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1. Introduction

This paper explores some rational Cherednik algebra representation theory and
its interaction with constructions in algebraic geometry with a symplectic flavour.
Although the rational Cherednik algebras were constructed as degenerations of
Cherednik’s double affine Hecke algebra and so have many links with the the-
ory developed there, see [18], it turns out that a connection with the theory of
symplectic resolutions, and particularly Hilbert schemes, has played a particularly
important role. Such a connection was already foreseen at the birth of the algebras,
and over the last decade the subject has developed significantly in this direction.
There have been constructions of symplectic resolutions via moduli spaces of rep-
resentations and localisation theorems from the categories of representations to
sheaves on quantisations of the resolutions. Since symplectic resolutions turn up
remarkably often in representation theory this in turn has led to the study of the
geometry and algebra of such resolutions in general. Here the Cherednik algebras
are key examples helping to form the subject. The goal of this brief survey is to
present a little of this.

We completely omit lots of interesting aspects of Cherednik algebras, including
realisations as Hecke algebras for double loop groups, as equivariant K-groups of
affine flag manifolds, as Hall algebras of elliptic curves and equivariant K-theory of
the Hilbert scheme. There are, however, a number of surveys on rational Cherednik
algebras where many more details can be found, [30], [25], [62], [42], [71], [28].

The structure of the article is as follows. We begin in Section 2 by defining
rational Cherednik algebras. In the third section we discuss symplectic singulari-
ties, representation theory at t = 0, and the existence of symplectic resolutions of
orbit singularities. In Section 4 we explain the KZ functor, induction and restric-
tion functors, and results on supports of representations. In the final section we
present a number of different approaches to localisation of the rational Cherednik
algebras of type A to the Hilbert scheme of points on the plane.

0The author is grateful for the full financial support of EPSRC grant EP/007632.
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2. Definitions

Rational Cherednik algebras are defined for any finite complex reflection group W .

Definition 1. A complex reflection group W is a group acting on a finite dimen-
sional complex vector space h that is generated by complex reflections: non-trivial
elements that fix a complex hyperplane in h pointwise. We say W is irreducible if
h is an irreducible representation of W .

Such groups, which include the finite Coxeter groups, play a major role in
Lie theory and invariant theory, as well as appearing in many other fields. The
irreducible complex reflection groups were classified in [65]: one infinite family
appears, labelled G(d, e, n) where d, e, n are positive integers such that e divides d
(the Weyl groups of type An−1, Bn and Dn are G(1, 1, n), G(2, 1, n) and G(2, 2, n)
respectively); there are 34 exceptional cases.

Given a complex reflection group W , let S denote its set of complex reflections,
and for s ∈ S let αs ∈ h∗ have kernel the hyperplane fixed by s. We set

k = C[t, cs : s ∈ S, cs = cs′ if s and s′ are conjugate in W ].

Definition 2 (Etingof-Ginzburg, [27]). The rational Cherednik algebra Hk(W ) is
the k-subalgebra of Endk(k[h]) generated by the following operators:

• the action of w ∈W

• multiplication by each p ∈ h∗ ⊂ k[h]

• for each y ∈ h, Ty := t∂y +
∑
s∈S csαs(y)α−1

s (s− 1), where ∂y is the k-linear
derivative on k[h] in the direction of y.

The operators Ty are called Dunkl operators (these were introduced by Dunkl
for Coxeter groups [22]; for complex reflection groups see [24]). Remarkably, the
Dunkl operators commute with one another – the subalgebra of Hk(W ) they gen-
erate is isomorphic to k[h∗]. This is part of the following “PBW theorem”.

Theorem 2.1 ([27]). There is a k-module isomorphism

Hk(W ) ∼−→ k[h]⊗k k[W ]⊗k k[h∗]

where each tensorand is a subalgebra of Hk(W ).

Specialisation k −→ C to parameters t ∈ C and c ∈ C[S]adW leads to the
rational Cherednik algebra Ht,c(W ), a C-algebra. The PBW theorem says that
the Ht,c(W ) are deformations of H0,0(W ) ∼= C[h× h∗]oW , the coordinate ring of
the quotient stack [(h× h∗)/W ].

