
BRIEF NOTES ON THE CALCULUS OF VARIATIONS

JOSÉ FIGUEROA-O’FARRILL

Abstract. These are some brief notes on the calculus of variations aimed at undergraduate
students in Mathematics and Physics. The only prerequisites are several variable calculus and
the rudiments of linear algebra and differential equations. These are usually taken by second-
year students in the University of Edinburgh, for whom these notes were written in the first
place.

Contents

1. Introduction 1
2. Finding extrema of functions of several variables 2
3. A motivating example: geodesics 2
4. The fundamental lemma of the calculus of variations 4
5. The Euler–Lagrange equation 6
6. Hamilton’s principle of least action 7
7. Some further problems 7
7.1. Minimal surface of revolution 8
7.2. The brachistochrone 8
7.3. Geodesics on the sphere 9
8. Second variation 10
9. Noether’s theorem and conservation laws 11
10. Isoperimetric problems 13
11. Lagrange multipliers 16
12. Some variational PDEs 17
13. Noether’s theorem revisited 20
14. Classical fields 22
Appendix A. Extra problems 26
A.1. Probability and maximum entropy 26
A.2. Maximum entropy in statistical mechanics 27
A.3. Geodesics, harmonic maps and Killing vectors 27
A.4. Geodesics on surfaces of revolution 29

1. Introduction

The calculus of variations gives us precise analytical techniques to answer questions of the
following type:

1
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• Find the shortest path (i.e., geodesic) between two given points on a surface.
• Find the curve between two given points in the plane that yields a surface of revolution

of minimum area when revolved around a given axis.
• Find the curve along which a bead will slide (under the effect of gravity) in the shortest

time.

It also underpins much of modern mathematical physics, via Hamilton’s principle of least
action. It can be used both to generate interesting differential equations, and also to prove
the existence of solutions, even when these cannot be found analytically, as in the recently
discovered solution to the three-body problem 1

The calculus of variations is concerned with the problem of extremising “functionals.” This
problem is a generalisation of the problem of finding extrema of functions of several variables.
In a sense to be made precise below, it is the problem of finding extrema of functions of an
infinite number of variables. In fact, these variables will themselves be functions and we will
be finding extrema of “functions of functions” or functionals.

This generalisation is actually quite straight-forward, provided we understand the finite-
dimensional case. Let us start by reviewing this.

2. Finding extrema of functions of several variables

We start by introducing some notation. Let x ∈ Rn be an arbitrary point. We shall denote
by R

n
x the space of vectors based at the point x. The space Rnx is called the tangent space to

R
n at the point x.
Let U ⊂ R

n be an open subset and let f : U → R be a differentiable function. Recall that
a point x ∈ U is a critical point of the function f if Df(x) = 0, where Df(x) ∈ (Rnx)∗ is the
derivative matrix of f at x.

Z Here (Rn
x)∗ is the dual space to R

n
x ; that is, the space of linear functions Rn

x → R. It is again a vector space
and is called the cotangent space to Rn at x.

This condition is equivalent to Df(x)ε = 0 for all tangent vectors ε at x; that is, for all
ε ∈ Rnx. In turn this condition is equivalent to

d

ds
f(x+ sε)

∣∣∣∣
s=0

= 0 ∀ε ∈ Rnx . (1)

There are three main ingredients in this equation: the point x ∈ U ⊂ R
n, a function f

defined on U and the tangent space Rnx at x. We will now generalise this to functionals.

3. A motivating example: geodesics

As a motivating example, let us consider the problem of finding the shortest path between
two points in the plane: P and Q, say. It is well-known that the answer is the straight line
joining these two points, but let us derive this.

1See, for example, the following article in the Notices of the AMS:

http://www.ams.org/notices/200105/fea-montgomery.pdf
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By a path between P and Q we mean a twice continuously differentiable curve (a C2 curve
for short)

x : [0, 1]→ R
2 t 7→ (x1(t), x2(t))

with the condition that x(0) = P and x(1) = Q. The arclength of such a path is obtained by
integrating the norm of the velocity vector

S[x] =

∫ 1

0

‖ẋ(t)‖dt ,

where

‖ẋ(t)‖ =
√

(ẋ1(t))2 + (ẋ2(t))2 .

Z Notice that ẋ(t) ∈ R
2
x(t). In fact, the tangent space at a point is the space of velocities of curves passing

through that point.

Finding the shortest path between P and Q means minimising the arclength over the space
of all paths between P and Q. To use equation (1) we need to identify its ingredients in the
present problem. The rôle of U ⊂ R

n is played here by the (infinite-dimensional) space of paths
in R

2 from P to Q, and the function to be minimised is the arclength S. The final ingredient
needed in order to mimic (1) is the analogue of the tangent space Rnx. These are the vectors
based at x, hence they can be understood as differences of points y − x for y, x ∈ Rn. In our
case, they are differences of C2 curves x(t) and y(t) from P to Q. Let ε(t) = y(t) − x(t) be
one such difference of curves. Then ε : [0, 1] → R

2 is itself a C2 function with the condition
that ε(0) = ε(1) = 0 ∈ R2. Such a ε is called an (endpoint-fixed) variation, hence the name of
the theory.

Z Strictly speaking, for every fixed t, ε(t) ∈ R2
x(t); that is, it is a tangent vector at x(t). Moreover the endpoint

conditions are ε(0) = 0 ∈ R2
P and ε(1) = 0 ∈ R2

Q. However, we can (and will) identify all the tangent spaces

with R2 by translating them to the origin in R2 and this is why we have written ε as a map ε : [0, 1]→ R
2 and

ε(0) = ε(1) = 0.

The condition for a path x being a critical point of the arclength functional S is now given
by a formula analogous to (1):

d

ds
S[x+ sε]

∣∣∣∣
s=0

= 0 for all endpoint-fixed variations ε.

As we now show, this condition translates into a differential equation for the path x. Notice
that

S[x+ sε] =

∫ 1

0

‖ẋ(t) + sε̇(t)‖dt

=

∫ 1

0

〈ẋ(t) + sε̇(t), ẋ(t) + sε̇(t)〉1/2 dt ,

whence
d

ds
S[x+ sε] =

∫ 1

0

d

ds
〈ẋ+ sε̇, ẋ+ sε̇〉1/2 dt

=

∫ 1

0

〈ẋ+ sε̇, ε̇〉
‖ẋ+ sε̇‖

dt .
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Evaluating at s = 0, we find

d

ds
S[x+ sε]

∣∣∣∣
s=0

=

∫ 1

0

〈ẋ, ε̇〉
‖ẋ‖

dt

=

∫ 1

0

〈
ẋ

‖ẋ‖
, ε̇

〉
dt .

Integrating by parts and using that ε(0) = ε(1) = 0, we find that

d

ds
S[x+ sε]

∣∣∣∣
s=0

= −
∫ 1

0

〈
d

dt

(
ẋ

‖ẋ‖

)
, ε

〉
dt .

Therefore a path x is a critical point of the arclength functional S if and only if∫ 1

0

〈
d

dt

(
ẋ

‖ẋ‖

)
, ε

〉
dt = 0 . (2)

We will prove in the next section that this actually implies that

d

dt

(
ẋ

‖ẋ‖

)
= 0 , (3)

which says that the velocity vector ẋ has constant direction; i.e., that it is a straight line.
There is only one straight line joining P and Q and it is clear from the geometry that this
path actually minimises arclength.

b Exercise 1. Generalise the preceding discussion to paths in R
n between any two distinct

points.

4. The fundamental lemma of the calculus of variations

In this section we prove an easy result from analysis which was used above to go from
equation (2) to equation (3). This result is fundamental to the calculus of variations.

Theorem 1 (Fundamental Lemma of the Calculus of Variations). Let f : [0, 1] → R
n be a

continuous function which obeys ∫ 1

0

〈f(t), h(t)〉 dt = 0

for all C2 functions h : [0, 1]→ R
n with h(0) = h(1) = 0. Then f ≡ 0.

We will prove the case n = 1 and leave the general case as an (easy) exercise.

