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Abstract. Using multigraded Castelnuovo-Mumford regularity,
we study the equations defining a projective embedding of a variety
X. Given globally generated line bundles B1, . . . , B` on X and
m1, . . . ,m` ∈ N, consider the line bundle L := Bm1

1 ⊗ · · · ⊗ Bm`

` .
We give conditions on the mi which guarantee that the ideal of X
in P(H0(X, L)∗) is generated by quadrics and the first p syzygies
are linear. This yields new results on the syzygies of toric varieties
and the normality of polytopes.

1. Introduction

Understanding the equations defining a projective variety X and
the relations among them is a central problem in algebraic geometry.
Green [Gre84a] shows that a sufficiently positive line bundle L on X
gives an embedding X ⊆ P

(
H0(X,L)∗

)
such that the first few syzygies

are as simple as possible. Explicit conditions certifying that an ample
line bundle is suitably positive are given by Green [Gre84a] for curves,
Ein and Lazarsfeld [EL93] for smooth varieties, Gallego and Purnapra-
jna [GP99] for normal surfaces, and Pareschi and Popa [Par00, PP04,
PP03] for abelian varieties; see Lazarsfeld [Laz04, §1.8.D] for a survey.
The primary goal of this paper is to produce similar conditions for toric
varieties.

Let X be a projective variety over a field of characteristic zero and
let L be a globally generated line bundle on X. The associated mor-
phism is φL : X - P

(
H0(X,L)∗

)
and S := Sym•H0(X,L) denotes the

homogeneous coordinate ring of P
(
H0(X,L)∗

)
. Consider the graded

S-module R :=
⊕

j≥0H
0(X,Lj) and a minimal free graded resolution

E• of R. Following Green and Lazarsfeld [GL85], we say that L satisfies
property (Np) for p ∈ N provided that E0

∼= S and Ei =
⊕

S(−i− 1)
for all 1 ≤ i ≤ p. Hence, φL(X) is projectively normal if and only if L
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satisfies (N0) and φL(X) is normal. If L satisfies (N1), then the homo-
geneous ideal of φL(X) is generated by quadrics and (N2) implies that
the relations among the generators are linear. The concepts of normal
generation and normal presentation introduced by Mumford [Mum70]
correspond to (N0) and (N1) respectively. Typically, the property (Np)
is studied under the additional hypothesis that L is ample; our theo-
rems do not require this assumption.

To examine this property, we use multigraded Castelnuovo-Mumford
regularity. Fix a collection B1, . . . , B` of globally generated line bundles
on X. For u := (u1, . . . , u`) ∈ Z`, set Bu := Bu1

1 ⊗ · · · ⊗Bu`
` and let B

be the semigroup {Bu : u ∈ N`} ⊂ Pic(X). We say that a line bundle
L is OX-regular (with respect to B1, . . . , B`) if H i(X,L⊗B−u) = 0 for
all i > 0 and all u ∈ N` with |u| := u1 + · · ·+ u` = i. Our main result
is the following.

Theorem 1.1. Let w1,w2,w3,w4, . . . be a sequence in N` such that
Bwi ∈

⋂`
j=1(Bj ⊗B) and set mi := w1 + · · ·+ wi for i ≥ 1. If Bm1 is

OX-regular then the line bundle Bmp satisfies (Np) for p ≥ 1.

The case ` = 1 is in Gallego and Purnaprajna [GP99, Theorem 1.3].
Our proof is a multigraded variant of their arguments.

Applying Theorem 1.1 with ` = 1 to line bundles on toric varieties
yields the following.

Corollary 1.2. Let L be an ample line bundle on an n-dimensional
toric variety. If d ≥ n− 1 + p then the line bundle Ld satisfies (Np).

The case p = 0, an ingredient in our proof, was established by Ewald
and Wessels [EW91]; other proofs appear in Liu, Trotter and Ziegler [LTZ93],
Bruns, Gubeladze and Trung [BGT97], and Ogata and Nakagawa [ON02].
On a toric surface, Koelman [Koe93] proves that a line bundle L sat-
isfies (N1) if the associated lattice polytope contains more than three
lattice points in its boundary. More generally, Bruns, Gubeladze and
Trung [BGT97] show that R is Koszul when d ≥ n and this implies
that Ld satisfies (N1) when d ≥ n. Assuming n ≥ 3, Ogata [Oga03] es-
tablishes that Ln−1 satisfies (N1) and, building on this, Ogata [Oga04]
proves that Ln−2+p satisfies (Np) when n ≥ 3 and p ≥ 1.

