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Introduction

Apart from confirming conjectures in algebraic combinatorics, integrable systems and real al-
gebraic geometry, having an interesting representation theory, and connecting with noncommu-
tative, quiver, Hall and Hopf algebras, all symplectic reflection algebras have given us is an
algebraic approach to resolutions of symplectic quotient singularities. They are new structures
in representation theory which access parts of “double” algebra and “double” geometry, but build
largely on simple Lie algebras, preprojective algebras and deformation theory. Although many
basic questions remain unanswered, their surprisingly diverse applications to a number of topics
encourages more detailed investigation by more people from more fields.

This article is a discursive introduction to symplectic reflection algebras. It attempts to ex-
plain, from a mostly algebraic point of view, the why rather than the how. The how can be found
in every paper about symplectic reflection algebras, beginning with the groundbreaking, deep,
beautiful, long paper of Etingof and Ginzburg that introduced symplectic reflection algebras,
[51]: if you really want to learn about symplectic reflection algebras in detail there is no more
inspiring place to start.

Here we will introduce symplectic reflection algebras as deformations of orbit space singular-
ities, echoing Crawley-Boevey and Holland’s study of deformed preprojective algebras as defor-
mations of kleinian singularities, and we will use this point of view as motivation for many of the
constructions and results we present. These include the classification of symplectic singularities
admitting symplectic resolutions; category O, the KZ-functor, highest weight covers and finite
Hecke algebras; derived equivalences for some quiver varieties; the construction of quantisations
of Hilbert schemes of points on the plane (by differential operators related to quiver varieties, by
noncommutative algebraic geometry, and by microlocalisation) and associated geometric inter-
pretations of representations of symplectic reflection algebras.

Several surveys on aspects of symplectic reflection algebras already exist, but they have
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different perspectives: Brown’s on ring-theoretic aspects, [23], Etingof and Strickland’s on quasi-
invariants, integrable systems and differential operators, [55], Rouquier’s on rational Chered-
nik algebra representation theory, [125], Etingof’s lectures on deformation theory, [47], and on
Calogero–Moser systems, [48], as well as Cherednik’s book on the dahaddy of symplectic reflec-
tion algebras, [30]. In particular, since we deal with symplectic reflection algebras rather than
just rational Cherednik algebras, quivers will play a more prominent rôle here than in the other
surveys.

There are many exciting parts of the theory that we will not touch. These include positive
characteristic, [16], [102], [24]; continuous Hecke algebras, [49], [115]; generalisations of Schur–
Weyl duality, [84], [85], [86]; connections with affine Lie algebras, [2]; Cherednik algebras for
varieties with group actions, [46]; relations with Hopf algebras, [4]; real algebraic geometry,
[75]; symmetric function theory, [9]; and most of all double affine Hecke algebras, [30] and the
references in it and [134], (with a new relation to Hall algebras – [29] and [128]). To compensate
for these omissions the bibliography includes references to all the papers involving symplectic
reflection algebras that I know about. As well as dealing with the omitted topics, these fill in
the missing how.

The article is divided into the following sections.

(1) Symplectic group actions.

(2) Symplectic reflection algebras.

(3) Dimension 2.

(4) Basic properties.

(5) Specific case: rational Cherednik algebras I (t 6= 0).

(6) Specific case: rational Cherednik algebras II (t = 0).

(7) Specific case: quivers and hamiltonian reduction.

(8) Very specific case: the symmetric group and Hilbert schemes.

(9) Problems.

The content of the article is as follows. The first section introduces symplectic singularities,
a class of varieties which motivate the introduction of symplectic reflection algebras. Section 2
presents a little background from deformation theory which is then used to construct symplectic
reflection algebras. (If you want, it is possible to skip all of this background and start reading
from the definition of a symplectic reflection algebra at 2.12.) Section 3 recalls work on deformed
preprojective algebras associated to affine Dynkin quivers: these are the two-dimensional case
of symplectic reflection algebras. Section 4 explains a few properties which hold for all sym-
plectic reflection algebras: these mostly concern the case t = 0 where the centre of the algebra
is very large. Following this, the theory splits into two cases depending on the group defining
the symplectic reflection algebra. In the first case the group is a complex reflection group and
symplectic reflection algebras are called rational Cherednik algebras: in Section 5 we take t 6= 0
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and introduce category O and the KZ-functor, and describe some finite dimensional representa-
tions; in Section 6 we let t = 0 and make connections to symplectic resolutions and conjecturally
to Rouquier families. In Section 7 we discuss the second case: the group is related to an affine
Dynkin quiver and we present relatively conclusive results on representation theory for t = 0
and then relate symplectic reflection algebras to differential operators on quivers for t = 1. It
turns out that the two cases above are not disjoint – they both include Sn – and so we are able
to prove more by combining both approaches. We explain this in Section 8 where we relate
representations of the symplectic reflection algebra associated to Sn to sheaves on the Hilbert
scheme of points on the plane. We close with a list of problems.

1. Symplectic group actions

We introduce a particular type of orbit singularity associated to symplectic group actions on
complex vector spaces. It will turn out that this type of singularity will have a wonderfully rich
structure with connections to many parts of representation theory and beyond. We ask a number
of questions about these singularities which mirror classical theorems on smooth orbit spaces;
these will motivate in part the introduction of symplectic reflection algebras.

1.1. Orbit spaces. Let (G, V ) be the data of a finite group G acting linearly on a finite
dimensional complex vector space V over C. In what follows the kernel of the action will be
irrelevant, so we will always assume that

G acts on V faithfully.

Let C[V ] denote the algebra of regular functions on V : it is isomorphic to the symmetric algebra
Sym(V ∗). This algebra inherits an action of G via (gf)(v) = f(g−1

v) for all f ∈ C[V ], g ∈ G, v ∈
V . We define the invariant ring to be

C[V ]G = {f ∈ C[V ] : gf = f for all g ∈ G}.

This is a finitely generated C-algebra which is by definition the ring of regular functions on
the orbit space V/G. Under the correspondence between commutative algebra and algebraic
geometry, the inclusion C[V ]G ↪→ C[V ] corresponds to the orbit map ρ : V −→ V/G which sends
an element v ∈ V to its G-orbit.

1.2.. V/G is an irreducible affine variety and we would like to know about its geometric properties.

1.3.. We begin with smoothness. Recall that (G, V ) is generated by (complex) reflections if there
exists a generating set S ⊂ G such that for every s ∈ S we have Fix(s) = {v ∈ V : sv = v} has
codimension 1 in V . In other words if we were to diagonalise the action of s on V there would
be exactly one non-trivial eigenvalue. The following theorem is a jewel in the crown of invariant
theory with a dazzling array of applications across many fields.

Theorem (Shephard-Todd, see [8, Theorem 7.2.1]). The following are equivalent:

(1) the orbit space V/G is smooth;
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(2) the orbit map ρ : V −→ V/G is flat;

(3) the invariant ring C[V ]G is a polynomial algebra (on dim V generators);

(4) (G, V ) is generated by complex reflections.

It is helpful to provide a gloss on the flatness in (b). Since we are assuming that G acts
faithfully on V , the generic G-orbit has |G| elements and so the generic fibre of ρ consists of |G|
points. By semi-continuity |G| then provides a lower bound for the vector space dimension of
any (scheme-theoretic) fibre of ρ, and flatness simply means that all the fibres of ρ actually have
this dimension. The fibre of the zero orbit is particularly interesting. By definition its coordinate
ring is the coinvariant algebra of (G, V )

C[V ]coG def=
C[V ]
〈C[V ]G+〉

(1)

where 〈C[V ]G+〉 denotes the ideal of C[V ] generated by all G-invariant regular functions with
zero constant term. This special fibre inherits structure from V : an action of the group G;
a grading, or equivalently a C∗-action. Flatness and the rigidity of G-modules implies that
C[V ]coG carries the regular representation of G since the generic fibre does: the combinatorics
of this space, and also of C[V ]G, is remarkable; we mention that if (G, V ) is the Weyl group of a
semisimple Lie algebra acting on the Cartan subalgebra then the coinvariant ring is isomorphic
as a G-equivariant graded algebra to the cohomology ring of the corresponding flag manifold
with complex coefficients.

1.4.. When studying singularities of V/G, Part (3) of the above theorem shows that we might as
well as assume that G contains no complex reflections, since we can replace G by the quotient
G/H where H is the (obviously normal) subgroup of G generated by complex reflections: C[V ]G =
(C[V ]H)G/H and C[V ]H is a polynomial ring. We will say that G is small if it contains no complex
reflections.

1.5.. In general there are only a few results about the singularities of V/G: they are normal,
[8, Proposition 1.1.1], (so smooth in codimension 1) and by Hochster–Eagon they are Cohen-
Macaulay, [8, Theorem 4.3.6], (so a vector bundle over an affine space). Finally,

Theorem (Watanabe, see [8, Theorem 4.6.2]). Suppose that G is small. Then C[V ]G has finite
injective dimension (i.e. is Gorenstein) if and only if G ≤ SL(V ).

1.6. Symplectic singularities and resolutions. We now move attention to a special class
of pairs (G, V ) in order to say something more explicit. Henceforth we will assume that V is a
complex symplectic vector space with symplectic form ωV such that G preserves ωV , meaning
that

ωV (v1, v2) = ωV (gv1,
gv2) for all g ∈ G, v1, v2 ∈ V.

A good example to keep in mind is to begin with (G, h) and then produce V = h ⊕ h∗ with
ωV ((x1, f1), (x2, f2)) = f2(x1)− f1(x2). Here G acts on naturally on V with G ≤ Sp(V, ω). This
is a special case of a geometric construction: start with a smooth G-variety X; then G acts on
the cotangent bundle T ∗X which has a canonical symplectic structure
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1.7.. We will refer to the data (G, V, ωV ) as a symplectic triple. In what follows we can assume
without loss of generality that (G, V, ωV ) is an indecomposable symplectic triple which means that
there is no G-equivariant splitting V = V1⊕V2 with ω(V1, V2) = 0. Clearly any symplectic triple
is a direct sum of indecomposable triples.

1.8.. Observe that if (G, V, ωV ) is a symplectic triple then G is a small group, for G ≤ Sp(V ) ≤
SL(V ) but by definition any reflection has non-trivial determinant. Furthermore for any g ∈ G we
can make a 〈g〉-equivariant splitting V = Fix(g)⊕ Fix(g) and then see that ω(Fix(g),Fix(g)) = 0.
It follows that ω restricts to a non-degenerate form on both Fix(g) and Fix(g) and so Fix(g) must
have codimension at least two in V if g 6= 1. Now set

Vreg
def= V \

⋃
g 6=1

Fix(g),

a G-equivariant open subset of V of codimension at least 2 which inherits a G-equivariant complex
symplectic form from V . Since (G, V ) is not a complex reflection group, the orbit space V/G
is singular: however G acts freely on Vreg and we see that Vreg/G is (V/G)sm, the smooth locus
of V/G. Since the symplectic form on Vreg was G-equivariant we can push it down to Vreg/G to
induce a symplectic form on (V/G)sm which we denote by ω(V/G)sm

. This leads to a key definition.

Definition. A symplectic resolution of V/G is a resolution of singularities π : X −→ V/G such
that there exists a complex symplectic form ωX on X for which the isomorphism

π|π−1((V/G)sm) : π−1((V/G)sm) −→ (V/G)sm

is a symplectic isomorphism, i.e. π∗(ω(V/G)sm
) equals the restriction of ωX to the open set

π−1((V/G)sm) ⊂ X.

There are several useful comments to make around this definition.

• In [5] Beauville introduced the weaker notion of a symplectic singularity: by definition Y is
a symplectic singularity if the smooth locus Ysm ⊆ Y carries a symplectic form ω and that
for some (thus any) resolution of singularities π : X −→ Y , the pull-back π∗(ω) defined on
π−1(Ysm) ⊆ X extends to a (possibly degenerate) 2-form on all of X. [5, Proposition 2.4]
shows that any V/G as above is a symplectic singularity. There are other very interesting
affine examples coming from closures of nilpotent orbits of simple Lie algebras which have
been studied extensively by Fu, [58], and have beautiful representation theory associated
to them: an example is the Springer resolution of the nullcone of a simple Lie algebra
π : T ∗B −→ N . For a survey see [97].

• It is not true that any V/G admits a symplectic resolution: that classification of such (G, V )
is (almost) complete thanks to the representation theory of symplectic reflection algebras.

• When they exist, symplectic resolutions of V/G need not be unique. It is conjectured,
however, that there should be only finitely many non-isomorphic symplectic resolutions of
any given symplectic variety, [60, Conjecture 1].

• A theorem of Fu, Kaledin and Namikawa – see the survey [59, Proposition 1.6] – shows
that π : X −→ V/G is a symplectic resolution if and only if it is a crepant resolution, i.e.
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if and only if π∗KV/G
∼= KX , where KV/G and KX denote the canonical bundles of V/G

and X respectively. Note that KV/G is trivial since V/G is Gorenstein by Theorem 1.5. So
π is crepant if and only if KX is trivial, in other words if and only if X is a Calabi-Yau
variety. One direction of this equivalence is clear since if X is symplectic with form ωX

then ∧top/2ωX trivialises KX . Crepant resolutions and Calabi-Yau varieties are important
concepts in algebraic geometry and mathematical physics. However, much of the focus has
been in three dimensions – the examples which we discuss here are not three dimensional
since the symplectic structure implies that V/G is even dimensional.

1.9.. Motivated by Theorem 1.3 and the above discussion we ask the following questions for
indecomposable symplectic triples (G, V, ωV ).

Question. When does V/G admit a symplectic resolution? What obstructions are there?

Question. How does the coinvariant ring C[V ]coG behave?

Question. Is there interesting representation theory attached to V/G and its resolutions?

