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Derived Geometry

I Setting for this talk: differential geometry
(C∞ functions). [CR12, Nui18]

I ∃ version for analytic geometry (over
C,R,Qp,Q((t)), . . .),

I and for algebraic geometry (char. 0).

We enhance manifolds in two directions:

I Derived enhancements (e.g. derived critical
loci).

I Stacky enhancements (e.g. non-singular Lie
algebroids and Lie groupoids, NQ-manifolds).
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Derived enhancements
A derived manifold X = (X 0,OX ,•) is given by
I a manifold X 0 (then let OX ,0 := OX 0),

I a chain complex OX ,0
δ←− OX ,1

δ←− . . . of sheaves
on X 0 (i.e. δ ◦ δ = 0)

I a graded-commutative (ba = (−1)deg a deg bab)
multiplication OX ,i ⊗ OX ,j → OX ,i+j , with δ a
derivation;

I need OX ,#
∼= OX ,0 ⊗R Symm(V ) locally on X 0,

for finite-dimensional graded v.s. V .
I Set C∞(X ,R) := Γ(X 0,OX ).

f : X → Y an equivalence if quasi-isomorphism, i.e.
H∗C∞(Y ,R) ∼= H∗C∞(X ,R).
(OK because manifolds are affine.)
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Example: derived vanishing locus
I Y a manifold, V a vector bundle, s : Y → V a

smooth section.
I Functions C∞(X ) for X := Rs−1{0} given by

C∞(Y ,R)
s←− C∞(Y ,V ∗)

ys←− C∞(Y ,Λ2V ∗) . . . .
I H0C∞(X ,R) = C∞(s−1{0},R), but X has

more structure.
I Sub-example DCrit(f ) = R(df )−1{0} for

f : Y → R smooth.
I If Y has local co-ords yi , then X = DCrit(f )

has local co-ords yi ∈ OX ,0, ηi ∈ OX ,1 with

δa =
∑
i

∂f

∂yi

∂a

∂ηi
.
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(Higher) Lie algebroids, cf. LR∞-algebras, foliations. . .

An NQ manifold X = (X0,O•X ) is given by
I a manifold X0 (set O0

X := OX0
),

I a cochain complex O0
X

Q−→ O1
X

Q−→ . . . of sheaves
on X0,

I graded-commutative multiplication
O i

X ⊗ O j
X → O i+j

X , with Q a C∞-derivation;

I O#
X
∼= O0

X ⊗R Symm(V ) locally on X0, for
finite-dimensional graded v.s. V .

I Set C∞(X ) := Γ(X0,OX ).
In contrast with derived manifolds, cohomology
isomorphisms are not equivalences for these, e.g.

(∗,CE•(sl2))
�−→ (∗,R⊕ R[−3]).
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Example: quotient Lie algebroid
I Y a manifold, G a Lie group acting on Y , with

Lie algebra g. (Think of g as infinitesimal
neighbourhood of 1 ∈ G .)

I Functions OX for X := [Y /g] given by

OY
Q−→ OY ⊗ g∗

Q−→ OY ⊗ Λ2g∗
Q−→ . . .

on X0 := Y , with Chevalley–Eilenberg
differential Q given by co-action.

I These give nice resolution of Lie groupoid
(differentiable stack) [Y /G ] as

[Y /g]⇐ [Y × G/g⊕2] W [Y × G 2/g⊕3] . . .
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Combining derived and stacky structures

I Derived NQ manifolds X = (X 0
0 ,O

•
X ,•) (double

complex).

I Chains encode derived structure, cochains
encode stacky structure.

I Examples of form [Y /g] for g-equivariant
derived manifold Y .

I Chain quasi-isos give equivalences, cochain
quasi-isos don’t, so

I do not try to combine structures in a single
Z-grading — too much information lost.
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Example (after Calaque, Safronov)
For µ : Y → g∗ Hamiltonian, functions on the
infinitesimal derived Hamiltonian reduction
[Rµ−1(0)/g] look like

...

��

...

��

...

��

OY ⊗ Λ2g
Q
//

yµ
��

OY ⊗ Λ2g⊗ g∗
Q
//

yµ
��

OY ⊗ Λ2g⊗ Λ2g∗
Q
//

yµ
��

. . .

OY ⊗ g
Q
//

µ
��

OY ⊗ g⊗ g∗
Q
//

µ
��

OY ⊗ g⊗ Λ2g∗
Q
//

µ
��

. . .

OY Q
//OY ⊗ g∗

Q
//OY ⊗ Λ2g∗

Q
// . . .
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n-shifted Poisson structures I [CF07, KV08]. . .