Proof for n = 1. Let f : [0, 1]→ R be a continuous function which obeys∫ 1

0

f(t)h(t)dt = 0

for all C2 functions h : [0, 1] → R with h(0) = h(1) = 0. Then we will prove that f ≡ 0.
Assume for a contradiction that there is a point t0 ∈ [0, 1] for which f(t0) 6= 0. We will assume
in addition that f(t0) > 0, with a similar proof working in the case f(t0) < 0. Because f is
continuous, there is a neighbourhood U of t0 in which f(t) > c > 0 for all t ∈ U .
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Z If t0 6= 0, 1, then we can take U = (t0 − ε, t0 + ε) for some ε > 0. If t0 = 0 or t0 = 1 we take U = [0, ε) or
U = (1− ε, 1] respectively.

We will now construct a C2 function h : [0, 1]→ R with the following properties:

(P1) h(t) = 0 for all t outside the neighbourhood U ; and

(P2)
∫ 1

0
h(t)dt =

∫
U
h(t)dt > 0.

Postponing for a moment the construction of such a function, let us see how their existence
allows us to prove the Lemma. Let us estimate the integral∫ 1

0

f(t)h(t)dt =

∫
U

f(t)h(t)dt using (P1)

> c

∫
U

h(t)dt since f > c on U

> 0 using (P2).

This violates the hypothesis of the Lemma, hence we deduce that there is no point t0 for which
f(t0) 6= 0. �

b Exercise 2. Prove the Fundamental Lemma for general n.

We now come to the construction of the function h in the above proof. Consider the function
θ : R→ R defined by

θ(t) =

{
e−1/t t > 0

0 t ≤ 0 .

This function is clearly smooth (i.e., infinitely differentiable) at every point except, perhaps,
at t = 0. However it is an easy exercise to prove that θ is smooth there as well.

b Exercise 3. Prove that θ so defined is a smooth function.

Now define the function ϕ : R→ R by

ϕ(t) = θ(t)θ(1− t) .
Being the product of two smooth functions, it is clearly smooth. Moreover, it vanishes outside
the interval (0, 1). By rescaling t, we can make a function ϕa,b which vanishes outside any
interval (a, b):

ϕa,b(t) = ϕ

(
t− a
b− a

)
. (4)

Furthermore, it is easy to show that ∫ b

a

ϕa,b(t)dt > 0 .

The function h in the proof above can be taken to be the restriction to [0, 1] of one of the ϕa,b
for suitable a and b.

Remark 1. We have actually proven something stronger than stated. Because the function
h constructed above is not just C2 but in fact smooth (i.e., C∞), it is enough to check that∫
fhdt = 0 only for smooth h to deduce that f vanishes.
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5. The Euler–Lagrange equation

Let CP,Q be the space of C2 curves x : [0, 1] → R
n with x(0) = P and x(1) = Q. Let

L : R2n+1 → R be a sufficiently differentiable function (typically smooth in applications) and
let us consider the functional S : CP,Q → R defined by

S[x] =

∫ 1

0

L(x(t), ẋ(t), t) dt .

The function L is called the lagrangian and the functional S is called the action. Extremising
S will yield a differential equation for x. Recall that a path x is a critical point for the action
if, for all endpoint-fixed variations ε, we have

d

ds
S[x+ sε]

∣∣∣∣
s=0

= 0 .

Differentiating under the integral sign, we find

0 =

∫ 1

0

d

ds
L(x+ sε, ẋ+ sε̇, t)

∣∣∣∣
s=0

dt

=

∫ 1

0

(
n∑
i=1

∂L

∂xi
εi +

n∑
i=1

∂L

∂ẋi
ε̇i

)
dt

=

∫ 1

0

n∑
i=1

(
∂L

∂xi
− d

dt

∂L

∂ẋi

)
εidt ,

where we have integrated by parts and used that ε(0) = ε(1) = 0. Using the Fundamental
Lemma, this is equivalent to

∂L

∂xi
=

d

dt

∂L

∂ẋi
, (5)

for all i = 1, 2, . . . , n. This is the Euler–Lagrange equation.
As an example, let us reconsider the lagrangian L(x, ẋ, t) = ‖ẋ‖. Then

∂L

∂xi
= 0 and

∂L

∂ẋi
=

ẋi

‖ẋ‖
,

and the Euler–Lagrange equation simply says that ẋi

‖ẋ‖ is constant, as we saw above.

b
Exercise 4. Let x : [0, 1] → R be a C3 function. Let the lagrangian L depend also on the
second derivative ẍ. Derive the Euler–Lagrange equation arising from extremising the action

S[x] =

∫ 1

0
L(x, ẋ, ẍ, t)dt .

Generalise this to lagrangians depending on the first k derivatives of x, which should now be
a Ck+1 function. Generalise this further to lagrangians depending on the first k derivatives
of x : [0, 1]→ R

n.
(Hint: For lagrangians depending on the first k derivatives of x, the variations and their first
k − 1 derivatives must vanish at the endpoints.)
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6. Hamilton’s principle of least action

Consider a particle of mass m moving in R
3 under the influence of a potential V : R3 → R.

Let x : R→ R
3 denote the trajectory of this particle. Define the kinetic energy of the trajectory

to be the function T : R3 → R defined by

T (ẋ) = 1
2
m‖ẋ‖2 .

We define the lagrangian to be the difference between the kinetic and potential energies

L(x, ẋ) = T (ẋ)− V (x) .

The action of the trajectory from time t0 to time t1 is the integral

S[x] =

∫ t1

t0

L(x(t), ẋ(t))dt .

Hamilton’s Principle of Least Action says that particles follow trajectories which minimise the
action. Such trajectories are therefore called physical trajectories.

For the above lagrangian, we have

∂L

∂xi
= −∂V

∂xi
and

∂L

∂ẋi
= mẋi ,

and the Euler–Lagrange equation is nothing but Newton’s second law:

mẍi = −∂V
∂xi

,

where we recognise the right-hand side of this equation as the force due to the potential V .
More generally, for any lagrangian (not necessarily of the form T −V ) one calls the quantity

∂L
∂xi

the force, the quantity ∂L
∂ẋi

the momentum, and the quantity
∑n

i=1 ẋ
i ∂L
∂ẋi
−L the energy. For

the above lagrangian L = T − V , the energy is T + V .

b Exercise 5 (Conservation of energy). Prove that if the lagrangian does not depend explicitly
on t, then the energy is constant along physical trajectories.

b
Exercise 6 (Conservation of momentum). Prove that if the lagrangian does not depend
explicitly on one of the coordinates, say x1, then the corresponding momentum ∂L

∂ẋ1
is constant

along physical trajectories.

In Section 9 we will see that these and other conservation laws result from symmetries of
the lagrangian.

7. Some further problems

We are now ready to solve some of the problems stated in the introduction. We will leave
the solution as exercises. They are easy to solve applying the Euler–Lagrange equation to
suitable actions.
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7.1. Minimal surface of revolution. Consider two points in the plane with coordinates
(x1, y1) and (x2, y2) with x2 > x1. Let f : [x1, x2]→ R be a C2 function with the property that
f(x1) = y1 and f(x2) = y2. The graph of this function is a curve from (x1, y1) to (x2, y2). Now
consider revolving this curve around the x-axis to yield a surface of revolution. The surface
area of the resulting surface of revolution is given by the following integral

S[f ] = 2π

∫ x1

x0

f(x)
√

1 + f ′(x)2 dx ,

where f ′(x) is the derivative of f(x) with respect to x.

b Exercise 7. Derive a differential equation for the function f so that the curve it defines
yields a surface of revolution of minimum area when revolved about the x-axis. Solve the
equation and deduce the shape of the curve. Such curves are called catenaries.

7.2. The brachistochrone. Consider a bead of mass m which can slide down a wire frame
under the influence of gravity but without any friction. Suppose that the bead is dropped
from rest from a height h. Let τ denote the time it takes to slide down to the ground. This
time will depend on the shape of the wire. The shape for which τ is minimal is called the
brachistochrone (Greek for “shortest time”).

We will assume that the wire has no torsion, so that the motion of the bead happens in one
plane: the (x, z) plane with z the vertical displacement and x the horizontal displacement. We
choose our axes in such a way that wire touches the ground at the origin of the plane: (0, 0).
The shape of the wire is given by a function z = z(x), with z(0) = 0 and z(h) = `. Let s
denote the length along the wire from the origin to the point (x, z) on the wire.

The kinetic energy of the bead at any time t after being dropped is given by

T = 1
2
m

(
ds

dt

)2

,

whereas the potential energy is given by

V = −mg (h− z) .