Question. Are there interesting combinatorics attached to V/G?

To some extent these questions have been part of the motivation for the research in symplectic
reflection algebras and they will play that rôle here too. It turns out, however, that symplectic
reflection algebras are not bound to the world of symplectic singularities: as we will see there
are many other uses.

1.10. Toy example. We will consider the example throughout the survey: G = µ2 acting
on V = C ⊕ C∗ by multiplication by −1 with ωV be the standard symplectic form. Letting
C[V ] = C[x, y] we see that C[V ]G = C[x2, xy, y2] = C[A,B, C]/(AC − B2), the quadric cone.
This has an isolated singularity at the origin, i.e. at the zero orbit, which can be resolved by
blowing up there. The resulting resolution π : T ∗P1 −→ V/G collapses the zero fibre of T ∗P1 to
a point: it is a symplectic resolution where T ∗P1 has its canonical symplectic structure. There
is an almost endless amount of interesting representation theory attached to this.

1.11. Algebra. It is easy to explain why the restriction to symplectic triples (G, V, ωV ) is of
interest from the algebraic point of view. The non-degeneracy of ωVreg/G allows us to identify
T ∗(Vreg/G) and T (Vreg/G) and hence to identify k-forms with k-vectors. Thus ωVreg/G corresponds
to some 2-vector Θ ∈ ∧2T (Vreg/G). Since V/G is normal and Vreg/G has codimension 2 in V/G
this 2-vector can be extended to V/G by Hartog’s theorem; we continue to call it Θ. This
encodes the data of a Poisson bracket on C[V ]G via {f1, f2} = Θ(df1, df2): the Jacobi identity is
equivalent to the fact that dωVreg/G = 0. (There is another more down-to-earth description of this
2-vector. The symplectic form on V induces a Poisson bracket on C[V ] as follows. Let v1, . . . , vn

be a basis of V and let x1, . . . , xn be the dual basis, so that C[V ] = C[x1, . . . , xn]. Then

{f, g} =
∑

1≤i,j≤n

∂f

∂xi

∂g

∂xj
ωV (vi, vj).

Since ω is G-invariant the bracket restricts to C[V ]G and this is the same as the one above
described by means of Θ.)
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So whenever we have a symplectic triple (V,G, ωV ) we have an induced Poisson bracket on
C[V ]G. Poisson brackets are the residue of deformations of C[V ]G, and so we are immediately
lead to noncommutative algebras deforming C[V ]G which we hope will help us understand the
finer structure of the orbit space V/G.

2. Symplectic reflection algebras

In this chapter, after discussing a little relevant deformation theory, we introduce symplectic
reflection algebras.

2.1. Generalities on deformations. Throughout this section k will denote a semisimple ar-
tinian C-algebra and A a k–algebra, i.e. a k–bimodule with a k–bimodule mapping A⊗kA −→ A.

Remark. This is an unusual definition, but it’s here for a serious reason. We are going to study
two types of deformations – formal and graded. While formal deformations only take place in an
infinitesimal neighbourhood of the algebra, graded deformations take place along the k-affine line.
So although k is a semisimple algebra, and so has trivial Hochschild cohomology and therefore
no formal deformations, it is not true that it has no global deformations. We want to avoid this
happening: when we deform A we won’t want to deform k. To ensure this means using the above
definition of a k–algebra.

2.2. Formal deformations. Recall that a formal deformation of A is a k[[~]]-bimodule map
? : A[[~]] × A[[~]] −→ A[[~]] that makes A[[~]] a k[[~]]–algebra with ~ central, and that deforms
the multiplication on A in the sense that a ? b ≡ ab mod ~A[[~]] for all a, b ∈ A. Similarly, an ith
level deformation of A is the same as above, replacing k[[~]] with the truncated polynomial ring
k[~]/(~i+1). A first level deformation of A is also called an infinitesimal deformation of A.

Let J be the group of k[[~]]–bimodule automorphisms g of A[[~]] such that g(u) ≡ u mod ~A[[~]]
for all u ∈ A[[~]]. Two formal deformations ? and ?′ are said to be equivalent if there is an element
g ∈ J such that g(u ? v) = g(u) ?′ g(v) for all u, v ∈ A[[~]].

2.3.. In a deformation we can write the product of two elements a, b ∈ A as

a ? b = ab + B1(a, b)~ + B2(a, b)~2 + · · ·+ Bi(a, b)~i + · · ·

for bimodule mappings Bi : A ⊗ A −→ A, and these mappings determine the multiplication ?.
If we let H•(A,A) denote the Hochschild cohomology of A then it is an elementary exercise to
check the following.

• The set of isomorphism classes of infinitesimal deformations of A canonically identifies with
H2(A,A).

• Given Ai, an ith level deformation of A, the obstruction for its continuation to the (i+1)–st
level lies in H3(A,A).

• Let Ai be as above. Then the set of isomorphism classes of continuations of Ai to the
(i + 1)–st level is an H2(A,A)–homogeneous space.
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In particular, if H3(A,A) = 0 then any infinitesimal deformation on extends to a formal
deformation of A.

2.4. Poisson brackets. If we assume that A is a commutative k-algebra then there is a Poisson
bracket associated to any deformation: for a, b ∈ A we define

{a, b} def=
(
~−1(a ? b− b ? a)

)
|~=0

. (2)

Since A is commutative a ? b− b ? a ∈ ~A[[~]], so this definition does make sense. Of course, this
Poisson bracket may be trivial, for instance if B1(a, b) = 0 for all a, b ∈ A. In this case we can at-
tempt to modify the definition by defining m = min{i : there exist x, y ∈ A with Bi(x, y) 6= Bi(y, x)}
(if this exists) and then setting {a, b} def= (~−m(a ? b− b ? a))|t=0

for all a, b ∈ A. If the above
minimum does not exist we set m = ∞ and we simply take the trivial bracket. In this guise,
the Poisson bracket on A is a residue of the noncommutativity of the deformation (A[[~]], ?); in
particular (A[[~]], ?) is a commutative deformation if and only if the Poisson bracket is trivial.

2.5. Graded deformations. Suppose that A is an N-graded algebra A = ⊕j≥0Aj . A graded
deformation of A is a k[~]–bimodule map

? : A[~]×A[~] −→ A[~]

that makes A[~] an N-graded k[~]–algebra where deg ~ = 1. We can write the product of two
elements a, b ∈ A as

a ? b = ab + B1(a, b)~ + B2(a, b)~2 + · · ·+ Bi(a, b)~i + · · ·

for bimodule mappings Bi : A ⊗ A −→ A of degree −i and these mappings determine the
multiplication ?. Isomorphisms of graded k[~]–algebras give rise to equivalent deformations.

Remark. It makes perfect sense to deal with k[~]-deformations rather than k[[~]]–deformations
since any graded k[[~]]-deformation of A actually comes from a k[~]–deformation. For if we
take u, v ∈ A[~] ⊂ A[[~]] then we can write u =

∑n
i=0 ui~i and v =

∑n
i=0 vi~i for some large

enough n and for some ui, vi ∈ A. Now we can find a positive integer m such for all i we have
ui, vi ∈ ⊕m

j=0Aj . Since the formal deformation of A is graded and the degree of Bl is −l we see
that Bl(ui, vj) = 0 for all l > 2m. Therefore u ? v ∈ A[~] and so (A[~], ?) is a subalgebra of
(A[[~]], ?). The advantage of graded deformations is that we can specialise ~ to any value, i.e.
the deformation is defined over A1

k rather some formal neighbourhood of zero.

2.6.. If A is a graded algebra then we can construct graded Hochschild cohomology groups
in the category of graded A-bimodules and these groups are themselves graded Ĥ•(A,A) =⊕

j≥0 Ĥ•
j (A,A). The same argument as in the ungraded case then shows the following.

• The set of isomorphism classes of infinitesimal graded deformations of A canonically iden-
tifies with Ĥ2

−1(A,A).

• Given Ai, an ith level deformation of A, the obstruction for its continuation to the (i+1)–st
level lies in Ĥ3

−i−1(A,A).

• Let Ai be as in (2). Then the set of isomorphism classes of continuations of Ai to the
(i + 1)–st level is an Ĥ2

−i−1(A,A)–homogeneous space.
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2.7. Koszul deformation principle. Koszul algebras are important for many reasons: here
we will exploit the fact that they have relatively easy deformation theory, [20].

Definition. A graded k–algebra A is Koszul if k considered as a left A–module by k = A/A>0 has
a graded projective resolution · · · −→ P 2 −→ P 1 −→ P 0 −→ k −→ 0 such that P i is generated
by its component of degree i (i.e. P i = AP i

i ).

The key example for us will be A = C[V ]oG, the smash product of C[V ] and G, considered
as a k = CG-algebra. As a vector space C[V ] o G is isomorphic to C[V ] ⊗C CG and both C[V ]
and CG are C-subalgebras of C[V ] o G, but the multiplication between C[V ] and CG is twisted
to take account of the action of G on V , namely g · p = gp⊗ g for any p ∈ C[V ] and g ∈ G. The
grading on C[V ] o G is given by putting G in degree 0 and V ∗ ⊂ C[V ] in degree 1. To see that
C[V ] o G is Koszul we use the obvious generalisation of the Koszul resolution for C[V ]

· · · −→ C[V ]⊗C ∧pV ∗ ⊗C CG −→ · · · −→ C[V ]⊗C ∧1V ∗ ⊗C CG −→ C[V ]⊗C CG −→ CG −→ 0,

where G acts on each term diagonally from the left.

2.8.. The critical lemma is the following.

Lemma. Let A be a Koszul k-algebra. Then for all p < −q we have Ĥp
q (A,A) = 0.

The proof of this is quite straightforward. Normally one uses the bar resolution to calculate
Hochschild cohomology, but in this situation it is possible to cook a smaller complex from the
given projective resolution of k which can also be used. Now the restrictions on the gradings in
the Koszul complex translate to the stated vanishing of cohomology.

Thanks to our discussion on deformation theory, this means that quadratic Koszul k-algebras
should have a controllable deformation theory.

2.9. Graded and filtered algebras. The key example of a Koszul k-algebra C[V ] o G is a
particular case of the following general construction. Let W be a k–bimodule and Tk(W ) the
tensor algebra of W over k. Let P ⊆ T≤2

k (W ) = k ⊕W ⊕W ⊗W and let J(P ) denote the
two–sided ideal of Tk(W ) generated by P . The algebra Q(W,P ) = Tk(W )/J(P ) is called a
nonhomogeneous quadratic algebra. If R ⊆ W ⊗W then Q(W,R) is called a quadratic algebra.
Note that quadratic algebras are graded with Q(W,R)m = W⊗m/(J(R) ∩W⊗m).

To get C[V ] o G = Q(W,R) take k = CG, W = V ∗ ⊗ CG with G acting diagonally on the
left and by right multiplication on the right, and R to be the k-span of the elements (x⊗C 1)⊗
(y ⊗C g)− (y ⊗C 1)⊗ (x⊗C g) ∈W ⊗k W with x, y ∈ V ∗ and g ∈ G.

2.10.. Suppose that B = Q(W,P ) is a nonhomogeneous quadratic algebra. Then there is a
quadratic algebra canonically associated to B. To define it let π : k⊕W ⊕W ⊗W −→W ⊗W be
the projection map and set R = π(P ): we associate A = Q(W,R). We will say that B is a PBW
deformation of A if there exists a graded deformation Ã of A such that Ã1

def= Ã/(~− 1)Ã = B.
There is another useful way to interpret a PBW deformation. While the algebra B is not

usually graded, it is filtered. This means that there is an ascending chain of k–bimodules

0 = F−1B ⊆ F 0B ⊆ F 1B ⊆ F 2B ⊆ · · · ⊆ F iB ⊆ · · · ⊆ B
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where F iB consists of the image of elements of TkV of degree less than or equal to i. Note that
F iBF jB ⊆ F i+jB and k ⊆ F 0B. Now set griB

def= F iB/F i−1B and let grB = ⊕i≥0gr iB. This
is naturally a k–algebra if we define multiplication as follows: given a = f + F i−1B ∈ griB and
b = g + F j−1B ∈ gr jB; then ab = fg + F i+j−1B ∈ gr i+jB. This new algebra is called the
associated graded algebra of B. Now by construction grB is generated over k by the image of
W . Thus the universal property of TkW ensures a surjective homomorphism θ : TkW −→ grB.
Furthermore, if r ∈ R then there exists p ∈ P such that r + T≤1

k W = p + T≤1
k W , from which it

follows that θ(r) = p + F 1B = 0. Hence there is a surjective homomorphism

θ : A = Q(W,R) −→ grB = grQ(W,P ).

This is an isomorphism if and only if B is a PBW deformation.

Theorem ([20]). Let A = Q(W,R) be a Koszul algebra with W a free k–module (on the left and
on the right) and assume we are given α : R −→W and β : R −→ k. Set P = {r + α(r) + β(r) :
r ∈ R} ⊆ T≤2

k W so that π(P ) = R. Then θ : A −→ grB = grQ(W,P ) is an isomorphism if and
only if the following three conditions are satisfied (where the domain of each of the mappings is
(R⊗W ) ∩ (W ⊗R)):

(1) α⊗ id− id⊗ α has image in R;

(2) α ◦ (α⊗ id− id⊗ α) = id⊗ β − β ⊗ id;

(3) β ◦ (α⊗ id− id⊗ α) = 0.

2.11. Symplectic reflection algebras. At last we are in position to introduce symplectic
reflection algebras. Our goal earlier was to construct deformations of C[V ]G where (G, V, ωV )
is an indecomposable symplectic triple. This is difficult to do, however, because we have little
explicit understanding of the invariant ring C[V ]G except in some special cases. Instead our tactic
will be to consider C[V ]G as the centre of the smash product C[V ] o G, then to deform C[V ] o G
– which we can manage well because it is a Koszul CG-algebra –, and finally to check that
C[V ]G has deformed nicely too. Symplectic reflection algebras are actually then deformations of
C[V ] o G; they will, however, have subalgebras deforming C[V ]G.