Definition 3. Let e = |W |−1
∑
w∈W w ∈ CW , the trivial idempotent. The spher-

ical Cherednik algebra Uk(W ) is the k-algebra eHk(W )e.
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Specialisation this time leads to the family of C-algebras Ut,c(W ). These are
deformations of U0,0(W ) = e(C[h × h∗] oW )e ∼= C[h × h∗]W , the coordinate ring
of the orbit space (h× h∗)/W .

If λ ∈ C∗ then Ht,c(W ) ∼= Hλt,λc(W ) and Ut,c(W ) ∼= Uλt,λc(W ) so we can
assume that either t = 0 or t = 1. There is now a dichotomy: U0,c(W ) is commu-
tative, but U1,c(W ) has a trivial centre; similarly, H0,c(W ) is a finite module over
its centre, but the centre of H1,c(W ) is trivial. See [27] and [16].

Remarks 1. If W = Z2, the cyclic group of order 2, then U1,c(W ) ∼= U(sl2)/(Ω−
λ(c)) where Ω is the Casimir and λ(c) a weight depending quadratically on c.
More generally, for W = Zd = G(d, 1, 1) the spherical algebras were studied in the
context of generalisations of the above Lie theoretic quotient and also as (commu-
tative and noncommutative) deformations of the kleinian singularity of type Ad−1.
For these W the algebras Ht,c(W ) were then introduced by Crawley-Boevey and
Holland in [19] where they also studied the other kleinian singularities.

3. Resolutions and deformations

The varieties (h× h∗)/W appearing above have symplectic singularities, a class of
examples with rich algebraic, geometric and representation theoretic properties.

Definition 4. (Beauville, [1]) Let X be a normal affine variety over C that admits
a symplectic 2-form ω on its smooth locus sm(X). We say that X has symplectic
singularities if for any resolution of singularities π : X̃ → X the 2-form induced
on π−1(sm(X)) extends to a regular 2-form on X̃. If, in addition, there is a
contracting C∗-action on X with unique fixed point and such that λ · ω = λnω for
some positive integer n and for all λ ∈ C∗, then we say that X has contracting
symplectic singularities.

The paper [1] shows that (h×h∗)/W has contracting symplectic singularities: its
smooth locus is the set of orbits of cardinality |W | and the symplectic form on them
is inherited from the natural W -equivariant symplectic form on h× h∗; dilation on
the vector space h×h∗ produces the C∗-action. There are many other examples of
contracting symplectic singularities in representation theory: N (g), the nullcone
of reductive Lie algebra g; the normalisation of the closure of a nilpotent orbit in
N (g); Slodowy’s transverse slices to nilpotent orbits in N (g); hypertoric varieties;
affine Nakajima quiver varieties.

A systematic study of symplectic singularities in [48] shows they have a canon-
ical stratification by finitely many symplectic leaves.

Definition 5. SupposeX has symplectic singularities. A resolution π : X̃ −→ X is
called a symplectic resolution if the extension of the 2-form to X̃ is non-degenerate.

We have that π : X̃ −→ X is a symplectic resolution if and only if it is a crepant
resolution, see [33]. Thus, since the canonical bundle of X̃ is obviously trivial in
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this case, the bounded derived category of coherent sheaves on X̃ are of signifi-
cant interest in algebraic geometry, see [49] for important results in this direction.
Moreover, the Springer resolution π : T ∗(G/B) −→ N (g), resolutions of kleinian
singularities, and many Nakajima quiver varieties are symplectic resolutions, so
the notion pervades geometric representation theory.

If X has symplectic singularities then ω defines a Poisson bracket on OX . A
Poisson deformation of X is simultaneously a deformation of the variety X and
its bracket. There is a satisfying theory of such Poisson deformations: build-
ing on work of Ginzburg-Kaledin, [38], and using the minimal model programme,
Namikawa proved

Theorem 3.1 ([59]). Let X have contracting symplectic singularities. The follow-
ing are equivalent:

1. X has a smooth Poisson deformation,

2. X has a symplectic projective resolution.

The Grothendieck-Springer resolution illustrates this theorem:

T ∗(G/B)� _

��

π // N (g)� _

��

// 0_

��
G×B b // g δ // g//G

Here T ∗(G/B) is a symplectic resolution of N (g), whilst the generic fibre of δ
is G/T , a Poisson smoothing of N (g). This also illustrates that the resolution
deforms as well, a general fact for symplectic resolutions of contracting symplectic
singularities.

