Publications
Preprints
Peer-Reviewed
2012
- R. Basile, R. Grima, N. Popovic,
A graph-based approach for the approximate solution of the
Chemical Master Equation. Submitted (2012).
- N. Popovic,
A geometric analysis of front propagation in an integrable
Nagumo equation with a linear cut-off, Phys. D 241(22), 1976-1984 (2012).
Download revised preprint.
- P. de Maesschalck, N. Popovic, Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction-diffusion equations, J. Math. Anal. Appl. 386(2), 542-558 (2012). Download revised preprint.
2011
- N. Popovic,
A Geometric Analysis of Front Propagation in a Family of Degenerate
Reaction-Diffusion Equations with Cut-Off,
Z. Angew. Math. Phys. 62(3), 405-437 (2011).
Download revised preprint.
- N. Popovic, A Geometric Classification of Traveling Front Propagation in the Nagumo Equation with Cut-Off, in "MURPHYS 2010: Proceedings of the International Workshop on Multi-Rate Processes and Hysteresis, Pecs, 2010", J. Phys. Conference Series 268, 012023 (2011). Download revised preprint.
2010
- F. Dumortier, N. Popovic, T.J. Kaper, A Geometric Approach to Bistable Front Propagation in Scalar Reaction-Diffusion Equations with Cut-Off, Phys. D 239(20-22), 1984-1999 (2010). Download revised preprint.
2009
- P. de Maesschalck, N. Popovic, T.J. Kaper,
Canards and Bifurcation Delays of Spatially Homogeneous and Inhomogeneous
Types in Reaction-Diffusion Equations,
Adv. Differential Equations 14(9-10), 943-962 (2009).
Download revised preprint.
- C. Burton, H. Knoop, N. Popovic, M. Sharpe, G. Bleijenberg, Reduced complexity of activity patterns in patients with Chronic Fatigue Syndrome: a case control study, BioPsychoSocial Medicine 3(7) (2009). Download revised preprint.
2008
- N. Popovic,
Mixed-Mode Dynamics and the Canard Phenomenon: Towards a Classification,
in "MURPHYS 2008: Proceedings of the International Workshop on Multi-Rate Processes
and Hysteresis, Cork 2008", J. Phys. Conference Series 138, 012020 (2008).
Download revised preprint.
- M. Krupa, N. Popovic, N. Kopell,
Mixed-Mode Oscillations in Three Time-Scale Systems: A
Prototypical Example.
SIAM J. Appl. Dyn. Syst. 7(2), 361-420 (2008).
Download revised preprint.
- G. van Baalen, N. Popovic, C.E. Wayne,
Long tails in the long time asymptotics of quasi-linear
hyperbolic-parabolic systems of conservation laws.
SIAM J. Math. Anal. 39(6), 1951-1977 (2008).
Download revised preprint
- M. Krupa, N. Popovic, N. Kopell, H.G. Rotstein, Mixed-Mode Oscillations in a Three Time-Scale Model for the Dopaminergic Neuron, Chaos 18(1), 015106 (2008). Download revised preprint.
2007
- L.V. Kalachev, H.G. Kaper, T.J. Kaper, N. Popovic, A. Zagaris,
Reduction for Michaelis-Menten-Henri Kinetics in the
Presence of Diffusion,
in "Proceedings of the International Conference in Honor of Jacqueline Fleckinger,
Toulouse, France 2006", Electron. J. Differential Equations Conf. 16, 155-184 (2007).
Download revised preprint.
- N. Popovic,
Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study,
in "Proceedings of the Conference on Fluids and Waves-Recent Trends in Applied
Analysis, Memphis 2006", Contemp. Math. 440, 187-195 (2007).
Download revised preprint.
- N. Popovic, D. Praetorius, A. Schlömerkemper,
Analysis and Numerical Simulation of Magnetic Forces between
Rigid Polygonal Bodies. Part I: Analysis,
Contin. Mech. Thermodyn. 19(1-2), 67-80 (2007).
Download revised preprint.
- N. Popovic, D. Praetorius, A. Schlömerkemper,
Analysis and Numerical Simulation of Magnetic Forces between
Rigid Polygonal Bodies. Part II: Numerical Simulation,
Contin. Mech. Thermodyn. 19(1-2), 81-109 (2007).
Download revised preprint.
- F. Dumortier, N. Popovic, T.J. Kaper,
The Critical Wave Speed for the Fisher-Kolmogorov-Petrowskii-Piscounov
Equation with Cut-Off,
Nonlinearity 20(4), 855-877 (2007).
Download revised preprint.
- F. Dumortier, N. Popovic, T.J. Kaper, The asymptotic critical wave speed in a family of scalar reaction-diffusion equations, J. Math. Anal. Appl. 326(2), 1007-1023 (2007). Download revised preprint.
2006
- N. Popovic, T.J. Kaper,
Rigorous asymptotic expansions for critical wave speeds in a
family of scalar reaction-diffusion equations,
J. Dynam. Differential Equations 18(1), 103-139 (2006).
Download revised preprint.
- N. Popovic, D. Praetorius, H-Matrix Techniques for Stray-Field Computations in Computational Micromagnetics, in "Large-Scale Scientific Computing: Proceedings of the 5th International Conference LSSC 2005, Sozopol, Bulgaria", Lecture Notes in Comput. Sci. 3743, 102-110 (2006). Download revised preprint.
2005
- N. Popovic, D. Praetorius, A. Schlömerkemper,
Magnetic Force Formulae for Magnets at Small Distances,
in "Proceedings of the GAMM Annual Meeting 2005, Luxembourg",
Proc. Appl. Math. Mech. 5(1), 631-632 (2005).
Download revised preprint.
- N. Popovic,
A Geometric Analysis of Logarithmic Switchback Phenomena,
in "HAMSA 2004: Proceedings of the International Workshop
on Hysteresis and Multi-Scale Asymptotics, Cork 2004", J. Phys. Conference
Series 22, 164-173 (2005).
Download revised preprint.
- N. Popovic, D. Praetorius,
Applications of H-Matrix Techniques in Micromagnetics,
Computing 74(3), 177-204 (2005).
Download revised preprint.
- N. Popovic, A Geometric Analysis of the Lagerstrom Model: Existence of Solutions and Rigorous Asymptotic Expansions, in "Equadiff 2003: Proceedings of the International Conference on Differential Equations, Hasselt 2003", 916-918 (2005). Download revised preprint.
2004
- N. Popovic, P. Szmolyan,
Rigorous asymptotic expansions for Lagerstrom's model
equation - a geometric approach,
Nonlinear Anal. 59(4), 531-565 (2004).
Download revised preprint.
- N. Popovic, P. Szmolyan, A geometric analysis of the Lagerstrom model problem, J. Differential Equations 199(2), 290-325 (2004). Download revised preprint.
Theses
2002
- N. Popovic, A Geometric Analysis of the Lagerstrom Model: Existence of Solutions and Rigorous Asymptotic Expansions, PhD Thesis, Vienna University of Technology, Vienna, Austria, 2002.
2000
- N. Popovic, Geometric Aspects of WKB Approximation: A Dynamical Systems Approach for the One-Dimensional Stationary Schrödinger Equation, Master's Thesis, Vienna University of Technology, Vienna, Austria, 2000.
Preprints have been revised in accordance with peer reviewers' reports; moreover, typographical errors and other minor mistakes have been corrected where appropriate.