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Abstract We discuss a dynamical technique for sampling the canonical measure in molecu-
lar dynamics. We present a method that generalizes a recently proposed scheme (Samoletov
et al., J. Stat. Phys. 128:1321–1336, 2007), and which controls temperature by use of a
device similar to that of Nosé dynamics, but adds random noise to improve ergodicity. In
contrast to Langevin dynamics, where noise is added directly to each physical degree of
freedom, the new scheme relies on an indirect coupling to a single Brownian particle. For a
model with harmonic potentials, we show under a mild non-resonance assumption that we
can recover the canonical distribution. In spite of its stochastic nature, experiments suggest
that it introduces a relatively weak perturbative effect on the physical dynamics, as measured
by perturbation of temporal autocorrelation functions. The kinetic energy is well controlled
even in the early stages of a simulation.

Keywords Ergodicity · Hypoellipticity · Temperature control · Molecular dynamics ·
Nosé-Hoover thermostat

1 Introduction

Molecular dynamics requires the use of auxiliary devices for control of the ensemble. In
many computations it is desirable that these devices do not substantially corrupt dynamical
processes, i.e. that they represent weak perturbations of dynamics.

Consider a physical system described by a Hamiltonian energy function H(q,p),
q,p ∈ R

n. The (forward) trajectories of the corresponding Hamiltonian dynamics are de-
fined for t ≥ 0 by q = q(t;q,p); p = p(t;q,p), where q̇ = ∂H

∂p
, ṗ = − ∂H

∂q
, q(0) = q ,
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p(0) = p. With respect to the canonical measure, static observables are functions O =
O(q,p), computable by phase space averaging:

〈O〉 =
∫

R2n

O(q,p)dρβ(q,p), (1)

where dρβ(q,p) = ρβ(q,p)dq dp,

ρβ(q,p) = 1

Z
e−βH(q,p), Z =

∫
R2n

e−βH(q,p)dq dp

is the Boltzmann-Gibbs distribution and β is inverse temperature. The time average can
be defined with respect to a phase space curve (typically a non-Hamiltonian or stochastic-
dynamics trajectory) Γ = {(q̂(t), p̂(t))|t ≥ 0} is defined as:

〈O〉Γ = lim
τ→∞

1

τ

∫ τ

0
O(q̂(t), p̂(t))dt. (2)

In the typical case, the computation of long-time averages can be reduced to a sampling
problem, i.e. identifying an appropriate means to generate curves Γ such that almost surely
(i.e., for almost all initial conditions) 〈O〉Γ = 〈O〉. In many cases the process used to gener-
ate sampling trajectories is a perturbation of Hamiltonian dynamics, but this is not essential.

Molecular dynamics is also used to compute dynamic observables, i.e. generalized au-
tocorrelation functions. For example, the canonically weighted momentum autocorrelation
function is given by

ν(τ ) = 1

α2

∫
R2n

p · p(τ ;q,p)dρβ(q,p),

where, α2 = ∫
R2n p · pdρβ(q,p), defined in terms of the Hamiltonian trajectories of the

system. The most accurate procedure for generating autocorrelation functions at a given
temperature is as follows: first, generate a set of well equilibrated initial conditions (at given
temperature) through some strongly randomizing process. Next, from each initial point, run
a microcanonical (Hamiltonian dynamics) simulation and compute the associated autocor-
relation function. The canonically weighted autocorrelation function can then be obtained
from a weighted sum of the results for all initial conditions. This straightforward method
has the benefit of being trivially parallelizable, however it may introduce artificial nonequi-
librium effects at the start of each trajectory, and therefore each trajectory will require an
equilibration. As a practical device it is often desirable to compute both static and dynamic
observables from a single dynamics. These considerations motivate the search for methods
sampling from the canonical distribution that alter the original Hamiltonian evolution in a
minimal way, so that autocorrelation functions can be directly computed in a single run.
Our goal is therefore to find dynamics which generates trajectories which are close to mi-
crocanonical trajectories on finite time intervals sufficiently long to allow the recovery of
autocorrelation functions.