The Grothendieck-Springer resolution is the source of a lot of remarkable rep-
resentation theory; it is hoped that there is an equally rich picture around other
symplectic singularities. Rational Cherednik algebras have proved very useful in
understanding this: they are related to (h× h∗)/W in the way that the enveloping
algebra of g is related to N (g), but there are several new phenomena which lead
to many interesting and sometimes surprising developments.

Recall that the spherical algebra U0,c(W ) is commutative for all choices of c. In
fact U0,c(W ) ∼= Z(H0,c(W )), the centre of H0,c(W ), [27]. Let Xc(W ) = Spec(U0,c).
These varieties are Poisson deformations of X0(W ) = (h × h∗)/W , the Poisson
structure on U0,c(W ) being inherited from the commutator on the flat family
C[t] −→ Ut,c(W ): {F |t=0, G|t=0} = (t−1[F,G])|t=0 for F,G ∈ Ut,c(W ). Thus the
rational Cherednik algebras provide a family of Poisson deformations over C[S]adW

as well as a coherent sheafRc(W ) on Xc(W ), corresponding to the U0,c(W )-module
eH0,c(W ), whose endomorphism ring is H0,c(W ).

If L is an irreducible representation of H0,c(W ), then Z(H0,c(W )) acts by scalars
on it, and we have a surjective map

χc : Irrep(H0,c(W )) −→ Xc(W ).
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This is finite-to-one and from general principles of noncommutative algebra, we
can use χ to study the singularities of Xc(W ).

The prototype of such a principle is the theorem that the “Azumaya locus equals
the smooth locus”. Since H0,c(W ) is a finite module over its centre, there is an
upper bound on the complex dimension of an irreducible H0,c(W )-representation;
the Azumaya locus is by definition the set of maximal dimensional irreducible
representations. It transpires that χ is one-to-one precisely on this locus, and that
its image is the smooth locus of Xc(W ), [27]. Over this locus, Rc(W ) is actually a
vector bundle of rank |W |, the maximal dimension of an irreducible, and we then
deduce that over this locus H0,c(W ) is a matrix ring over Osm(Xc(W )).

Each Xc(W ) has symplectic singularities and so is stratified by finitely many
symplectic leaves. Thanks to [16] the irreducible representation theory of H0,c(W )
is constant along each leaf; elegant work of Losev, [53], and of Bellamy, [5], reduces
the problem of studying a general leaf to a leaf of dimension 0, i.e. a point.

Remarks 2. There are general theorems on algebras that are finite modules over
their centres that imply the Azumaya result mentioned here, [51], [15], [67]. Com-
mon to all these results is that the Azumaya locus should be relatively large (e.g. of
codimension two) in the spectrum of the centre. Symplectic-like structures usually
ensure this, since symplectic leaves are always even dimensional. One sees this in
many Lie theoretic examples: the result holds for enveloping algebras of reductive
Lie algebras in positive characteristic because of the symplectic structure on coad-
joint orbits; it fails for affine Hecke algebras because there is no non-degenerate
enough Poisson structure on their centre. Similarly, passing from an arbitrary leaf
to a point by considering transverse slices is a normal tactic. For instance, Premet’s
work on Lie algebras in positive characteristic, [61], shows that along each coad-
joint orbit the representation theory is equivalent to that of the associated finite
W -algebra, which is attached to the transverse slice of the orbit, and in which the
orbit shrinks to a point.

There is an embedding of R := C[h]W ⊗ C[h∗]W into U0,c(W ), and hence a
(finite) morphism Υc : Xc(W ) → h/W × h∗/W . If a point x ∈ Xc is a symplectic
leaf, then it must belong to the fibre Υ−1

c (0). By studying this fibre and applying
Theorem 3.1 one can prove the following.

