Homological approach to hamiltonian reduction
(JUF, 3/4/2019)

Recall the setting: (M, $)$) connected symplectic manifold
G convected lie group, $G \curvearrowright M$ a haviltoniare group action with (equivariaut) moment map $\mu: M \longrightarrow 9^{*}$ and co-moment map $\mu^{*}: q \rightarrow C^{\circ}(M)$
Theorem (Marsden-Weistein '74)
Under these conditions and if $O \in q^{*}$ is a regular value of μ and the Gaction M_{0} is fee and proper, $M:=M_{0} / G$ is a smooth manifold with sypuplectic form $\widetilde{\omega}$ satisfying $\pi^{*} \tilde{\omega}=i^{*} \omega$ for

For M symplectic (onore generally Poisson) $C^{\infty}(M)$ is a

$$
\mu^{-1}(0) \stackrel{2}{\longrightarrow} M
$$

$$
\frac{\pi}{M}
$$

Poisson algebra. Indeed, if $f \in C^{\infty}(M)$, then $\xi_{f}=\omega^{\#}(-d f)$ and $[f, g]:=\xi_{f} g$

$$
\Leftrightarrow \tau_{\xi_{f}} \omega=-d f
$$

Symplectic reduction can be understood as a gadget which starts from a Poisson algebra $C^{\infty}(M)$ and produces a Poisson algebra $C^{\infty}(\tilde{M})$. This gadget has a homological description fist discovered in perturbative Yaug-Mils theory (playing a crucial sole in the proof of nenormalisability) and goes by the nave of BRST colomology (Becchi, Rovet, Stor \& Tyutiu).
If 0 is a regular value of μ, then $M_{0}:=\mu^{-1}(0)$ is a sobmanifold of M and $C^{\infty}\left(M_{0}\right) \cong C^{\infty}(M) / I$, where $I=C^{\infty}(M) \cdot \mu^{*}(g)$ is the ideal of $C^{\infty}(M)$ consisting of functions vanishing at M_{0}, equtralently the ideal generated by the image of the comoment mas. Equivariauce of the co-moment map sap that I is a coisotroric ideal: $[I, I] \subset I$.
Everything I say extends more or less straightforwardly to coisotropic Poisson reduction, but thin is a working sewinar on moment maps and this version is perhaps the simplest to describe.

Equivariauce also implies that $G \curvearrowright M_{0}$ and hence on $C^{\infty}\left(M_{0}\right)$. Since $\tilde{M}=M_{0} / G$ we have that $C^{\infty}(\tilde{M}) \cong C^{\infty}\left(M_{0}\right)^{G} \cong\left(C^{\infty}\left(M_{0}\right) / I\right)^{G}$ and $i l G$ is convected then $C^{\infty}(\tilde{M})=\left(C^{\infty}(M) / I\right)^{a}$. This is an isomorphism of anociative. commutative algebras, bot $C^{\infty}(M)$ aud $C^{\infty}(\bar{M})$ are Poisson. A different description of $C^{\infty}(\tilde{M})$ makes this manifest.

Proposition (Snyatichi-Weinstein '83)

$$
C^{\infty}(\tilde{M}) \cong N(I) / I \cong \text { where } N(I)=\left\{f \in C^{\infty}(M) \mid[f, I] \subset I\right\}
$$