2.12.. Since C[V ]oG is a Koszul k-algebra of the form Q(W,R) it makes sense to speak of PBW
deformations of C[V ] o G. The key theorem–definition in the subject is this.

Theorem ([51, Theorem 1.3]). Let (G, V, ωV ) be an indecomposable symplectic triple. Then the
PBW deformations of C[V ] o G = Sym(V ∗) o G are precisely the algebras Hκ

def= TC(V ∗) o
G/〈x⊗ y − y ⊗ x− κ(x, y) : x, y ∈ V ∗〉 where κ : V ∗ ⊗ V ∗ −→ CG is an alternating form on V ∗

of the form
κ(x, y) = tωV ∗(x, y)− 2

∑
s∈S

c(s)ωs(x, y)s.

Here ωV ∗ is the symplectic form on V ∗ corresponding to ωV under the identification of V and
V ∗ induced by ωV ; S is the set of symplectic reflections of (G, V, ωV ), that is S def= {s ∈ G :
codimV Fix(s) = 2}; t ∈ C and c ∈ C[S]ad G is a class function on S; ωs is the restriction of ωV

to (id−s)(V ) whose radical is ker(id−s).
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Proof. Thanks to the Koszul deformation principle, this is now a straightforward check of Condi-
tions (1)-(3) of Theorem 2.10. The details are given in [51], and also (in a more general context)
in [124].

Remark. For general pairs (G, V ) a description of PBW deformations of C[V ]oG was originially
given by Drinfel’d, [44]. In the symplectic case this was rediscovered by Etingof and Ginzburg
as above, and Drinfeld’s general case was described in detail by Ram–Shepler, [124]. In this
generality these algebras are sometimes called graded Hecke algebras because, when G is a Weyl
group acting on its reflection representation, there are connections with graded affine Hecke
algebras which are important in the representation theory of Lie groups and beyond, [106].

2.13.. Let’s record the official definition of a symplectic reflection algebra.

Definition. Given the data of an indecomposable symplectic triple (G, V, ωV ) and t ∈ C, c ∈
C[S]ad G as in Theorem 2.12, we write the corresponding PBW deformation of C[V ] o G as Ht,c

and call it a symplectic reflection algebra.

If it’s necessary to specify the group, we will write Ht,c(G).
So, by construction, Ht,c is generated by V ∗ and G and we have a filtration on Ht,c with

F 0 = CG, F 1 = V ⊕ CG and F i = (F 1)i such that there is a CG-algebra isomorphism

C[V ] o G
∼−→ grHt,c. (3)

In other words there is a left CG-module isomorphism Ht,c
∼−→ C[V ] ⊗ CG: this is called the

PBW isomorphism. Note that H0,0 = C[V ] o G.

2.14. Toy example. For G = µ2 acting on V = C2 there is a unique symplectic reflection,
namely s = −1 ∈ µ2 and ωs = ωV ∗ since (id−s)(V ) = V . Thus the symplectic reflection algebra
Ht,c(µ2) depends on two parameters t, c ∈ C and is the quotient of C〈x, y〉o G by the relation

yx− xy = t− 2cs. (4)

This relation allows us to put all elements of Ht,c(µ2) into normal form and we find a basis
{xiyj , xiyjs : i, j ≥ 0}.

2.15. Spherical subalgebra. The algebra C[V ] o G is noncommutative since if f ∈ C[V ] and
g ∈ G we have g·f = gf ·g. Since G acts faithfully on V we have Z(C[V ]oG) = C[V ]G ⊆ C[V ]oG.

Now C[V ]oG contains another subalgebra which is isomorphic to C[V ]G. Let e = |G|−1
∑

g∈G g ∈
CG be the trivial idempotent. The algebra e(C[V ] o G)e is a subalgebra of C[V ] o G (with iden-
tity element e) and there is an isomorphism C[V ]G ∼−→ e(C[V ] o G)e given by f 7→ fe for any
f ∈ C[V ]G. Since e ∈ CG ⊆ Ht,c by the PBW theorem, this inspires the following definition.

Definition. The subalgebra eHt,ce of Ht,c is called the spherical subalgebra of Ht,c. For the rest
of the survey we will denote it by Ut,c.

Since Ut,c is a subspace of Ht,c it inherits a filtration which is defined by F i(Ut,c) = Ut,c ∩
F i(Ht,c). It’s straightforward to see that (3) then implies

C[V ]G ∼= e(C[V ] o G)e ∼−→ gr eHt,ce. (5)

11



So the spherical subalgebras provide a good, i.e. flat, family of deformations of the coordinate
ring of the symplectic singularity V/G, as required.

It is the insight of Etingof and Ginzburg, which actually goes back at least to Crawley-Boevey
and Holland, to study deformations of C[V ]oG instead of C[V ]G. Indeed we may hope to study
the symplectic reflection algebras in order to understand better the G-equivariant geometry of V
since the category of C[V ] o G-modules is equivalent to the category of G-equivariant coherent
sheaves on V .

2.16. Toy example. In the example of 2.14 e = 1
2 (1 + s) and Ut,c(µ2) is generated as a C-

algebra by h = − 1
2e(xy + yx)e, e def= 1

2ex2e and f def= 1
2ey2e. There are relations

[e, f ] = th, [h, e] = −2te, [h, f ] = 2tf and ef = (2c− h/2)(t/2− c− h/2).

So if t = 0 then Ut,c(µ2) is commutative, whilst if t = 1 Ut,c(µ2) is a central quotient of the
enveloping algebra of sl(2, C).

2.17. Symplectic reflection groups. We end this section with a brief reality check. The
explicit form of the deformation κ appearing in Theorem 2.12 shows that the symplectic reflection
algebras really only rely on the subgroup H ≤ G generated by the set S of symplectic reflections.
Before symplectic reflection algebras were introduced, Verbitsky had seen this geometrically.

Theorem ([141, Theorem 3.2]). Let (G, V, ωV ) be an indecomposable symplectic triple. If V/G
admits a symplectic resolution then G is a symplectic reflection group.

This theorem should be considered as a partial analogue of the Theorem 1.3: it gives a
necessary condition for the existence of a symplectic resolution, but, as we will see, this is not a
sufficient condition.

2.18.. We will assume for the rest of these notes that

G is generated by symplectic reflections.

We call such groups symplectic reflection groups.
There are two straightforward examples of symplectic reflection groups.

(1) Complex reflections. Let G ≤ GL(h) be a complex reflection group. Set V = h ⊕ h∗

with its canonical symplectic form and with G acting diagonally. Then G ≤ GL(V ) is a
symplectic reflection group. (We have doubled-up everything here, so since G was generated
by elements fixing hyperplanes in the action on h the same elements become symplectic
reflections in the action on h⊕ h∗.)

(2) Wreath products. Let Γ ≤ SL(2, C) = Sp(2, C) be finite: such groups are called kleinian
subgroups and they preserve the canonical symplectic structure on C2. Set

V = C2 ⊕ C2 ⊕ · · · ⊕ C2︸ ︷︷ ︸
n summands

with the symplectic form induced from that on C2 and let G = Γn o Sn act in the obvious
way on V . In this action G is generated by symplectic reflections.

12



There is a little overlap in these two families. If we take Γ to be the cyclic subgroup of
SL(2, C) generated by diag(exp(2π

√
−1/`), exp(−2π

√
−1/`)) where ` is some positive integer,

then the action of G on C2 restricts to the subspace C × {0} ⊂ C2 and so we can restrict the
action of G = Γn o Sn to the corresponding lagrangian subspace h

def= (C × {0})n. The action
of G on h is generated by complex reflections: in this guise the group G is a complex reflection
group, called G(`, 1, n), and we find the overlap between (1) and (2) above.

The good news is that indecomposable symplectic reflection groups were classified by Huffmann–
Wales, [95], see also Cohen, [37], and Guralnick–Saxl, [87]. Roughly speaking, the classification
states that the above two classes are the only examples.

3. Dimension 2

In the special case that the symplectic triple (G, V, ωV ) is two dimensional, the family of symplec-
tic reflection algebras was discovered by Crawley-Boevey and Holland, [39]. They are basically
deformed preprojective algebras for affine Dynkin quivers and the spherical subalgebras were
called deformations of kleinian singularities in [39]. In order to illustrate a number of the prop-
erties of symplectic reflection algebras we will recall some of the results of [39].

3.1. Kleinian subgroups and singularities. Let G be a non-trivial finite subgroup of SL(2, C).
The symplectic singularity C2/G is called a kleinian or du Val singularity: it is an extremely rich
and well-studied meeting place for geometry, algebra and combinatorics. Each kleinian singu-
larity has a unique singular point – the zero orbit 0 – and has a unique symplectic resolution
which can be constructed by a sequence of blow-ups π : X = C̃2/G −→ C2/G. Each irreducible
component of π−1(0) is a projective line. We form a graph whose vertices are labeled by the irre-
ducible components of π−1(0) and which has an edge between two vertices if and only if the two
components have non-trivial intersection. This graph turns out to determine the isomorphism
type of the group G and to be a Dynkin diagram of type A, D or E.

3.2.. A remarkable observation of McKay, [112], gives a construction of the Dynkin diagram
directly from the representation theory of G. We form a graph whose vertices are labeled by the
isomorphism classes of irreducible representations {Si} of G and which has an edge between two
vertices i and j if and only if Si is a summand of C2 ⊗ Sj . The resulting graph determines the
isomorphism type of the group and is an affine Dynkin diagram of type A, D or E; removing the
node corresponding to the trivial representation produces the intersection graph of 3.1.
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Figure 1. Affine Dynkin diagrams with extending vertex emboldened

3.3.. This suggests that we should be able to associate naturally to each non-trivial irreducible
representation of G an irreducible component of π−1(0): the McKay correspondence. This was
achieved by Gonzalez-Springberg–Verdier who gave a K-theoretic description; it was “upgraded”
to a derived equivalence by Kapranov–Vasserot

Db(C[x, y] o G-mod) ∼−→ Db(Coh(C̃2/G))

where Db denotes the bounded derived category. Any representation of G extends to a repre-
sentation of C[x, y] o G by letting x and y act by zero. Under the equivalence the non-trivial
irreducible G-representations are sent to bundles on π−1(0) which are non-trivial on one irre-
ducible component only: this constructs the correspondence between irreducible representations
and irreducible components.

3.4.. Inspired by the McKay correspondence and earlier work of Hodges, [39] makes two obser-
vations: the smash product C[x, y] o G is Morita equivalent to the preprojective algebra Π0(Q)
of the affine Dynkin diagram Q corresponding to G; the preprojective algebra is easy to deform.

Let us begin by recalling the definition of the preprojective algebras Π0(Q) for any quiver
Q = (Q0,Q1). Let Q be the double quiver of Q, obtained by inserting an arrow a∗ in the opposite
direction to every arrow a ∈ Q1 in the original quiver. Then the preprojective algebra is the
following quotient of the path algebra of Q:

Π0(Q) def=
CQ

〈
∑

a∈Q1 [a, a∗]〉
.
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Given a vector λ = (λi)i∈Q0 ∈ CQ0
we define the deformed preprojective algebra to be

Πλ(Q) def=
CQ

〈
∑

a∈Q1 [a, a∗]−
∑

i∈Q0 λiei〉
.

3.5.. Since we are in the two dimensional case, every non-trivial element of G is a symplectic
reflection, i.e. S = G \ {1}. Given t ∈ C and c ∈ C[S]adG, define λ(t, c) ∈ CQ0

by

λ(t, c)i
def= TrSi

(
t1− 2

∑
s∈S

c(s)s

)
. (6)

This produces a linear isomorphism between C×C[S]adG and CQ0
such that t = λ(t, c) · δ where

δ ∈ NQ0
is the vector with δi = dim Si.

Theorem ([39, Corollary 3.5]). Let Q be a quiver whose underlying graph is an affine Dynkin
diagram, and let G be the corresponding finite subgroup of SL(2, C) under the McKay correspon-
dence. Then there is a Morita equivalence between Πλ(t,c)(Q) and Ht,c(G).

The result proved in [39] is actually more precise and follows from McKay’s construction of
the affine Dynkin graphs via the representation theory of G. The theorem states:

Πλ(t,c)(Q) ∼= f
C〈x, y〉o G

〈xy − yx− λ(t, c)〉
f

where λ is considered as the element
∑

i λi idSi
∈ CG and f =

∑
i fi where fi is an idempo-

tent in CG such that CGfi
∼= Si. Since fCGf is Morita equivalent to CG, this provides the

desired Morita equivalence. It is then a simple calculation to check the correspondence between
parameters.

3.6.. We let e0 ∈ CQ be the idempotent corresponding to the extending vertex – a filled in vertex
in Figure 1 –, and following [39] set Oλ def= e0Πλ(Q)e0. As a simple corollary of the above theorem
we find

Corollary. There is an algebra isomorphism Oλ(t,c) ∼= Ut,c(G).

Indeed since CGe0f ∼= S0 we must have that e0f = e and so

e0Πλ(t,c)(Q)e0
∼= e0f

C〈x, y〉o G

〈xy − yx− λ(t, c)〉
fe0 = e

C〈x, y〉o G

〈xy − yx− λ(t, c)〉
e = Ut,c(G).

3.7. Crawley-Boevey and Holland’s results. Many structural results about Πλ(Q), and
hence about Ht,c(G), were proved in [39] and a lot of these now have analogues for all symplectic
reflection algebras. We will recall them in this special case in the following portmanteau theorem.