Z The m in T is called the inertial mass and the m in V is called the gravitational mass. They are denoted by
the same symbol because they are the same: this is the celebrated equivalence principle. This was famously
demonstrated by Galileo by showing that bodies fall at the same rate regardless of their masses.

Energy is conserved because there is no friction, whence T +V is a constant. To compute it,
we evaluate it at the moment the bead is dropped. Because it is dropped from rest, ds/dt = 0
and hence T = 0. Since the bead is dropped from a height h, the potential energy also vanishes,
and we have that T + V = 0. From this identity we can solve for ds/dt:

ds

dt
= −

√
2g (h− z) , (6)

where we have chosen the negative sign for the square root, because as the bead falls, s
decreases. Now, the length element along the wire is given by

ds = dx
√

1 + z′(x)2 . (7)
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Let us rewrite equation (6) as

dt = − 1√
2g (h− z)

ds .

and insert equation (7) in this equation, to obtain

dt = −
√

1 + z′(x)2√
2g (h− z(x))

dx .

Integrating this expression, we obtain the time τ taken by the bead to fall from the point (`, h)
to the point (0, 0):

τ =
1√
2g

∫ `

0

√
1 + z′(x)2√
(h− z(x))

dx .

This formula defines a functional on functions z : [0, `], x 7→ z(x), with z(0) = 0 and z(h) = `,
given by

S[z] =

∫ `

0

√
1 + z′(x)2√
(h− z(x))

dx ,

where we have conveniently reabsorbed the constant
√

2g into the functional.

b Exercise 8. Extremise the action S[z] defined above to find an equation for the brachis-
tochrone. Solve the equation and deduce that the brachistochrone is an arc of a cycloid. Show
that the cycloid is also the tautochrone (Greek for “equal time”): that is, that no matter
where along the cycloid you drop the bead from (provided you drop it from rest), it will take
the same amount of time to reach the bottom.
(Hint: The cycloid is the locus traced by a point on the rim of a wheel which rolls without
slipping along a horizontal axis. It can be parametrised as follows:

(x(t), z(t)) = (a(t+ sin t), a(1− cos t)) ,

where a is radius of the wheel.)

7.3. Geodesics on the sphere. Let P and Q be any two distinct points on the unit sphere
S2 in R

3. Let x : [0, 1]→ S2 ⊂ R
3 be a C2 curve from P to Q. In spherical polar coordinates,

we can write

x(t) = (cos θ(t) sinϕ(t), sin θ(t) sinϕ(t), cosϕ(t)) .

The arclength is computed by integrating ‖ẋ‖. An easy calculation yields

‖ẋ‖ =

√
ϕ̇2 + (sinϕ)2θ̇2 ,

whence the arclength of the path defines a functional on functions θ and ϕ

S[θ, ϕ] =

∫ 1

0

√
ϕ̇2 + (sinϕ)2θ̇2dt .

The shortest path between P and Q can now be found by extremising the above functional.
It is however technically easier to parametrise the path in terms of the angle ϕ itself, in such
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a way that the path is given by specifying the function ϕ 7→ θ(ϕ). In terms of this function,
the arclength functional becomes

S[θ] =

∫ ϕQ

ϕP

√
1 + (sinϕ)2(θ′)2dϕ ,

where θ′ is now the derivative of θ with respect to ϕ.

b
Exercise 9 (Geodesics on the sphere). Extremising the above functional S[θ], prove that the
shortest path between any two points P and Q on the unit sphere lies on a great circle; that
is, on the intersection of the sphere with a plane through the centre of the sphere.

8. Second variation

Finding extrema of a function involves more than finding its critical points. One has to decide
whether these points are indeed extrema (i.e., maxima or minima) or not. To determine the
type of a critical point one needs to compute the hessian matrix of the function. Something
similar happens in the calculus of variations. We start by reviewing the finite-dimensional
situation.

Let f : U ⊂ R
n → R be a C2 function and let x ∈ U be a critical point. As we have seen

above, this means that equation (1) holds. The hessian matrix Hessx f of f at x is a symmetric
bilinear form on R

n
x, defined by

(Hessx f)(ε, η) =
∂2

∂s∂t
f(x+ sε+ tη)

∣∣∣∣
s=t=0

,

for all ε, η ∈ Rnx. If the hessian is positive-definite (resp. negative-definite) at a critical point,
then this point is a minimum (resp. maximum). If the hessian is positive-semidefinite (resp.
negative-semidefinite) then we have a degenerate minimum (resp. maximum). If the hessian
is indefinite then we have neither.

Let us apply this to lagrangians of the form L(x, ẋ) where x : [0, 1] → R
n is a C2 function.

We will define a bilinear form

Hx(ε, η) =
∂2S[x+ uε+ vη]

∂u∂v

∣∣∣∣
u=v=0

.

We compute this as follows:

Hx(ε, η) =

[
∂

∂u

(
∂

∂v
S[x+ uε+ vη]

)
v=0

]
u=0

=
∂

∂u

∫ 1

0

n∑
i=1

(
∂L(x+ uε)

∂xi
− d

dt

∂L(x+ uε)

∂ẋi

)
ηidt

∣∣∣∣
u=0

=

∫ 1

0

n∑
i,j=1

(
∂2L

∂xj∂xi
εj +

∂2L

∂ẋj∂xi
ε̇j − d

dt

(
∂2L

∂xj∂ẋi
εj +

∂2L

∂ẋj∂ẋi
ε̇j
))

ηidt .

We can rewrite this result as

Hx(ε, η) =

∫ 1

0

(Jijε
j)ηidt ,
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where Jij is a matrix of differential operators called the Jacobi operator.
Determining whether this bilinear form is definite, semidefinite or indefinite is usually quite

hard, but in some simple cases it can be settled using elementary means.

b Exercise 10. Compute the second variation for the arclength in R
n and prove that it is

positive-definite; that is, prove that for all variations ε,

Hx(ε, ε) ≥ 0 and Hx(ε, ε) = 0 ⇐⇒ ε ≡ 0 .

By analogy with the finite-dimensional case, conclude that critical paths are indeed minimising
in this case. (This is geometrically obvious, of course.)
(Hint: The answer is

Hx(ε, η) =

∫ 1

0

n∑
i,j=1

∂2L

∂ẋi∂ẋj
ε̇iη̇jdt ,

where
∂2L

∂ẋi∂ẋj
=

1

‖ẋ‖3
(
‖ẋ‖2δij − ẋiẋj

)
.

You may find the Cauchy–Schwarz inequality useful in proving positive-definiteness.)

9. Noether’s theorem and conservation laws

Let S[x] =
∫ 1

0
L(x, ẋ)dt be an action for C2 curves x : [0, 1] → R

n with x(0) = P and
x(1) = Q, for some points P,Q ∈ Rn.

Let ϕ : Rn → R
n be a smooth function. Then the composition y = ϕ ◦ x : [0, 1] → R

n is a
curve in R

n from the point ϕ(P ) to the point ϕ(Q). If x extremises S, there is no reason to
believe that y should too. However there is one case when this is true.

We say that ϕ is a symmetry of the lagrangian L if

L(x, ẋ) = L(y, ẏ) .

Equivalently one says that L is invariant under ϕ.

Z Notice that ẏ can be computed using the chain rule:

ẏ(t) =
d

dt
ϕ(x(t)) = Dϕ(x(t))ẋ(t) ,

where Dϕ is the derivative matrix of ϕ. In this case it is an n× n matrix.

Lemma 1. Let x : [0, 1] → R
n solve the Euler–Lagrange equation for the lagrangian L. If L

is invariant under ϕ : Rn → R
n, then y = ϕ ◦ x also solves the Euler–Lagrange equation for L.

In other words, ϕ takes solutions to solutions.

Proof. Since L(x, ẋ) = L(y, ẏ), it trivially follows that

∂L

∂xi
=
∂L

∂yi
∂L

∂ẋi
=
∂L

∂ẏi
,

whence
∂L

∂xi
=

d

dt

∂L

∂ẋi
⇐⇒ ∂L

∂yi
=

d

dt

∂L

∂ẏi
.

�
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! The converse of this lemma is not true. There are transformations taking solutions to solutions
which are not symmetries of the lagrangian.