(More generally, for ICP a coisotropic ideal of a Poisson algebra, the Poisson reduction of P by I is the Poisson algebra $N(I) / I$.)
In Sue's lecture (bot for the Cos category) she discussed the case of $M=T^{*} N$ with the hawiltoniau Gaction induced from a G action on N. he that case $\tilde{M} \cong T^{*}(N / G)$. Sue's talk was about the quantisation of hamiltonian reduction. The basic ingredients are $T^{*} N \leadsto \operatorname{Diff}(N)$ acting on $C^{\infty}(N)$, and the comment map quautises lo $\mu^{*}: U_{g} \longrightarrow \operatorname{Dff}(N)$ and Sue wrote is the augmentation ideal of $\mathrm{Uog}_{\mathrm{g}} . \quad\left(\mathrm{Diff}^{(N)} / D_{\mathrm{Iff}}(N) \cdot \mu^{*}\left(I_{0}\right)\right)^{G}$ where I_{0} In this seminar I wish to describe another algebraic description of haw iltomian (more generally, Poisson) reduction suggesting a different (?) way to quantise.
There are two steps to coisotropic reduction, nether of which is "Poisson"
(1) $\left.C^{\infty}(M) \longrightarrow C^{\infty}\left(M_{0}\right) \cong C^{\infty}(M) / I\right\}$ although the initial and final
(2) $\left.C^{\infty}(\tilde{M}) \cong C^{\infty}\left(M_{0}\right)^{9}\right\}$ points are Poisson algebras.
(1) admits a homological desuiption: the Koszol resolution

$$
C^{\infty}(M) \stackrel{\delta}{\leftarrow} C^{\infty}(M) \otimes g \stackrel{\delta}{\longleftarrow} C^{\infty}(M) \otimes \Lambda^{2} g \stackrel{\delta}{\leftarrow} \cdots
$$

where $\delta f=0$ and $\delta x=\phi_{X} \quad$ for $f \in C^{\infty}(M), X \in 9$
Lemma For $0 \in \mathcal{g}^{*}$ a regular value of $\mu, H_{\delta}^{b} \cong \begin{cases}C^{\infty}\left(M_{0}\right), & b=0 \\ 0, & b>0\end{cases}$
(2) The passage from $C^{\infty}\left(M_{0}\right)$ to $C^{\infty}(\vec{M})$ is passing to invariants

$$
H^{0}\left(9 ; C^{\infty}\left(M_{0}\right)\right) \cong C^{\infty}\left(M_{0}\right)^{9}
$$

where $H^{0}\left(9 ; C^{\infty}\left(M_{0}\right)\right)$ is the $0^{\text {th }}$ Chevalley-Eienberg colhomolosy:

$$
C^{\infty}\left(M_{0}\right) \xrightarrow{d} C^{\infty}\left(M_{0}\right) \otimes q^{*} \xrightarrow{d} C^{\infty}\left(M_{0}\right) \otimes \Lambda^{2} q^{*} \xrightarrow{d} \cdots
$$

where $(d f)(X)=\left[\phi_{x}, f\right]$ and $(d \alpha)(x, y)=-\alpha([x, y])$ for $f \in C^{\infty}\left(M_{0}\right)$ and $\alpha \in q^{*}$.

The BRST complex pots these two together, furs into a double couples and then into the total complex.

Notice that $C^{\infty}(M)$ is also a g-module ard of course so is N゙9, and that the Koszul complex is actually a complex of q-modules with δ equivariaut:

where $\delta \alpha=0$ for $\alpha \in g^{*}$ and $(d Y)(X)=[X, Y]$ for $Y \in 9$
So we have a double complex : $\quad C^{b, c}:=C^{\infty}(M) \otimes \Lambda^{b} g \otimes \Lambda^{c} g^{*}$ $\delta: C^{b, c} \longrightarrow C^{b-1, c}$ and $d: C^{b, c} \rightarrow C^{b, c+1}$
Define the total degree of $C^{b, c}$ to be $c-b$ ("ghost number") and define

$$
\begin{array}{ll}
K^{n}:=\bigoplus_{c-b=n} C^{b, c} \quad D=D^{\prime}+D^{\prime \prime}, D^{\prime}=d \& D^{\prime \prime}=(-1)^{c} \delta \\
& \therefore D: K^{n} \rightarrow K^{n+1}, D^{2}=0
\end{array}
$$

Theorem

$$
H^{n}\left(K^{0}\right) \cong H^{n}\left(9 ; C^{\infty}\left(M_{0}\right)\right)
$$

The proof follows from the acycliaty of the Koszol complex by 'tic-tac-toe'. eg: Let $\omega \in K^{n}, D \omega=0$.

