Deformation quantisation of derived Poisson structures

J.P.Pridham

Background

- 0-shifted quantisation of a k-CDGA (differential graded-commutative algebra) A is a differential graded associative $k \llbracket \hbar \rrbracket$-algebra \tilde{A} deforming A.
- On $A=\tilde{A} / \hbar$, have Lie bracket

$$
[a, b]:=\hbar^{-1}(\tilde{a} \tilde{b} \mp \tilde{b} \tilde{a}) \quad \bmod \hbar .
$$

$\Longrightarrow A$ a DG Poisson (a.k.a. P_{1}) algebra.

- When do Poisson structures quantise?

Underived quantisations, $n=0$

- Kontsevich-Tamarkin: \exists quantisations for Poisson structures on smooth k-algebras $(\mathbb{Q} \subset k)$.
- Algebroid quantisations for smooth schemes (deforming the category of line bundles).

Digression: positively shifted quantisation

- E_{k}-algebra A has k homotopy compatible associative multiplications.
- P_{k}-algebras are CDGAs with biderivation Lie bracket of degree $1-k$; called ($k-1$)-shifted.
- Kontsevich formality: for $k \geq 2$,

$$
E_{k} \text {-algebras } \simeq P_{k} \text {-algebras }
$$

(after choosing Drinfeld associator).
\Longrightarrow Quantisation for P_{k}-algebras automatic $(k \geq 2)$.

Sketch of K-T's quantisation I

- Associative deformations of an algebra A governed by Hochschild complex.
- $C^{\bullet}(A, A)$ an E_{2}-algebra (McClure-Smith).
- Formality gives a P_{2}-algebra (Gerstenhaber algebra) \tilde{B} Lie quasi-isomorphic to $\mathrm{CC}^{\bullet}(A, A)$.
- \tilde{B} effectively a deformation of $\mathrm{HH}^{*}(A, A)=: B$.
- For A smooth commutative, $B \cong \operatorname{Pol}(A, 1)$ (polyvectors, HKR).

Sketch of K-T's quantisation II

- When A smooth underived, $\operatorname{Pol}(A, 1)$ doesn't deform, giving L_{∞} quasi-iso

$$
\mathrm{CC}^{\bullet}(A, A) \simeq \operatorname{Pol}(A, 1)
$$

- Thus equivalence between quantisations and Poisson structures in smooth underived setting:
- Objects are $k \llbracket \hbar \rrbracket$-linear Poisson structures on $A \llbracket \hbar \rrbracket$;
- Morphisms are Poisson isomorphisms \equiv id $\bmod \hbar$;
- 2-automorphisms are elements $a \in \hbar^{2} A \llbracket \hbar \rrbracket$ acting as conjugation by $\exp ([a,-])$.
- All steps of $\mathrm{K}-\mathrm{T}$'s quantisation extend to derived stacks except deformation argument.

K-T deformation argument recast I

- Good truncation filtration $\left\{\tau^{\leq n} V\right\}_{n}$ on any complex V :
$\ldots \xrightarrow{\delta} V^{0} \xrightarrow{\delta} \ldots \xrightarrow{\delta} V^{n-1} \xrightarrow{\delta} \mathrm{Z}^{n} V \rightarrow 0 \rightarrow \ldots$
- $\operatorname{Rees}(V, \tau):=\bigoplus_{n}\left(\tau^{\leq n} V\right) \hbar^{n}$ a \mathbb{G}_{m}-equivariant (i.e. weight decomposition) $k[\hbar]$-module.
$-\operatorname{Rees}(\tilde{B}, \tau)$ a \mathbb{G}_{m}-equivariant $P_{2}[\hbar]$-algebra, with \mathbb{G}_{m}-action on P_{2} by degree.
- Rees $(\tilde{B}, \tau) / \hbar=\operatorname{gr}^{\tau} \tilde{B} \simeq \mathrm{H}^{*} \tilde{B}=B$.
- $\operatorname{Rees}(\tilde{B}, \tau)=\lim _{{ }_{n}}^{\mathbb{G}_{m}} \operatorname{Rees}(\tilde{B}, \tau) / \hbar^{n}$.