Now consider not one function ϕ but a one-parameter family ϕs : Rn → R
n of smooth

functions, defined for all s ∈ R. Assume moreover that this family satisfies the following two
properties:

(D1) ϕ0 = id, where id : Rn → R
n is the identity function id(x) = x for all x ∈ Rn; and

(D2) ϕs ◦ ϕt = ϕs+t, for all s, t ∈ R.

b Exercise 11. Show that these properties imply that ϕs is invertible, with inverse ϕ−1s = ϕ−s.
Show that the family {ϕs} defines a group isomorphic to (R,+).

The family {ϕs} is called a one-parameter group of diffeomorphisms of Rn.
The following theorem tells us what happens when a lagrangian is invariant under a one-

parameter group of diffeomorphisms; that is, when it is invariant under ϕs for all s.

Theorem 2 (Noether’s Theorem). Let S[x] =
∫ 1

0
L(x, ẋ)dt be an action for curves x : [0, 1]→

R
n, and let L be invariant under a one-parameter group of diffeomorphisms {ϕs}. Then the

Noether charge I, defined by

I(x, ẋ) =
n∑
i=1

∂L

∂ẋi
∂ϕis(x)

∂s

∣∣∣∣
s=0

,

is conserved; that is, dI/dt = 0 along physical trajectories.

Proof. Let x(t) be a solution of the Euler–Lagrange equation for L. Then by the above lemma,
so does y(s, t) := ϕs(x(t)) for every s; in other words,

∂L

∂yi
=

d

dt

∂L

∂ẏi
.

Because L is invariant under ϕs for every s, L(y, ẏ) does not depend on s. Taking the
derivative with respect to s, we obtain

0 =
∂

∂s
L(y, ẏ) =

n∑
i=1

∂L

∂yi
∂yi

∂s
+

n∑
i=1

∂L

∂ẏi
∂ẏi

∂s
.

Using the Euler–Lagrange equation, we can rewrite this as

0 =
n∑
i=1

d

dt

∂L

∂ẏi
∂yi

∂s
+

n∑
i=1

∂L

∂ẏi
∂ẏi

∂s

=
d

dt

n∑
i=1

∂L

∂ẏi
∂yi

∂s
.

Finally we evaluate at s = 0, using that y(0, t) = x(t) by property (D1) above, to arrive at

d

dt

n∑
i=1

∂L

∂ẋi
∂yi

∂s

∣∣∣∣
s=0

= 0 ,

which completes the proof. �
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As an example, consider a lagrangian L = L(ẋ), where x : [0, 1] → R, which does not
depend explicitly on x. This means that L is invariant under the one-parameter group of
diffeomorphisms ϕs(x) = x + s. According to Noether’s theorem the momentum ∂L/∂ẋ is
conserved.

b Exercise 12 (Conservation of momentum revisited). Redo Exercise 6 by exhibiting a one-
parameter symmetry group of L and using Noether’s theorem.

b Exercise 13 (Conservation of angular momentum). Let L = 1
2m‖ẋ‖

2−V (x) be a lagrangian

for plane curves x : [0, 1] → R
2. Assume that V only depends on ‖x‖. Show that L is

invariant under the one-parameter symmetry group ϕs : R2 → R
2 defined by

ϕs(x) = (x1 cos s− x2 sin s, x1 sin s+ x2 cos s) .

Find the expression for the Noether charge associated to this symmetry.
(Answer: You should find I = m(x1ẋ2 − x2ẋ1).)

10. Isoperimetric problems

The original isoperimetric problem was posed by the ancient Greeks: find the closed plane
curve of a given length that encloses the largest area. They even managed to convince them-
selves that the intuitive answer (the circle) was correct. The reason this problem is called
isoperimetric is that one is maximising the area inside the curve while keeping the perimeter
fixed. More generally, an isoperimetric problem is one where one is trying to extremise a func-
tional subject to a (functional) constraint. In this section we will learn how to deal with such
constrained extremisation in the context of the variational calculus. Let us start by setting up
the classical isoperimetric problem in this context.

Let x : [0, 1] → R
2 be a C2 curve which is closed: x(0) = x(1). The area enclosed by the

curve is given by the following functional:

S[x] = 1
2

∫ 1

0

(x1ẋ2 − x2ẋ1)dt ,

whereas the perimeter of the curve is given by the following functional:

A[x] =

∫ 1

0

‖ẋ‖dt .

The isoperimetric problem is the following: extremise S[x] subject to A[x] = `.
Surely you recognise the finite-dimensional analogue to this problem. Let f, g : U ⊂ R

n → R

be functions of n variables. One can then extremise f subject to g = 0. As in SVC, one can use
the method of Lagrange multipliers. We define a new function F : U×R→ R of n+1 variables
(the new variable, typically denoted λ, is the Lagrange multiplier) by F (x, λ) = f(x) − λg(x)
and one simply extremises F without any constraints. The resulting equations are

∂F

∂λ
= 0 =⇒ g(x) = 0 and

∂F

∂xi
= 0 =⇒ ∂f

∂xi
= λ

∂g

∂xi
.

The method of Lagrange multipliers extends to the calculus of variations. Suppose that we
want to extremise the action

S[x] =

∫ 1

0

L(x, ẋ, t)dt



14 JOSÉ FIGUEROA-O’FARRILL

on functions x : [0, 1]→ R
n, subject to the constraint

A[x] =

∫ 1

0

K(x, ẋ, t)dt = 0 .

! Without loss of generality we have taken the constraint to be A[x] = 0 as opposed to A[x] = c
for some constant c. Clearly if A[x] = c, A′[x] = A[x]− c = 0.

The method of Lagrange multipliers says that we should construct a new functional depend-
ing in addition on one extra parameter λ (not a function, but a constant)

S̃[x, λ] = S[x]− λA[x] ,

and extremise S̃[x, λ] in the space of functions x : [0, 1] → R
n. Any solution of the resulting

Euler–Lagrange equation will depend on 2n constants of integration and the parameter λ.
These are then fixed by the 2n boundary conditions for x(0) and x(1) and the constraint
A[x] = 0.

! The only reason we have 2n constants of integration is because the lagrangian is first-order;
that is, it depends only on x and ẋ. This means that the resulting Euler–Lagrange equation
is a second-order ordinary differential equation for the n component functions of x and hence
there are 2n constants of integration: 2 constants per component function. In general, if the
lagrangian depends on x and its first k derivatives, we will have kn constants of integration
and an equal number of boundary conditions.

Before doing an example, let us see why this works. Recall that a function x : [0, 1]→ R
n is

a critical point of the functional S[x] if for any variation ε,

d

ds
S[x+ sε]

∣∣∣∣
s=0

= 0 .

In the presence of a constraint A[x] = 0, we would have to consider only those variations which
preserve the constraint; that is, only those ε for which A[x+sε] = 0 for all s. This condition is
generally too strong and there may not be any nontrivial variations satisfying this. Instead we
introduce a two-parameter family of variations: S[x+ sε+ rη] and we choose the parameters
s and r in such a way that A[x+ sε+ rη] = 0. At a fixed function x and for fixed variations ε
and η, the condition A[x+ sε+ rη] = 0 defines a curve in the (r, s) plane: g(r, s) = 0. Hence,
for fixed x, ε, η, we want to extremise the function f(r, s) = S[x + sε + rη] subject to the
condition g(r, s) = 0.

The method of Lagrange multipliers for functions of two variables (here s and r) says that
we should extremise the function

F (r, s, λ) = f(r, s)− λg(r, s) ,

which is nothing but

F (r, s, λ) = S[x+ sε+ rη]− λA[x+ sε+ rη] .

This function has a critical point if the following conditions are satisfied:

∂F

∂r

∣∣∣∣
r=s=0

=
∂F

∂s

∣∣∣∣
r=s=0

= 0 and
∂F

∂λ

∣∣∣∣
r=s=0

= 0 .
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b Exercise 14. Convince yourself that imposing these equations for all variations ε and η is
the same as extremising the modified functional S̃[x, λ] and imposing the constraint A[x] = 0.

Let us now do an example. This is a variant of the original isoperimetric problem. Consider
a C2 function f : [0, 1]→ R with the property that f(0) = f(1) = 0 and f(x) > 0 everywhere
else. Its graph y = f(x) is a curve from the origin to the point (1, 0) and lying in the upper
half-plane. We would like to maximise the area under the curve provided that the arclength
is fixed to some number ` ≥ 1. In other words, we want to maximise the area functional

S[f ] =

∫ 1

0

f(x) dx

subject to the constraint

A[f ] =

∫ 1

0

√
1 + f ′(x)2 dx = ` .

