Recall the setting: (M, w) courected symplectic manifold G convected lie group, G Q M a hawiltonian group action with (equivariant) moment map $\mu: M \longrightarrow g^*$ and co-moment map $\mu^*: g \Rightarrow CW$ Theorem (Marsden-Weistein '74) Under these conditions and if OEq is a negular value of M and the Gaction Mo is free and proper, M:= Mo/G is a smooth manifold with symplectic form $\tilde{\omega}$ satisfying $\pi^*\tilde{\omega} = i^*\omega$ for $\mu^{-1}(\omega) \subset M$ For M symplectic (more generally Poisson) $C^{\infty}(M)$ is a MPoisson algebra. Indeed, if $f \in C^{\infty}(M)$, then $\xi_{f} = \omega^{\#}(-df)$ and $[f,g] = \xi_{f}g$ $\Leftrightarrow t \in \omega = -df$ <7 × = w = - df Symplectic reduction can be inderstood as a gadget which starts from a Potson algebra (°(M) and produces a Poisson algebra (°(M). This gadget has a homological description first discovered in particulative Youg-Mills theory (playing - a crucial role in the proof of renormalisability) and goes by the name of BRST cohomology (Beachi, Povet, Stora & Tystin). If 0 is a negular value of μ , then $M_0 := \mu^{-1}(0)$ is a solomanifold of M and $C^{\infty}(M_{0}) \cong C^{\infty}(M)/I$, where $I = C^{\infty}(M) \cdot \mu^{*}(q)$ is the ideal of C^{oo}(M) constating of functions vanishing at Mo equivalently the ideal generated by the image of the comment map. Equivariance of the co-monvent map sup that I is a coisotropic ideal: [I,I]CI. Everything I say extends more or less straightforwardly to coisotropic Poisson reduction, but this is a working sewinar on moment maps and this nersion is perhaps the simplest to describe. Equivariance also implies that G N Mo and hence on Com (Mo). Since M=Mo/G we have that $(\mathcal{O}(\tilde{M}) \cong \mathcal{O}(M_{\circ})^{G} \cong (\mathcal{O}(M_{\circ})/T)^{G}$ and if G is connected then $\mathcal{O}^{\infty}(\tilde{M}) = (\mathcal{O}^{\infty}(M)/T)^{S}$. This is an isomorphism of anochative, commutative algebras, but (~(M) and (~(M) are Poisson.

A defense description of C[∞](M) makes this manifest.

Proposition (Suyaticki-Weinstein '83)
([∞](
$$\tilde{M}$$
) \cong N(I)/_I where N(I) = {f∈C[∞](M) [f,I]=I}
^IPrimer alg.
(More generally, for I⊂P a constroptic ideal of a Poisson algebra, the
Poisson reduction of I by I is the Poisson algebra N(I)/_I.)
In Sue's betwee (but for the C[∞] category) she discussed the case of M=T^{*}N
with the howithorian G action induced from a G action on N. In theat
case $\tilde{M} \cong T^*(N/G)$. Sue's talk was about the quantisation of hawiltonian
reduction. The basic ingredients are T⁶N→→ Diff(N) acting on C[∞](N),
and the composant map quantizes to μ^{e_1} Ng → Diff(N) and Sue wrote
the quantisation of $\tilde{M} = M/G$ as $(D^{e_1}(N)/_{Diff(N)}, \mu^{e_1}(D_0)^G)$ where Io
is the augmentation ideal of Ng.
In this seminar I with to describe another algebraic description of
haw it brian (more generally, Poisson) reduction suggesting a different (?) may to
quartice.
There are two stops to consolvoric reduction, neither of which is "Poisson"
() C[∞](M) \rightarrow C[∞](No) \cong C[∞](M)/_I $\stackrel{S}{=}$ C[∞](M)@A^{e_2} $\stackrel{S}{=}$...
where $Sf = 0$ and $SX = \Phi_X$ for $f \in C∞(M)$, $X \in G$.
Lemma For $0 \in g^*$ a regular value of μ , $H_S^{S} \cong \begin{bmatrix} C∞(M \circ) , K \in G \\ 0 \end{bmatrix}$, b > 0

(2) The parsage from C[∞](Mo) to C[∞](M) is passing to invariants H[°](g; C[∞](Mo)) ≅ C[∞](Mo)^q

where $H^{\circ}(q; C^{\infty}(M_{\circ}))$ is the Oth Chevalley-Eitenberg cohomology: $C^{\infty}(M_{\circ}) \xrightarrow{d} C^{\infty}(M_{\circ}) \otimes q^{*} \xrightarrow{d} C^{\infty}(M_{\circ}) \otimes \Lambda^{2}q^{*} \xrightarrow{d} \cdots$ where $(df)(X) = [\phi_{X}, f]$ and $(d\alpha)(X, Y) = -\alpha([X, Y])$

for f ∈ C^{oo}(Mo) and a ∈ g*.

The BRST couplex pots these two together, first into a dooble complex and then into the total couplex.

Notice that C[∞](M) is also a g-module and of course so is Nig, and that the Koszol complex is actually a complex of g-modules with S equivariant:

To show that
$$H^{\circ}(K') \cong C^{\circ}(\widetilde{M})$$
 as Poisson algebras, we make the following observation (this is the curcial aspect of BRST ?).
 $C^{\circ}(M)$ is a Poisson algebra
 $N(q \oplus q^{k})$ is a Poisson superalgebra with $[v, X] = a(X) = [X, A]$
 $f * a \in q^{k}$, $X \in q$
 $\int actually a graded Poisson superalgebra.
 $f * a \in q^{k}$, $X \in q$
 $\int actually a graded Poisson superalgebra.
 $f * a \in q^{k}$, $X \in q$
 $\int actually a graded Poisson superalgebra.
 $f * a \in q^{k}$, $X \in q$
 $f * a \in q^{k}$, $X \in q$
 $f * a \in q^{k}$, $X \in q$
 $f * a \in q^{k}$, $X \in q$
 $f * a \in q^{k}$, $X \in q$
 $f * a \in q^{k}$, $x \in q$
 $f * a \in q^{k}$, $x \in q$
 $f * a \in q^{k}$, $f = q$
 $f = q \in K^{1}$ such that $[Q, -] = D$
Therefore $H^{\circ}(K)$ is a graded Poisson superalgebra and
 $H^{\circ}(K) \cong C^{\circ}(M)$ is a Poisson isomorphism.
Proof the conduction of G is via "howological particulation theory"
in the general coiscotropic case (due to Stableff) bot for the
case of moment map reduction is very explicit : pick a basis X; for q
and canonical and basis Θ^{i} for q^{k} . Let $[X_{i}, y] = \sum_{k} C_{ij}^{*} X_{k}$. Then
 $Q = \sum_{k} \Theta^{i} \varphi_{k} - \frac{1}{2} \sum_{i,j \mid k} C_{ij}^{*} \Theta^{i} \Theta^{i} X_{k}$ — $\sum_{n=1}^{2} f \otimes i \Phi^{i} X_{k}$ = $\sum_{n=1}^{$$$$