Theorem 3.2 ([39], [38], [3]). For some (and hence for generic) c ∈ C[S]ad W the
variety Xc(W ) is smooth if and only if W = G(d, 1, n) or W = G4. It follows that
(h × h∗)/W admits a symplectic projective resolution if and only if W is one of
these groups.

For W = G(d, 1, n) we obtain a symplectic resolution as follows, [72]. Let
Y = C2/Zd be the kleinian singularity of type Ad−1 and let Ỹ be its minimal
resolution. Then

π : Hilbn(Ỹ )→ Symn(Ỹ )→ Symn(Y ) = (h× h∗)/W (1)

is a symplectic projective resolution. This is a quiver variety; variation of GIT
gives several other resolutions.
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The group W = G4 is an exceptional complex reflection group in the list of
[65]. Two symplectic resolutions of (h × h∗)/W , a four dimensional variety, are
given in [52]. It remains to see whether these can be adequately described by some
quiver variety construction.

The reduction of Losev and Bellamy shows that it is crucial to understand
Υ−1
c (0) and the corresponding representations of H0,c(W ). The points in Υ−1

c (0)
are equivalent to blocks in the restricted rational Cherednik algebra H0,c(W )⊗RC.
The irreducible representations of this algebra are labelled by the irreducible rep-
resentations of W . It follows that the fibres of χc above Υ−1

c (0) induce a partition
of Irrep(W ) which depends crucially on the parameter c ∈ C[S]adW . It is conjec-
tured, [44] and [54], that this partition essentially agrees with the decomposition
of the cyclotomic Hecke algebra of W (specialised according to the choice of c)
into blocks – these are called Rouquier families. Furthermore the dimension of the
scheme theoretic fibre of Υ−1

c (0) at this point should be the dimension of the cor-
responding Hecke algebra block. The first claim of this conjecture is confirmed for
W = G(d, e, n), [44] and [4], and the second claim holds whenever the given point
of Υ−1

c (0) is smooth in Xc(W ). There is, however, no conceptual understanding of
why this should be so; in particular in the Weyl group case, this suggests a link
between the singularities of the spaces Xc(W ) and Kazhdan-Lusztig theory.

4. Representations and Hecke algebras

The algebra H1,c(W ) is sensitive to the choice of parameter c ∈ C[S]adW : for
most choices H1,c(W ) is simple; for infinitely many values of c, however, there are
finite dimensional representations, and hence two-sided ideals of finite codimension.
Thus we need a robust category of representations to study. Motivated by Theorem
2.1 we have the following definition, [24].

Definition 6. Oc(W ) is the full subcategory of finitely generated H1,c(W )-modules
that are locally nilpotent for the action of h ⊂ C[h∗] ⊂ H1,c(W ).

This an analogue of the BGG category O for semisimple Lie algebras. There
are related versions of Oc(W ) where h acts by non-zero eigenvalues, but [10] shows
that such categories are equivalent to Oc(W ′) for some subgroup W ′ of W .

There is an isomorphism H1,0(W ) ∼= D(h) o W , the ring of W -equivariant
differential operators on h. Hence O0(W ) corresponds to W -equivariant holo-
nomic D(h)-modules whose support equals h, in other words to finite rank W -
equivariant vector bundles on h with trivial connection. This category is equivalent
to the category of finite dimensional C[W ]-modules: V ∈ C[W ] -mod 7→ ∆0(V ) :=
H1,0(W )⊗C[h]oW V ∼= C[h]⊗ V .

In general, we can define standard modules ∆c(V ) ∈ Oc(W ), but they may
no longer be the only objects in the category. If V ∈ Irrep(W ) then ∆c(V ) does,
however, have a unique irreducible quotient, Lc(V ), and Oc(W ) becomes a highest
weight category with these standard and irreducible objects. It is an important
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open problem to determine the composition multiplicities [∆c(V ) : Lc(V ′)] for
V, V ′ ∈ Irrep(W ).

Definition 2 shows that H1,c(W )[α−1
s : s ∈ S] ∼= D(hreg) o W where hreg =

{z ∈ h : αs(z) 6= 0 for all s ∈ S}, the subset of h on which W acts freely. Hence,
on restricting to hreg, we may pass from Oc(W ) to a category of W -equivariant
bundles on hreg with flat connections, which in turn corresponds to some category
of representations of the fundamental group π1(hreg /W ), a generalised Artin braid
group. These representations satisfy certain Hecke-type relations.