With additional invariants, we can strengthen Corollary 1.2. Let
hL(d) := χ(Ld) =

∑n
i=0(−1)i dimH i(X,Ld) be the Hilbert polynomial

of L and let r(L) be the number of integer roots of hL.

Corollary 1.3. Let L be a globally generated line bundle on a toric
variety and let r(L) be the number of integer roots of its Hilbert poly-
nomial hL. If p ≥ 1 and d ≥ max{deg(hL)− r(L) + p− 1, p} then the
line bundle Ld satisfies (Np).
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If X = Pn and L = OX(1), then we have hL(d) =
(

d+n
n

)
and r(L) = n.

In particular, we recover a result by Green [Gre84b, Theorem 2.2] that
OPn(d) satisfies (Np) for p ≤ d.

Using the dictionary between lattice polytopes and ample line bun-
dles on toric varieties, Corollary 1.3 yields a normality criterion for
lattice polytopes. A lattice polytope P is normal if every lattice point
in mP is a sum of m lattice points in P . Let r(P ) be the largest integer
such that r(P )P does not contain any lattice points in its interior.

Corollary 1.4. If P is a lattice polytope of dimension n, then the
lattice polytope

(
n− r(P )

)
P is normal.

Theorem 1.1 also applies to syzygies of Segre-Veronese embeddings.

Corollary 1.5. If X =
∏`

i=1 Pni then the line bundle OX(d1, . . . , d`)
satisfies (Np) for p ≤ min{di : di 6= 0}.
The Segre embedding OX(1, . . . , 1) satisfies (Np) if and only if p ≤ 3;
see Lascoux [Las78] or Pragacz and Weyman [PW85] for ` = 2, and
Rubei [Rub02, Rub04] for ` > 2. Eisenbud et al. [EGHP04, §3] provides
an overview of results and conjectures about the syzygies of Segre-
Veronese embeddings.

Inspired by Ein and Lazarsfeld [EL93], we also examine the syzygies
of adjoint bundles. Recall that a line bundle on a toric variety is
numerically effective (nef) if and only if it is globally generated, and
the dualizing sheaf KX is a line bundle if and only if X is Gorenstein.

Corollary 1.6. Let X be a projective n-dimensional Gorenstein toric
variety and let B1, . . . , B` be the minimal generators of Nef(X). If

w1,w2, . . . is a sequence in N` such that Bwi ∈
⋂`

j=1(Bj ⊗ B) and
mi := w1 + · · ·+ wi for i ≥ 1, then for p ≥ 1

KX ⊗Bmn+1+p satisfies

{
(Np+1) if X 6= Pn,

(Np) if X = Pn.

Ein and Lazarsfeld [EL93] prove that for a very ample line bundle L and
a globally generated line bundleN on a smooth n-dimensional algebraic
variety X 6= Pn, KX ⊗ Ln+p ⊗ N satisfies (Np). Corollary 1.6 gives a
similar result for ample line bundles on possibly singular Gorenstein
toric varieties. Specifically, if L is an ample line bundle such that L ∈⋂`

j=1(Bj⊗B) and N is a nef line bundle on X 6= Pn then KX⊗Ln+p⊗N
satisfies (Np). The proof of Corollary 1.6 combines Theorem 1.1 with
Fujita’s Freeness conjecture for toric varieties, see Fujino [Fuj03].

Conventions. The nonnegative integers are denoted by N. We work
over a field of characteristic zero.
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2. Multigraded Castelnuovo-Mumford Regularity

In this section we review multigraded regularity as introduced by
Maclagan and Smith [MS04]. Fix a collection B1, . . . , B` of globally
generated line bundles on X. For any element u := (u1, . . . , u`) ∈ Z`,
set Bu := Bu1

1 ⊗· · ·⊗Bu`
` and let B be the semigroup {Bu : u ∈ N`} ⊂

Pic(X). If e1, . . . , e` is the standard basis for Z`, then Bej = Bj.
Let F be a coherent OX-module and let L be a line bundle on

X. We say that F is L-regular (with respect to B1, . . . , B`) provided
H i(X,F ⊗ L ⊗ B−u) = 0 for all i > 0 and all u ∈ N` satisfying
|u| := u1 + · · · + u` = i. As Mumford [Mum66] says, “this apparently
silly definition reveals itself as follows.”

