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Abstract.—Bayes’ theorem is a central result of Statistics and related fields, such as Artificial 
Intelligence and Machine Learning. In this note, we offer a gentle introduction to a geometric 
interpretation of Bayesian inference that allows one to think of priors, likelihoods, and 
posteriors as vectors in an Hilbert space. The given framework can be conceptualized as 
a geometry of learning from data, and it can be used to construct measures of agreement 
between these vectors. Conceptually, the geometry is tantamount to that of Pearson 
correlation, but where an inner product is considered over the parameter space—rather than 
over the sample space.

1 Introduction

This note builds on ideas from two prominent
thinkers: Thomas ayes (c. 1 1 1 1) and avid
Hilbert (18 1 4 ). 1 While their lives never over-
lapped temporally, this note shows how the work of
Hilbert can be used to reinterpret ayes theorem and

ayesian inference from a geometric viewpoint as
well as other key statistical concepts on what we re-
gard as a geometry of learning from data.

The ayesian paradigm is a well-known statisti-
cal inference approach that can be used for learning
from data about a parameter of statistical interest us-
ing ayes theorem. et , , be a sequence of
independent and identically distributed (iid) random
variables in a measurable space ( , ) that are drawn
from parametric density function( ) ( ),
with and . The sets and are respec-
tively known as sample space and parameter space.

The key goal of ayesian inference is to learn
about the distribution of the parameter given the
data ( , , ). It follows from ayes theorem

that,

( ) ( ) ( )( ) ( ) d
(1)

where ( ) ( ) is the likelihood function,
and ( ) is the prior density function. The density( ) is known as posterior density and it summa-
rizes what we learn about a er observing .

The prior density can understood as a way adding
prior knowledge about to the analysis say, from an
expert opinion, from a census, and so on or simply
as a way to initiate the inferential machine. uoting

:

The choice of a prior distribution is neces-
sary (as you would need to initiate the in-
ferential machine) but there is no notion of
the optimal prior distribution. hoosing
a prior distribution is similar in principle
to initializing any other sequential proce-
dure (e.g., iterative optimization methods

etc.). The choice of such initializa-
tion can be good or bad in the sense of the
rate of convergence of the procedure to its
final value, but as long as the procedure
is guaranteed to converge, the choice of
prior does not have a permanent impact.

1 The key concepts and methods from this note relate with the ideas and principles in , which was awarded with the 18 indley Prize
from the International Society of ayesian nalysis.
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nd indeed, the posterior can be shown to converge
to the true value, under rather general conditions
on the prior distribution a result known in statisti-
cal parlance as the ernstein von Mises theorem 11,
Theorem 1 .1 .

The remainder of this note is organized as follows.
In we note that there s an hidden geometry under-
lying Eq. (4) that can be used to rethink ayesian infer-
ence and to develop measures of agreement between
prior, likelihood, and posterior. In we illustrate
how that geometry can be used for shedding light on
other statistical inference concepts.

efore we get started a disclaimer is in order. To
make the presentation of the key ideas more acces-
sible, we will o en use visualizations based on arte-
sian representations. et, it is important to remember
that these representations are mainly heuristic and
hence should be interpreted with care.

o tr o i n in r nc

1 tr ct o tr

We first clarify the sense in which the term geometry
will be used throughout this note. The following def-
inition of abstract geometry can be found in , p. 1 .

nition 1 tr ct o tr n abstract ge-
ometry consists of a pair , , where the ele-
ments of set are designed as points, and the ele-
ments of the collection are designed as lines, such
that:

1. For every two points , , there is a line
.

. Every line has at least two points.

Our abstract geometry of interest is , ,
where 2( ) is the the space of square inte-
grable functions, and the set of all lines is𝑔𝑔 𝑔𝑔, 2( ), R ( )

Hence, in our setting points can be, for example, prior
densities, posterior densities, or likelihoods, as long

as they are in 2( ). While not all priors and likeli-
hoods are in 2( ), the framework discussed herein
may extend beyond 2( ) with some modifications,
while still allowing similar geometric interpretations
as the ones provided below. See , for details.

o tr

he margi al li elihood is a i er product

Suppose the goal of the inference is over a parameter
which takes values on R . We use the geom-

etry of the Hilbert space ( 2( ), , ), with
inner-product

𝑔𝑔, 𝑔𝑔( ) ( ) d , 𝑔𝑔, 2( ) ( )

dopting the geometric terminology used in linear
spaces, we denote the elements of 2( ) as vectors,
and assess their mag itudes through the use of the
norm induced by the inner product in ( ), i.e.,( , ) 2.