Canonical sampling may be achieved using stochastic and deterministic methods. A sto-
chastic method models a heat bath in contact with the system. In this approach the heat
bath acts on the system by adding random forces to the system which will be appropriately
balanced by a diffusion process (according to the fluctuation-dissipation theorem). The best
known representative of this class of methods is the Langevin-thermostat [5]. It replaces



A Gentle Stochastic Thermostat for Molecular Dynamics 263

Newtonian dynamics by stochastic dynamics:

dq

dt
= M−1p, (3)

dp = −∇V dt − 1

2
βγ 2pdt + γ dW, (4)

where we have assumed that H(q,p) = 1
2pT Mp + V (q), M is a mass matrix, γ repre-

sents the size of perturbation, and W is a vector of n independent Brownian motions. It is
shown that the Boltzmann-Gibbs distribution is the unique invariant measure for the process
generated by (3)–(4) [18, 19].

A common deterministic method is known as Nosé-Hoover dynamics [10, 24]. This
method augments the physical system with one additional variable ξ called a thermostat
variable. The thermostat models an artificial heat bath and is coupled to all the degrees of
freedom of the physical system. Moreover the dynamics of ξ is governed by a heuristic
auxiliary equation which forces the spontaneous kinetic energy of the system, per degree of
freedom, to oscillate around a given target temperature. Nosé-Hoover dynamics takes the
form

q̇ = M−1p, (5)

ṗ = −∇V − ξp, (6)

Qξ̇ = pT M−1p − n

β
, (7)

where q and p are position and momentum vectors, respectively, n is the number of degrees
of freedom, β−1 = kBT , kB is the Boltzmann constant, and T is temperature. The parameter
Q is an (artificial) thermostat coefficient that influences the coupling of the heat bath to the
system. It can be checked that the distribution with density function

ρ
aug
β ∝ exp

(
−β

(
H + Q

2
ξ 2

))
,

where H is the Hamiltonian of the physical system, is invariant with respect to the flow
of (5)–(7) [10, 24]. The Nosé-Hoover evolution is close to the Hamiltonian evolution for
sufficiently large systems in the sense that autocorrelation functions computed using Nosé
dynamics have been found to have an error inversely proportional to the system dimension
(as demonstrated by numerical experiments in [7]), hence the computation of dynamic ob-
servables is not severely effected. On the other hand, there are examples that show that the
Nosé-Hoover thermostat is not always a sampling method for the canonical distribution.
Specifically, the crucial assumption of ergodicity, essential in the proof that Nosé-Hoover
dynamics samples the canonical ensemble, may be violated.

Recently, a scheme was presented by Samoletov, Chaplain and Dettman [30] which
aims to combine the advantages of the Langevin-thermostat with those of the Nosé-Hoover
method; although without proof of ergodicity. Our method generalizes this scheme; it can be
viewed as a Nosé-Hoover method in which the thermostat variable is a Brownian particle.
For the same case considered in [30], we consider the rigorous foundation of the method
in the context of a harmonic potential energy, stating a simple condition under which the
method samples the canonical ensemble. The harmonic case is important, as many physical
models contain strong harmonic components that trap energy for long time, hence cause
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difficulty for thermostats, e.g. crystalline solids [14] and biomolecular models [1]. In full
generality, our scheme incorporates a device which may be used to increase ergodicity in
those special cases where the non-resonance condition is violated.

We also consider via numerical experiments the issue of the perturbation of dynamics,
showing for several examples that autocorrelation functions are relatively mildly perturbed
by our method. Besides [30], some other recent articles have used a similar combination
of stochastic and deterministic dynamics. Bussi et al. [6] developed a sampling method
introducing a stochastic perturbation of velocities, while reducing the extent of random per-
turbation of the system compare to the Langevin dynamics. On the other hand their method
relies on an auxiliary dynamics for kinetic energy and there is no clear case that it can im-
prove the ergodicity. A method related to ours was also suggested by Quigley and Probert
[27] for integration in the isothermal-isobaric ensemble. The primary distinction between
our approach and others in the literature is that we provide not only a new method (which
generalizes all the ones of which we are aware) but also an analysis of ergodicity, making
use of the concept of hypoellipticity with respect to the operator defining the right hand
side of the Fokker-Planck equations. The technique used here for analysis of ergodicity is
motivated by recent approaches in [8, 18, 19].

2 Equations of Motion and Invariant Measure

Consider the following family of stochastic dynamics:

dq

dt
= M−1p, (8)

dp

dt
= −∇V (q) − A(ξ)p, (9)

dξ = 1

μ

(
pT M−1p − n

β

)
dt − 1

2
μβσ 2ξdt + σdW, (10)

where M is a positive definite symmetric matrix, q,p ∈ R
n, A(ξ) = ξ Id + MS(t, ξ), S ∈

R
n×n is skew-symmetric (i.e., ST = −S), ξ ∈ R, W is the standard Brownian motion, μ > 0,

σ ∈ R and β = 1
kBT

> 0 is the inverse temperature. For σ = 0 and A = Id, one obtains the
classic Nosé-Hoover thermostat.