According to the method of Lagrange multipliers, we must extremise the modified functional

S̃[f, λ] =

∫ 1

0

(
f(x)− λ

√
1 + f ′(x)2

)
dx .

The Euler–Lagrange equation resulting from this functional is

1 +
d

dx

(
λ

f ′(x)√
1 + f ′(x)2

)
= 0 .

Integrating once we find

x+ λ
f ′(x)√

1 + f ′(x)2
= c1 ,

for some constant c1. From this equation we can solve for f ′(x) and then integrate again to
solve for f(x).

b Exercise 15. Complete the above analysis and prove that the graph y = f(x) traces a circle of

radius λ passing through (0, 0) and (1, 0) and with centre at the point (12 ,−
√
λ2 − 1

4). Finally

show that λ is determined from the arclength ` by the transcendental equation 2λ sin(`/2λ) =
1.

b Exercise 16. Solve the original isoperimetric problem stated at the start of this section.
Deduce that for any closed plane curve the area A of the enclosed region and the perimeter `
of the curve satisfy the following isoperimetric inequality A ≤ `2/4π, with equality if and only
if the curve is a circle.
(Hint: Extremise the modified action

S̃[x] =

∫ 1

0

(
1
2(x1ẋ2 − x2ẋ1)− λ

√
(ẋ1)2 + (ẋ2)2

)
dt ,

and deduce that the resulting curve is a circle of radius λ.)

Z A similar “isoperimetric” inequality exists between the surface area S of a closed surface in R3 and the volume
V it encloses. In this case, one can prove the bound V 2 ≤ S3/36π, which is now saturated by the sphere.

Finally, let us point out that if there are more than one constraint, one must introduce an
equal number of Lagrange multipliers.
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11. Lagrange multipliers

The method of Lagrange multipliers in the calculus of variations extends to other types of
constrained extremisation, where the subsidiary condition is not a functional but actually a
function; that is, rather than a constraint of the form

∫ 1

0
K(x, ẋ, t)dt = 0, we have one of the

form G(x, ẋ, t) = 0. There are two types of problems where these constraints appear naturally:

• Finding geodesics on a surface defined as the zero locus of a function, say, G(x) = 0;
and
• Reducing higher-order lagrangians to first-order lagrangians. For example, given a

lagrangian L(x, ẋ, ẍ, t) depending on the second derivative of the function x, it can be
replaced by a first-order lagrangian L(x, ẋ, ẏ, t) with the subsidiary condition y = ẋ.

Without proof, let us simply outline the method. Suppose we want to extremise a functional

S[x] =

∫ 1

0

L(x, ẋ, t) dt

for C2 functions x : [0, 1]→ R
n subject to a conditionG(x, ẋ, t) = 0, whereG : Rn×Rn×R→ R

k

is a differentiable function. The idea is to introduce a new function λ : [0, 1] → R
k and

extremise the modified functional

S̃[x, λ] =

∫ 1

0

(L(x, ẋ, t)− 〈λ(t), G(x, ẋ, t)〉) dt ,

where 〈, 〉 is the dot product in R
k.

Let us apply this to derive the Euler–Lagrange equation for a lagrangian L(x, ẋ, ẍ, t) depend-
ing on the second derivative of a C3 function x : [0, 1] → R. As outlined above, this problem
is the same as extremising the action with lagrangian L(x, ẋ, ẏ, t) subject to the constraint
y = ẋ. As suggested above, we construct the modified action

S[x, y, λ] =

∫ 1

0

(L(x, ẋ, ẏ, t)− λ(t)(y − ẋ)) dt .

The Euler–Lagrange equations are

∂L

∂x
=

d

dt

(
∂L

∂ẋ
+ λ

)
, −λ =

d

dt

∂L

∂ẏ
and y = ẋ .

Solving for λ from the second equation and inserting the result in the second, we obtain

∂L

∂x
− d

dt

∂L

∂ẋ
+
d2

dt2
∂L

∂ẍ
= 0 ,

where we have used that y = ẋ. This result should be compared with your result for the first
part in Exercise 4.

Z We can now also explain the Hint to Exercise 4 concerning the fact that the variations and their first derivatives
should both vanish at the endpoints. In the above formulation there are variations for both x and y. Let’s
call them ε and η respectively. We have that ε(0) = ε(1) = η(0) = η(1) = 0. If the variations are to preserve
the constraint y = ẋ, then we must have that η = ε̇; whence ε̇ should vanish at the endpoints.
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b Exercise 17 (Geodesics on the sphere revisited). Using the method of Lagrange multipliers
prove that the geodesics on a sphere are give by great circles.

(Hint: Extremise S[x] =
∫ 1
0 ‖ẋ‖ dt for x : [0, 1]→ R

3 subject to ‖x‖2 = 1.)

12. Some variational PDEs

Thus far we have considered functionals defined on curves; that is, on functions of one
variable. The Euler–Lagrange equations obtained in this way are always ordinary differential
equations. In the same way, one can obtain partial differential equations by varying functionals
of functions of several variables. In fact, many of the interesting partial differential equations
arise in this way.

By way of introduction let us consider the problem of extremising functionals defined on
surfaces as opposed to curves. Let x : D ⊂ R

2 → R
n be a C2 function defined on a bounded set

D in the plane. Let ∂D denote the boundary of the set D, which we will assume to be smooth
or at least piecewise smooth. We will let t1, t2 denote the coordinates on the plane, so that
x(t1, t2) ∈ Rn for every (t1, t2) ∈ D. Consider a lagrangian function L : Rn × R2n × R2 → R,
and the corresponding action

S[x] =

∫
D

L(x,Dx, t) d2t ,

where Dx denotes collectively the 2n partial derivatives ∂xi/∂tµ, for i = 1, 2, . . . , n and µ =
1, 2. The boundary conditions are specified by asking that x(t) = φ(t) for t ∈ ∂D, where
φ : ∂D → R

n is a given function.

b Exercise 18. Convince yourself that this agrees with what we did above in the one-
dimensional case. Notice that in that case, D = [0, 1] and ∂D = {0} ∪ {1} consists of
two points.

The variations for this problem are now C2 functions ε : D → R
n such that ε vanishes on

the boundary: ε(t) = 0 for t ∈ ∂D. The condition that a function x : D → R
n be a critical

point of the action S[x] is then that

d

ds
S[x+ sε]

∣∣∣∣
s=0

= 0 for all variations ε with ε|∂D = 0.

To derive the Euler–Lagrange equation in this case we will find it convenient to introduce
some notation. We will let xµ, for µ = 1, 2 denote the derivatives of x with respect to tµ; that
is xµ = ∂x/∂tµ. Similarly we will let ∂µ denote the derivative operator ∂/∂tµ.
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As before, let us differentiate under the integral sign to find

0 =
d

ds
S[x+ sε]

∣∣∣∣
s=0

=

∫
D

d

ds
L(x+ sε,Dx+ sDε, t)

∣∣∣∣
s=0

d2t

=

∫
D

(
n∑
i=1

∂L

∂xi
εi +

n∑
i=1

2∑
µ=1

∂L

∂xiµ
∂µε

i

)
d2t

=

∫
D

n∑
i=1

(
∂L

∂xi
−

2∑
µ=1

∂µ
∂L

∂xiµ

)
εid2t+

∫
D

n∑
i=1

2∑
µ=1

∂µ

(
∂L

∂xiµ
εi
)
d2t .

The Divergence Theorem (see below) allows us to rewrite the last integral as an integral
over the boundary ∂D, which is then seen to vanish since ε|∂D = 0. The generalisation of
the Fundamental Lemma to functions of more than one variable (see below) then allows us to
deduce that the first term above vanishes for all variations ε if and only if the Euler–Lagrange
equations

∂L

∂xi
=

2∑
µ=1

∂µ
∂L

∂xiµ

are satisfied.
There is no reason why we are restricted to functions of only two variables. In fact, if

D ⊂ R
m is a bounded region with (piecewise) smooth boundary and L(x,Dx) is a lagrangian

for maps x : D → R
n, the very same manipulations would yield the general multidimensional

Euler–Lagrange equations:

∂L

∂xi
=

m∑
µ=1

∂µ
∂L

∂xiµ
. (8)

It remains to discuss the Divergence Theorem and the generalisation of the Fundamental
Lemma. We start with the the Divergence Theorem. It states the following.

