^T A x)^2 - \gamma |x|_0$</td>
</tr>
<tr>
<td>6</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>${y \in \mathbb{R}^n : |y|_\infty \leq 1}$</td>
<td>$(y^T A x)^2 - \gamma |x|_0$</td>
</tr>
<tr>
<td>7</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>${y \in \mathbb{R}^n : |y|_2 \leq 1}$</td>
<td>$y^T A x - \gamma |x|_1$</td>
</tr>
<tr>
<td>8</td>
<td>${x \in \mathbb{R}^p : |x|_2 \leq 1}$</td>
<td>${y \in \mathbb{R}^n : |y|_\infty \leq 1}$</td>
<td>$y^T A x - \gamma |x|_1$</td>
</tr>
</tbody>
</table>

Example #1: L0 constrained L2 PCA

$$\max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \max_{\|y\|_2 \leq 1} y^T A x = \max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \|A x\|_2 \frac{1}{\|A x\|_2} (Ax)^T Ax = \max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \|Ax\|_2$$

Example #2: L0 constrained L1 PCA

$$\max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \max_{\|y\|_\infty \leq 1} y^T A x = \max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \sum_{j=1}^{n} |A_j x| = \max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \|Ax\|_1,$$

where A_j is the j-th row of the matrix A
AM Algorithm for SPCA

Select initial point $x^{(0)} \in \mathbb{R}^p$; $k \leftarrow 0$

Repeat

\[
u = Ax^{(k)}
\]

If L_1 variance then $y^{(k)} \leftarrow \text{sgn}(u)$

If L_2 variance then $y^{(k)} \leftarrow u/\|u\|_2$

$v = A^T y^{(k)}$

If L_0 penalty then $x^{(k+1)} \leftarrow U_{\gamma}(v)/\|U_{\gamma}(v)\|_2$

If L_1 penalty then $x^{(k+1)} \leftarrow V_{\gamma}(v)/\|V_{\gamma}(v)\|_2$

If L_0 constraint then $x^{(k+1)} \leftarrow T_s(v)/\|T_s(v)\|_2$

If L_1 constraint then $x^{(k+1)} \leftarrow V_{\lambda_s(v)}(v)/\|V_{\lambda_s(v)}(v)\|_2$

$k \leftarrow k + 1$

Until a stopping criterion is satisfied

- $(U_{\gamma}(z))_i := z_i[\text{sgn}(z_i^2 - \gamma)]_+$
- $(V_{\gamma}(z))_i := \text{sgn}(z_i)(|z_i| - \gamma)_+$
- $T_s(z)$ is hard thresholding operator
- $\lambda_s(z) := \arg\min_{\lambda \geq 0} \lambda \sqrt{s} + \|V_{\lambda}(z)\|_2$
AM Algorithm for SPCA

Select initial point $x^{(0)} \in \mathbb{R}^p$; $k \leftarrow 0$

Repeat

$u = Ax^{(k)}$

- If L_1 variance then $y^{(k)} \leftarrow \text{sgn}(u)$
- If L_2 variance then $y^{(k)} \leftarrow u/\|u\|_2$

$v = A^T y^{(k)}$

- If L_0 penalty then $x^{(k+1)} \leftarrow U_\gamma(v)/\|U_\gamma(v)\|_2$
- If L_1 penalty then $x^{(k+1)} \leftarrow V_\gamma(v)/\|V_\gamma(v)\|_2$
- If L_0 constraint then $x^{(k+1)} \leftarrow T_s(v)/\|T_s(v)\|_2$
- If L_1 constraint then $x^{(k+1)} \leftarrow V_{\lambda_s(v)}(v)/\|V_{\lambda_s(v)}(v)\|_2$

$k \leftarrow k + 1$

Until a stopping criterion is satisfied

Example #2: L_0 constrained L_1 PCA

$$\max \frac{\|x\|_2 \leq 1, \|x\|_0 \leq s}{\|y\|_\infty \leq 1} \max y^T Ax$$
AM Algorithm for SPCA