The starting point for constructing our geometry
is the observation that ayes theorem can be written
using the inner-product in ( . .1) as follows

( ) ( ) ( ), , (4)

where , ( ) ( ) d is the so-called
marginal likelihood. The inner product in ( ) natu-
rally leads to considering and that are in 2( ),
which is compatible with a wealth of parametric mod-
els and proper priors.

s can be seen from Fig. 1, by considering , , and
as vectors with di erent magnitudes and directions,
ayes theorem essentially describes the method of re-

shaping the prior vector in order to derive the poste-
rior vector. The likelihood vector amplifies or dimin-
ishes the magnitude of the prior vector, and appropri-
ately adjusts its direction, in a way that will be clearly
defined in the subsequent discussion.

The marginal likelihood , is simply the inner
product between the likelihood and the prior, and
thus can be interpreted as an assessment of the con-
cordance between the prior and the likelihood. To
provide a more tangible understanding, let s define
the a gle measure between the prior and the likeli-

In mathematical terminology, the assertion that constitutes a Hilbert space is frequently referred to as the iesz Fischer theorem. For
a proof see , p. 411 .
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Figure 1.—Cartesian representation of vectors of interest in a 
Bayesian analysis.

hood as ,
( )

Since and are nonnegative, the angle between the
prior and the likelihood can only be acute or right, i.e.,, . The closer is to , the greater
the agreement between the prior and the likelihood.

onversely, the closer is to , the greater the
disagreement between prior and likelihood. In the
limiting case where which implies the
prior and the likelihood have all of their mass on dis-
joint sets we say that the prior is orthogonal to the
likelihood. ayes theorem does not allow for a prior
to be orthogonal to the likelihood as im-
plies that , , thus yielding a division by zero
in (4).

ompati ilit

The object we aim to focus next is given by a stan-
dardized inner product

, ,
( )

The quantity , ( , assesses the extent to
which an expert s viewpoint aligns with the data,
thereby o ering an intuitive measurement of the con-
cordance between the prior and the data.

Extending the principle in ( ), for any two points
in the geometry under consideration we define their
compatibility as a standardized inner product.

nition o ti i it The compatibility
between points in the geometry under consideration
is defined as

𝑔𝑔, 𝑔𝑔,𝑔𝑔 , 𝑔𝑔, 2( ) ( )

Particular instances include ( ) as well as:

, 2 : which assesses the level of agreement
between two experts, with respective priors
and 2.

, : which is a metric of the sensitivity of the
posterior to the prior specification.

1 t rnou i od et
iid

ern( ), , , ,
eta( , ) (8)

Then, eta( , ) with and
, where .

The compatibility between prior and likelihood
for this beta ernoulli model is

, ( , )(2 , 2 ) (2 , 2( ) ) 2 ,
for , 2, with ( , ) ( ) .
To assess how compatible the priors eta( , )
and 2 eta( 2, 2) are, we obtain

, 2
( 2 , 2 )(2 , 2 ) (2 2 , 2 2 ) 2

for , 2, , 2 2.

The geometry underlying compatibility can be reframed within an Hellinger a nity context so to allow for any , . See , .
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Figure 2.—Cartesian representation underlying the strong likelihood principle (left) 
and sufficiency (right). See §§ 3.2 and 3.3.

urt r r cti nd in i t

The roadmap for this section is as follows. .1 notes
that a variational representation of the posterior den-
sity naturally fits our geometry. . and . are re-
lated with collinearity it follows from , whenever
the symbol is used in a ayesian setting it simply
implies that two likelihoods, priors or posteriors are
collinear. Finally, .4 notes the similarities between
the geometry of compabitility and that of Pearson cor-
relation.