The Hamiltonian takes the usual form H(q,p) = 1
2 pT M−1p +V (q) and we assume that

the potential function is bounded below (i.e., V : R
2n → (a,∞)), the augmented Boltzmann-

Gibbs density is defined by

ρ
aug
β (q,p, ξ) := 1

Z
exp

(
−β

(
H(q,p) + μ

2
ξ 2

))
, (11)

where

Z =
∫

RN

dq dp dξ exp

(
−β

(
H(q,p) + μ

2
ξ 2

))

is the partition function and N = 2n + 1.
A function ρ(q,p, ξ) is invariant if it satisfies the stationary Fokker-Planck equation

L∗ρ = 0 where
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L∗ρ = −∇q · [ρM−1p] + ∇p · [ρ(∇V + Ap)]

− ∂

∂ξ

[(
pT M−1p − nβ−1

μ
− 1

2
μβσ 2ξ

)
ρ

]
+ 1

2

∂2

∂ξ
[ρσ 2]. (12)

It can be checked by inspection the ρ
aug
β is invariant.

Indeed, since M is symmetric and S is skew-symmetric one has that tr(MS) = 0, there-
fore ∇p · (Ap) = nξ . One obtains the following expressions for the individual terms in (12):

∇q · [ρaug
β p

] = ρ
aug
β [−β∇V · M−1p],

∇p · [ρaug
β (∇V + Ap)

] = ρ
aug
β [−βM−1p · ∇V − βξp · M−1p + nξ ],

∂

∂ξ

[
ρ

aug
β ((pT M−1p − nβ−1)/μ − μβ)

] = ρ
aug
β

[−βξ(pT M−1p − nβ−1)

+ (μβ)2Σξ 2 − μβΣ
]
,

∂2

∂ξ 2

[
Σρ

aug
β

] = ρ
aug
β

[
Σ(μβ)2ξ 2 − μβΣ

]
,

where Σ = 1
2 σ 2. Thus ρ

aug
β is invariant if

−βξp2 + ξ + βξp2 − ξ − (μβ)2σξ 2 + ξ − (μβ)2σξ 2 − μβΣ = 0 (13)

holds for all ξ,p ∈ R. Since the matrix S drops out, this is clearly the case. Note that σ = 0
is admissible, hence we have recovered as a special case Hoover’s classic result [10, 11].

If the process generated by (8)–(10) is ergodic, then a generalization of Birkhoff’s er-
godic theorem [2, 15, 25, 26] implies that long trajectories can be used to sample any static
observable with respect to the measure ρ

aug
β , i.e. there exists a set U ⊂ R

N with full measure
such that

lim
τ→∞

1

τ

∫ τ

0
O(q(t),p(t))dt =

∫
RN

O(q,p)dρ
aug
β (q,p, ξ) =

∫
R2n

O(q,p)dρβ(q,p),

almost surely for all initial values (q(0),p(0), ξ(0)) ∈ U .
For our purposes U needs to be invariant under the flow, i.e.

(M−1p,−∇V (q)) + span{(0,Ap)} ∈ T U(q,p), (14)

where T U(q,p) is the tangent space of U at (q,p). We state a basic result which relates
ergodicity to regularity of solutions of the Fokker-Planck equation; for similar results see [8,
18, 19], as well as earlier works on ergodicity of Markov chains [21, 28, 29].

Theorem 1 Let U ⊂ R
N be open, connected and invariant under the flow in the sense

of (14). If all solutions ρ of L∗ρ = 0 are continuous on U , then ρ
aug
β is the unique invariant

measure on U .

Proof We show first that the set of ergodic invariant measures is countable. Let ν be an
ergodic invariant measure. Since ν is invariant, the Fokker-Planck equation L∗ν = 0 is sat-
isfied. Therefore the measure ν has a continuous density f ∈ C(U). Define

D = {f ∈ C(U) | f is the density of an invariant ergodic measure ν}.
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Birkhoff’s ergodic theorem implies for each pair f,g ∈ D that either int(supp(f )) ∩
int(supp(g)) = ∅ or f = g. Let Ki ⊂ U be a countable family of bounded open sets such
that

⋃∞
i=1 Ki = U . For each i we define the set

Di = {f ∈ D | int(supp(f )) ∩ Ki �= ∅}.
Since the interiors of the supports of the densities in D are disjoint

∑
f ∈Di

meas(supp(f ) ∩ Ki) ≤ meas(Ki) < ∞.