K-T deformation argument recast II

- $B[\hbar] \simeq \operatorname{Rees}(\tilde{B}, \tau)$ by induction:

- Obstruction in $\mathrm{H}^{1} \mathrm{RDer}_{P_{2}}\left(B, \hbar^{n} B\right)^{\mathbb{G}_{m}}$:
- for $n \geq 2$, weights \Longrightarrow vanishing;
- for $n=1$, affine symmetry argument.

Generalisation to CDGAs I

- $\mathrm{CC}^{\bullet}(A, A)$ total complex of a double complex

$$
A \xrightarrow{b} \underline{\operatorname{Hom}}(A, A) \xrightarrow{b} \underline{\operatorname{Hom}}(A \otimes A, A) \xrightarrow{b} \ldots
$$

- τ^{HH} : good truncation in Hochschild direction.
- For $A^{\#}$ free, ${g r^{r+1}}^{\text {rH }} C^{\bullet}(A, A) \xrightarrow[\text { HKR }]{\sim} \operatorname{Pol}(A, 1)$

$$
A \xrightarrow{0} \underline{\operatorname{Hom}}_{A}\left(\Omega_{A}^{1}, A\right) \xrightarrow{0} \underline{\operatorname{Hom}}_{A}\left(\Omega_{A}^{2}, A\right) \xrightarrow{0} \ldots
$$

- If A is (derived) locally of finite presentation (\approx finitely generated as free algebra), then $B:=\operatorname{Pol}(A, 1)$ generated in weights 0,1 , so:

Generalisation to CDGAs II

- spectral sequence ($p \geq 1$)
$\operatorname{Ext}_{B}^{q}\left(\mathrm{~L}_{B}^{p}, \hbar^{p-1} M\right)^{\mathbb{G}_{m}} \Longrightarrow \mathrm{H}^{p+q-1} \operatorname{RDer}_{p_{2}}(B, M)^{\mathbb{G}_{m}}$ gives $\operatorname{RDer}_{P_{2}}\left(B, \hbar^{n} B\right)^{\mathbb{G}_{m}} \simeq 0 \quad \forall n \geq 2$, since $p<n+p-1$.
- Obstructions in $\mathrm{H}^{1} \operatorname{RDer}_{P_{2}}\left(B, \hbar^{n} B\right)^{\mathbb{G}_{m}}$

$$
\begin{aligned}
& \operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}\right) / \hbar^{n+1} \\
& B[\hbar] \xrightarrow{\longrightarrow} \operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}\right) / \hbar^{n}
\end{aligned}
$$

then vanish $\forall n \geq 2$, and unique lifts $\left(\mathrm{H}^{\leq 0}=0\right)$.

Generalisation to CDGAs III

No affine symmetries, so still a potential obstruction for $n=1$.

Eliminating the first-order obstruction I

- Cut the problem in half.
- $\mathrm{CC}^{\bullet}(A, A)$ has an involution

$$
f^{*}\left(a_{1}, \ldots, a_{n}\right):= \pm f\left(a_{n}, \ldots, a_{1}\right)
$$

sending a deformation to its opposite algebra.

- Formality isomorphisms from even associators give \tilde{B} an involution, with $(x y)^{*}=x^{*} y^{*}$ and $[x, y]^{*}=-\left[x^{*}, y^{*}\right]$.
- Thus \tilde{B} deforms $B=\operatorname{Pol}(A, 1)$ as an involutive P_{2}-algebra.