Theorem 3 (Divergence Theorem). Let D ⊂ R
m be a bounded open set with (piecewise)

smooth boundary ∂D. Let X = (X1, . . . Xm) be a smooth vector field defined on D ∪ ∂D. Let
N be unit outward-pointing normal of ∂D. Then∫

D

m∑
µ=1

∂µX
µdV =

∫
∂D

〈X,N〉 dA ,

where dV is the volume element in R
m and dA is the area element in ∂D.

! The divergence theorem is usually taught in PDE. Michael Singer has written an excellent
set of notes on it. They are available from the following URL:

http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/divthm.pdf

We will not say more about this theorem here, but we will use it freely.

http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/divthm.pdf
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Finally we turn to the generalisation of the Fundamental Lemma to the case of multidimen-
sional integrals. The lemma now says the following.

Theorem 4 (Multidimensional version of the Fundamental Lemma). Let D ⊂ R
m be a bounded

open set with (piecewise) smooth boundary ∂D. Let f : D → R
n be a continuous function which

obeys ∫
D

〈f(t), h(t)〉 dt = 0

for all C2 functions h : D → R
n vanishing on the boundary; that is, with h|∂D = 0. Then

f ≡ 0.

Proof for n = 1. As before we will prove the case n = 1 and leave the trivial extension to
general n as an exercise. Mutatis mutandis, the proof is the same as if m = 1, which was done
in Section 4, so we will be brief.

Assume for a contradiction that there exists a point t0 ∈ D where f(t0) 6= 0. Without loss of
generality we will assume that f(t0) > 0. Then there is an open ball B centred at t0 contained
in D with the property that, for all t ∈ B, f(t) > c > 0 for some constant c. We will now
construct a function h : D → R with the usual properties: it vanishes outside B and it has
positive integral

∫
D
hdV =

∫
B
hdV > 0. Then, as in the proof of Theorem 1, it follows that∫

D
fhdV > 0, violating the hypothesis.

The construction of the function h is again very similar to what was done before. Inside
the open ball B there is a hypercube centred at t0 with sides of length 2δ for some δ > 0.
Explicitly, the hypercube is the cartesian product

[t10 − δ, t10 + δ]× [t20 − δ, t20 + δ]× · · · × [tm0 − δ, tm0 + δ] ,

where t0 = (t10, t
2
0, . . . , t

m
0 ). Now define h(t) to be the product of the m functions

h(t1, t2, . . . , tm) = ϕt10−δ,t10+δ(t
1)ϕt20−δ,t20+δ(t

2) · · ·ϕtm0 −δ,tm0 +δ(t
m) ,

where ϕa,b(t) are defined by equation (4). We leave it as an exercise to the reader to convince
herself that this function does the trick. �

b Exercise 19. Prove the multidimensional version of the Fundamental Lemma for n > 1.

Let us now do an example. We will consider u : R2 → R, (x, t) 7→ u(x, t) with lagrangian

L(u,Du) = 1
2
(ux)

2 − 1
2
(ut)

2 ,

where ux = ∂u/∂x and ut = ∂u/∂t. The resulting Euler–Lagrange equation is then the wave
equation:

utt = uxx ,

where utt = ∂2u/∂t2 and uxx = ∂2u/∂x2.
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b
Exercise 20 (Toy electrodynamics). Let A : R2 → R

2 be a smooth vector field. Let Aµ(t),
for µ = 1, 2 denote its component functions. Define Fµν = ∂µAν − ∂νAµ, for all µ, ν = 1, 2.
Consider the following lagrangian

L(A,DA) = 1
4

2∑
µ,ν=1

FµνFµν .

Prove that the Euler–Lagrange equation implies that Fµν is constant.
Repeat this for A : Rm → R

m with the same definitions for Fµν and L(A,DA). Show that the
Euler–Lagrange equation implies that Fµν is harmonic; that is,

�Fµν = 0 for all µ, ν,

where � =
∑m

µ=1 ∂µ∂µ.

b Exercise 21 (Minimal surfaces). Let f : D ⊂ R
2 → R, (x, y) 7→ f(x, y), be a twice differen-

tiable function. The graph z = f(x, y) defines a surface Σ ⊂ R
3. The area of this surface is

the functional of f given by

S[f ] =

∫
D

√
1 + f2x + f2y dxdy ,

where fx = ∂f/∂x and fy = ∂f/∂y. Prove that f is a critical point of S[f ] if and only if it
obeys the following second-order nonlinear partial differential equation:

(1 + f2y )fxx + (1 + f2x)fyy − 2fxfyfxy = 0 .

If f satisfies this equation then Σ ⊂ R
3 is said to be a minimal surface.

13. Noether’s theorem revisited

In this section we revisit Noether’s theorem for the case of multidimensional lagrangians.
This is the version of Noether’s theorem which is of most relevance to modern physics, partic-
ularly to relativistic field theories and to theories of gravity.

The set up is the following. Let D ⊂ R
m be a bounded set with (piecewise) smooth boundary

∂D and let x : D → R
n be a C2 function which is also defined on the boundary. Let L(x,Dx) be

a lagrangian which is invariant under a one-parameter group of diffeomorphisms ϕs : Rn → R
n,

for s ∈ R. Let y : D×R→ R
n be defined by y(s, t) = ϕs(x(t)). Since the lagrangian is invariant,

the same argument as in the proof of Lemma 1 says that if x(t) solves the Euler–Lagrange
equations, then so does y(s, t) for all s.

Since L(y,Dy) is actually independent of s, taking the derivative with respect to s we get
zero:

0 =
∂

∂s
L(y, ẏ) =

n∑
i=1

∂L

∂yi
∂yi

∂s
+

n∑
i=1

m∑
µ=1

∂L

∂yiµ

∂yiµ
∂s

,
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where yiµ = ∂yi/∂tµ. Using the Euler–Lagrange equations (8), we can rewrite this as

0 =
n∑
i=1

m∑
µ=1

∂µ
∂L

∂yiµ

∂yi

∂s
+

n∑
i=1

m∑
µ=1

∂L

∂yiµ

∂yiµ
∂s

=
m∑
µ=1

∂µ

n∑
i=1

∂L

∂yiµ

∂yi

∂s
.

Finally we evaluate at s = 0, using that y(0, t) = x(t), to arrive at

m∑
µ=1

∂µ

n∑
i=1

∂L

∂xiµ

∂yi

∂s

∣∣∣∣
s=0

= 0 .

We can state this result in the form of a theorem.

Theorem 5 (Multidimensional Noether’s Theorem). Let S[x] =
∫
D
L(x,Dx)dkx be an action

for C2 maps x : D ⊂ R
m → R

n, and let L be invariant under a one-parameter group of
diffeomorphisms {ϕs}. Then the Noether current J : D → R

m, with components Jµ given by

Jµ(x,Dx) =
n∑
i=1

∂L

∂xiµ

∂yi

∂s

∣∣∣∣
s=0

is conserved; that is, its divergence vanishes:

m∑
µ=1

∂µJ
µ = 0 .

You may recognise this conservation law as a continuity equation. Let us try to understand
what this says. Let us assume that m = 2 so that the Noether current J(x,Dx) is a vector
field defined in a region D ⊂ R

2 in the plane. Let C be any smooth simple closed curve in
D. Let N denote the outward normal to C. Then using the Divergence Theorem and the fact
that J is conserved, we deduce that ∫

C

〈N, J〉 ds = 0 ,

where ds is the infinitesimal arclength element in C. We can interpret 〈N, J〉 as the flux per
unit length of the current J . The conservation law of the current simply says that the net flux
is zero: as much flux comes into the region enclosed by C as comes out.

The following exercise is a continuation of Exercise 20.
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b Exercise 22 (Toy gauge symmetry). In the notation of Exercise 20, let A : R2 × R → R
2,

(t, s) 7→ Aµ(t, s), be a one-parameter family of vector fields in R
2 defined as follows

Aµ(t, s) = Aµ(t) + s∂µΛ(t) ,

where Λ : R2 → R is a smooth function. Prove that the lagrangian

L(A,DA) = 1
4

2∑
µ,ν=1

Fµν(t, s)Fµν(t, s)

is independent of s and derive the expression for the corresponding Noether current. Prove
directly (without appealing to Noether’s theorem) that it is conserved when the Euler–Lagrange
equations are satisfied.
(Hint: The answer is

Jµ =
∑
ν

Fµν∂νΛ ,

and its conservation follows trivially using the equations of motion.)