A convergent sum can have only countably many nonzero terms, thus Di is countable for
each i. This shows that D is countable.

By the decomposition theorem for invariant measures there exists a countable index
set J , weights λj ∈ [0,1], j ∈ J and densities fj ∈ D such that fj �= fl if j �= l and
ρ

aug
β = ∑

j∈J λjfj . Let j be such that λj > 0 and assume that there exists z ∈ ∂supp(fj ).
Then, by continuity of fj for every ε > 0 there exists δ > 0 such that fj (z

′) < ε for all
|z − z′| < δ. But this is impossible since inf|z−z′|<1 ρ

aug
β (z′) > 0 and ρ

aug
β (z′) = fj (z

′) for all
z′ ∈ int(supp(fj )).

Therefore, ∂supp(fj ) = ∅ for every j , and by connectedness of U either supp(fj ) = U

or supp(fj ) = ∅. This implies that there exists precisely one j ∈ J such that λj > 0. Thus
we have shown that ρ

aug
β = fj . Since the support of ρ

aug
β is U there can be no further ergodic

invariant measure and thus D = {ρaug
β }. �

3 Ergodicity and Hypoellipticity of L∗

It is well known that in general the Nosé-Hoover thermostat (σ = 0) is not ergodic, see [10,
16, 17]. The most notorious case is given by the harmonic oscillator, where n = M = β =
μ = 1, A = ξ (see Fig. 1).

When σ �= 0, the Fokker-Planck equation L∗ρ = 0 changes type. This is captured by the
concept of hypoellipticity.

Fig. 1 Non-ergodicity of
Nosé-Hoover: the graph
compares the approximated
density of momentum with the
exact density
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Definition 1 Let U ⊂ R
N be open. A second order differential operator L with C∞ coeffi-

cients is hypoelliptic on U if all distributional solutions ρ of the differential equation Lρ = 0
are C∞.

If U is connected an obvious necessary condition for hypoellipticity of L∗ on U is that
U cannot be written as a union of several invariant sets. In the case of the Hoover-Langevin
thermostat, if q is an equilibrium (i.e. ∇V (q) = 0), then (q,0, ξ) /∈ U for every ξ if L∗ is
U -hypoelliptic. Moreover, if V is quadratic, then the span of any collection of eigenspaces
is invariant.

A sufficient criterion for hypoellipticity is provided by Hörmander’s condition.

Definition 2 Let U ⊂ R
N be open, the vector fields X0, . . . ,Xr : U → R

N satisfy Hörman-
der’s condition at z ∈ U if the vector space generated by the iterated brackets

X0(z), . . . ,Xr(z), [Xi,Xj ](z), [Xi, [Xj,Xk]](z) . . .

is R
N .

Typically we will choose r = 1 and

X0 =
(

M−1p,−∇V − Ap,
1

μ

(
pT M−1p − n

β

)
− 1

2
μβσ 2ξ

)
, X1 = (0,0, σ ). (15)

The main application of the Hörmander’s condition is Hörmander’s theorem [9, 12, 23].

Theorem 2 Let U ⊂ R
N be open. If X0,X1 : U → R

N are two vector fields that satisfy
Hörmander’s condition at every z ∈ U , then the operator L∗ which is defined by

L∗ρ(z) := −
N∑

i=1

∂

∂zi

(ρ(z)X0,i (z)) + 1

2

N∑
i,j=1

∂2

∂zi∂zj

(ρ(z)X1,i (z)X1,j (z))

is hypoelliptic.

Hypoellipticity clearly provides smoothness of solutions required for application of The-
orem 1, hence the flow induced by (8)–(10) is ergodic if we can find an open, connected set
U with full measure such that the vector fields X0 and X1 satisfy Hörmander’s condition at
every z ∈ U .

A simple case where this can be done is given by quadratic Hamiltonians, where

H(q,p) = 1

2
pT M−1p + 1

2
qT Bq.