Theorem. Let G be a finite subgroup of SL(2, C) and R the affine root system associated to the
affine Dynkin diagram corresponding to G.

(1) The centre of Ht,c is non-trivial if and only if t = 0, in which case Z(Ht,c) ∼= Ut,c.
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(2) If t = 0 then Spec Ut,c is isomorphic to the variety of semisimple Ht,c-representations which
are isomorphic to the regular representation when considered as G-representations.

(3) If t 6= 0 then the isomorphism classes of finite-dimensional simple Ht,c-modules are in one-
to-one correspondence with the set Σλ(t,c) of minimal elements of {α ∈ R : λ(t, c) · α = 0}

(4) There is a Morita equivalence between Ut,c and Ht,c if and only if λ(t, c) · α 6= 0 for every
Dynkin root α.

(5) Oλ is simple if and only if λ · α 6= 0 for all non-Dynkin roots α.

(6)

gl.dim.(Ut,c) =


1 λ(t, c) · α 6= 0 for all roots α,

∞ λ(t, c) · α = 0 for some Dynkin root α,

2 otherwise.

(7) The quotient division ring of Ut,c is isomorphic to the quotient division ring of C〈x, y :
xy − yx = t〉.

3.8.. We will not discuss the proofs of these results as we will present and outline generalisations
of many of them later. However, note that Part (1) provides a flat family of deformations
Yc

def= Spec U0,c of the kleinian singularity Y0 = C2/G over the affine space C[S]adG. This is the
universal deformation studied by Slodowy and others, [129]. Part (6) shows that the generic
deformation is smooth. When t = 0, the algebra Ht,c is a finite module over its centre, and
it follows quickly that every irreducible Ht,c-representation is finite dimensional. In contrast,
Part (3) shows that if t 6= 0 then there are only finitely many irreducible finite dimensional
Ht,c-representations.

4. Basic properties

There are a few results which are valid for all symplectic reflection algebras. We present them
here. Throughout (G, V, ωV ) will be an indecomposable symplectic triple.

4.1. Ring theoretic properties. The PBW isomorphisms (3) and (5) allow us to deduce
some interesting properties for Ht,c and Ut,c from the same properties for their associated graded
algebras. By [111, Lemma 6.11, Corollary 6.18] these include

Proposition. (1) The symplectic reflection algebra Ht,c is noetherian, prime and of finite
global dimension.

(2) The spherical subalgebra Ut,c is a noetherian domain with finite injective dimension.

In fact gl.dim.Ht,c = dim V −min{GKdim(I) : I irreducible Ht,c-representation} where GKdim
stands for Gelfand–Kirillov dimension, cf. Theorem 3.7(6).

Note we cannot deduce that Ut,c has finite global dimension since grUt,c
∼= C[V ]G is the

coordinate ring of a singular variety. It is a non-trivial question to decide for which (t, c) Ut,c has
finite global dimension.
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4.2.. Since Ht,ce is an (Ht,c, Ut,c)-bimodule, we have a homomorphism

µ : Ht,c −→ EndUt,c
(Ht,ce) (7)

whose associated graded mapping can be identified with the mapping gr µ : C[V ] o G −→
EndC[V ]G(C[V ]) given by the natural C[V ]oG-module structure on C[V ]. Now C[V ] is a faithful
C[V ]oG-module since G acts faithfully on V , so grµ is injective. Galois theory ensures that gr µ
becomes an isomorphism on passing to the quotient field C(V ), so any element of EndC[V ]G(C[V ])
can be written as

∑
ag · g where ag ∈ C(V ) is regular on Vreg, since G acts freely there. But

the complement to Vreg has codimension at least 2, see 1.8, and so by Hartog’s theorem each
function ag is in fact regular on V . Thus grµ is surjective and hence it is an isomorphism.
Standard associated graded techniques then show that µ is also an isomorphism. Of course, it is
immediate that EndHt,c

(Ht,ce) ∼= Uop
t,c.

4.3. Centres. The following theorem presents a dichotomy in the behaviour of symplectic
reflection algebras which percolates through all of their representation theory. The difficult Part
(1) was proved in [51, Theorem 1.6], the easy Part (2) in [27, Proposition 7.2], cf. Theorem
3.7(1).

Theorem. The mapping Z(Ht,c) −→ Ut,c which sends z to ez induces an isomorphism onto the
centre of Ut,c. Moreover,

(1) if t = 0 then Z(Ut,c) = Ut,c, i.e. Ut,c is commutative;

(2) if t 6= 0 then Z(Ut,c) = C.

The proof begins by observing that the mapping in the statement of the theorem is indeed an
algebra homomorphism with image in Z(Ut,c). Now take y ∈ Z(Ut,c) and note that right multi-
plication by y on Ht,ce is a Ut,c-endomorphism since y is central. By the preceding paragraph this
gives rise to an element of Ht,c, say ŷ, and this element must be central since right multiplication
by y on Ht,ce commutes with left multiplication by Ht,c. Now ŷe = µ(ŷ)(e) = ey = y so we have
constructed the inverse to the mapping.

The second two statements rely on a study of the properties of the function m(t, c) : C ×
C[S]adG −→ N ∪ {∞} which measures the noncommutativity of Ut,c and the corresponding
Poisson bracket, as in 2.4.

4.4.. For the rest of this paper, given c ∈ C[S]adG we will set

Yc
def= Spec Z(H0,c).

By Theorem 4.3 Yc
∼= Spec U0,c.

4.5.. Fix c ∈ C[S]adG and define the C[~]-algebra H~,c exactly as for Ht,c except that t is replaced
by the central indeterminate ~; applying the idempotent e produces the C[~]-algebra U~,c. By
(5) U~,c is a deformation of U0,c and so, by 2.4 and Theorem 4.3, U0,c is a Poisson algebra.

Proposition. For any c ∈ C[S]adG the variety Yc is a symplectic singularity. The family (Yc)c

is a flat family of Poisson deformations of Y0 = V/G over C[S]adG.
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Proof. We will give brief details since this result has not been written down before. By [77,
Lemma 3.10] H0,c is a noncommutative crepant resolution of Z(H0,c) and so, by [132, Theorem
4.3] Yc has rational singularities. Furthermore, [27, Theorem 7.8], the restriction of the Poisson
form to (Yc)sm is non-degenerate. It then follows from [121, Theorem 6] that Yc has symplectic
singularities.

The second statement follows immediately from (5) and the fact that the Poisson bracket on
Y0 agrees with the one on V/G inherited from the G-invariant symplectic form ωV ∗ on V since
it is induced from the quantisation T (V ∗)/(xy − yx− tωV ∗(x, y)) of C[V ].

4.6.. Thus we have constructed a good family (Yc)c of deformations of V/G which are, moreover,
equipped with two extra pieces of information: a coherent sheaf corresponding to H0,ce and
a quantisation, Ut,c. It is partly the interplay of these structures that will allow us to prove
interesting theorems.

4.7.. The algebra H0,c is a finite module over its centre Z(H0,c) and so a simple lemma, which
goes back at least to Kaplansky, shows that every irreducible H0,c-module is a finite dimensional
complex vector space, see for example [96, 1.3]. Thus, by Schur’s lemma, every central element
z must act on an irreducible representation I by a scalar, which we denote χI(z). So there is a
central character mapping

χ : Irrep(H0,c) −→ Yc, (8)

which provides the direct comparison between representation theory and geometry.

4.8.. At first sight there is not really a good geometry attached to Irrep(H0,c) and so it is not
clear how to play the domain and codomain of χ against each other. However, the prototype
theorem linking the two together is the following result which has a long history going back
to Artin, Procesi, LeBruyn, Brown–Goodearl and then proved independently in this context by
Etingof and Ginzburg, [51, Theorem 1.7], cf. Theorem 3.7(2).

Theorem. (1) |G| is an upper bound on the dimension of irreducible H0,c(G)-representations.

(2) If I ∈ Irrep(H0,c(G)) with dimC I = |G| then I ∼=CG CG.

(3) Let Ac
def= {I ∈ Irrep(H0,c(G)) : dimC I = |G|}, the so-called Azumaya locus. Then χ

restricts to a bijection Ac
∼−→ (Yc)sm onto the smooth locus of Yc.

The heart of this theorem is Part (3). Quite generally, there are criteria given by [25, Theorem
3.8] which give sufficient conditions for the smooth locus and the image of the Azumaya locus
to agree for algebras finite over their centre. Most of the criteria are homological in nature
and thus easy to check here because of Proposition 4.1. However, one of the criteria is that
codimYc

χ(Ac) ≥ 2. As we will see in the next paragraph, this is a consequence of the symplectic
structure.

4.9.. The central character (8) allows us to partition the irreducible H0,c-representations fibre-
by-fibre. In other words it is enough to study the various χ−1(y) as y varies in Yc. But an
irreducible representation in χ−1(y) is exactly the same as an irreducible representation of the
algebra H0,c(y) def= H0,c/myH0,c where my is the maximal ideal of Z(H0,c) corresponding to y.
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Thus we have turned the problem of describing the irreducible representations of the infinite
dimensional algebra H0,c into the problem of describing the irreducible representations of the
infinitely many finite dimensional algebras H0,c(y)!

This is progress. Since Yc has symplectic singularities, we can stratify Yc by some special
closed sets ∅ = Y r ⊂ Y r−1 ⊂ · · · ⊂ Y 0 = Yc where for any 0 ≤ i < r Y i \ Y i+1 is smooth and
symplectic and moreover Y 0 \ Y 1 = (Yc)sm, [97, Proposition 3.1]. These strata are obtained as
the spaces traced out by all the flows of the hamiltonian vector fields {z, ·}c where z ∈ Z(H0,c)
and {·, ·}c is the Poisson bracket on Z(H0,c). They are called the symplectic leaves of Yc.

Theorem ([27, Theorem 4.2]). Let y1, y2 ∈ Yc belong to the same symplectic leaf of Yc. Then
there is an algebra isomorphism H0,c(y1) ∼= H0,c(y2).

Since y1 and y2 belong to the same symplectic leaf they can be connected by a sequence of
hamiltonian flows; the theorem is proved by lifting these to the algebra H0,c.

4.10.. There are only finitely symplectic leaves – the stratification above was finite – so it follows
that there are only finitely many different isomorphism classes of finite dimensional algebras
H0,c(y) and hence

to understand all the irreducible representations of H0,c it is sufficient to classify
the irreducible representations of only a finite number of finite dimensional algebras.

However, these finite dimensional algebras may be rather difficult to understand. For instance
their dimension varies with y ∈ Yc since H0,c is not a flat Z(H0,c)-module. For any c ∈ C[S]adG

and a generic choice of y ∈ Yc the algebra H0,c(y) has dimension |G|2 (this will follow from
Theorem 4.8); if we set c = 0 so that Yc = V/G and take y to be the zero orbit then the
corresponding finite dimensional algebra is C[V ]coG oG whose dimension, in general, is unknown
– for G = Sn acting on V = Cn⊕Cn the dimension is n!(n+1)n−1 thanks to a celebrated recent
theorem of Haiman, [90, Proposition 3.6].

4.11.. We have seen that the dimension of the algebras H0,c(y) vary as we vary y ∈ Yc, but that
they are constant on symplectic leaves. Since H0,c

∼= EndU0,c
(H0,ce) by (7), this translates to

the fact that the dimension of H0,ce⊗U0,c
Cy is constant on symplectic leaves as we run through

the irreducible U0,c-representations Cy which, since U0,c
∼= Z(H0,c), are labelled by y ∈ Yc. Since

the smooth locus (Yc)sm is itself a symplectic leaf we see that there is a dense open set of Yc over
which the coherent sheaf H0,ce has constant rank and is thus a vector bundle, of rank |G| by
Theorem 4.8(3). Hence we deduce the following theorem.

Theorem ([51, Theorem 1.7]). There is an algebra isomorphism

H0,c|(Yc)sm

∼−→ Mat|G|
(
C[Yc]|(Yc)sm

)
.

Remark. This isomorphism does not extend beyond the smooth locus of Yc. Indeed, if the
dimension of H0,ce remained constant on an open set U larger than (Yc)sm then the isomorphism
of the theorem would extend and we would deduce that the global dimension of the restrictions
of H0,c and C[Yc] to U are the same. But H0,c has finite global dimension by Proposition 4.1,
whereas U has singularities and so the C[Yc]|U has infinite global dimension.
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4.12.. There is one other general result for symplectic reflection algebras. In fact, it is not quite
known to be true generally at the moment, but rather only for (G, V, ωV ) belonging to Families
(1) and (2) in 2.18, cf. Theorem 3.7(7).

Theorem ([51, (1.18)], [74, Theorem 1.2]). The quotient division ring of Ut,c is isomorphic to
the quotient division ring of TC(V ∗)/〈xy − yx = tωV ∗(x, y) : x, y ∈ V ∗〉.

In particular the birational equivalence class of Ht,c(G) is independent of c.

5. Specific case: rational Cherednik algebras I (t 6= 0)

In 2.18 we saw that there were essentially two families of groups generated by symplectic reflec-
tions. The corresponding symplectic reflection algebras tend to be treated differently depending
on which family we are dealing with. When the triple (G, V, ωV ) belongs to Family (1), so that
G < GL(h) is a complex reflection group and V = h⊕ h∗, we call Ht,c(G) a rational Cherednik
algebra. The reason for this name is that if G is a Weyl group, then Ht,c(G) is a degeneration of
the double affine Hecke algebra which was discovered by Cherednik, [30].

The representation theory of rational Cherednik algebra has a lot in common with the rep-
resentation theory of simple complex Lie algebras and we will see much of this in the next two
chapters. In this chapter we introduce category O and the KZ-functor which links Ht,c(G) to
Hecke algebras. We also discuss the finite dimensional representations of Ht,c(G) and explain
their application to invariant theory.