Theorem 4.1 ([37]). There is an exact and essentially surjective functor

KZc : Oc(W ) −→ Hq(W ) -mod

where Hq(W ) denotes the (topological) Hecke algebra of W at parameter q =
exp(2πic) (see [14] for a definition).

This functor has many good properties. In particular it generally restricts to
an equivalence on Oc(W )∆, the subcategory of objects that have a filtration by
standard objects. Remarkably, in [63], Rouquier shows that the data of such a
functor on a highest weight category together with a compatible partial order on
its simple objects determines the highest weight category up to equivalence.

For W = Sn, there is a Schur functor Sq(n) -mod −→ Hq(Sn) -mod from the
q-Schur algebra, Sq(n), which has analogous properties to KZc, see for instance
[21]. Thus Rouquier’s result above implies that there is an equivalence of cat-
egories between Oc(Sn) and Sq(n) -mod which sends standard modules to Weyl
modules (or dual Weyl modules if c is a negative number). In particular, since the
decomposition numbers are known for the q-Schur algebra, [69], we can describe
the composition multiplicities [∆c(V ) : Lc(V ′)] in this case in terms of parabolic
Kazhdan-Lusztig polynomials of type Â.

For W = G(d, 1, n) and for c ∈ C[S]adW in a certain cone, one can show
similarly that Oc(W ) is Morita equivalent to a cyclotomic q-Schur algebra. A
conjecture of Yvonne, [73], describes [∆c(V ) : Lc(V ′)] in terms of a canonical basis
of a level d Fock space, introduced in [68]. This conjecture is generalised to more
general c ∈ C[S]adW in [63].

Remarks 3. There is another approach to the decomposition numbers of Oc(Sn)
by Suzuki, [66]. Using conformal coinvariants, he constructs a functor from the
Kazhdan-Lusztig category of modules for the affine Lie algebra of type Â at nega-
tive level to Oc(Sn). This produces an appropriate equivalence which again yields
the above decomposition numbers. This functor is generalised to the G(d, 1, n)
case in [70] using conformal coinvariants twisted by a cyclic group action, but the
corresponding decomposition numbers do not yet follow.

KZc is not generally a category equivalence since the passage from h to hreg

kills any object of Oc(W ) supported on h\hreg, the union of reflecting hyperplanes
of reflections in W . The support of an irreducible object is always a W -orbit of an
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intersection of reflecting hyperplanes, [35], so has, up to conjugacy, a parabolic sub-
group W ′ attached to it by taking the stabiliser of a generic point in the intersection
of these hyperplanes. Despite there usually being no non-trivial homomorphism
from H1,c(W ′) to H1,c(W ), Bezrukavnikov-Etingof have proved the following the-
orem by completing the rational Cherednik algebras at a point in the intersection
of the relevant hyperplanes.

Theorem 4.2 ([10]). Let x ∈ h with stabiliser Wx. There are induction and
restriction functors

Oc(W )
Resx --

Oc(Wx)
Indx

ll

Up to isomorphism, these functors are independent of the choice of x ∈ hWx
reg :=

{z ∈ h : Wz = Wx}.

The isomorphism of functors is not canonical, and so the functor Resx has
monodromy on hWx

reg . If x ∈ hreg so that Wx = 1, the monodromy of the functor
Resx : Oc(W ) −→ Oc(Wx) = C -mod recovers KZc. These functors are crucial to
understanding Oc(W ) and restriction to non-generic points preserves information
killed by KZc. In [64], Shan has refined these functors to produce a crystal structure
on the irreducible objects in Oc(G(d, 1, n))-modules (where n varies); this crystal
is isomorphic to the one attached to the canonical basis of the level d Fock space
above.