Theorem 2.1. If the coherent sheaf F is L-regular then for all u ∈ N`:

(1) F is (L⊗Bu)-regular;
(2) the natural map

H0(X,F ⊗ L⊗Bu)⊗H0(X,Bv) - H0(X,F ⊗ L⊗Bu+v)

is surjective for all v ∈ N`;
(3) F ⊗ L⊗ Bu is generated by its global sections, provided there

exists w ∈ N` such that Bw is ample.

When X is a toric variety, this follows from results in Maclagan and
Smith [MS04, §6]. Our proof imitates Mumford [Mum70, Theorem 2]
and Kleiman [Kle66, Proposition II.1.1].

Proof. By replacing F with F ⊗L, we may assume that the coherent
sheaf F is OX-regular. We proceed by induction on dim

(
Supp(F )

)
.

The claim is trivial when dim
(
Supp(F )

)
≤ 0. As each Bj is basepoint-

free, we may choose a section sj ∈ H0(X,Bj) such that the induced
map F ⊗B−ej - F is injective (see Mumford [Mum70, page 43]). If
Gj is the cokernel, then we have 0 - F ⊗B−ej - F - Gj

- 0 and
dim

(
Supp(Gj)

)
< dim

(
Supp(F )

)
. From this short exact sequence, we

obtain the long exact sequence

· · · - H i(X,F ⊗B−u−ej) - H i(X,F ⊗B−u)

- H i(X,Gj ⊗B−u) - H i+1(X,F ⊗B−u−ej) - · · · .
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By taking |u| = i, we deduce that Gj is OX-regular. The induction
hypothesis implies that Gj is (Bj)-regular. Setting u = −ej + u′ with
|u′| = i, we see that F is (Bj)-regular and (1) follows.

For (2), consider the commutative diagram:

H0(X,F )⊗H0(X,Bj) - H0(X,Gj)⊗H0(X,Bj)

0 - H0(X,F ) -

-

H0(X,F ⊗Bj)
?

- H0(X,Gj ⊗Bj) .
?

Since F is OX-regular, the map in the top row is surjective. The
induction hypothesis guarantees that the map in the right column is
surjective. Thus, the Snake Lemma implies that the map in the middle
column is also surjective. Therefore, (2) follows from the associativity
of the tensor product and (1).

Lastly, consider the commutative diagram:

H0(X,F ⊗Bu)⊗H0(X,Bv)⊗ OX
- H0(X,F ⊗Bu+v)⊗ OX

H0(X,F ⊗Bu)⊗Bv
? βu ⊗ id

- F ⊗Bu+v

βu+v
?

Applying (2), we see that the map in the top row is surjective. By
assumption, there is w ∈ N` such that Bw is ample. If v := kw,
then Serre’s Vanishing Theorem (Lazarsfeld [Laz04, Theorem 1.2.6])
implies that βu+v is surjective for k sufficiently large. Hence, βu is also
surjective which proves (3). �

We end this section with an elementary observation.

Lemma 2.2. Let 0 - F ′ - F - F ′′ - 0 be a short exact sequence
of coherent OX-modules. If F is L-regular, F ′′ is (L⊗ B−ej)-regular
for all 1 ≤ j ≤ ` and H0(X,F ⊗L⊗B−ej) - H0(X,F ′′⊗L⊗B−ej)
is surjective for all 1 ≤ j ≤ `, then F ′ is also L-regular.

Sketch of Proof. This is similar to the proof of Theorem 2.1.1: tensor
the exact sequence 0 - F ′ - F - F ′′ - 0 with L⊗Bu and analyze
the associated long exact sequence. �

3. Proof of Main Theorem

The proof of Theorem 1.1 combines the multigraded Castelnuovo-
Mumford regularity with a cohomological criterion for (Np). Given a
globally generated line bundle L on X, there is a natural surjective
map evL : H0(X,L) ⊗ OX

- L and we set ML := Ker(evL). Hence,
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ML is a vector bundle on X which sits in the short exact sequence

(†) 0 - ML
- H0(X,L)⊗ OX

- L→ 0 .