Then $\omega=\omega_{0}+\omega_{1}+\omega_{2}+\cdots+\omega_{\text {top }}$
$D \omega=0$ becomes

$$
D^{\prime \prime} \omega_{0}=0
$$

and the isomorphism in the $D^{\prime} \omega_{0}=-D^{\prime \prime} \omega_{1}$ Theorem sends $[\omega] \in H^{n}\left(K^{0}\right)$ $D^{\prime} \omega_{1}=-D^{\prime \prime} \omega_{2}$
to $\left[\omega_{0}\right] \in H^{n}\left(9 ; C^{\infty}\left(M^{0}\right)\right)$
$D^{\prime} \omega_{\text {top }}=0$

Theorem $H^{n}\left(K^{\circ}\right) \cong H^{n}(g) \otimes C^{\infty}(\bar{M})$
In particular, $H^{0}\left(K^{\bullet}\right) \cong C^{\infty}(\tilde{M})$ not yet as Poisson algeloras!

To show that $H^{\circ}\left(K^{*}\right) \cong C^{\infty}(\tilde{M})$ as Poisson algeleras, we make the following observation (this is the crucial aspect of BRST P).
$C^{\infty}(M)$ is a Poisson algebra
$\Lambda^{\prime}\left(g \oplus q^{*}\right)$ is a Poisson eunaralgebra with $[\alpha, x]=\alpha(x)=[x, \alpha]$
T actually a graded Poisson superalgetera

$$
\text { for } \alpha \in g^{*}, x \in g
$$

\mathcal{L} by ghost number
$\therefore \quad C^{\infty}(M) \otimes N^{\prime}\left(q \oplus q^{*}\right)$ is a graded Poisson superalgebra.
Proposition
$\exists Q \in K^{1}$ such that $[Q,-]=D$
Therefore $H^{\prime}(K)$ is a graded Poisson superalgelara and
$H^{\circ}(K) \cong C^{\infty}(\tilde{M})$ is a Poisson isomorphism.
Proof. The consturction of Q is via "nowological perturbation theory" in the general coisotropie case (due to staskeff) bot for the cafe of moment map reduction is very explicit: pick a basis X_{i} for 9 and canonical dual basis θ^{i} for q^{*}. Let $\left[X_{i}, X_{j}\right]=\sum_{k} C_{i j}^{k} X_{k}$. Then

$$
Q=\sum_{i} \theta^{i} \phi_{X_{i}}-\frac{1}{2} \sum_{i, j, k} C_{i j}^{k} \theta^{i} \theta^{j} X_{k} \leftarrow \begin{aligned}
& \text { BRST quantisation } \\
& \text { consists in quantising } \\
& Q, \ldots
\end{aligned}
$$

Natural questions
(1) Is there a similar homological desuiption for other "reductions" beyond coisotropic Poisson reduction? eg: quasi-hawiltonian, contact, hyrerhäluler?
(2) Take $M=T^{*} N$ and the hawiltonian G-action induced from a G action on N. Then $\phi_{x}=\sum_{\tau_{\text {rel to a Barbour } x \text { chant }\left(q^{i}, P_{i}\right)} \xi_{x}^{a}(q) P_{a} \text { and can quantise } Q \text { : }}$
$C^{\infty}\left(T^{*} N\right) \leadsto D$ Pf (N) acting on $C^{\infty}(N) \quad$ So Q is promoted to $\Lambda\left(g \oplus Q^{*}\right) \leadsto C l\left(g \oplus g^{*}\right)$ acting on $\Lambda^{\prime} g^{*}$, say. $\}$ an operator acting on and if $Q^{2}=0$ again, we define the reduced Hilbert space as the colvonotogy and the observables as Q-invariant,... How does this compare with Sue's quantum hamiltonian reduction?