14. Classical fields

In this section we consider briefly variational problems where we extremise functionals de-
fined by improper integrals. Variational problems of this type lie at the heart of many of the
models used in Physics to describe the fundamental forces of Nature.

As a motivating example consider C2 functions φ : R→ R, x 7→ φ(x), defined on the whole
real line. Let L : R× R→ R be a lagrangian and consider the action

S[φ] =

∫
R

L(φ, φ′, x)dx ,

where φ′(x) denotes the derivative of φ(x) with respect to x. The main difference with what
we have done until now, apart from the change of notation of the independent variable (x
instead of t), is that the action is now an improper integral, being an integral over all of the
real line and not over some bounded subset. As usual we define the integral by the limit

S[φ] = lim
R→∞

∫ R

−R
L(φ, φ′, x)dx ,

provided the limit exists. The existence of the limit restricts the boundary conditions that
we impose on φ. Depending on the precise form of L we will have to demand that φ or
φ′ decrease sufficiently fast at infinity. For example, if L(φ, φ′, x) = 1

2
φ′(x)2, then we must

impose that as |x| → ∞, φ′(x) → 0 faster than |x|−1/2. This allows for the possibility that
φ(x) should tend to a constant φ0 at infinity. If the lagrangian also contains a potential term:
L(φ, φ′, x) = 1

2
φ′(x)2−V (φ), then the constant φ0 to which φ(x) tends at infinity must be such

that V (φ0) = 0.

Z Functions φ are called (classical) fields.

More generally we can consider fields φ : Rm → R
n and lagrangians L : Rn × Rnk × Rm → R

giving rise to actions

S[φ] =

∫
Rm

L(φ,Dφ, x) dkx ,
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where the integral is now defined by taking the limit

S[φ] = lim
R→∞

∫
BR

L(φ,Dφ, x) dkx ,

where BR is the open ball of radius R centred at the origin. If SR = ∂BR denotes the sphere of
radius R, then the boundary conditions on the fields are now given on the “sphere at infinity”:
S∞ = limR→∞ SR. Variations will now be functions ε : Rm → R

n vanishing sufficiently fast at
infinity. In fact, in varying the action we will get a term

lim
R→∞

∫
BR

m∑
µ=1

∂µ

(
n∑
i=1

∂L

∂φiµ
εi

)
dmx ,

where φiµ = ∂µφ
i. By the Divergence Theorem this can can be rewritten as

lim
R→∞

∫
SR

m∑
µ=1

n∑
i=1

∂L

∂φiµ
εiNµ dS ,

where Nµ is the outward pointing normal to SR and dS is the induced infinitesimal surface
element on SR. Variations must be chosen in such a way that this integral vanishes. There
are two common choices: either we demand that ε should decrease fast enough as |x| → ∞,
or else we demand that ε should have compact support; that is, that they vanish outside some
large enough ball BR. Either choice will result in the Euler–Lagrange equations

∂L

∂φi
=

m∑
µ=1

∂µ
∂L

∂φiµ
, (9)

because the Fundamental Lemma holds for such functions. In fact, it follows already from the
proof of, say, Theorem 4 that the function h constructed there already has compact support.

Noether’s Theorem still holds for actions defined by improper integrals, provided that the one
parameter of fields is such that the action integral still converges; but, in fact, in applications
one often meets a stronger form of Noether’s Theorem. In the proof of, say, Theorem 5 it was
assumed that the lagrangian was invariant under the one-parameter group of diffeomorphisms.
In fact, this assumption is too strong: it is enough that the action be invariant. Let us see
how this comes about.

Let φ : Rm → R
n be a field and let Φ : Rm × R → R

n, (x, s) → Φ(x, s), be a one-parameter
family of such fields, varying smoothly with s and with the property that Φ(x, 0) = φ(x). Let
us assume that action integral

S[Φ] =

∫
Rm

L(Φ, DΦ, x) dmx

exists and moreover is independent of s. Although sufficient, it is certainly not necessary that
the lagrangian be independent of s. For instance, suppose that, instead of vanishing,

∂

∂s
L(Φ, DΦ, x) =

m∑
µ=1

∂µK
µ(Φ, DΦ, x) ,
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where K : Rn × R
kn × R

m → R
m is some differentiable function. Differentiating inside the

integral sign and using the above equation we find

∂

∂s
S[Φ] =

∫
Rm

∂

∂s
L(Φ, DΦ, x) dmx

=

∫
Rm

m∑
µ=1

∂µK
µ(Φ, DΦ, x) dmx

=

∫
S∞

Kµ(Φ, DΦ, x)Nµ dS ,

where in the last line we have used the Divergence Theorem. The action is invariant provided
that this integral vanishes, say, if K is such that with suitable decay properties of Φ and DΦ
at infinity, K(Φ, DΦ, x) vanishes fast enough at infinity. The proof of Noether’s Theorem goes
through as before with the only difference that the Noether current picks up an extra term:

Jµ =
n∑
i=1

∂L

∂φiµ

∂Φi

∂s

∣∣∣∣
s=0

−Kµ .

b Exercise 23. State and prove the generalisation of Noether’s Theorem outlined above.

As a typical example consider the following lagrangian for fields φ : Rm → R
n,

L(φ,Dφ) = 1
2
‖Dφ‖2 = 1

2

m∑
µ=1

n∑
i=1

∂µφ
i∂µφ

i .

b Exercise 24. Show that the Euler–Lagrange equations of this lagrangian say that φ is a
harmonic function: �φi = 0, where � =

∑m
µ=1 ∂µ∂µ .

Consider the following one-parameter family of fields

Φ(x, s) = φ(x+ sa) ,

where a ∈ Rm is a constant vector.

! Notice that this one-parameter family of fields is not induced by a one-parameter family of
diffeomorphisms of the “target space” Rn, but rather by a one-parameter family of diffeomor-
phisms of the domain R

m, in fact, by translations.

b Exercise 25. Show that the lagrangian depends on s; indeed, show that

∂L

∂s
=

m∑
µ=1

∂µ (aµL) .

The conserved Noether current is given by

Jµ =
m∑
ν=1

n∑
i=1

∂µφ
i∂νφ

iaν − Laµ .
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We write it as

Jµ =
m∑
ν=1

Tµνa
ν ,

where

Tµν =
n∑
i=1

∂µφ
i∂νφ

i − δµνL ,

is the energy-momentum tensor associated to the above lagrangian. Notice that it is symmetric:
Tµν = Tνµ.

b Exercise 26. Without appealing to Noether’s Theorem, prove directly that the energy-
momentum tensor is conserved when the Euler–Lagrange equations are satisfied; that is,

m∑
µ=1

∂µTµν = 0 .

In practice, the domain R
m where the fields are defined is interpreted physically as “space-

time”. This means that one of the coordinates is singled out to be “time” and the remaining
m − 1 coordinates are thought of as “space”. The Euler–Lagrange equations are then inter-
preted as determining the time evolution of some initial data specified at a given initial time
slice. In more detail, let xn = t denote the time coordinate and let xi for i = 1, . . . , n − 1
denote the space coordinates. Then the Euler–Lagrange equations (9), supplemented by initial
conditions φ|t=constant = f(x1, . . . , xn−1) and ∂tφ|t=constant = g(x1, . . . , xn−1), tell us how this
initial data propagates in time.

In this situation Noether’s Theorem can again be interpreted as a certain quantity being
constant in time. Indeed, consider the integral of the time component Jn of the Noether
current on a hypersurface at constant time. If the integral converges, this defines the Noether
charge associated to the current and is usually denoted Q:

Q =

∫
t=constant

Jndm−1x .

To see how Q evolves in time, we compute the derivative of Q with respect to time

dQ

dt
=

∫
t=constant

∂

∂t
Jndm−1x .