I On a derived manifold X , an n-shifted Poisson
structure consists of smooth p-derivations
{πp}p≥2 with

πp : OX ,k1
×OX ,k2

×. . .×OX ,kp → OX ,(
∑

ki )+pn−n+p−2

such that (OX [−n], δ, π) becomes an
L∞-algebra.

I When π3, π4, . . . = 0, just get an n-shifted Lie
bracket π2 w.r.t. which δ a derivation.

I Quasi-isos can introduce higher πp terms.
I Equivalences of Poisson structures come from

L∞-quasi-isomorphisms {fi}i≥1 with f1 a C∞
map & fn(ab,−) =

∑
i+j=n+1±fi(a,−)fj(b,−).
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(−1)-shifted structure on DCrit

I For f : Y → R, consider X := DCrit(f ).

I Functions OX given by

OY
ydf←−− TY

ydf←−− Λ2TY
ydf←−− . . .

on X 0 := Y , for tangent sheaf TY .

I Canonical Poisson structure has
π2(a, v) = v(a) for a ∈ OY , v ∈ TY ,
πp = 0 for p > 2.

I In co-ordinates, π2(b, c) =
∑

i(
∂b
∂yi

∂c
∂ηi

+ ∂b
∂ηi

∂c
∂yi

).
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n-shifted Poisson structures II [Pri17]

I On an NQ manifold X , an n-shifted Poisson
structure consists of smooth p-derivations
{πp}p≥2 with

πp : Ok1

X × Ok2

X × . . .× O
kp
X → O

∑
ki−pn−p+n+2

X

such that (O
[n]
X ,Q, π) becomes an L∞-algebra.

I [CPT+17] approach different, but almost
certainly equivalent.
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2-shifted Poisson structures on [Y /g]
I Functions OX given by

OY
Q−→ OY ⊗ g∗

Q−→ OY ⊗ Λ2g∗
Q−→ . . .

I Look for 2-shifted Poisson structures.
I Multiderivations determined on generators, so

only non-zero term is π2 : g∗ ⊗ g∗ → OY .
I Jacobi identities reduce to

{π2 ∈ (S2g⊗OY )g : [π2,OY ] = 0 ⊂ g⊗OY }
I When Y = ∗, this is just the set of Casimirs

π2 ∈ (S2g)g.

I No equivalences to worry about.
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2-shifted Poisson structures on BG

I Structures pull back along tangent quasi-isos.

I For BG , need to find compatible system on

[∗/g]⇐ [G/g⊕2] W [G 2/g⊕3] . . .

(simplicial diagram of Lie algebroids).

I Just need 2-Poisson structure on [∗/g] whose
pullbacks to [G/g⊕2] agree, as no equivalences.

I Set of 2-shifted Poisson structures is then

(S2g)G ⊂ (S2g)g.
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n-shifted Poisson structures III [Pri17]

I Derived and stacky structures O•X ,•.

I An n-shifted Poisson structure consists of
smooth p-derivations

{πp ∈ (T̂ot (T ⊗pX ))pn+p−n−2}p≥2,

where (T̂otV )m =
⊕

k<0 V
k
m+k ⊕

∏
k≥0 V

k
m+k ,

making
(T̂ot OX [−n],Q ± δ, π)

an L∞-algebra.

I Be careful with double complexes!
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On derived Hamiltonian reduction [Rµ−1(0)/g],
Poisson structure on OY combines with pairing of
g and g∗ to give canonical 0-shifted Poisson structure:

...

��

...

��

...

��

OY ⊗ Λ2g
Q
//

yµ
��

OY ⊗ Λ2g⊗ g∗
Q
//

yµ
��

OY ⊗ Λ2g⊗ Λ2g∗
Q
//

yµ
��

. . .

OY ⊗ g
Q
//

µ
��

OY ⊗ g⊗ g∗
Q
//

µ
��

OY ⊗ g⊗ Λ2g∗
Q
//

µ
��

. . .

OY Q
//OY ⊗ g∗

Q
//OY ⊗ Λ2g∗

Q
// . . . ,

Hamiltonian ensures Q ± δ a Lie derivation here.
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de Rham complexes

I Take derived manifold X = (X 0,OX ,•)

I 1-forms Ω1
X ,• (a chain complex).

I Exterior powers give p-forms Ωp
X ,•.

I de Rham differential d : Ωp
X ,• → Ωp+1

X ,• .

I Take product total complex for de Rham
complex

DR(X )i :=
∏
p

(Ωp
X )p−i ,

differential d ± δ (Koszul signs).
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I Hodge filtration F pDR(X ) =
∏

Ω≥pX .
I Closed form ω ∈ F pDR(X )i consists of

(ωp, ωp+1, . . .),

ωn ∈ (Ωn
X )n−i ,

dωn = δωn+1.