In studying induction and restriction it is important to know the support of
representations. Etingof uses the Macdonald-Mehta integral for Weyl groups in [26]
to give a beautiful description of the support of Lc(triv), generalising the work of
[70] which describes when Lc(triv) is finite dimensional, i.e. is supported at 0 ∈ h.
In the case c is a positive constant function, his result states that x ∈ h is in the
support of Lc(triv) if and only if PW /PWx

(e2πic) 6= 0, where PW (q) =
∑
w∈W q`(w)

is the Poincaré polynomial of W .

The induction and restriction functors help to determine the set of aspherical
values of W , [10].

Definition 7. The parameter c ∈ C[S]adW is an aspherical value of W if eLc(V ) =
0 for some V ∈ Irrep(W ); such an Lc(V ) is called an aspherical representation. We
let Σ(W ) denote the set of aspherical values of W .

It can be shown that c /∈ Σ(W ) if and only if the functor H1,c(W ) -mod −→
U1,c(W ) -mod,M 7→ eM is an equivalence. Thus for c /∈ Σ(W ), U1,c(W ) inherits
many favourable properties from H1,c(W ).

Using the restriction functors, one can show that Σ(W ) is the union of the
Σ(W ′) for proper parabolic subgroups W ′ < W and of the set of finite dimensional
aspherical representations of H1,c(W ). For W = Sn, this observation allows an in-
ductive determination of the aspherical values, [10]. Remarkably, Bezrukavnikov
and Etingof note that the number of aspherical representations matches phenom-
ena in the (C∗)2-equivariant small quantum cohomology of Hilbn(C2). Namely,
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multiplication in the quantum cohomology ring can be encoded by the so-called
quantum differential equation which defines a flat connection on C for the trivial
bundle associated with H∗(Hilbn(C2),C), and this connection has regular singu-
larities at q = − exp(2πic) for c ∈ Σ(Sn), [60]. Furthermore, the rank of the
residue of the connection at each of these points equals the number of aspherical
representations! For W = G(d, 1, n), the set Σ(W ) has been calculated by Dunkl
and Griffeth, [23]; the quantum differential equation for Hilbn(Ỹ ) of (1) has been
described by Maulik and Oblomkov, [55]. A matching of data is again expected.

These surprising coincidences are part of a large programme involving sev-
eral people which aims to study the quantum cohomology, and particularly the
quantum differential equation, of symplectic resolutions of contracting symplectic
singularities, [13]. Amongst other things, intriguing connections with geometric
representation theory and with derived categories of symplectic resolutions are
predicted, and representations of rational Cherednik algebras have an important
role.

5. Reduction and localisation

The spherical subalgebras U1,c(W ) share many properties with the quotients of
enveloping algebras of reductive Lie algebras Uλ(g) at a central character λ. They
are filtered with associated graded ring being the coordinate ring of a contracting
symplectic singularity: (h × h∗)/W in the Cherednik case; N (g) in the Lie case.
This already produces a lot of structure including noetherianity, the Auslander-
Gorenstein property, and a bound on the number of finite dimensional irreducible
representations, [29]. Furthermore, it is only at very special values of the parameter
where global dimension is infinite: at the aspherical values in the Cherednik case;
at values such as −ρ in the Lie case.

In the Lie case, a direct connection between Uλ(g) and the Springer resolu-
tion π : T ∗(G/B) −→ N (g) is made by the localisation theorem of Beilinson-
Bernstein, [2]: this produces an equivalence between Uλ(g)-modules and twisted
DG/B-modules. Combined with the Riemann-Hilbert correspondence, this relates
BGG category O(g) with perverse sheaves on G/B, and hence with Kazhdan-
Lusztig theory for the Hecke algebra of the Weyl group of g.

We would like to produce an analogue of this for U1,c(W ) whenever there is
a symplectic resolution π : X̃ −→ (h × h∗)/W . This has been carried out for
W = Sn with X̃ = Hilbn(C2), first in [45] algebraically, then in [34] and [50] using
differential operators, then microlocal differential operators. (See [11] for similar
results in positive characteristic.) Although these contructions are at their heart
similar, and all have admitted various generalisations, the approaches in [34] and
[50] connect directly to the mainstream of geometric representation theory. An
interesting point is that, unlike T ∗(G/B), Hilbn(C2) is not the cotangent bundle of
a variety. This leads to a new point of view on localisation theorems which should
be applicable to any symplectic resolution of a contracting symplectic singularity.
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The first approach to quantising the Hilbert scheme follows Haiman’s work on
the n! theorem, [47]. Here Hilbn(C2) is constructed as the blow-up of Symn(C2)
along the big diagonal, that is at the ideal (C[h×h∗]sign)2 where C[h×h∗]sign denotes
the polynomials that transform according to the sign representation under the Sn
action. Thus Coh Hilbn(C2) is equivalent to a category of graded modules for the
associated Rees ring. The first part of the following theorem asserts that there is
a noncommutative version of this category.