The conservation of the Noether current says that

∂Jn

∂t
=
∂Jn

∂xn
= −

n−1∑
µ=1

∂Jµ

∂xµ
,

whence

dQ

dt
= −

∫
t=constant

n−1∑
µ=1

∂Jµ

∂xµ
dm−1x ,

which, using the Divergence Theorem, vanishes provided that the spatial components Jµ,
µ = 1, . . . , n− 1, of the Noether current decrease fast enough at spatial infinity.
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Appendix A. Extra problems

In this appendix we collect further problems and applications of the calculus of variations.
They are in the form of exercises.

A.1. Probability and maximum entropy. Let X be a random variable taking values in
the real line. The probability that X takes a value less than or equal to a given real number
x is obtained by integrating the probability density ρ:

P (X ≤ x) =

∫ x

−∞
ρ(y)dy .

Since X must take some value, we have that∫
R

ρ(x)dx = 1 .

In many problems one is interested in determining the probability density ρ, based on knowl-
edge of certain expectation values. For instance, suppose that we know that the variance of ρ
is given by σ2, for some σ ∈ R. In other words, we know that

σ2 =

∫
R

x2ρ(x)dx .

Which is the “least-biased” probability distribution ρ which satisfies this? The answer is
provided by a variational principle called the principle of maximum entropy. This principle
states that ρ is obtained by maximising the entropy

S[ρ] = −
∫
R

ρ(x) log ρ(x)dx ,

subject to the constraints∫
R

ρ(x)dx = 1 and σ2 =

∫
R

x2ρ(x)dx .

b Exercise 27 (Maximum entropy and the normal distribution). Prove that the solution to
the above variational problem is the normal distribution:

ρ(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

Now suppose that the random variable X takes non-negative values, and let ρ : [0,∞)→ R

be the corresponding probability density.

b Exercise 28. Prove that the probability density which maximises entropy subject to the con-
dition that the expectation value of X is µ, is the exponential distribution:

ρ(x) =
1

µ
exp

(
−x
µ

)
.
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A.2. Maximum entropy in statistical mechanics. The maximum entropy principle origi-
nates in the branch of Physics known as Statistical Mechanics. The aim of statistical mechanics
is to provide a microscopic explanation for thermodynamic phenomena. Given a physical sys-
tem consisting of a large number of randomly distributed particles (e.g., a gas) one would like
to explain thermodynamic properties of the system (e.g., pressure, temperature, heat content)
starting from the dynamics of the individual particles. When there are many particles, solv-
ing for the dynamics of each individual particle is not practical, and this is where statistical
mechanics steps in. Taking its cue from the theory of probability, it interprets thermodynamic
quantities as expectation values of certain functions relative to a probability density which has
to be determined. The principle of maximum entropy can be used to determine a probability
density subject to constraints involving the thermodynamic quantities.

As an example, let us consider the Maxwell velocity distribution of a gas. The probability
density is a function ρ : R3 → R, v 7→ ρ(v), where v ∈ R

3 is to be interpreted as the
velocity vector of a gas molecule. The probability density ρ can be used to determine the
probability that a gas molecule has velocity in a given subset of R3. The Maxwell probability
density is obtained by applying the principle of maximum entropy to ρ subject to the following
constraints: ∫

R3

ρ(v)d3v = 1∫
R3

viρ(v)d3v = 0 for i = 1, 2, 3∫
R3

1
2
‖v‖2ρ(v)d3v = E ,

where E is the internal energy.

b Exercise 29 (Maxwell distribution). Prove that the Maxwell probability density is given by

ρ(v) =

(
3

4πE

)3/2

exp

(
−3‖v‖2

4E

)
.

What is the formula for the Maxwell distribution of a d-dimensional gas?
Answer:

ρ(v) =

(
d

4πE

)d/2
exp

(
−d‖v‖

2

4E

)
.

A.3. Geodesics, harmonic maps and Killing vectors. Let us consider C2 curves x :
[0, 1] → R

n and a function g defined on R
n which assigns to every point in R

n an invertible
symmetric matrix with entries gij. Consider the following lagrangian

L(x, ẋ) = 1
2

n∑
i,j=1

gij(x)ẋiẋjdt . (10)

Z This lagrangian defines the one-dimensional sigma model.
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b Exercise 30. Prove that the Euler–Lagrange equations associated to this lagrangian are given
by the geodesic equation

ẍi +
n∑

j,k=1

Γijkẋ
j ẋk = 0 ,

where the Christoffel symbols Γijk are defined by

Γijk = 1
2

n∑
`=1

gi`
(
∂g`j
∂xk

+
∂gk`
∂xj

−
∂gjk
∂x`

)
,

where gij are the entries of the matrix inverse to g.

More generally, let D ⊂ R
m be a bounded set of Rm and let x : D → R

n be a C2 function.
Consider now the lagrangian

L(x,Dx) = 1
2

m∑
µ=1

n∑
i,j=1

gij(x)∂µx
i∂µx

jdt . (11)

Z Not surprisingly, this lagrangian defines the m-dimensional sigma model.

b Exercise 31. Prove that the Euler–Lagrange equations associated to this lagrangian are given
by the harmonic map equation

�xi +
m∑
µ=1

n∑
j,k=1

Γijk∂µx
j∂µx

k = 0 .

Now let us study symmetries of the lagrangian given by (10). Let ϕs : Rn → R
n be a one-

parameter family of diffeomorphisms of Rn, and let y(t, s) = ϕs(x(t)) be a one parameter of
C2 curves y : [0, 1]× R→ R

n, (t, s) 7→ y(t, s).

b Exercise 32. Prove that ϕs is a symmetry of the lagrangian (10) if the following equation
holds

n∑
i=1

(
gij
∂Ki

∂xk
+ gik

∂Ki

∂xj
+Ki∂gjk

∂xi

)
= 0 , (12)

where Ki are the components of the vector field K : Rn → R
n defined by

Ki(x) =
∂yi(t, s)

∂s

∣∣∣∣
s=0

.

Z Equation (12) is called Killing’s equation and K is said to be a Killing vector field.

According to Noether’s Theorem, there is a conserved charge associated to every Killing
vector.

b Exercise 33. Find the expression for the conserved charge associated to the Killing vector K
and prove directly (i.e., without recourse to Noether’s Theorem) that it is conserved provided
that the Euler–Lagrange equations are satisfied.
Answer: The Noether charge Q is given by

Q =

n∑
i,j=1

gij ẋ
iKj .
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The study of symmetries of the lagrangian given by (11) follows in the same way.

b Exercise 34. Fill in the details of the previous statement.

A.4. Geodesics on surfaces of revolution. In this section we will consider geodesic curves
on surfaces of revolution. Given a differentiable function f : R→ R defined on (some interval
of) the real line, one defines a surface Sf ⊂ R

3 parametrised as follows

(u, v) 7→ (x(u, v), y(u, v), z(u, v)) = (f(v) cosu, f(v) sinu, v) ,

where 0 ≤ u < 2π and v takes values in the domain of definition of f . The surface Sf is called
the surface of revolution with profile f . Examples of surfaces of revolution include the cylinder,
the cone and the sphere.

Z It is often convenient to let the “angle” u range over all of the real line, resulting in an infinitely redundant
parametrisation of Sf .

Let γ : [0, 1]→ Sf , t 7→ γ(t) be a curve on Sf . Equivalently we can think of it as a curve in
the parameter space t 7→ (u(t), v(t)), where γ(t) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))).

b Exercise 35. Show that this curve has arclength given by

I[u, v] =

∫ 1

0

√
(1 + f ′2)v̇2 + f2u̇2 dt ,

where ′ denotes the derivative with respect to v. Write down the associated Euler–Lagrange
equations.

By analogy with the sphere, we will call the image in Sf of a curve of constant u (resp. v)
a meridian (resp. parallel).

b Exercise 36. Show that all meridians are geodesic, and that a parallel v = v0 is geodesic if
and only if f ′(v0) = 0. Re-examine in this light the result of Exercise 9.

Let γ be a geodesic on the surface of revolution Sf . Suppose that the curve traced by γ on
Sf can be expressed in terms of a functional relation u = u(v) between the parameters of the
surface. The arclength functional then becomes

I[u] =

∫ v1

v0

√
1 + f ′2 + f 2u′2dv ,

where ′ again denotes the derivative with respect to v.

b Exercise 37. Derive the Euler–Lagrange equations associated to the above functional and
give an integral expression for u = u(v) in terms of f .
(Hint: Notice that the lagrangian does not depend on u, but only on u′, whence ∂L/∂u′ is
constant.)
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