5.1.. Throughout this section G < GL(h) is a complex reflection group of rank n acting on
V = h⊕h∗. Such groups were classified by Shephard-Todd: there is one infinite family G(m, d, n)
which includes the Weyl groups of type A,B and D and the dihedral groups, and there are 34
exceptional groups, see for instance [22, Appendix 2].

We will also assume that t 6= 0. Since the mapping x 7→ λx, y 7→ λy, w 7→ w induces an
isomorphism Ht,c

∼= Hλ2t,λ2c we can and will assume that t = 1.

5.2. Triangular decomposition. It is a trivial but important observation to rewrite the PBW
isomorphism for Ht,c in this case, using the polarisation V = h⊕ h∗. This gives

C[h]⊗ CG⊗ C[h∗] ∼−→ grHt,c.

In this decomposition each tensorand is actually a subalgebra of Ht,c and thus Ht,c is an algebra
with triangular decomposition. The prototype for an algebra with a triangular decomposition is
the universal enveloping algebra of a simple complex Lie algebra g in which case the decomposition
is induced from the standard direct sum decomposition g = n+ ⊕ h⊕ n−. Thus the subalgebras
C[h]oG and C[h∗]oG of Ht,c play the roles of the enveloping algebras of the positive and negative
Borel subalgebras. It turns out that many of the properties of the representation theory of Ht,c

are analogous to similar properties for U(g), or more precisely for minimal primitive quotient
rings of U(g).

20



5.3. Category O. The first analogue we will see of this phenomenon is the construction of Ôc

for H1,c. This interesting category, which contains all the finite dimensional representations of
H1,c for instance, was introduced and studied in [45], [11], [83] and [68]. If we ever need to refer
to the group G in question, we will write ÔG

c for this category, and if we ever need to make the
reflection representation explicit too we will write ÔG

c (h) – a complex reflection group can have
more than one reflection representation, for instance possibly h∗.

Definition. (1) Ôc is the full subcategory of finitely generated H1,c-modules on which h ⊂ C[h∗]
acts locally finitely, i.e. if M ∈ Ôc then for all m ∈M dim(C[h∗] ·m) <∞.

(2) An object M ∈ Ôc has type λ ∈ h∗/G = Spec (C[h∗]G) if for any P ∈ C[h∗]G the action of
P − P (λ) is locally nilpotent, i.e. for all m ∈M (P − P (λ))N ·m = 0 for large enough N .
We set Ôc(λ) to be the full subcategory of Ôc consisting of objects of type λ.

(3) In the special case λ = 0 ∈ h∗/G we set Oc
def= Ôc(0).

So by definition Oc is the full subcategory of finitely generated H1,c-modules on which every
G-invariant polynomial without constant term acts locally nilpotently. Since the coinvariant ring
C[h∗]coG = C[h∗]/〈C[h∗]G+〉 is a positively graded finite dimensional algebra, the image of every
element in C[h∗]+ is nilpotent in C[h∗]coG and so we have an equivalent definition:

Definition. Oc is the full subcategory of finitely generated H1,c-modules on which every P ∈
C[h∗]+ acts locally nilpotently.

5.4.. It is possible to reduce the study of Ôc to the study of Oc thanks to recent work of
Bezrukavnikov and Etingof, [15]. Given λ ∈ h∗/W we let Gλ be the G-stabiliser of any lift of
λ to h∗: this is of course only well-defined up to conjugacy, but [133, Theorem 1.5] shows that
Gλ is again a complex reflection group under its action on h/Fix(Gλ), generated by a subset of
the reflections in G. The first part of the following theorem is quite straightforward, whereas the
second part is deeper.

Theorem. (1) There is a decomposition of categories Ôc =
⊕

λ∈h∗/G Ôc(λ).

(2) There is an equivalence of categories ÔG
c (λ) ∼→ ÔGλ

c′ (0) = OGλ

c′ where c′ is the restriction
of c to the reflections in Gλ, [15, Corollary 3.3].

Thus, without loss of generality, we need only study the category Oc in order to understand
all of Ôc.

Remark. In studying a simple complex Lie algebra, g, one defines the Bernstein–Gelfand–
Gelfand category O by looking at finitely generated U(g)-modules on which n− acts locally
nilpotently and h acts completely reducibly. In the rational Cherednik algebra situation we do
not need to insist on this second condition since CG is a finite dimensional semisimple algebra
so any object in Oc will automatically be completely reducible for the action of this subalgebra
of H1,c. So our definition of Oc is indeed analagous to the Lie theory setting.
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5.5.. Oc has a very nice homological structure: it is a highest weight category, in the sense of
[36]. In particular this means that Oc is an abelian category with enough projectives and a
distinguished set of standard objects. The standard objects are particularly easy to define and
are analogues of Verma modules for simple complex Lie algebras.

Definition. Let λ ∈ Irrep(G) be an irreducible (complex) representation of G. We define the
standard module associated to λ to be

∆c(λ) def= H1,c ⊗C[h∗]oG λ,

where C[h∗] acts on λ via p · v = p(0)v for any p ∈ C[h∗] and v ∈ λ.

By the PBW isomorphism (3) we see that as a C[h]oG-module ∆c(λ) is isomorphic to C[h]⊗λ
with C[h] acting on the first tensorand and G acting diagonally.

In order to check that ∆c(λ) ∈ Oc we will introduce a grading on ∆c(λ) which will prove to
be extremely useful in what follows. Let {yi : 1 ≤ i ≤ n} be a basis for h, and let {xi} be a dual
basis. Define

h = −1
2

n∑
i=1

(xiyi + yixi) ∈ H1,c. (9)

It’s a straightforward calculation to see that this element is independent of the choice of basis of
h and thus is invariant under conjugation by G. Moreover, it is proved in [11, Lemma 2.5] that

[h, x] = −x for all x ∈ h∗ and [h, y] = y for all y ∈ h,

cf. 2.16. Now if we let h act on 1⊗ λ ∈ ∆c(λ) we find that

h · (1⊗λ) = −1
2

n∑
i=1

(xiyi +yixi) ·1⊗λ = −1
2

n∑
i=1

yixi · (1⊗λ) =

(
−n

2
+
∑
s∈S

c(s)s

)
· (1⊗λ) (10)

where we used the defining commutation relation of Theorem 2.12 for H1,c to get the last equality.
Since −n/2 +

∑
s∈S c(s)s ∈ CG is invariant under conjugation, it acts on the irreducible G-

representation λ by a scalar which we denote by κ(c, λ). Hence if p ∈ C[h] is a homogeneous
element of degree m then p ⊗ λ ∈ ∆c(λ) is an eigenvector for h with eigenvalue κ(c, λ) − m.
Thus it makes sense to talk about the decomposition of ∆c(λ) into h-eigenspaces and to say that
∆c(λ) is a highest weight module with highest weight space C ⊗ λ of weight κ(c, λ). We will
write the weight space decomposition as

[∆c(λ)]h = dim(λ)
uκ(c,λ)

(1− u−1)n
. (11)

Since the action of h ⊂ C[h∗] on ∆c(λ) increases degree, it follows that the action of h is locally
nilpotent and so ∆c(λ) ∈ Oc.

5.6.. We define an ordering on Irrep(G) which depends on c. For λ, µ ∈ Irrep(G)

λ <c µ if and only if κ(c, µ)− κ(c, λ) ∈ Z+.

So, since c is a complex-valued function, for generic choices of c (including c = 0) all λ ∈ Irrep(G)
are incomparable.
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5.7.. It is now clear that every ∆c(λ) has a unique irreducible quotient Lc(λ). Indeed, any proper
submodule of ∆c(λ) must be contained in the h-eigenspaces ∆c(λ)<κ(c,λ) and so there exists a
unique maximal proper submodule, namely the sum of all proper submodules. Furthermore
any irreducible object I in Oc must have a G-stable subspace annihilated by C[h∗]+; fixing an
irreducible summand inside this subspace induces a non-zero H1,c-homomorphism from ∆c(λ) to
I, which by irreducibility must be surjective. Thus I ∼= Lc(λ). This confirms the second bullet
point of the following theorem.

Theorem. (Oc, <) is a highest weight category with

• standard objects ∆c(λ) for λ ∈ Irrep(G),

• irreducible objects Lc(λ) for λ ∈ Irrep(G),

• projective objects Pc(λ) for λ ∈ Irrep(G),

• ordering Lc(λ) < Lc(µ) if and only if λ <c µ.

The projective objects are constructed by induction from “big enough” C[h∗]oG-representations.
It is crucial for the proof of this theorem that the grading in Oc is internal, i.e. constructed from
the action of the element h: this ensures all homomorphisms are graded.

5.8.. There are a few easy but interesting observations which we can make immediately.

(1) A version of BGG reciprocity holds for Oc:

[Pc(λ) : ∆c(µ)] = [∆c(µ) : Lc(λ)] for all λ, µ ∈ Irrep(G). (12)

Here [Pc(λ) : ∆c(µ)] counts the number of copies of ∆c(µ) in some filtration of Pc(λ) whose
sections are all standard modules: it is part of the axiomatics of highest weight categories that
such a filtration exists and that this number is independent of the choice of filtration. This
result is not quite immediate from the definition of highest weight category, but follows from a
specialisation argument, see [68, Proposition 3.3].

(2) Every finite dimensional representation of H1,c belongs to Oc, [41, Théorème 4.1]. Indeed if
I is a finite dimensional H1,c-representation then I must have a bounded h-spectrum; thus, for
N large enough, all elements of C[h∗]≥N must annihilate I, as required.

(3) For a generic choice of c all Lc(λ)’s are incomparable by 5.6. Thus by (12)

Oc is semisimple for almost all c ∈ C[S]adG. (13)

(4) There are two involutions on H1,c. Let † be the involution on C[S]adG that takes c to the
function c† : s 7→ c(s−1): abusing notation, there is an anti–isomorphism

† : H1,c −→ H1,c† x 7→ x, y 7→ −y and w 7→ w−1;

similarly there is another anti–isomorphism

φ : H1,c(h⊕ h∗) −→ H1,c†(h
∗ ⊕ h) x 7→ x, y 7→ y and w 7→ w−1.
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These induce two dualities on Oc.
(a) Näıve duality, [68, Proposition 4.7], dh,c : OG

c (h ⊕ h∗) −→ OG
c†(h

∗ ⊕ h) is obtained by
sending an object M to the largest submodule dh,c(M) of HomC(M, C) which is locally C[h∗]-
nilpotent. This is a right H1,c(h ⊕ h∗)-module and becomes a left H1,c†(h∗ ⊕ h)-module via
φ. It sends Lc(λ) to Lc†(λ∗), the irreducible object indexed by the dual representation λ∗ of
λ ∈ Irrep(G); projective objects are sent to injectives and standard objects to costandard objects.

(b) Homological duality, [68, Proposition 4.10],

Dh,c
def= Extn

H1,c
(−,H1,c) : OG

c −→ OG
c† ,

where we have used † to identify right H1,c-modules and left H1,c†-modules.
The composition of these two dualities can be used to show that OG

c (h∗ ⊕ h) is Ringel dual
to OG

c (h⊕ h∗), [68, Corollary 4.14].

(5) Recall that a Serre functor on a finite triangulated k-category C is a functor S : C −→ C
which satisfies HomC(A,B) ∼= HomC(B,SA)∗ naturally. In [110, Conjecture 4.12] Mazorchuk and
Stroppel conjecture that the left derived functor of dh∗,c† ◦Dh∗,c ◦ dh,c† ◦Dh,c is a Serre functor
for Db(Oc), the bounded derived category of Oc. A proof of this would, in particular, show that
Hecke algebras are symmetric – see 5.15 and beyond for the appearance of Hecke algebras.

5.9. Primitive ideals. For quite general algebras with triangular decomposition, Ginzburg has
proved an analogue of Duflo’s theorem for simple complex Lie algebras. Recall that an ideal is
called primitive if it is the annihilator of a simple module: to some extent they play the rôle of
maximal ideals for noncommutative algebras, and indeed each maximal ideal is primitive. For
rational Cherednik algebras the theorem states

Theorem ([66, Theorem 2.3]). An ideal I of H1,c is primitive if and only if I = AnnH1,c
(Lc(λ))

for some λ ∈ Irrep(G).

The non-trivial part of the theorem is the only if direction: there are many simple H1,c-
modules which have nothing to do with Oc, but to classify the primitive ideals it is enough to
restrict to this small and relatively tractable category. We will illustrate its use in 5.13.

5.10. Toy example. In the example of 2.14 we have Irrep(G) = {+,−} with

κ(c,+) = −1
2

+ c and κ(c,−) = −1
2
− c.

Thus <c is trivial unless c ∈ 1
2Z+ or c ∈ 1

2Z−: in the first case − <c +, whilst in the second
+ <c −. Now ∆c(±) = C[x]⊗± and the commutation relation (4) shows that

y · (xi ⊗±) =

{
(i∓ 2c)xi−1 ⊗± if i is odd
ixi−1 ⊗± if i is even.

Thus Oc is semisimple unless c ∈ 1
2 + Z. If c = 1

2 + m where m ≥ 0 then ∆c(−) = Lc(−) and
there is a short exact sequence

0 −→ ∆c(−) d−→ ∆c(+) −→ Lc(+) −→ 0, (14)

where d(xi ⊗ −) = x2m+1+i ⊗ +. In particular [Lc(+)]h =
∑m

j=−m uj . Analogous statements
hold for Lc(−) when c = − 1

2 −m.
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5.11. The Dunkl embedding. So far, the manipulation of Oc has been rather formal. The
crucial input which allows to make non-trivial observations and connections is via the KZ-functor
which was studied by Opdam and others, and introduced systematically to the study of rational
Cherednik algebras in [68]. In order to define this we must first introduce the Dunkl embedding.