Theorem 5.1 ([45]). Assume that c ≮ 0. There exists a category Xc of coherent
sheaves on a noncommutative variety such that

1. Xc is a deformation of Coh Hilbn(C2),

2. There is an equivalence U1,c(Sn) -mod ∼−→ Xc.

The category Xc is a category of graded modules over an algebra which de-
forms the above Rees ring, replacing C[h × h∗]Sn with U1,c(Sn) and C[h × h∗]sign

with eH1,c(Sn)e− where e− ∈ C[Sn] is the idempotent corresponding to the sign
representation. By an important result of Heckman-Opdam, see [9], eH1,c(Sn)e−
is a (U1,c(Sn),U1,c+1(Sn))-bimodule and one can show it induces an equivalence
U1,c(Sn) -mod ∼−→ U1,c+1(Sn) -mod whenever c and c+1 are not aspherical values.
Thus the glueing data in the category Xc produces Morita equivalences, giving the
second claim.

The advantage of this construction is that one can apply Haiman’s work di-
rectly. This leads in [46] to the calculation of the characteristic cycle of any object
from Oc(Sn), i.e. the support cycles in Hilbn(C2) of the degeneration of the cor-
responding objects in Xc; one can also show that the image in Xc of the U1,c(Sn)-
module eH1,c(Sn) is a deformation of the Procesi bundle P on Hilbn(C2). In fact,
since c is not aspherical eH1,c(Sn) induces an equivalence between U1,c(Sn) -mod
and H1,c(Sn) -mod and is thus a projective U1,c(Sn)-module carrying the regular
representation of Sn. These properties are analogous to crucial properties of P:
it is an enduring hope that the representation theory of H1,c(Sn) may be used to
give a new proof of the n! theorem.

Remarks 4. A similar algebraic analysis is carried out for kleinian singularities,
[12] and [57], and for Cherednik algebras with W = G(d, 1, n), [41], but in this
general case the geometry of the associated varieties generalising Hilbn(C2) is not
yet completely understood. There is also a localisation theorem for Harish-Chandra
bimodules of finite W -algebras in this spirit, [36].

Hilbn(C2) can be realised as a quiver variety, [58]. Let V be an n-dimensional
vector space, and let GL(V ) act naturally on Y = End(V )×V . Set X = T ∗Y and
let µX : X → gl(V )∗ be the moment map. Nakajima proved that the hamiltonian
reduction µ−1

X (0)//GL(V ) is isomorphic to Symn(C2), and that there is an open
set Xs ⊂ X of “stable” representations on which GL(V ) acts freely such that
µ−1
X (0)s/GL(V ) is isomorphic to Hilbn(C2) where µ−1

X (0)s := µ−1
X (0) ∩Xs.

Differentiating the action of GL(V ) on Y produces a homomorphism τX :
U(gl(V )) −→ D(Y ), a noncommutative analogue of µX . If ν : gl(V ) −→ C is
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a character, let Iν be the left ideal of U(gl(V )) generated by A + ν(A) for all
A ∈ gl(V ) and let (DY , GL(V ))ν -mod denote the category of GL(V )-equivariant
DY -modules whose derived action of gl(V ) equals the action defined through τX+ν.

Theorem 5.2 ([34]). Given a character ν : gl(V ) −→ C, there is a parameter
cν ∈ C such that

1. (D(Y )/D(Y )τX(Iν))GL(V ) ∼= U1,cν (Sn).

2. There is a functor H : (DY , GL(V ))ν -mod −→ U1,cν (Sn) -mod defined by
H(M) = MGL(V ) which is exact and essentially surjective.

