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Background

I 0-shifted quantisation of a k-CDGA (differential
graded-commutative algebra) A is a differential
graded associative kJ~K-algebra Ã deforming A.

I On A = Ã/~, have Lie bracket

[a, b] := ~−1(ãb̃ ∓ b̃ã) mod ~.

=⇒ A a DG Poisson (a.k.a. P1) algebra.

I When do Poisson structures quantise?
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Underived quantisations, n = 0

I Kontsevich–Tamarkin: ∃ quantisations for
Poisson structures on smooth k-algebras
(Q ⊂ k).

I Algebroid quantisations for smooth schemes
(deforming the category of line bundles).
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Digression: positively shifted quantisation
I Ek-algebra A has k homotopy compatible

associative multiplications.

I Pk-algebras are CDGAs with biderivation Lie
bracket of degree 1− k ; called (k − 1)-shifted.

I Kontsevich formality: for k ≥ 2,

Ek-algebras ' Pk-algebras

(after choosing Drinfeld associator).

=⇒ Quantisation for Pk-algebras automatic
(k ≥ 2).
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Sketch of K–T’s quantisation I

I Associative deformations of an algebra A
governed by Hochschild complex.

I CC•(A,A) an E2-algebra (McClure–Smith).

I Formality gives a P2-algebra (Gerstenhaber
algebra) B̃ Lie quasi-isomorphic to CC•(A,A).

I B̃ effectively a deformation of HH∗(A,A) =: B .

I For A smooth commutative, B ∼= Pol(A, 1)
(polyvectors, HKR).
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Sketch of K–T’s quantisation II
I When A smooth underived, Pol(A, 1) doesn’t

deform, giving L∞ quasi-iso

CC•(A,A) ' Pol(A, 1).

I Thus equivalence between quantisations and
Poisson structures in smooth underived setting:

I Objects are kJ~K-linear Poisson structures on AJ~K;
I Morphisms are Poisson isomorphisms ≡ id mod ~;
I 2-automorphisms are elements a ∈ ~2AJ~K acting

as conjugation by exp([a,−]).

I All steps of K–T’s quantisation extend to
derived stacks except deformation argument.
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K–T deformation argument recast I

I Good truncation filtration {τ≤nV }n on any
complex V :

. . .
δ−→ V 0 δ−→ . . .

δ−→ V n−1 δ−→ ZnV → 0→ . . .

I Rees(V , τ) :=
⊕

n(τ≤nV )~n a Gm-equivariant
(i.e. weight decomposition) k[~]-module.

I Rees(B̃ , τ) a Gm-equivariant P2[~]-algebra,
with Gm-action on P2 by degree.

I Rees(B̃ , τ)/~ = grτ B̃ ' H∗B̃ = B .

I Rees(B̃ , τ) = lim←−
Gm

n
Rees(B̃ , τ)/~n.
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K–T deformation argument recast II

I B[~] ' Rees(B̃ , τ) by induction:

Rees(B̃ , τ)/~n+1

��

B[~] //

77

Rees(B̃ , τ)/~n.

I Obstruction in H1RDerP2
(B , ~nB)Gm:

I for n ≥ 2, weights =⇒ vanishing;

I for n = 1, affine symmetry argument.
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Generalisation to CDGAs I
I CC•(A,A) total complex of a double complex

A
b−→ Hom(A,A)

b−→ Hom(A⊗ A,A)
b−→ . . .

I τHH: good truncation in Hochschild direction.

I For A# free, grτ
HH

CC•(A,A)
∼−−→

HKR
Pol(A, 1)

A
0−→ HomA(Ω1

A,A)
0−→ HomA(Ω2

A,A)
0−→ . . . .

I If A is (derived) locally of finite presentation
(≈ finitely generated as free algebra), then
B := Pol(A, 1) generated in weights 0, 1, so:
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Generalisation to CDGAs II
I spectral sequence (p ≥ 1)

ExtqB(LΩp
B , ~

p−1M)Gm =⇒ Hp+q−1RDerP2
(B ,M)Gm

gives RDerP2
(B , ~nB)Gm ' 0 ∀n ≥ 2, since

p < n + p − 1.

I Obstructions in H1RDerP2
(B , ~nB)Gm

Rees(B̃ , τHH)/~n+1

��

B[~] //

77

Rees(B̃ , τHH)/~n

then vanish ∀n ≥ 2, and unique lifts (H≤0 = 0).
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Generalisation to CDGAs III

I No affine symmetries, so still a potential
obstruction for n = 1.
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Eliminating the first-order obstruction I
I Cut the problem in half.