Select initial point $x^{(0)} \in \mathbb{R}^p$; $k \leftarrow 0$

Repeat

\[u = Ax^{(k)} \]
\[y^{(k)} \leftarrow \text{sgn}(u) \]
\[v = A^T y^{(k)} \]
\[x^{(k+1)} \leftarrow T_s(v) / \| T_s(v) \|_2 \]
\[k \leftarrow k + 1 \]

Until a stopping criterion is satisfied

Example #2: L0 constrained L1 PCA

\[
\max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} \max_{\|y\|_{\infty} \leq 1} y^T Ax
\]
AM Algorithm for SPCA

Select initial point $x^{(0)} \in \mathbb{R}^p$; $k \leftarrow 0$

Repeat

\[u = Ax^{(k)} \]
\[y^{(k)} \leftarrow \text{sgn}(u) \]
\[v = A^T y^{(k)} \]
\[x^{(k+1)} \leftarrow T_s(v)/\|T_s(v)\|_2 \]
\[k \leftarrow k + 1 \]

Until a stopping criterion is satisfied

Example #2: L0 constrained L1 PCA - for fixed \hat{x}

\[
\max_{\|y\|_\infty \leq 1} y^T A\hat{x} \quad \Rightarrow \quad y^* = \text{sgn}(A\hat{x})
\]
AM Algorithm for SPCA

Select initial point $x^{(0)} \in \mathbb{R}^p$; $k \leftarrow 0$

Repeat

\[
u = Ax^{(k)} \\
y^{(k)} \leftarrow \text{sgn}(u) \\
v = A^T y^{(k)} \\
x^{(k+1)} \leftarrow T_s(v)/\|T_s(v)\|_2 \\\nk \leftarrow k + 1
\]

Until a stopping criterion is satisfied

Example #2: L0 constrained L1 PCA - for fixed \hat{y}

\[
\max_{\|x\|_2 \leq 1, \|x\|_0 \leq s} (\hat{y}^T A)x \quad \Rightarrow \quad x^* = T_s(A^T \hat{y})/\|T_s(A^T \hat{y})\|_2
\]
Equivalence with GPower Method

- **GPower** (generalized power method) is a simple algorithm for maximizing a convex function Ψ on a compact set Ω, which works via a “linearize and maximize” strategy
- let $\Psi'(z^{(k)})$ be an arbitrary subgradient of Ψ at $z^{(k)}$, then GPower performs the following iteration:

$$
z^{(k+1)} = \arg \max_{z \in \Omega} \{ \Psi(z^{(k)}) + \langle \Psi'(z^{(k)}), z - z^{(k)} \rangle \} = \arg \max_{z \in \Omega} \langle \Psi'(z^{(k)}), z \rangle.
$$

Convergence guarantee:

- $\{\Psi(z_k)\}_{k=0}^{\infty}$ is monotonically increasing
- $\Delta_k \leq \frac{\Psi^* - \Psi(z_0)}{k+1}$, where $\Delta_k := \min_{0 \leq i \leq k} \{ \max_{z \in \Omega} \langle \Psi'(z^{(i)}), z - z^{(i)} \rangle \}$

Equivalence with GPower Method

Theorem
The AM and GPower methods are equivalent in the following sense:

1. For the 4 **constrained** sparse PCA formulations, the x-iterates of the AM method applied to the corresponding reformulation are **identical** to the iterates of the GPower method as applied to the problem of maximizing the convex function

$$F_Y(x) \overset{\text{def}}{=} \max_{y \in Y} F(x, y)$$

on X, started from $x^{(0)}$.

2. For the 4 **penalized** sparse PCA formulations, the y-iterates of the AM method applied to the corresponding reformulation are **identical** to the iterates of the GPower method as applied to the problem of maximizing the convex function

$$F_X(y) \overset{\text{def}}{=} \max_{x \in X} F(x, y)$$

on Y, started from $y^{(0)}$.
The Hunt for More Explained Variance

- optimization problem (2) is **NOT** convex
- AM finds only a locally optimal solution \(\Rightarrow\) we need more random starting points!