Only a mild assumption on the spectrum of B is needed in the case where A(ξ) = ξ . For
general forces we conjecture that L∗ remains hypoelliptic, but it is difficult to verify this
analytically due to the long calculation of iterated Lie brackets and the need to show that
they are linearly independent. However for Langevin dynamics (3)–(4) it is possible to ver-
ify hypoellipticity for bounded Lipschitz forces since one does not need to iterate brackets
[18, 19].
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Theorem 3 Let M,B ∈ R
n×n be two symmetric and positive definite matrices such that

ωk �= ωl for all k �= l, (16)

where ωk = ϕT
k M−1Bϕk are the eigenvalues and ϕ1, . . . , ϕn ∈ R

n are the normalized eigen-
vectors of M−1B . If H(q,p) = 1

2pT M−1p + 1
2qT Bq and

U =
{

(q,p)

∣∣∣∣∣
n∏

k=1

((q · ϕk)
2 + (p · ϕk)

2) �= 0

}
× R, (17)

then the vector fields X0 = (p,−Bq − ξp, 1
μ
(pT M−1p − nβ−1) − 1

2μβσ 2ξ) and X1 =
(0,0, σ ) satisfy the Hörmander condition at each (q,p, ξ) ∈ U . In particular the process
generated by (8)–(10) is ergodic on U .

We conjecture that if the matrix A in (9) is random, then Theorem 3 holds almost surely
without the non-resonance assumption (16).

Conjecture 1 Let M,B be symmetric, positive definite matrices. If H(q,p) = 1
2 (pT M−1p+

qT Bq), A = ξ Id + SM where S = G − GT and G ∈ R
n×n is a random matrix with iid

Gaussian entries, then for almost every realization of S the flow generated by (8)–(10) is
ergodic on U (defined by (17)).

The theorem is sharp in the sense that if one of the assumption (16), (17) is violated,
then the dynamics generated by equations (8)–(10) is not ergodic. Indeed, assume that B is
a diagonal matrix and qi(t = 0) = pi(t = 0) = 0 for some i. Clearly qi(t),pi(t) = 0 for all
t and thus the evolution is not ergodic.

Assume next that n = 3 and M = B = Id (the identity matrix). Define the subspace

S = span{(q0,0), (p0,0), (0, q0), (0,p0)} ⊂ R
6,

where q0 and p0 are the initial values of q and p. Again, it can be seen easily that S is
invariant. Since S is 4-dimensional the evolution is not ergodic.

A nontrivial quadratic Hamiltonian that satisfies (16) is a harmonic chain with clamped
end-particles where V (q) = 1

2

∑n

i=0(qi+1 − qi)
2 and q0 = qn+1 = 0. Then ∂V (q)/∂qi =

−qi−1 + 2qi − qi+1 if i ∈ {1, . . . , n}. Without the clamping assumption the Hamiltonian
H is translation invariant and Z = ∫

R2(n+2) dqdp exp(−βH) does not exist. Define the
discrete sine-transform as follows: (F q)k = q̂k = 2

n+1

∑n

i=1 sin(πik/(n + 1))qi , such that
qi = ∑n

k=1 q̂k sin(πik/(n + 1)). One obtains that |q̂| = |q| and

F (−qi−1 + 2qi − qi+1)(k) = 2(1 − cos(πk/(n + 1)))q̂ = ωkq̂(k).

Since the dispersion relation ω is strictly increasing with k, inequality (16) is satisfied.

Proof of Theorem 3 We can assume without loss of generality that σ = μ = 1 = β = 1 and
M = Id. Furthermore, we assume that B is diagonal, hence H(q,p) = 1

2

∑n

k=1(ωkq
2
k + p2

k ).
This assumption does not involve any loss of generality since it amounts to choosing the
coordinate system which is created by the eigenvectors ϕ1 . . . ϕn.

After these simplifications the vector fields X0 and X1 assume the form

X0 =
(

p,−Bq − ξp,p2 − n − 1

2
ξ

)
, X1 = (0,0,1).
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Next, we define recursively the following sequence of vector fields:

Zk = 1

2
[Yk,X3], Yk+1 = −1

2
[Zk,X3],

where

X2 =
[
X1,

(
p2 − n − 1

2
ξ

)
X1 − X0

]
= (0,p,0),

X3 = X0 −
(

p2 − n − 1

2
ξ

)
X1 + ξX2 = (p,−Bq,0),

Y1 = [X2,X3] = (p,Bq,0).

Induction yields that

Yk = (Bk−1p,Bkq,0), Zk = (Bkq,−Bkp,0), k = 1,2 . . . .