Given s ∈ S let αs ∈ h∗ be a functional such that α−1
s (0) is the reflecting hyperplane associated

to s. Similarly to 1.8 we set hreg = h\∪s∈Sα−1
s (0) so that G acts freely on hreg. Let D(hreg) denote

the ring of differential operators on hreg (this can be identified with the localisation of the Weyl
algebra D(h) at the multiplicative set {δi}i>0 where δ =

∏
s∈S αs ∈ C[h] is the discriminant).

The action of G on hreg extends to an action by algebra automorphisms on D(hreg), allowing us
to form the smash product D(hreg) o G.

Theorem ([51, Proposition 4.5]). There is an injective algebra homomorphism

θc : H1,c −→ D(hreg) o G

induced by

x 7→ x, y 7→ ∂

∂y
+
∑
s∈S

c(s)
αs(y)
αs

(s− 1), w 7→ w.

On localising at {δi}i>0 we get an isomorphism H1,c[δ−1] ∼= D(hreg) o G.

This algebra homomorphism is simply describing the action of H1,c on C[h] ∼= ∆c(triv) where
triv is the trivial representation of G. Injectivity can be proved by considering the filtration
on H1,c where deg h∗ = deg G = 0 and deg h = 1, and the differential operator filtration on
D(hreg) o G and showing that the associated graded homomorphism is injective.

The second claim is obvious, since inverting δ has the same effect as inverting all the αs and
so allows us to realise ∂/∂y in Imθc as θc(y −

∑
s∈S c(s)α−1

s αs(y)(s− 1)).

5.12.. Theorem 5.11 is very important for a number of reasons. The operators

∂

∂y
+
∑
s∈S

c(s)
αs(y)
αs

(s− 1)

are called Dunkl operators; it is an immediate consequence of the theorem that the Dunkl op-
erators commute with one another (since the y’s do), a non-obvious fact proved originally by
Dunkl. Moreover, the theorem shows that all of the deformation in H1,c lives on the reflecting
hyperplanes for the action of G on h. As we shall see, this is a crucial observation.

Remark. θc restricts to an embedding U1,c ↪→ D(hreg)G ∼= D(hreg/G) and so, in particular,
strengthens Theorem 4.12 for rational Cherednik algebras.

5.13.. Now we come to promised illustration of the importance of Theorem 5.9: semisimplicity
of Oc implies the simplicity of H1,c. To prove this observe that any proper two-sided ideal must
be contained in a maximal ideal and hence, by Theorem 5.9, must annihilate some Lc(λ) for
λ ∈ Irrep(G). But by semisimplicity, Lc(λ) ∼= ∆c(λ). Now if I = AnnH1,c

(∆c(λ)) is non-zero
then δk ∈ I for some k ≥ 0 since H1,c[δ−1]⊗H1,c I is a two-sided ideal of the simple ring D(hreg)oG
and hence zero. This is absurd since each ∆(λ) is a free C[h]-module and thus each ∆c(λ) is
faithful and so the only primitive ideal is 0.
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5.14.. Furthermore simplicity of H1,c implies that H1,c and U1,c are Morita equivalent. Indeed
the functors

Ic : H1,c-mod −−−−→ U1,c-mod, M 7→ eM (15)

and
Jc : U1,c-mod −−−−→ H1,c-mod, N 7→ H1,ce⊗U1,c

N (16)

are inverse to another since H1,ceH1,c = H1,c because H1,c is simple and the left hand side is a
two-sided ideal, cf. Theorem 3.7(4,5).

5.15. KZ functor. Using the Dunkl embedding we can construct a functor

KZc : Oc −→ Hq(G)-mod

where Hq(G) is a Hecke algebra, i.e. the quotient of the group algebra of a generalised braid
group, BG

def= π1(hreg/G, ∗), by a set of “Hecke” relations with parameters q(s) = exp(2π
√
−1c(s)),

as presented in [22]. If G is a finite Coxeter group then Hq(G) is the Iwahori–Hecke algebra
associated to G, a much loved object in Lie theory.

The functor KZc has similar properties to the Schur functor and to Soergel’s functor V, [130].

• KZc is exact: there exists a projective object PKZ ∈ Oc such that KZc = HomOc(PKZ,−).

• Double centraliser property: Hq(G) ∼= EndOc(PKZ)op – so that PKZ is in particular a right
Hq(G)-module – and Oc is equivalent to EndHq(G)(PKZ).

• If Otor
c is the full subcategory of Oc whose objects are annihilated by KZc, then KZc induces

an equivalence Oc/Otor
c

∼−→ Hq(G)-mod.

So Oc is a “highest weight cover” of Hq(G)-mod and we can pass properties from one of these
categories to the other. At the time of writing, this is the only non-formal input into Oc that
exists for all complex reflection groups and many of the results known about Oc are consequences
of theorems on the representation theory of Hecke algebras. Several examples of this will be given
below.

5.16.. We will only outline the construction of KZc since the details can be found in the final
section of Ariki’s article in this volume, [3, Section 4.4]. Let λ ∈ Irrep(G). Then ∆c(λ) extends
to a D(hreg) o G ∼= H1,c[δ−1]-module ∆reg

c (λ) def= H1,c[δ−1]⊗H1,c
∆c(λ). As a C[hreg] o G-module

this is isomorphic to C[hreg]⊗ λ, and so is a G-equivariant (trivial) vector bundle on hreg of rank
dim λ. There is, however, still a residue of the action of C[h∗] on ∆c(λ) to be seen on C[hreg]⊗λ,
namely a flat G-equivariant connection ∇c,λ arising from the various ∂y ∈ D(hreg) for each y ∈ h,
given explicitly by the Dunkl embedding as

∇c,λ = d−
∑
s∈S

c(s)
dαs

αs
⊗ (s− 1) ∈ End(C[hreg]⊗ λ). (17)

This is called the Knizhnik-Zamalodchikov connection, or just KZ-connection. It has regular
singularities and if we take the monodromy of this connection with respect to some basepoint ∗ ∈
hreg we produce a complex representation of BG = π1(hreg/G)-module. By a rank one calculation,
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this representation satisfies a Hecke relation and so the resulting monodromy representation is
in fact an Hq(G)-representation, to be denoted KZc(∆c(λ)).

For generic choices of c we have seen already in (13) that Oc is semisimple and so every object
is a direct sum of standard modules. Thus, for such c, the above construction can be applied to
any object of Oc and so produces a functor to KZc : Oc −→ Hq(G). The existence of KZc on
arbitrary objects in the general case follows by a deformation argument, see [68, Theorem 5.13].

5.17.. We have factored KZc into two steps:

KZc : Oc
localisation−−−−−−→ Oreg

c
monodromy−−−−−−−→ Hq(G)−mod .

The second functor is an equivalence of categories, [68, Theorem 5.14], and the localisation is
easy to describe formally: it kills the objects in Oc which are annihilated by some power of δ.
In other words, Otor

c consists of the objects supported as C[h]-modules entirely on V (δ) ⊂ h, i.e.
on the reflecting hyperplanes in h. This explains the third claim in 5.15. The double centraliser
property of the second claim is essentially equivalent to the monodromy part of the factorisation
being an equivalence, [68, Theorem 5.15]; finally exactness follows since localisation is exact.

5.18.. The double centraliser property gives us a much more accurate criterion for the semisim-
plicity of Oc, and hence by 5.13 for the simplicity of H1,c.

Corollary. Let c ∈ C[S]adG and set q = exp(2π
√
−1c) ∈ C∗[S]adG. Then Oc is semisimple if

and only if Hq(G) is semisimple.

If G is a Weyl group then there good conditions which ensure the semisimplicity of Hq(G),
see for instance [64, Chapter 9] and [3, Theorem 3.29]. Conversely, for arbitrary G the corollary
combined with (13) shows that if if the subgroup of C∗ generated by the q(s) is torsion-free then
Hq(G) is semisimple, [126, Theorem 3.4].

5.19. Toy example. Continuing the example of 2.14 we have that BG = 〈T 〉 where we take
the basepoint ∗ of hreg/G to be the G-orbit of 1 and T corresponds to the path exp(π

√
−1t)

with t : 0 → 1 in hreg = C∗. From (17) the connection corresponding to + is just d/dx: its
solutions are the constant functions and they have no monodromy; for − the connection is
d/dx + 2c/x: its solutions are x−2c. This last function has monodromy − exp(π

√
−1c). Thus,

setting q = exp(2π
√
−1c), we see that KZc(∆c(+)) has T acting as 1 and KZc(∆c(−)) has T

acting as −q: both are representations of the Hecke algebra Hq(G) = C[T ]/〈(T − 1)(T + q)〉. If
c /∈ 1

2 +Z then q 6= 1 and KZc(∆c(+)) and KZc(∆c(−)) are distinct; if c ∈ 1
2 +Z then q = −1 and

KZc(∆c(+)) = KZc(∆c(−)) and applying KZc to the sequence (14) shows that KZc(Lc(+)) = 0.

5.20. Shifting. The close relationship between Oc and Hq(G), particularly the double cen-
traliser property, begs an obvious question:

Suppose c, c′ ∈ C[S]adG are such that q = exp(2π
√
−1c) = exp(2π

√
−1c′) = q′,

so that Hq(G) = Hq′(G). Is it true that Oc and Oc′ are equivalent?
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The answer is, unfortunately, no. In fact, it is easy to see why we could expect a difference
between Oc and Oc′ . The ordering on Oc given in Theorem 5.7 depends on the ordering <c on
Irrep(G) which varies with c ∈ C[S]adG. The variation is linear and so it is possible to choose c, c′

such that q = q′, but for which the associated orderings are different. Thus, the best we could
hope is the following wonderful theorem, [126, Theorem 5.5], which is explained in detail in [3,
Section 4].

Theorem ([126]). Suppose that c ∈ C[S]adG and let d ∈ Z[S]adG. Then there is an equivalence
of categories between Oc and Oc+d if the orderings <c and <c+d on Irrep(G) are the same.

(There are actually some mild restrictions on c – see [126] for details.) This theorem is
actually a special case of a more general result which Rouquier proves concerning highest weight
covers of Hecke algebras. Using that general result Rouquier also proves that OSn

c is equivalent
to the category of representations of the q-Schur algebra Sq(n, n), [126, Theorem 6.8].

5.21.. Since Oc controls much of the structure of H1,c, for instance through Theorem 5.9, we
might hope that an equivalence between Oc and Oc′ would be the shadow of an equivalence
between H1,c and H1,c′ . There is much evidence to suggest this, but at the moment only special
cases are understood, relying on remarkable work of Opdam and Heckman which we now explain.

5.22.. Assume that G is a finite Coxeter group. Recall the e ∈ CG is the trivial idempotent. Set
e− = |G|−1

∑
g∈G(−1)`(g)g ∈ CG, the sign idempotent, and U−

1,c
def= e−H1,ce−.

The Dunkl embedding θc : H1,c −→ D(hreg) o G embeds each H1,c into the same algebra of
differential operators on hreg and so we can compare rational Cherednik algebras for different c.
From now on we will identify H1,c with its image in D(hreg) o G under θc.

Since G is a finite Coxeter group, there is a G-invariant element of degree two in C[h∗], namely∑n
i=1 y2

i where the yi form a basis of h. Therefore, under the Dunkl embedding, we find elements
deforming the Laplacian

Lc =
n∑

i=1

θc(y2
i e) ∈ e(D(hreg) o G)e and L−c =

n∑
i=1

θc(y2
i e−) ∈ e−(D(hreg) o G)e−.

The crucial observation of [123] and [92] is that

Lc = δ−1L−c+1δ ∈ e(D(hreg) o G)e. (18)

Thus the two algebras U1,c and δ−1U−
1,c+1δ have many elements in common, namely Lc and the

elements of C[h]Ge. If U1,c is simple then [105, Theorem 5] shows that U1,c is generated by
C[h]Ge and Lc and thus for generic choices of c thanks to 5.13, it follows that U1,c = δ−1U−

1,c+1δ
in D(hreg) o G . A deformation argument [12, Proposition 5.4] extends this equality to all
parameters. It follows that eH1,c+1δe = eH1,c+1e−δ is a (U1,c+1, U1,c)-bimodule and we have a
functor

Sc : Uc −mod −→ Uc+1 −mod , M 7→ eH1,c+1δe⊗Uc
M. (19)

Combining this with functors Ic and Jc+1 of (15) and (16) we also find

Sc = Jc+1 ◦ Sc ◦ Ic : H1,c −mod −→ H1,c+1 −mod . (20)

These are called the Heckman-Opdam shift functors.
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5.23.. Now these functors cannot be equivalences in general because of the comments made in
5.20. However, there are still many examples where the orderings <c and <c+1 on Irrep(G) are
the same. In these cases one should ask whether Sc is an equivalence of categories. The answer
is unknown in general, but there are important special cases for which we have a positive answer:

• generic c (by arguments analogous to 5.14);

• c is “large enough” (see [12, Proposition 4.3]);

• c = m + 1/h where h is the Coxeter number of G and m ∈ Z (see [71, Section 4] and [12,
Proposition 4.3]);

• G = Sn for c /∈ (−1, 0) (by [78, Theorem 3.3] and [15, Corollary 4.2]);.

5.24.. The shift functors can be constructed in more generality: instead of adding 1 to c we can
add 1 to a given conjugacy class of reflections only, [11, Section 4]; we can also deal with the
infinite family G(m, d, n) of complex reflection groups, [45, Section 3]. There is, however, less
known about when they are equivalences, see [138, Chapter 4].

5.25. Finite dimensional representations. To illustrate some of the power of the KZ-functor
and the Heckman-Opdam shift functors we will construct finite dimensional representations of
the rational Cherednik algebras associated to Coxeter groups.