I Similar formulae for NQ manifold
X = (X0,O•X ), replacing δ with Q and
changing signs.

I For derived NQ manifold X = (X0,O•X ,•), note

Ωp
X is a double complex, so have to take

DR(X )i :=
∏

p,j
(Ωp

X )jp+j−i .
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n-shifted pre-symplectic structures

I ω ∈ Zn+2F 2DR(X ) [KV08, PTVV13].

I Explicitly, ω =
∑

p≥2 ωp, with

δω2 = 0, dωp = δωp+1.

I For NQ manifolds, replace δ with Q.

I Equivalences given by chain homotopies;
equivalence classes Hn+2F 2.

I Symplectic if non-degenerate:

ω]2 : H∗TX
'−→ H∗−nΩ1

X .
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Examples

I Symplectic structure on smooth manifold is
0-shifted (no higher terms).

I Derived critical locus is (−1)-shifted
symplectic.

I Lie groupoid BGLn is 2-shifted symplectic.

I Classifying stack map(X ,BGLn) of vector
bundles on X is (2− d)-shifted symplectic for
d = dimX whenever Ωd

X
∼= OX [PTVV13].
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Symplectic versus Poisson

I Classical case: 2-form ω is symplectic iff
inverse π is Poisson.

I Standard proof uses Darboux theorem
(cotangent bundle) — only partially generalises
to shifted setting.

I Instead, we look to generalise

π[ ◦ ω] ◦ π[ = π[ : Ω1 → T .

20 / 29



Details of the comparison
I Poisson structure π gives contraction µ(−, π)

from de Rham to Poisson cohomology (cf.
[KSM90] classically).

I π also gives element

σ(π) :=
∑
p≥2

(p − 1)πp

in Poisson cohomology.
I Corresponding symplectic form ω is solution of

µ(ω, π) ' σ(π).

I For honest isomorphism (not equivalence),
[KV08] solve this as Legendre transformation.
Otherwise [Pri17].
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Shifted Lagrangians [PTVV13]
I Take (X , ω) n-shifted symplectic.

I Lagrangian structure on f : L→ X is
homotopy λ : f ∗ω ' 0, i.e.

λ ∈ F 2DR(L)n+1 : (d ± δ ± Q)λ = f ∗ω,

such that (ω2, λ2)] gives l.e.s.

. . .H∗TL → H∗−nf
∗Ω1

X → H∗−nΩ1
L → H∗−1TL . . .

I Lagrangian corresponds to non-degenerate
co-isotropic [MS18]. This means L has
(n − 1)-Poisson structure on which X acts.
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Some examples . . .
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Lagrangian “intersections”
I If (Li , λi) Lagrangian over (X , ω), then derived

fibre product

(L1 ×h
X L2, λ1 − λ2)

is (n − 1)-shifted symplectic.
I Intersection in 0-shifted: DCrit(f )

��

// Y

(id,0)
��

Y
(id,df )

// T ∗Y .
I Intersection in 1-shifted:

[Rµ−1{0}/G ]

��

// [{0}/G ]

��

[Y /G ]
µ // [g∗/G ].
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More examples . . .
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1-shifted Poisson structures on [Y /g]
I Multiderivations determined on generators, so

only possible non-zero terms are

π2 : g∗ × g∗ → OY ⊗ g∗, π2 : g∗ × OY → OY

π3 : g∗ × g∗ × g∗ → OY .

I Safronov [Saf17]: this is just quasi-Lie
bialgebroid, with 2-differential
π2 ∈ (Λ2g⊗ OY )⊕ (g⊗ TY ) and curvature
π3 ∈ Λ3g⊗ OY .

I Isomorphisms given by twists λ ∈ Λ2g⊗ OY .
I Roytenberg [Roy02]: quasi-Lie bialgebroid L

gives Courant algebroid L ⊕ L∗.
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1-shifted Poisson structures on [Y /G ]
I Reduces to finding compatible system on

simplicial diagram

[Y /g]⇐ [Y × G/g⊕2] W [Y × G 2/g⊕3] . . .

of Lie algebroids.
I Need Poisson structure on [Y /g] whose

pullbacks to [Y × G/g⊕2] are isomorphic, with
isomorphism satisfying cocycle condition on
[Y × G 2/g⊕3].

I [Saf17]: for source-connected Lie groupoid,
1-shifted Poisson structures are precisely
quasi-Poisson structures.

I also see [IPLGX12], [BCLX18].
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