The first part of this theorem quantises the quiver theoretic description of
Symn(C2); the second part allows one to study U1,c(Sn)-modules via D-modules
on Y .

To realise the Hilbert scheme instead, we must pass to the stable locus Xs.
But DY -modules are local on the base Y rather than on X = T ∗Y , and Xs is an
open set defined on X. Thus we are led to a microlocal point of view, considering
sheaves of algebras on X rather than on Y . There is a standard quantisation of
the symplectic manifold T ∗Cn via the Moyal product, producing a sheaf of C[[h]]-
algebras. Denote by W(T ∗Cn) the sheaf we get from this by inverting h. It is a
sheaf of C((h))-algebras.

Definition 8 ([50]). A quantised differential operator algebra on a smooth sym-
plectic variety X is a sheaf of C((h))-algebras, WX , such that for each x ∈ X there
is a neighbourhood U of x and a symplectic morphism φ : U −→ T ∗Cn such that
WX |U ∼= φ∗W(T ∗Cn).

Going back to our specific case let U = Xs, a symplectic manifold with a proper
and free symplecticGL(V )-action and orbit map p : µ−1

X (0)s −→ µ−1
X (0)s/GL(V ) ∼=

Hilbn(C2). There is a noncommutative moment map: τU : gl(V ) −→ WU . Kashi-
wara and Rouquier, [50], show that

WHilb,ν := p∗EndW(WU/WUτU (Iν))GL(V )

is a quantised differential operator algebra on Hilbn(C2) and that there is an equiv-
alence of categories

(WXs , GL(V ))ν -mod −→WHilb,ν -mod

for appropriate categories of W-modules.
The categories above are C((h))-linear and thus cannot be D(Y )-modules or

U1,c(Sn)-modules. To remedy this, extend the good C∗-actions that arise from
the contracting action on Symn(C2) to the quantised differential operator alge-
bras by letting h be an eigenvector of appropriate weight. Then categories of
C∗-equivariant W-modules are equivalent, under taking fixed points, to C-linear
categories: for instance (W(T ∗Cn),C∗) -mod ∼→ D(Cn) -mod for appropriate C∗-
actions. This produces an equivalence

(WXs , GL(V )× C∗)ν -mod −→ (WHilb,ν ,C∗) -mod,
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the quantisation of the quiver theoretic description of Hilbn(C2). Kashiwara and
Rouquier then prove the following elegant Beilinson-Bernstein style theorem.

Theorem 5.3 ([50]). For a character ν : gl(V ) −→ C such that cν ≥ 0, the global
sections functor induces an equivalence

(WHilb,ν ,C∗) -mod −→ U1,cν (Sn) -mod .

With the approaches of [34] and of [50] one can begin a D-module or microlocal
study of the representation theory of U1,c(Sn) or H1,c(Sn). This has been carried
out (in a slightly different context) in [31] and [32]. Recently, McGerty, [56], gives
a new construction for W = Sn of the KZ-functor, new versions of induction and
restriction functors, and recovers the characteristic cycle computations of objects
in Oc(Sn), all via microlocal fundamental groups and classical D-module theory
from geometric representation theory.

Remarks 5. The above analysis should apply to other symplectic resolutions of
contracting symplectic singularities that are realised by hamiltonian reduction.
For finite W -algebras see [20] and for hypertoric varieties see [6] and the works of
Braden, Licata, Proudfoot and Webster. For general quiver varieties one of the
most intriguing aspects is to discover the algebras appearing as global sections,
replacing the spherical Cherednik algebras in the Hilbert scheme case. It is still
challenging to find the correct tools and concepts to unlock the properties of the
categories of W-modules.

Remarks 6. Back in the world of rational Cherednik algebras, it seems that the
case W = G(d, 1, n) will be understood via D-modules or microlocalisation. But,
with the exception of G4, all other complex reflection groups have no corresponding
symplectic resolution; how to study these examples geometrically is unclear at the
moment. That these cases have wider significance is clear from applications to
integrable systems, D-module theory and the representation theory of complex
reflection groups, see e.g. [8] and [7], and applications to algebraic combinatorics,
see e.g. [40] and [43].
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