The following result shows that ML governs the syzygies of φL(X) in
P
(
H0(X,L)∗

)
.

Lemma 3.1. Let L be a line bundle on X that is generated by its
global sections and assume that the ground field has characteristic zero.
If H1(X,M⊗q

L ⊗Lj) = 0 for q ≤ p+1 and j ≥ 1, then L satisfies (Np).

Sketch of Proof. The arguments in Lazarsfeld [Laz89, §1.3] show that
L satisfies (Np) if and only if H1(X,

∧q ML ⊗ Lj) = 0 for q ≤ p + 1

and j ≥ 1. Since
∧k ML is a direct summand of tensor product Mk

L in
characteristic zero, the claim follows. �

Proof of Theorem 1.1. Set L := Bmp and let ML be the vector bundle
in (†). We first prove, by induction on q, that M⊗q

L is (Bmq)-regular
for all q ≥ 1. Since Bm1 is OX-regular, Theorem 2.1.2 implies that
H0(X,Bm1+u) ⊗ H0(X,Bv) - H0(X,Bm1+u+v) is surjective for all
u,v ∈ N`. In particular, the maps

H0(X,L)⊗H0(X,Bm1−ej) - H0(X,L⊗Bm1−ej) 1 ≤ j ≤ `

are surjective because Bm1 ∈
⋂`

j=1(Bj ⊗ B). Applying Theorem 2.1.1

and Lemma 2.2, we see that ML is (Bm1)-regular. For q > 1, tensor

the sequence (†) with M
⊗(q−1)
L to obtain the exact sequence

0 - M⊗q
L

- H0(X,L)⊗M
⊗(q−1)
L

- M
⊗(q−1)
L ⊗ L - 0 .

Since the induction hypothesis states that M
⊗(q−1)
L is (Bmq−1)-regular,

Theorem 2.1.2 shows that the maps

H0(X,M
⊗(q−1)
L ⊗Bmq−ej)⊗H0(X,L) - H0(X,M

⊗(q−1)
L ⊗L⊗Bmq−ej)

are surjective for 1 ≤ j ≤ ` because Bwq ∈
⋂`

j=1(Bj ⊗ B). Again by

Theorem 2.1.1 and Lemma 2.2, M q
L is (Bmq)-regular.

By Lemma 3.1, it suffices to prove that H1(X,M⊗q
L ⊗ Lj) = 0 for

q ≤ p+1 and j ≥ 1. SinceM⊗q
L is (Bmq)-regular, Theorem 2.1.1 implies

that M⊗q
L is (Bmp)-regular for 1 ≤ q ≤ p; as OX is (Bm1)-regular,

Theorem 2.1.1 also implies that OX is (Bmp)-regular. It follows that
H1(X,M⊗q

L ⊗ Lj) = 0 for q ≤ p and j ≥ 1. Moreover, Theorem 2.1.2
shows that H0(X,L) ⊗ H0(X,M⊗p

L ⊗ Lj) - H0(X,M⊗p
L ⊗ Lj+1) is

surjective. Hence, the short exact sequence

0 - M
⊗(p+1)
L ⊗ Lj - H0(X,L)⊗M⊗p

L ⊗ Lj - M⊗p
L ⊗ Lj+1 - 0

implies that H1(X,M
⊗(p+1)
L ⊗ Lj) = 0 for j ≥ 1. �
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4. Applications to Toric Varieties

In this section, we apply our main theorem to line bundles on an
n-dimensional projective toric variety X.

Consider a globally generated line bundle L on X and its associated
lattice polytope PL. Let r(L) be the number of integer roots of the
Hilbert polynomial hL(d) := χ(Ld) =

∑n
i=1(−1)i dimH i(X,Ld). Since

the higher cohomology of Ld vanishes and the lattice points in the
polytope dPL = PLd form a basis for H0(X,Ld), it follows that hL(d)
equals the Ehrhart polynomial of PL; in other words, hL(d) is the
number of lattice points in dP . If r(PL) is the largest integer such
that r(PL)PL does not contain any interior lattice points, then Ehrhart
reciprocity (Stanley [Sta97, Corollary 4.6.28]) implies that the integer
roots of hL(d) are {−1, . . . ,−r(PL)} and r(PL) = r(L).