5.26.. We look first for the easiest possible representation of H1,c which could possibly exist,
namely a one-dimensional space C which carries the trivial action of G. By 5.8(2) h, and by
symmetry h∗, must act trivially on C and thus we need only make sure that the defining relation
of Theorem 2.12 is satisfied on C, i.e. that for all v, w ∈ V

0 = ωV ∗(v, w) +
∑
s∈S

c(s)ωs(v, w)s.

If c is constant then it is straightforward to check that this is satisfied if and only if 2|S|c = n,
in other words c = rank(G)/#roots. This equals 1/h, where h is the Coxeter number of G. Thus
we have proved that L1/h(triv) = C is one-dimensional.

If we apply the shift functor m times to L1/h(triv) then, thanks to 5.23, we will produce a
finite dimensional irreducible representation Sm−1+1/h ◦ · · · ◦ S1+1/h ◦ S1/h(L1/h(triv)) and it’s
not hard, by considering h-weight spaces, to check that this is Lm+1/h(triv).

5.27.. For the moment, set c = m + 1/h. In order to say more about Lc(triv) we need to
use the KZ-functor. This sends Oc to Hq(G)-mod where q is the constant function taking value
exp(2π

√
−1/h). Now KZc cannot possibly be an equivalence since KZc(Lc(triv)) = 0 since Lc(triv)

is finite dimensional. However, this turns out to be the only information that is lost. This is
because the parameter q = exp(2π

√
−1/h) is very special for Iwahori–Hecke algebras: it produces

the “first” and simplest examples of Hq(G) which are not semisimple. They have been studied
in detail in [18] and [116] leading to a description of their decomposition matrices. It is shown
in [71, Lemma 4.3] and [12, Proposition 3.8] that the simple nature of these decomposition
matrices is enough to insure that (up to scalar multiplication) there is a unique non-trivial
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H1,c-homomorphism dk : ∆c(∧kh) −→ ∆c(∧k−1h) for any 1 ≤ k ≤ n = dim h and no other
homomorphisms between standard modules. It follows that we have a “BGG-resolution” of
Lc(triv)

0 −→ ∆c(∧nh) dn−→ · · · d2−→ ∆c(h) d1−→ ∆c(triv) −→ Lc(triv) −→ 0, (21)

and that ∆c(λ) is irreducible if λ 6= ∧kh for some k. Since h ∈ H1,c each dk respects decomposi-
tions into h–eigenspaces and so we see from (21) and (11)

[Lc(triv)]h =
n∑

k=0

(−1)k[∆c(∧kh)]h =
n∑

k=0

(−1)k

(
n

k

)
uκ(c,∧kh)

(1− u−1)nm
.

An elementary calculation gives κ(c,∧kh) = mh(k + n/2) + k. Thus

[Lc(triv)]h = u−nmh/2(1 + u + · · ·+ umh)n.

In particular, setting u = 1 we see that dim Lm+1/h(triv) = (mh + 1)n.

5.28.. In this example the entire quiver and relations corresponding to Oc can be calculated.
Ignoring the simple blocks of Oc (which correspond to λ 6= ∧kh) this produces the algebra
corresponding to the category of perverse sheaves on Pn which are constructible with respect to
the standard stratification (C0 ∪C1 ∪C2 ∪ · · · ∪Cn), or equivalently to parabolic category O for
the Lie algebra gln+1(C) and maximal parabolic with Levi gln(C). A general version of these
results is given in [126, 5.2.4].

5.29.. There has been considerable work towards the classification of finite dimensional H1,c-
representations, starting with [12] which showed that for G = Sn, there existed a (unique) finite
dimensional representation if and only if c = r/n with (r, n) = 1. Chmutova studied the case
where G is a dihedral group, [33], using systematically the KZ-functor and representations of
the corresponding Hecke algebras. The most general results for Weyl groups have been found
recently by Varagnolo–Vasserot, [140]: they prove in the equal parameter case that H1,c has
a finite dimensional representation if and only if c = r/s where (r, s) = 1 and s is an elliptic
number, see [140, p.9] for the list of these. The Coxeter number is always elliptic, and in case
G = Sn it is the only elliptic number. Varagnolo–Vasserot’s proof is geometric: they show that
any irreducible finite dimensional H1,c-representation can be considered as an irreducible “spher-
ical” representation of a double affine Hecke algebra; they then construct such representations
geometrically using the equivariant K-theory of affine Springer fibres.

Finite dimensional representations for unequal parameters are not yet understood; nor are
they for the majority of complex reflection groups, but see [80] and [81].

5.30. Application: Coinvariants. The work done in 5.26 and 5.27 has an application in com-
binatorics and invariant theory and points to a geometric interpretation of the rational Cherednik
algebras which is quite different from the K-theoretic construction of Varagnolo–Vasserot.

Recall from (1) the definition of the coinvariant ring C[h ⊕ h∗]coG. Since G does not act by
complex reflections on h ⊕ h∗ we expect that C[h ⊕ h∗]coG is larger than |G|. This is borne out
by the following theorem.
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Theorem ([71]). Let G be a finite Coxeter group of rank n and with Coxeter number h. Then
there is a graded C-algebra R with an action of G and a surjective G-equivariant algebra homo-
morphism

πG : C[h⊕ h∗]coG −→ R

such that the Poincaré polynomial of R is u−nh/2(1 + u + · · ·+ uh)n.

We have enough to prove this here. There is an isomorphism L1+1/h(triv) ∼= S1/h(C) ∼=
H1,1+1/he− ⊗U1/h

C. Give L1+1/h(triv) the filtration F p(L1+1/h(triv)) def= F p(H1,1+1/h) · e− ⊗ C.
Then there is a surjective mapping

gr (H1,1+1/h)e− ⊗gr U1/h
gr C −→ gr (H1,1+1/he− ⊗U1/h

C) = grL1+1/h(triv).

By (3), the left hand side is isomorphic to (C[h⊕h∗]oG)e−⊗C[h⊕h∗]G C. Now (C[h⊕h∗]oG)e− ∼=
C[h⊕ h∗]⊗ sign and so we further refine the left hand side to (C[h⊕ h∗]⊗C[h⊕h∗]G C)⊗ sign. But,
by definition, this is just C[h⊕ h∗]coG ⊗ sign and so it follows that R = gr L1+1/h(triv)⊗ sign is a
quotient of the commutative algebra C[h⊕ h∗]coG and hence the algebra we are looking for.

5.31.. A stronger version of this theorem in the case G = Sn goes under the name of the (n+1)n−1

theorem, and was proved by Haiman in [90]: it asserts that the kernel of πSn
is zero. Haiman’s

proof is geometric, relying on Hilbert schemes, the n! theorem and work by Bridgeland–King–Reid
on the higher dimensional homological McKay correspondence. The result above was conjectured
in [88] for all Coxeter groups. It is known that outwith the symmetric group, the mapping πG can
fail to be injective and that geometrical reasoning along the lines of the n! theorem will also fail
since, as we will see in the next chapter, symplectic resolutions do not always exist for h⊕ h∗/G.

Generalisations of the theorem exist for other complex reflection groups, [137], and another
proof for Weyl groups – using double affine Hecke algebras – was given in [31].

6. Specific case: rational Cherednik algebras II (t = 0)

Throughout this section we continue to focus on the case when G < GL(h) is a complex reflection
group of rank n and V = h⊕h∗. However, we will assume that t = 0 so that by Theorem 4.3 H0,c

is a finite module over its centre and there is a link between the geometry of Yc
def= Spec Z(H0,c)

and the representation theory of H0,c. We will exploit this to determine when Yc is smooth
and when V/G admits a symplectic resolution. We also discuss a conjectural connections with
Rouquier families for complex reflection groups.

6.1. Reduced rational Cherednik algebras. Recall from 4.10 the family of algebras H0,c(y)
and that its members do not vary continuously with y ∈ Yc. This problem can be circumvented for
rational Cherednik algebras thanks to the useful observation of [51, Proposition 4.15] that C[h]G⊗
C[h∗]G ⊂ Z(H0,c). Remarkably this subalgebra does not depend on c ∈ C[S]adG. Moreover, by
(3) and 1.3 H0,c is a free C[h]G ⊗ C[h∗]G-module of rank |G|3. Thus we have a finite morphism

Υc : Yc −→ h/G× h∗/G, (22)
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where, thanks to Theorem 1.3, the codomain is an affine space of dimension 2n. We also have a
flat family of finite dimensional algebras

H0,c(p, q) def=
H0,c

mp,qH0,c

where (p, q) runs over h/G×h∗/G and mp,q is the corresponding maximal ideal of C[h]G⊗C[h∗]G.
These |G|3-dimensional algebras are called reduced rational Cherednik algebras.

6.2.. The irreducible representations of H0,c(p, q) consist of the irreducible representations of all
H0,c(y) where y ∈ Υ−1

c (p, q). So, following 4.9, we can understand the irreducible representations
of H0,c by study those of the flat family of reduced rational Cherednik algebras.

6.3.. There is a C∗-action on H0,c with deg h = −deg h∗ = 1 and deg G = 0. This action passes
to Z(H0,c), Yc and C[h]G⊗C[h∗]G. If we want to study the geometry of Yc or the representation
theory of H0,c then it makes sense to look for C∗-fixed points in Yc and graded irreducible H0,c-
representations since much interesting structure will be attracted toward these. The C∗-action
on h/G × h∗/G is given by λ · (p, q) = (λp, λ−1q) for all λ ∈ C∗ and so the only fixed point in
h/G× h∗/G is the origin (0, 0). Thus the restricted rational Cherednik algebra

H0,c
def= H0,c(0, 0)

will be rather important in the study of H0,c. It is a finite dimensional symmetric graded algebra
with G-action and triangular decomposition

H0,c
∼−→ C[h]coG ⊗ CG⊗ C[h∗]coG.

Remark. It is not true that H0,c is the only interesting reduced rational Cherednik algebra, but
it is the only canonically defined interesting quotient. It can happen that the ramification locus
of Υc is a non-empty C∗-stable subvariety of h/G× h∗/G which does not meet (0, 0), producing
nilpotence in some of the H0,c(p, q), but not in H0,c; the ramification locus will, however, vary
with c.

6.4. “Category O”. We can mimic the construction of standard modules in Oc to construct
a family of H0,c-modules.

Definition. Let λ ∈ Irrep(G). The baby Verma module associated to λ is

∆c(λ) def= H0,c ⊗C[h]G⊗C[h∗]oG λ,

where C[h]G ⊗ C[h∗] acts on λ via p · v = p(0, 0)v for any p ∈ C[h]G ⊗ C[h∗] and v ∈ λ.

Since the maximal ideal m0,0 of C[h]G ⊗ C[h∗]G annihilates ∆c(λ) we see that ∆c(λ) is an
H0,c-module. As a graded C[h] o G-module ∆c(λ) is isomorphic to C[h]coG ⊗ λ by the PBW
isomorphism (3); by Theorem 1.3, it is isomorphic to CG⊕ dim λ as a G-representation.
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6.5.. Standard arguments on graded algebras with triangular decompositions, [94], show that

(1) Each ∆c(λ) has a simple head Lc(λ) which is graded.

(2) The set {Lc(λ) : λ ∈ Irrep(G)} is a complete set of irreducible H0,c-modules up to isomor-
phism.

Thus it becomes crucial to understand the composition multiplicities [∆c(λ) : Lc(λ)]. This is
answered only in a few simple cases, but may again be related to the Hecke algebras Hq(G).

6.6. Singularities in the centre. Theorem 4.11 tells us that it is important to know whether
Yc is smooth. If it is, then describing H0,c is equivalent to describing Yc. Now Theorem 4.8(3)
tells us that Yc is smooth if and only if all irreducible representations of H0,c carry the regular
representation as a G-module. We now have a source of irreducible H0,c-representations, the
Lc(λ)’s: they are quotients of baby Verma modules whose G-structure we are able to understand
perfectly.

Theorem ([51, Corollary 1.14], [70, Proposition 7.3], [7, Theorems 3.1 and 4.1]). Let G be an
irreducible complex reflection group. There exists a choice of parameter c ∈ C[S]adG such that
Yc(G) is smooth if and only if G = µ` o Sn or G is the binary tetrahedral group.

Here µ`oSn is called G(`, 1, n) in the Shephard–Todd classification while the binary tetrahedral
group is the exceptional group G4. The binary tetrahedral group also appears as the kleinian
group associated to Ẽ6 in Figure 1 – the imaginary root δ for Ẽ6 shows that this group has three
two-dimensional irreducible representations: one of these realises it as a subgroup of SL(2, C);
the other two give its action on h and h∗ as a complex reflection group.

6.7.. The proof of the theorem proceeds in two steps. If G = G(`, 1, n) – or more generally
G = Γ o Sn for some Γ < SL(2, C) – Etingof and Ginzburg present Yc(G) as a smooth quiver
variety for generic values of c, thus proving most of the “if” direction. (This will be discussed
in Chapter 7.) The binary tetrahedral example is dealt with by Bellamy by showing that all
irreducible H0,c-representations have dimension |G|.

To prove the “only if” direction it is only necessary to show that there exists some λ ∈ Irrep(G)
such that dim Lc(λ) < |G|. Well, if all Lc(λ)’s were |G|-dimensional then it would follow quickly
from Theorem 4.8 that there would be no non-split extension between the different Lc(λ)’s.
Since each baby Verma module is indecomposable this would mean that Lc(λ) would be the only
composition factor of ∆c(λ) for each λ ∈ Irrep(G). Looking at the graded G-action on ∆c(λ)
and on Lc(λ) one sees, case-by-case, that this is impossible for all the complex reflection groups
except G(`, 1, n) and G4.

6.8. Application: Symplectic resolutions. Theorem 6.6 has a pleasant consequence.

Theorem ([69], [142], [7]). Let G ≤ GL(h) be a complex reflection group acting on V = h⊕ h∗.
Then V/G has a symplectic resolution if and only if G = G(`, 1, n) or G = G4.