I CC•(A,A) has an involution

f ∗(a1, . . . , an) := ±f (an, . . . , a1),

sending a deformation to its opposite algebra.

I Formality isomorphisms from even associators
give B̃ an involution, with (xy)∗ = x∗y ∗ and
[x , y ]∗ = −[x∗, y ∗].

I Thus B̃ deforms B = Pol(A, 1) as an involutive
P2-algebra.
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Eliminating the first-order obstruction II

I Key property: For f ∈ H∗grτ
HH

i CC•(A,A),
f ∗ = (−1)i f .

I Involutive Rees construction

Rees(V ,F , ∗) =
⊕
n

{
v ∈ FnV : v ∗ = (−1)nv

}
~n,

a Gm-equivariant k[~2]-module.

I Rees(B̃ , τHH, ∗) a Gm-equivart P2[~2]-algebra,

I Rees(B̃ , τHH, ∗)/~2 ' B .
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Eliminating the first-order obstruction III

I Obstructions

Rees(B̃ , τHH, ∗)/~2m+2

��

B[~2] //

66

Rees(B̃ , τHH, ∗)/~2m.

I Already know

RDerP2
(B , ~2mB)Gm ' 0 ∀m ≥ 1.

I Thus Rees(B̃ , τHH, ∗) ' B[~2], canonically.
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Deformation quantisation of CDGAs
I Hence filtered L∞-quasi-isomorphism

(CC•(A,A), τHH
p ) ' (Pol(A, 1),HomA(Ω≤pA ,A))

(∗ on left corresponds to (−1)p on Ωp
A).

I Taking Maurer–Cartan gives:

Theorem (P)
For l.f.p. CDGAs A, each even associator gives

P(A, 0)→ QP sd(A, 0)

from the space of Poisson structures to the space of
anti-involutive (b ?~ a = ±a ?−~ b) algebroid
quantisations.
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Global deformation quantisations
Sheafifying gives:

Theorem (P)
For all l.f.p. derived schemes and DM stacks X,

P(X, 0)→ QP sd(X, 0)

(includes LCI schemes).

; deformation of PerfX as a dg category with
duality.

I If H2(X,OX) = 0, every quantisation is strict
(i.e. by associative algebras, not algebroids);
ker(CC•(O,O)→ O) replaces CC•(O,O).
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The space of quantisations I

I Quantised polyvectors

F̃ iQP̂ol(A, 0) :=
∏
p≥i

τHH
p CC•(A,A)~p−1.

I Maurer–Cartan gives space of algebroid
quantisations

QP(A, 0) := MC(F̃ 2QP̂ol(A, 0)[1]).

I Imposing f (~)∗ = f (−~) gives anti-involutive
quantisations QP sd(A, 0) ⊂ QP(A, 0).
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The space of quantisations II

I τHH quasi-isomorphic to a filtration γ by
shuffles.

I Corresponds to the BD1 operad governing
almost commutative algebras.

I Thus quantisation of A is Ã associative with
Ã/~ a CDGA and Ã/~ ' A.

I Im (QP̂ol(A, 0)→ AJ~K) gives curvature
(algebroid) terms.
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Generalisations

I Analytic and smooth settings: work with EFC
and C∞-rings; use polydifferential operators
instead of Hochschild complex.

I Artin stacks/Lie groupoids: have to resolve
using Lie algebroids, e.g. [Y /G ] as

[Y /g]⇐ [Y × G/g⊕2] W [Y × G 2/g⊕3] . . . ,

and Chevalley–Eilenberg.
I Similar argument works, but homological subtleties.

I Gives curved deformation of PerfX as a dg category
with duality. [curved means δ2 6= 0 (but close)]
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Curved DGAs

Hochschild complex ; curved deformations:

I associative unital graded algebra B∗,

I curvature κ ∈ B2,

I differential δ : B∗ → B∗[1],

I δ2b = [κ, b], δκ = 0, δ(1) = 0.

I ≈ Morita deformations [LvdB].

I Curved dg categories defined similarly.
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The space of quantisations — details
Complete classifications:

QP(A, 0) ' MC(
∏
p≥0

~max(0,2−p)HomA(Ωp
A,A)J~K[1−p])

Poisson algebras over kJ~K, deforming A as a
CDGA, with ~2-curvature/2-automorphisms.

QP sd(A, 0) ' MC(
∏
p≥0

~2 max(0,1−b p2 c)HomA(Ωp
A,A)J~2K[1−p])

Poisson algebras over kJ~2K, deforming A as a
CDGA, with ~2-curvature.
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