After these preparations we can show that the vectors X1, Y1,Z1, . . . , Yn−1,Zn−1, Yn,Zn

span R
2n+1. Clearly, it suffices to demonstrate that for each η,μ ∈ R

n there exist coefficients
a1, b1, . . . , an, bn ∈ R such that

n∑
k=1

(akYk + bkZk) =
n∑

k=1

(akB
k−1p + bkB

kq, akB
kq − bkB

kp) = (η,μ). (18)

Since the matrix B is diagonal (18) is equivalent to
(

diag(B−1p) diag(q)

diag(q) −diag(p)

)(
Va

Vb

)
=

(
η

μ

)
,

where Vkl = ωl
k , k, l = 1, . . . , n is a Vandermonde matrix with determinant

det(V) =
∏

k

ωk

∏
k>l

(ωk − ωl).

Set now

ã = Va, b̃ = Vb, (19)

then the k-th components of ã, b̃ solve of the linear system
(

ω−1
k pk qk

qk −pk

)(
ãk

b̃k

)
=

(
ηk

μk

)
,

i.e.
( ãk

b̃k

) = 1
ω−1

k
p2

k
+q2

k

( pk qk

qk −pk

)(
ηk

μk

)
.

The coefficient vectors a and b are obtained by inverting the relation (19) which is pos-
sible since we have assumed that the eigenvalues ωi are pairwise different from each other
and bigger than zero, thus the determinant of V is nonzero. �

It is important to note that, as with all dynamics-based and stochastic dynamics-based
schemes, numerical truncation errors will likely distort the distribution. (These effects are
discussed in detail in [3] in the setting of Nosé dynamics.)
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4 Numerical Results

In this section we run a series of tests on the system (8)–(10) to investigate the validity of
the invariant measure ρ

aug
β and its applications. We used the following discretization for the

system (8)–(10)

Q := qn + Δt

2
pn,

P := pn − Δt

2
∇V (qn+1/2) − Δt

2
ξ̄P ,

ξ̄ := ξn + Δt

2
μ−1

(∑ P 2
i

mi

− n

β

)
− Δt

4
σ 2μβξ̄ + σ

2

√
ΔtW,

pn+1 := 2P − pn,

ξn+1 := 2ξ̄ − ξn,

qn+1 := Q + Δt

2
pn+1.

Here W is a standard normal random variable. This method is semi-implicit (requiring an
iteration to solve at each step), but it is important to note that only one force evaluation
is required at a timestep. In practice the method therefore has the cost of an explicit inte-
grator such as comparable methods [5, 22, 32] for Langevin dynamics. After preparing the
numerical experiments, we obtained the following explicit discretization:

P := pn − Δt

2
∇V (qn),

Q := qn + Δt

2
P,

P := exp(−δtξn/2)P,

ξn+1 := ξn + Δt

μ

(∑ P 2
i

mi

− n

β

)
+ σ

√
ΔtW − Δtσ 2

4μ
(ξn + ξn+1),

P := exp(−Δtξn+1/2)P,

qn+1 := Q + Δt

2
P,

pn+1 := P − Δt

2
∇V (qn+1).

The implicit equation at the 4th step of this algorithm is linear, so can be easily solved
exactly. Tests confirmed that the performance of the two methods was very similar.

Alternative discretizations may be obtained by following the procedures described in [4,
5, 20, 22, 31, 32].
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4.1 Harmonic Oscillator

First we investigate the dynamics of (8)–(10) for the case where the energy of the system is
given by a Hamiltonian of the form

H(q,p) = p2

2m
+ ω2 q2

2
.

In our experiment we chose ω = m = 1, β = 1.0,μ = 0.5, σ = 5.0 and Δt = 0.01. The
parameter μ influences the control on temperature and σ influences the coupling between
system and the heat bath. To verify that our dynamics generates the Boltzmann-Gibbs dis-

tribution, the distribution of momentum is compared to
√

β

2πm
e−β

p2

2m . This is demonstrated
in Fig. 2.

In order to quantify the error in the distribution generated by (8)–(10), we define the
following norm. For a given interval (a, b), define

Dn(x) =
(

1

M

M∑
i=1

(
φKi

(x) −
∫

Ki

dρβ

)2
) 1

2

, (20)

where x is a set of size n samples generated by the dynamics, (K1, . . . ,KM) are M partitions
of (a, b) and φKi

(x) is the observed density of samples in x which belong to the partition Ki .
We postulate that the convergence of Dn(x) toward zero implies the law of large numbers

Fig. 2 Convergence of momentum distribution is verified for the harmonic oscillator. The solid line is the
exact density and the approximated density is in bar style. The (left) column 105 steps, the (middle) column
106 of steps and the (right) column 107 steps, each step of size Δt = 0.01
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Fig. 3 The graph shows the
error Dn(x) in the approximated
density of momentum against the
number of samples n. The rate of
convergence of the distribution of
Hoover-Langevin is similar to
Nosé-Hoover chain (NHC) and
Langevin dynamics for the case
of harmonic oscillator