Lemma 4.1. If L is a globally generated line bundle on a toric variety
X and r(L) is the number of integer roots of its Hilbert polynomial hL,
then Ldeg(hL)−r(L) is OX-regular with respect to L.

Proof. We must establish that H i(X,Ldeg(hL)−r(L)−i) = 0 for all i >
0. If deg(hL) − r(L) − i ≥ 0, this follows from the vanishing of the
higher cohomology of globally generated line bundles on a complete
toric variety; see Fulton [Ful93, §3.5].

When deg(hL) − r(L) − i < 0, our argument follows Batyrev and
Borisov [BB96, Theorem 2.5]. LetX ′ be the toric variety corresponding
to the normal fan to PL. There is a canonical toric map ψ : X - X ′

and an ample line bundle A on X ′ such that H i(X,L) ∼= H i(X ′, A).
A toric version of the Kodaira Vanishing Theorem establishes that
Hj(X,L−u) = 0 for u > 0 and j 6= deg(hL) = dimPL = dimX ′

(combine Serre duality in Fulton [Ful93, §4.4] with Mustaţă [Mus02,
Theorem 3.4]). In particular, we have H i(X,Ldeg(hL)−r(L)−i) = 0 for
i 6= deg(hL). When i = deg(hL), we also have

0 = hL

(
−r(L)

)
= χ(L−r(L)) = (−1)i dimH i(X,Ldeg(hL)−r(L)−i) . �

Proof of Corollary 1.3. By Lemma 4.1, we can apply Theorem 1.1 with
` = 1, B1 = L, w1 = max{deg(hL)− r(L), 1} and wi = 1 for i > 1. �

Proof of Corollary 1.2. The case p = 0 is established in Ewald and
Wessels [EW91]. When p ≥ 1, the assertion follows from Corollary 1.3.

�

Proof of Corollary 1.4. Given a lattice polytope P , let X be the cor-
responding toric variety and L the associated ample line bundle on X.
Since P is normal if and only if L satisfies (N0), the result follows from
Corollary 1.3 and the fact that r(P ) = r(L). �
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Proof of Corollary 1.5. Let πi : X - Pni be the projection onto the
i-th factor and let Bi := π∗i

(
OPni (1)

)
. If I :=

{
i ∈ {1, . . . , `} : di 6= 0

}
,

then we have OX(d1, . . . , d`) ∼=
⊗

i∈I B
di
i . Let d := min{di − 1 : i ∈ I}

and let B be the semigroup generated by {Bi : i ∈ I}. Maclagan
and Smith [MS04, Proposition 6.10] prove that OX is OX-regular with
respect to B1, . . . , B`. Thus, Theorem 2.1 shows that

⊗
i∈I B

di−d
i is

OX-regular with respect to {Bi : i ∈ I} and lies in
⋂

i∈I(Bi ⊗ B).
Since we have

⊗
i∈I Bi ∈

⋂
j∈I(Bj ⊗ B), Theorem 1.1 applies with

w1 = (d1 − d, . . . , d` − d) and wj = (1, . . . , 1) for j ≥ 2. �

Let B be the semigroup generated by the nef line bundles. To apply
our techniques to adjoint bundles, we need to find u withKX⊗Bu ∈ B.
Inspired by Fujita’s conjectures, Fujino [Fuj03, Corollary 0.2] provides
the necessary criterion.

Theorem 4.2 (Fujino). Let X be a projective toric variety (not iso-
morphic to Pn) such that the canonical divisor KX is Q-Cartier. If D
is a Q-Cartier divisor such that D ·C ≥ n for all torus invariant curves
C, then KX +D is nef.

Proof of Corollary 1.6. If X = Pn, then KX = OX(−n − 1). Either
Corollary 1.3 or Corollary 1.5 show that KX ⊗Bmn+1+p satisfies (Np).
Mustaţă [Mus02, Theorem 3.4] establishes that KX ⊗ Bmn+1 is OX-
regular with respect to B1, . . . , B`. For any torus invariant curve C,
there is a Bi such that Bi · C > 0. Since Bmn = Bn

i ⊗ B′ where B′

is globally generated, Theorem 4.2 implies that KX ⊗ Bmn ∈ B. It
follows that KX ⊗Bmn+1 ∈

⋂`
j=1(Bj ⊗B) and Theorem 1.1 proves the

claim. �
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