![Box plot graph showing explained variance best explained variance for different target sparsity levels and 1,000 starting points.](image)
Parallel Implementations

- main computational cost of the algorithm is Matrix-Vector multiplication!
- Matrix-Vector multiplication is BLAS **Level 2 function** and are not implemented in parallel
- we need **more starting points** to improve the **quality** of our “best” local solution
Parallel Implementations

- main computational cost of the algorithm is Matrix-Vector multiplication!
- Matrix-Vector multiplication is BLAS **Level 2 function** and are not implemented in parallel
- we need **more starting points** to improve the **quality** of our “best” local solution

<table>
<thead>
<tr>
<th>naïve (NAI)</th>
<th>start from all (SFA)</th>
<th>batches (BAT)</th>
<th>on the fly (OTF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3</td>
<td>1 4 2 3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4 5</td>
<td>4 6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numerical Experiments - Strategies

- BAT1 = NAI
- BAT4
- BAT16
- BAT64
- BAT256 = SFA

Graph showing speedup (1 CORE) with different strategies.
Numerical Experiments - Strategies - 12 cores

Speedup (12 CORES)

BAT1 = NAI
BAT4
BAT16
BAT64
BAT256 = SFA

\[
\begin{align*}
10 & \\
3 & \\
10 & \\
4 & \\
10 & \\
20 & \\
30 & \\
40 & \\
50 & \\
p & \\
\end{align*}
\]
Numerical Experiments - GPU

![Graph showing computation time comparison between GPU and CPU]
Numerical Experiments - GPU - speedup

![Graph showing speedup for GPU1, GPU16, and GPU256.

- GPU1
- GPU16
- GPU256

Speedup

10^0, 10^1, 10^2

p

10^4, 10^5]
Cluster version

<table>
<thead>
<tr>
<th>$n \times p$</th>
<th>memory</th>
<th># CPUs</th>
<th>GRID</th>
<th>SP</th>
<th>t_{3}^{1}</th>
<th>t_{3}^{4}</th>
<th>t_{3}^{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^4 \times 2 \cdot 10^5$</td>
<td>14.9 GB</td>
<td>20</td>
<td>10 × 2</td>
<td>1</td>
<td>0.56</td>
<td>2.06</td>
<td>8.48</td>
</tr>
<tr>
<td>$10^4 \times 2 \cdot 10^5$</td>
<td>14.9 GB</td>
<td>20</td>
<td>10 × 2</td>
<td>32</td>
<td>4.60</td>
<td>18.89</td>
<td>87.84</td>
</tr>
<tr>
<td>$10^4 \times 2 \cdot 10^5$</td>
<td>14.9 GB</td>
<td>20</td>
<td>10 × 2</td>
<td>64</td>
<td>10.47</td>
<td>37.88</td>
<td>166.60</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 4 \cdot 10^5$</td>
<td>17.8 GB</td>
<td>40</td>
<td>10 × 4</td>
<td>1</td>
<td>0.78</td>
<td>3.15</td>
<td>9.96</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 4 \cdot 10^5$</td>
<td>17.8 GB</td>
<td>40</td>
<td>10 × 4</td>
<td>32</td>
<td>7.39</td>
<td>27.72</td>
<td>125.14</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 4 \cdot 10^5$</td>
<td>17.8 GB</td>
<td>40</td>
<td>10 × 4</td>
<td>64</td>
<td>13.19</td>
<td>58.36</td>
<td>201.51</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 10^6$</td>
<td>44.7 GB</td>
<td>100</td>
<td>10 × 10</td>
<td>1</td>
<td>0.45</td>
<td>2.44</td>
<td>11.62</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 10^6$</td>
<td>44.7 GB</td>
<td>100</td>
<td>10 × 10</td>
<td>32</td>
<td>6.37</td>
<td>29.72</td>
<td>115.73</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 10^6$</td>
<td>44.7 GB</td>
<td>100</td>
<td>10 × 10</td>
<td>64</td>
<td>14.14</td>
<td>52.64</td>
<td>219.8</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 4 \cdot 10^6$</td>
<td>178.8 GB</td>
<td>400</td>
<td>10 × 40</td>
<td>1</td>
<td>1.24</td>
<td>5.12</td>
<td>31.46</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 4 \cdot 10^6$</td>
<td>178.8 GB</td>
<td>400</td>
<td>10 × 40</td>
<td>32</td>
<td>17.50</td>
<td>61.36</td>
<td>255.80</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 4 \cdot 10^6$</td>
<td>178.8 GB</td>
<td>400</td>
<td>10 × 40</td>
<td>64</td>
<td>31.36</td>
<td>141.61</td>
<td>525.08</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 8 \cdot 10^6$</td>
<td>357.6 GB</td>
<td>800</td>
<td>10 × 80</td>
<td>1</td>
<td>4.14</td>
<td>15.82</td>
<td>95.51</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 8 \cdot 10^6$</td>
<td>357.6 GB</td>
<td>800</td>
<td>10 × 80</td>
<td>32</td>
<td>51.11</td>
<td>324.26</td>
<td>619.45</td>
</tr>
<tr>
<td>$6 \cdot 10^3 \times 8 \cdot 10^6$</td>
<td>357.6 GB</td>
<td>800</td>
<td>10 × 80</td>
<td>64</td>
<td>134.89</td>
<td>690.06</td>
<td>-</td>
</tr>
</tbody>
</table>
Numerical Experiments - Large Text Corpora