Eliminating the first-order obstruction II

- Key property: For $f \in \mathrm{H}^{*} \operatorname{gr}_{i}^{\mathrm{rH}^{+H}} \mathrm{C} C^{\bullet}(A, A)$,

$$
f^{*}=(-1)^{i} f
$$

- Involutive Rees construction
$\operatorname{Rees}(V, F, *)=\bigoplus_{n}\left\{v \in F_{n} V: v^{*}=(-1)^{n} v\right\} \hbar^{n}$,
a \mathbb{G}_{m}-equivariant $k\left[\hbar^{2}\right]$-module.
- $\operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}, *\right)$ a \mathbb{G}_{m}-equivart $P_{2}\left[\hbar^{2}\right]$-algebra,
- $\operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}, *\right) / \hbar^{2} \simeq B$.

Eliminating the first-order obstruction III

- Obstructions

$$
\begin{aligned}
& \operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}, *\right) / \hbar^{2 m+2} \\
& B\left[\hbar^{2}\right] \xrightarrow{\longrightarrow} \operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}, *\right) / \hbar^{2 m} .
\end{aligned}
$$

- Already know

$$
\underline{\operatorname{Der}}_{P_{2}}\left(B, \hbar^{2 m} B\right)^{\mathbb{G}_{m}} \simeq 0 \quad \forall m \geq 1
$$

- Thus $\operatorname{Rees}\left(\tilde{B}, \tau^{\mathrm{HH}}, *\right) \simeq B\left[\hbar^{2}\right]$, canonically.

Deformation quantisation of CDGAs

- Hence filtered L_{∞}-quasi-isomorphism
$\left(\mathrm{CC}^{\bullet}(A, A), \tau_{p}^{\mathrm{HH}}\right) \simeq\left(\operatorname{Pol}(A, 1), \underline{\operatorname{Hom}}_{A}\left(\Omega_{A}^{\leq p}, A\right)\right)$
(* on left corresponds to $(-1)^{p}$ on Ω_{A}^{p}).
- Taking Maurer-Cartan gives:

Theorem (P)
For I.f.p. CDGAs A, each even associator gives

$$
\mathcal{P}(A, 0) \rightarrow Q \mathcal{P}^{s d}(A, 0)
$$

from the space of Poisson structures to the space of anti-involutive ($b \star_{\hbar} a= \pm a \star_{-\hbar} b$) algebroid quantisations.

Global deformation quantisations

Sheafifying gives:

Theorem (P)

For all I.f.p. derived schemes and DM stacks \mathfrak{X},

$$
\mathcal{P}(\mathfrak{X}, 0) \rightarrow Q \mathcal{P}^{s d}(\mathfrak{X}, 0)
$$

(includes LCl schemes).
\leadsto deformation of $\operatorname{Perf}_{\mathfrak{X}}$ as a dg category with duality.

- If $\mathrm{H}^{2}\left(\mathfrak{X}, \mathscr{O}_{\mathfrak{X}}\right)=0$, every quantisation is strict (i.e. by associative algebras, not algebroids); $\operatorname{ker}\left(\mathrm{CC}^{\bullet}(\mathscr{O}, \mathscr{O}) \rightarrow \mathscr{O}\right)$ replaces $\mathrm{CC}^{\bullet}(\mathscr{O}, \mathscr{O})$.

The space of quantisations I

- Quantised polyvectors

$$
\tilde{F}^{i} Q \widehat{\operatorname{Pol}}(A, 0):=\prod_{p \geq i} \tau_{p}^{\mathrm{HH}} C C^{\bullet}(A, A) \hbar^{p-1}
$$

- Maurer-Cartan gives space of algebroid quantisations

$$
Q \mathcal{P}(A, 0):=\underline{\mathrm{MC}}\left(\tilde{F}^{2} Q \widehat{\operatorname{Pol}}(A, 0)[1]\right) .
$$

- Imposing $f(\hbar)^{*}=f(-\hbar)$ gives anti-involutive quantisations $Q \mathcal{P}^{s d}(A, 0) \subset Q \mathcal{P}(A, 0)$.