1 on r r d n r r nt tion

The celebrated onsker aradhan representation
shows that the posterior density is the solution to
a variational problem with search domain ( )
here and below, ( ) is the space of probability
density functions that can be defined over and( ) ( ) is the log likelihood. Specifically, the

onsker aradhan representation is given by

( ) ( ) E ( ) ( , ) , ( )

where E and are respectively the prior expecta-
tion and ullback eibler divergence, that is,

( ) ( ) ( ) d ,
( , ) ( ) ( ) ( ) d

geometric interpretation of ( .1) follows from ele-
mentary properties of inner products,

( ) ( ) , , ( )
( ) , , ( )
( ) , , (1 )

where is what we refer to as the o s er
aradha li elihood ratio,

( ) ( ) ( ) ( ) (11)

oosely, (1 ) implies that the posterior density is the
density in ( ) which is most lined up with the

onsker aradhan likelihood ratio in (11).

o in rit I i i ood rinci

et and 𝑔𝑔 be the likelihoods based on observing
and 𝑔𝑔, respectively. The strong likelihood

principle states that if

( ) ( ) 𝑔𝑔( ) 𝑔𝑔( ),
then the same inference should be drawn from both
samples. ccording to our geometry, this means that
likelihoods with the same direction yield the same in-
ference. For instance, the ernoulli likelihood of the
model from Example (1) is

( ) ( ) ( ) ,
wheras that of the inomial model for
is

𝑔𝑔( ) ( ) ,

4



Figure 3.—Left: Prior, posterioar, and likelihood for beta–binomial specification from 
Example 1 with (a,b) = (4, 4), n = 40, and n1 = 30 so that, for example, κπ,l = 0.41. 
Right: Simulated data from bivariate normal distribution with ρX,Y = 0.98.

with denoting the binomial coe cient. Trivially,( ) 𝑔𝑔( ),
and hence and 𝑔𝑔 are collinear.

o in rit II u ci nc

oughly speaking, a su cient statistic is one that con-
tains all the information that is required to learn about
. 4 The geometry from . can also be used to re-

think a celebrated characterization of su cient statis-
tics in a geometric fashion.

or n ctori tion Suppose that( , , ) has a joint density function or a fre-
quency function ( ). Then ( ) is su cient for

i there exists a function of that statistic, ( )( ),
that is collinear to ( ), that is,( ) ( )( )
See, for instance, , 4 for a nongeometrical formu-
lation of this classical result. et s illustrate this on a
well-known example.

et , , iid
niform( , ). It can

be easily shown that

( ) 1 , ( ) 1 , ( ) ( )( ),

where ( ) , , and 1 is the indicator
function.

o ti i it r on corr tion

ompatibility in efinition follows the same con-
struction principles as the Pearson correlation coe -
cient, which is based on the inner product

, d , , 2( , ઠ , ), (1 )

instead of the inner product in ( ). ecall that Pear-
son correlation is defined as

, cov( , )
sd( ) sd( ) ,

and it can be understood as a cosine of in a
similar fashion as ( ) but with cov and sd denot-
ing the covariance (inner product) and standard devi-
ation (norm), respectively. nd indeed, just like the
cosine function, , , .

ompatibility is however defined for priors, pos-
teriors, and likelihoods in 2( ) equipped with the
inner product ( ), whereas Pearson correlation works
with random variables in 2( , ઠ , ) equipped
with the inner product (1 ).

Fig. sheds light on the di erent uses of compati-
bility and Pearson correlation. For example, , mea-

4 ecall that a statistic ( ) is su cient for if, ( ) does not depend on , for all in the range of and for all sets .
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sures the agreement between likelihood and prior
density, whereas , assesses the degree of linear as-
sociation between random variables and . The
value , is in line with the moderate over-
lap between prior and likelihood visible in Fig. . The
value of , is in line with the strong posi-
tive association between the random variables and

that can be seen in Fig. .

o in r r

This note o ers a gentle introduction to geometrical
aspects underlying the ayesian paradigm that can be
used for defining metrics of agreement between pri-
ors, likelihoods and posteriors as well as to rethink
other concepts and results related with learning from
data.

eometrical interpretations are commonplace in
Statistics and related fields including for example
that of Pearson correlation 1 , least squares and

SSO ( east bsolute Shrinkage and Selection Op-
erator) 1 , and information geometry 1 also, the
geometry of multivariate analysis is well-known 1 .
Many well-known geometrical insights concentrate
on the geometr of data itself, whereas the focus of
this note has been on the geometr of lear i g from
data. espite the long tradition of geometrical in-
terpretations of statistical concepts, the view of the

ayesian paradigm along the lines of this note is rela-
tively novel and it has been pioneered by and .

eyond geometry, topology and algebra hava also
recently introduced a variety of insights and novel
paradigms to the practice of learning from data
leading to the fields of topological data analysis 1
and algebraic statistics 4, 14 .

Finally, we note that the geometrical view of the
onsker aradhan representation in (1 ) consists of

a variational maximum inner product problem, and
that nonvariational versions of such problems are of
interest in the Machine earning literature 8 .
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