Table 1 Error (20) in distribution for p, p2 and p4 using Hoover-Langevin

Error for 105 evolutions Error for 106 evolutions Error for 107 evolutions

p 0.201035 × 10−2 0.454371 × 10−3 0.167924 × 10−3

p2 0.912343 × 10−3 0.207135 × 10−3 0.444854 × 10−6

p4 0.130941 × 10−2 0.251866 × 10−3 0.487444 × 10−6

and the rate of convergence of Dn(x) is related to the rates of convergence of average of
observable.

In Fig. 3, we compare the error norm Dn(x) for the new dynamics (Hoover-Langevin)
with other widely used sampling methods namely Nosé-Hoover chains (NHC) [17] (an ex-
tension of Nosé-Hoover where a chain of thermostats ξi with thermostat coefficient Qi are
attached to the system) and Langevin dynamics [5] to investigate the rate of convergence.
We chose γ = 1 for Langevin and Q1 = Q2 = 0.1 for NHC which we observed to be op-
timal parameters for these methods. In order to reduce the inconsistency in the results due
to the random noise, for each method, 100 different simulations with different initial condi-
tions have been performed and the result illustrated in Fig. 3 is the mean of the 100 different
results.

We also computed the errors (20) in distribution for p2 and p4, which are presented in
Table 1.

4.2 Discrepancy in the Dynamics

One important aspect of molecular dynamics (MD) is to capture macroscopic information
from the dynamics of atoms or small constituent parts that form a material. Therefore it
is essential to take care that the algorithm used in MD is not changing the dynamics of
the physical system significantly. The new dynamics is designed to generate the canonical
distribution by introducing a minimal perturbation to the system so that the dynamics of the
thermostated system is close to the unperturbed system.
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Fig. 4 Three particles of mass m

are connected by springs to the
origin and interacting with each
other through Lennard-Jones (LJ)
potential

Consider a two dimensional system consisting of three particles which are connected
by springs with rest length to a fixed point at the origin (Fig. 4). The interaction between
particles is modelled by Lennard-Jones potential,

ULJ (r) = 4ε

[(
α

r

)12

−
(

α

r

)6]
.

The Hamiltonian of the system is

H(q,p) =
3∑

i=1

1

2mi

p2
i +

3∑
i=1

1

2
k(L − ‖qi‖)2 +

2∑
i=1

3∑
j=i+1

ULJ (rij ), (21)

where L is the spring rest length, k is the spring constant, rij = ‖qj − qi‖ and ULJ is the
Lennard-Jones potential. This is a challenging problem in terms of equilibration due to the
locking of energy in springs.

In our simulation we took α = ε = 1, k = 10, L = 1, mi = 1 for i = 1,2,3 and set the
target temperature T = 1, kB = 1. In order to measure the changes in the dynamics we look
at the velocity autocorrelation function of the radial component of velocity,

vr i(t) = q̇i · qi

‖qi‖ . (22)

To calculate the canonically weighted VAF function we first construct a set of 1000 random
initial conditions {zi} from a canonical distribution at the target temperature. From each zi

we run a microcanonical simulation and calculate its VAF, the correct VAF is then obtained
as a weighted average of VAFs from different initial conditions:

c̄(τ ) =
∑

i c(τ ; zi)ρβ(zi)∑
i ρβ(zi)

, (23)

where

c(τ ; z) = lim
T →+∞

1

T

∫ T

0

vr1(t; z)vr1(t + τ ; z)
vr1(t; z)vr1(t; z)

dt, (24)

with vr1 representing, in this case, the radial velocity of the first particle of the system.
Figure 5 compares the radial VAF for Hoover-Langevin with those obtained by other

methods. The parameters are chosen with the criteria to achieve the correct distribution:
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Fig. 5 Autocorrelation function c1(τ ), computed using Hoover-Langevin, Langevin, Nose-Hoover and
NHC, and compared to the velocity autocorrelation of canonically averaged microcanonical (c̄1(τ )) dynamics