The space of quantisations II

- τ^{HH} quasi-isomorphic to a filtration γ by shuffles.
- Corresponds to the $B D_{1}$ operad governing almost commutative algebras.
- Thus quantisation of A is \tilde{A} associative with \tilde{A} / \hbar a CDGA and $\tilde{A} / \hbar \simeq A$.
- Im $(\widehat{Q \operatorname{Pol}}(A, 0) \rightarrow A \llbracket \hbar \rrbracket)$ gives curvature (algebroid) terms.

Generalisations

- Analytic and smooth settings: work with EFC and \mathcal{C}^{∞}-rings; use polydifferential operators instead of Hochschild complex.
- Artin stacks/Lie groupoids: have to resolve using Lie algebroids, e.g. $[Y / G]$ as

$$
[Y / \mathfrak{g}] \Leftarrow\left[Y \times G / \mathfrak{g}^{\oplus 2}\right] \Leftarrow\left[Y \times G^{2} / \mathfrak{g}^{\oplus 3}\right] \ldots
$$

and Chevalley-Eilenberg.

- Similar argument works, but homological subtleties.
- Gives curved deformation of Perf $_{\mathfrak{X}}$ as a dg category with duality. [curved means $\delta^{2} \neq 0$ (but close)]

Curved DGAs

Hochschild complex \leadsto curved deformations:

- associative unital graded algebra B^{*},
- curvature $\kappa \in B^{2}$,
- differential $\delta: B^{*} \rightarrow B^{*}[1]$,
- $\delta^{2} b=[\kappa, b], \delta \kappa=0, \delta(1)=0$.
- \approx Morita deformations [LvdB].
- Curved dg categories defined similarly.

The space of quantisations - details

Complete classifications:

$$
Q \mathcal{P}(A, 0) \simeq \underline{\mathrm{MC}}\left(\prod_{p \geq 0} \hbar^{\max (0,2-p)}{\left.\underline{\operatorname{Hom}_{A}}\left(\Omega_{A}^{p}, A\right) \llbracket \hbar \rrbracket[1-p]\right)}\right.
$$

Poisson algebras over $k \llbracket \hbar \rrbracket$, deforming A as a CDGA, with \hbar^{2}-curvature/2-automorphisms.
$Q \mathcal{P}^{\text {sd }}(A, 0) \simeq \underline{\mathrm{MC}}\left(\prod_{p \geq 0} \hbar^{2 \max \left(0,1-\left\lfloor\frac{p}{2}\right\rfloor\right)} \underline{\operatorname{Hom}}_{A}\left(\Omega_{A}^{p}, A\right) \llbracket \hbar^{2} \rrbracket[1-p]\right)$
Poisson algebras over $k \llbracket \hbar^{2} \rrbracket$, deforming A as a CDGA, with \hbar^{2}-curvature.

References

國 Maxim Kontsevich．
Deformation quantization of Poisson manifolds．Lett．Math．Phys．， 66（3）：157－216， 2003.

國 Maxim Kontsevich．
Operads and motives in deformation quantization．Lett．Math． Phys．，48（1）：35－72，1999．Moshé Flato（1937－1998）．

Dmitry E．Tamarkin．
Operadic proof of M．Kontsevich＇s formality theorem．Thesis （Ph．D．）－The Pennsylvania State University．

雷
Maxim Kontsevich．
Deformation quantization of algebraic varieties．Lett．Math．Phys．， 56（3）：271－294，2001．EuroConférence Moshé Flato 2000，Part III （Dijon）．
J. P. Pridham.

Quantisation of derived Poisson structures.
arXiv: 1708.00496 v 4 [math.AG], 2019.J. P. Pridham.

Deformation quantisation for unshifted symplectic structures on derived Artin stacks. arXiv: 1604.04458 v2 [math.AG], 2016.

E
Wendy Lowen and Michel Van den Bergh.
The curvature problem for formal and infinitesimal deformations. arXiv:1505.03698, 2015.