- we used L_0 constrained L_2 variance formulation (with $s = 5$)
- **Dataset:** news from *New York Times* (102,660 articles, 300,000 words, and approximately 70 million nonzero entries) and abstracts of articles published in *PubMed* (141,043 articles, 8.2 million words, and approximately 484 million nonzeroes)

<table>
<thead>
<tr>
<th>1st PC</th>
<th>2nd PC</th>
<th>3rd PC</th>
<th>4th PC</th>
<th>5th PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>game</td>
<td>companies</td>
<td>campaign</td>
<td>children</td>
<td>attack</td>
</tr>
<tr>
<td>play</td>
<td>company</td>
<td>president</td>
<td>program</td>
<td>government</td>
</tr>
<tr>
<td>player</td>
<td>million</td>
<td>al gore</td>
<td>school</td>
<td>official</td>
</tr>
<tr>
<td>season</td>
<td>percent</td>
<td>bush</td>
<td>student</td>
<td>US</td>
</tr>
<tr>
<td>team</td>
<td>stock</td>
<td>george bush</td>
<td>teacher</td>
<td>united states</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st PC</th>
<th>2nd PC</th>
<th>3rd PC</th>
<th>4th PC</th>
<th>5th PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>disease</td>
<td>cell</td>
<td>activity</td>
<td>cancer</td>
<td>age</td>
</tr>
<tr>
<td>level</td>
<td>effect</td>
<td>concentration</td>
<td>malignant</td>
<td>child</td>
</tr>
<tr>
<td>patient</td>
<td>expression</td>
<td>control</td>
<td>mice</td>
<td>children</td>
</tr>
<tr>
<td>therapy</td>
<td>human</td>
<td>rat</td>
<td>primary</td>
<td>parent</td>
</tr>
<tr>
<td>treatment</td>
<td>protein</td>
<td>receptor</td>
<td>tumor</td>
<td>year</td>
</tr>
</tbody>
</table>
Numerical Experiments - Important Feature Selection

• on each image some features ("words") are identified (by SURF algorithm)
• matrix A is build in the same way as in Large text corpora experiment
• after some scaling and normalization of matrix A we apply SPCA and extract few loading vectors
• we choose only "words" selected by non-zero elements of loading vectors

Numerical Experiments - Important Feature Selection
Numerical Experiments - Important Feature Selection
Important Feature Selection - Why does it work?
Numerical Experiments - Important Feature Selection
Conclusion

- We applied Alternating Maximization Algorithm for 8 formulations of Sparse PCA
- We implemented all 8 formulations for 3 different architectures (multi-core, GPU and cluster)
- We implements additional strategies (SFA, BAT, NAI, OTF) to facilitate better quality of a solution
- The code is open-source and available at https://code.google.com/p/24am/