μ = 0.1, σ = 1 for Hoover-Langevin, γ = 1 and γ = 0.5 for Langevin, Q = 0.3 for Nosé-
Hoover and Q1 = Q2 = 0.1 for NHC. We used these values of the Langevin parameter so
that the error in its distribution is of the same size of the error in the distribution for Hoover-
Langevin. Moreover, we observed that for γ < 0.5 the temperature fails to reach its target
value within the simulation time, we elaborate more on temperature in the next subsection.
As can be seen from Fig. 5, Hoover-Langevin follows the VAF of microcanonical (unper-
turbed dynamics) very closely, whereas the Langevin dynamics for γ = 1.0 and γ = 0.5
profoundly changes the VAF, since it perturbs every degree of freedom by adding random
noise. Using smaller values of γ would improve the result for the VAF for Langevin dy-
namics, albeit at the expense of further perturbing the distribution obtained on a fixed time
interval. Hence we compare the VAF of Langevin and Hoover-Langevin for the same level
of perturbation needed for each method to approximate the Gibbs measure with the same
accuracy, with a given amount of computational effort, Table 2 shows that Langevin dynam-
ics and Hoover-Langevin approximate the Gibbs measure with very close accuracy for the
chosen values of parameters. This illustrates that the dynamics of Hoover-Langevin has the
characteristic of deterministic thermostats of being close to the original dynamics despite
the fact that it is a stochastic method.

The error in VAF and the error in distribution for Hoover-Langevin, Nose-Hoover, NHC
and Langevin method are shown in Table 2. It worth noting that Langevin fails to produce
the correct qualitative approximation of VAF as is visible in Fig. 5.

4.3 Temperature Control

One important feature of the new dynamics is the control feedback loop in the dynamics
which stabilizes the cumulative average kinetic energy of the system near the target temper-
ature. Cumulative average kinetic energy is defined by

K(t) = 1

t

∫ t

0
n−1pT (s)M−1p(s)ds.
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Table 2 Comparison of root mean square of error on [0,4] of VAF and the error in distribution using (20)
for 106 of Δt = 0.01 evaluations

Method Parameters Error in distribution Error on [0,4] of VAF

Hoover-Langevin μ = 0.1, σ = 1 0.270198 × 10−3 0.0675

Hoover-Langevin μ = 0.1, σ = 10 0.232064 × 10−3 0.0578

Langevin γ = 0.5 0.252864 × 10−3 0.1018

Langevin γ = 1 0.228635 × 10−3 0.1383

NHC Q1 = Q2 = 0.1 0.275997 × 10−3 0.0603

Nosé-Hoover Q = 0.3 0.165209 × 10−2 0.0807

Fig. 6 The (top) panel shows
cumulative kinetic energy during
105 of time steps (Δt = 0.01)
simulation. K(t) computed by
Hoover-Langevin dynamics
reaches 1 (the target temperature)
and stays close to 1, whereas it
takes longer for Langevin
dynamics to reaches the target
temperature and the deviation is
greater. The (lower) panel shows
the slow convergence of
temperature over twenty million
time steps

In Fig. 6 we compare the K(t) of the Hoover-Langevin with the Langevin dynamics for
the system (21). We used μ = 0.1, σ = 1 for Hoover-Langevin and γ = 1 and γ = 0.5 for
Langevin, both methods produce correct Gibbs measure in the long term, but the conver-
gence of K(t) is much slower for Langevin dynamics. Note that this experiment does not
demonstrate convergence to equilibrium; for general convergence to equilibrium one needs
to compare the spectral gaps of the generator of the process [13, 33], which is difficult to do
for Hoover-Langevin because it is highly degenerate.
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5 Conclusion

We have presented a new thermostat for generating the canonical distribution in molecular
dynamics simulations. This thermostat is derived by combining Nosé-Hoover and Langevin
dynamics together with the aim to achieve a provably correct distribution and at the same
time minimizing the effect on the dynamics. The new method should be of interest in cases
where one is concerned with computing the average of local observables which depend on
small number of degrees of freedom, for instance, for calculating free energy of activated
processes where the process occurs along a reaction coordinate which can be described
as a function of the degrees of freedom of the system. This new thermostat is likely to
be preferable for some non-equilibrium molecular dynamics simulations compared to the
Langevin method, since it is close to the dynamics of the unperturbed system, and therefore
interacts weakly with a non-equilibrium force acting on the system.

The new dynamics has an invariant probability measure ρ
aug
β which is proportional to the

Boltzmann-Gibbs distribution and we have proved analytically that under a non-resonance
assumption, an open, connected set U with full measure can be constructed such that ρ

aug
β is

ergodic on U . Thus, when the new thermostat is applied to quadratic Hamiltonians without
resonances the dynamics is ergodic. This has been verified in several simple examples.
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