
References for mini-course on the Fukaya category

1. Lagrangian Floer cohomology

This lecture follows [Aur13, §1] closely.

We did not cover the analytical foundations (transversality, Gromov compactness, gluing)
of Floer theory in the lecture. Here are some helpful references for learning this material:
[MS04], [Sal99], lecture notes from Katrin Wehrheim’s course on analysis of pseudoholomor-
phic curves (available from
https://piazza.com/berkeley/fall2013/berkeleymath278/resources), and (for gluing
theory especially) lecture notes from Katrin Wehrheim’s course on regularization of moduli
spaces of pseudoholomorphic curves (available from
https://math.berkeley.edu/ katrin/teach/regularization/lectures.shtml). The generic
regularity result that we cited in this lecture is from [FHS95].

The material about gradings is from [Sei99].

The proof that HF •(L,L) ∼= H•(L) can be found in [Flo89].

2. Product structures

This lecture follows [Aur13, §2] closely.

One approach to resolving the issue of non-transverse intersections of Lagrangians when
defining the Fukaya category is given in [Sei08].

The example of the three-punctured torus is from [Sei01, Proposition 3.2].

The observation that Floer cohomology can be defined in the presence of Maslov index 3
discs is due to [Oh93], and the extension to include Maslov index 2 discs is due to [Oh95].

The theorem about the form of the disc potential function for a torus fibre of a Fano toric
variety can be found in [FOOO12, Theorem 5.2], building on [CO06]. The identification of
the endomorphism algebra as a Clifford algebra is from [Cho05].
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3. Triangulated structure

This lecture follows [Aur13, §3].

A preprint containing Fukaya, Oh, Ohta and Ono’s result about holomorphic discs with
boundary on a Lagrangian connected sum is available at
https://www.math.kyoto-u.ac.jp/ fukaya/Chapter10071117.pdf.

For the result of Abouzaid about the integral of a primitive for the symplectic form being the
same for quasi-isomorphic objects, see [Abo08, §6] (Abouzaid’s result is for Fukaya categories
of higher-genus surfaces, but the proof adapts to the case of the torus).

The result of Abouzaid, Fukaya, Oh, Ohta and Ono about the Lagrangian torus fibre split-
generating its component of the Fukaya category is unpublished. It follows from an appropri-
ate version Abouzaid’s split-generation criterion [Abo10], see for example [She15, Corollary
2.19].

4. Other helpful resources

Helpful introductions to Fukaya categories include [Aur13], notes from the Talbot graduate
student workshop on Fukaya categories mentored by Paul Seidel (available from
http://www.math.ias.edu/~nicks/talbot.html), and notes from Denis Auroux’s topics
course on mirror symmetry (available from
https://math.berkeley.edu/~auroux/277F09/index.html).
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