In [142, Sections 1.3 and 1.4] Wang observes that if G = G(`, 1, n) (or more generally G = ΓoSn

for some Γ < SL2(C)) then V/G has a symplectic resolution given by the Hilbert scheme of n
points on the minimal resolution of the Kleinian singularity C2/Γ. In [7, Corollary 4.2], Bellamy
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uses work of Kawamata and the minimal model programme to show the existence of a symplectic
resolution for G = G4. This completes the “if” direction.

The “only if” direction is proved in [69] by deformation theoretic arguments. It is crucial
that the C∗-action on V/G induced from dilation on V contracts all orbits to the zero orbit and
rescales the symplectic form ωV/G by a positive weight. This allows formal deformation theoretic
arguments to be globalised, as in Remark 2.5. There are two key results in [69] for us. The first,
[69, Theorem 1.13], states that if there is a symplectic resolution π : X −→ V/G then there is
a family of symplectic resolutions πb : Xb −→ πb(Xb) over an affine base space B = H2(X, C)
whose special fibre π0 is π and whose generic fibre is an isomorphism. In particular, this implies
that the generic deformation πb(Xb) of V/G must be smooth since Xb is. Then [69, Theorem 1.18]
states that the family of deformation (Yc)c of V/G constructed by rational Cherednik algebras is
“big enough” to meet the generic πb(Xb).

Putting these together we see that if V/G has a symplectic resolution, then Yc must be smooth
for some choice of c. Combined with Theorem 6.6, this proves “only if” direction.

6.9.. The theorem can be paraphrased by the five-word-phrase “the resolution is the deforma-
tion”. For example, if G = G(`, 1, n) then there is a resolution with a hyper-Kähler structure – it
is a quiver variety – and a rotation of the complex structure produces the generic deformation Yc.
Thus, the resolution and the deformation are diffeomorphic. The case of G4 is not yet understood
in this context. In particular, it would be a good idea to describe the corresponding symplectic
resolution in terms of C[V ] o G4-representations and also to find an explicit description of a
hyper-Kähler structure on Yc(G4).

6.10. Application: Families for complex reflection groups. The blocks of H0,c corre-
spond to the decomposition of the centre Z(H0,c) into local algebras. We have a natural homo-
morphism Z(H0,c) −→ Z(H0,c), and its kernel is m0,0. In other words we have an embedding
C[Υ−1

c (0, 0)] −→ Z(H0,c); however, in general this is not surjective. But there is a ring theoretic
result of Müller which helps us, see [26, Chapter III.9].

Theorem. The image of C[Υ−1
c (0, 0)] in Z(H0,c) determines the block decomposition of H0,c.

More precisely, each primitive idempotent of C[Υ−1
c (0, 0)] lifts to a unique primitive central idem-

potent of H0,c.

This theorem can be given a geometric interpretation. Since Υc is a finite C∗-equivariant
morphism and (0, 0) is the unique C∗-fixed point of h/G× h∗/G, the points of Υ−1

c (0, 0) are the
C∗-fixed points of Yc. Thus the C∗-fixed points of Yc label the blocks of H0,c.

6.11.. By 6.5(1) each ∆c(λ) is indecomposable, so it belongs to a block of H0,c. Hence we have
a surjective mapping

Θc : Irrep(G) −→ Υ−1
c (0, 0)

associating a fixed point of Yc to each irreducible representation of G. This induces a partition
of Irrep(G) which depends on c ∈ C[S]adG: λ, µ ∈ Irrep(G) belong to the same class if and only
if Θc(λ) = Θc(µ). We call this partition the CMc-partition of Irrep(G).
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6.12.. We refer to the survey of Martino, [109], for the definitions of Rouquier families – natural
partitions of Irrep(G) which appear in Kazhdan–Lusztig theory – and for the precise parametri-
sation of these families.

Conjecture ([76]). (1) The CMc-partition of Irrep(G) agrees with the partition of Irrep(G)
into Rouquier families.

(2) Let y ∈ Υ−1
c (0, 0). Then the dimension of C[Υ−1

c (0, 0)y] equals the dimension of the corre-
sponding Rouquier block.

There is quite a lot of evidence for this conjecture. Part (2) holds for all smooth points in
Υ−1(0, 0) and Part (1) holds for G(`, 1, n) and any choice of parameter, [73], [76] and [109]. The
proof of Theorem 6.6 shows that this partition is trivial if and only if Yc is smooth, so Part (1)
of the conjecture predicts that G4 should be the only exceptional complex reflection group for
which there exists a choice of parameters which produces trivial Rouquier families: this is true
thanks to recent work of Chlouveraki, [32].

6.13.. There is no conceptual confirmation of this conjecture in sight at the moment. Rouquier
families contain information on the integral representation theory of Hecke algebras for complex
reflection groups; it is not clear how the representation theory of H0,c or the geometry of Yc sees
this. One approach for Weyl groups may be to consider an appropriate semiclassical limit of the
KZc functor, relating certain H0,c-representations to the representations of Lusztig’s aymptotic
Hecke algebra, but this is unclear at the moment.

6.14. Toy example. For G = µ2 it is immediate from the relation [y, x] = −2cs that x2 and y2

are central. The baby Verma modules ∆c(±) = C[x]/〈x2〉⊗± have the action y · (1⊗±) = 0 and
y · (x⊗±) = ∓2c⊗± and are thus simple if and only if c 6= 0. If c = 0 then ∆c(±) are filtered
by one copy of Lc(+) = + and one copy of Lc(−) = − with x and y acting as zero on both. The
final generator of Z(H0,c) is h and by 2.16 the defining relation is x2y2 = (h− 4c)(h + 2c). Thus
this is smooth if and only if c 6= 0, as predicted.

7. Specific case: quivers and hamiltonian reduction

We move on to study the second family of 2.18, G = Γn o Sn = Γ o Sn, where Γ is a finite
subgroup of SL(2, C), acting on V = (C2)n. The McKay correspondence relates these groups
to affine Dynkin diagrams and this allows us to describe Ht,c(G) as a deformation of a tensor
product of deformed preprojective algebras. The representation at t = 0 is quite well understood
in terms of quiver varieties; for t 6= 0 this is still under investigation via a process called quantum
hamiltonian reduction.

7.1.. When G = Γ o Sn the conjugacy classes of symplectic reflections in G fall into two families:

(S) The elements sijγiγ
−1
j where 1 ≤ i < j ≤ n and γ ∈ Γ. Here γi indicates the element of

Γn ≤ G whose ith component is γ and all of whose other components are the identity.

(Γ) The elements γi for 1 ≤ i ≤ n and γ 6= 1.
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Here the elements of (S) comprise one conjugacy class, while conjugacy classes in (Γ) correspond
to the non-trivial conjugacy classes in Γ.

We will write c = (c1, c) for an element of c ∈ C[S]adΓn where c1 is the value of c on (S) and
c is the restriction of c to (Γ).

7.2.. Recall from 3.2 that there is an affine Dynkin quiver Q – choose any orientation of the
diagram – corresponding to Γ. The k-th vertex corresponds to an irreducible representation Sk

whose dimension is δk. Recall too the definition of λ(t, c) ∈ CQ0
from (6) which, together with

setting ν = c1|Γ|/2, produces a linear isomorphism between C×C[S]adG and CQ0 ×C such that
t = λ(t, c) · δ.

7.3. Generalised deformed preprojective algebras. There is a quiver theoretic description
of Ht,c(G), at least up to Morita equivalence. This is easy to explain heuristically now; the explicit
description will be given in the next section.

We are trying to deform the algebra C[V ] o G where V = (C2)n. Rewriting this algebra as
(C[C2] o Γ)⊗n o Sn suggests that we can construct a family of deformations simply by simulta-
neously deforming each of the tensorands C[C2] o Γ. However, Γ is a finite subgroup of SL(2, C)
so we know by Theorem 2.12 that these deformations correspond to the non-trivial conjugacy
classes of Γ. Now by Theorem 3.5 each of these deformations is Morita equivalent to a deformed
preprojective algebra, so we have produced a family of deformations depending on the conjugacy
classes of type (Γ), namely (Πλ(t,c)(Q))⊗n o Sn.

The deformations corresponding to the class of type (S) arise now exactly as the Dunkl
operators arose for Sn acting on C[C2n] = C[C2]⊗n. In fact, since a generic choice of parameter
λ(t, c) produces a simple Πλ(t,c)(Q) by Theorem 3.7(5), a homological theorem of [54, Theorem
6.1], inspired by [1], assures us of the existence of such deformations.

7.4.. Here is the quiver-theoretic algebra defined in [61, Definition 1.2.3]. Let k
def= ⊕i∈Q0Cei

and E be the vector space over C whose basis is given by the set of edges {a, a∗ : a ∈ Q}. Set
B

def= k⊗n and for any 1 ≤ ` ≤ n, define the B-bimodules

E`
def= k⊗(`−1) ⊗ E ⊗ k⊗(n−`) and E

def=
⊕

1≤`≤n

E` .

Given two elements ε ∈ E` and ε′ ∈ Em of the form

ε = ev1 ⊗ ev2 ⊗ · · · ⊗ a⊗ · · · ⊗ eh(b) ⊗ · · · ⊗ evn , (23)

ε′ = ev1 ⊗ ev2 ⊗ · · · ⊗ et(a) ⊗ · · · ⊗ b⊗ · · · ⊗ evn
, (24)

where ` 6= m, a, b ∈ Q and v1, . . . , vn ∈ V , define

bε, ε′c := (ev1 ⊗ · · · ⊗ a⊗ · · · ⊗ eh(b) ⊗ · · · ⊗ evn
)(ev1 ⊗ · · · ⊗ et(a) ⊗ · · · ⊗ b⊗ · · · ⊗ evn

)
−(ev1 ⊗ · · · ⊗ eh(a) ⊗ · · · ⊗ b⊗ · · · ⊗ evn

)(ev1 ⊗ · · · ⊗ a⊗ · · · ⊗ et(b) ⊗ · · · ⊗ evn
).

For (λ, ν) ∈ CQ0 × C define the algebra An,λ,ν to be the quotient of TBE o Sn by the following
relations.
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(i) For any v1, . . . , vn ∈ V and 1 ≤ ` ≤ n:

ev1 ⊗ · · · ⊗ (rv`
− λv`

ev`
)⊗ · · · ⊗ evn

= ν
∑

{j 6=` | vj=v`}

(ev1 ⊗ · · · ⊗ ev`
⊗ · · · ⊗ evn

)(j `) .

(ii) For any ε, ε′ of the form (23)–(24):

bε, ε′c =

 ν(ev1 ⊗ · · · ⊗ eh(a) ⊗ · · · ⊗ et(a) ⊗ · · · ⊗ evn)(`m) if a = b∗ and b ∈ Q ,
−ν(ev1 ⊗ · · · ⊗ eh(a) ⊗ · · · ⊗ et(a) ⊗ · · · ⊗ evn)(`m) if b = a∗ and a ∈ Q ,
0 otherwise .

As we mentioned, setting ν = 0 produces Πλ(Q)⊗n o Sn; taking Γ = {1} recovers the relations
for the rational Cherednik algebra associated to Sn with V = (Cn)2.

Generalising Theorem 3.5 we have the following theorem of Gan and Ginzburg.

Theorem ([61, Theorem 3.5.2]). There is a Morita equivalence between Ht,c(Γn) and An,λ(t,c),ν .

7.5.. This Morita equivalence has proved very useful in the study of finite dimensional irreducible
H1,c(G)-representations.

If ν = 0 then An,λ,ν = Πλ(Q)⊗n o Sn and the finite dimensional irreducible representations
can be described in the following standard manner. Take a partition µ = (µ1, . . . , µr) of n, set
Sµ = Sµ1 × · · · × Sµr be the corresponding Young subgroup, and let W = W1 ⊗ · · · ⊗Wr where
each Wi is an irreducible representation of Sµi

. Now choose a collection Y1, . . . , Yr of irreducible,
pairwise non-isomorphic representations of Πλ(Q) and form the irreducible representations Y =
Y µ1

1 ⊗ · · · ⊗ Y µr
r of Πλ(Q)⊗n. Then Y ⊗W↑def= IndSn

Sµ
(W ⊗ Y ) is an irreducible Πλ(Q)⊗n o Sn =

An,λ,0-representation. All irreducible An,λ,0-representations arise this way. Since Theorem 3.7(2)
classifies all finite dimensional irreducible representations of Πλ(Q) with λ · δ 6= 0, the above
describes all finite dimensional representations for Ht,c(G) with c1 = 0 and t 6= 0.

In [53, Theorem 3.1] and [114, Theorem 1.3] Etingof and Montarani use deformation the-
oretic arguments to find sufficient conditions on the parameters to ensure that a given An,λ,0-
representation extends to an An,λ′,ν-representation. Later, [62, Section 6] Gan introduced re-
flection functors for the algebras An,λ,ν , generalising those of Bernstein-Gelfand-Ponomarev. He
used them to prove the necessity of Etingof and Montarani’s conditions.

Theorem ([53], [114], [62]). The An,λ0,0-representation W⊗Y ↑ extends to a An,λ′,ν-representation
for some (λ′, ν) with ν 6= 0 if and only if

(1) for each 1 ≤ i ≤ r, the irreducible Sµi
-representation has rectangular Young diagram of

size ai × bi;

(2) Ext1Πλ(Q)(Yi, Yj) = 0 for any i 6= j;

(3) λ · αi = (ai − bi)ν for each 1 ≤ i ≤ r where αi is the dimension vector of Yi.

The deformation exists in a linear subspace of the parameter space of codimension r (which is
explicitly described) and it is unique.

When combined with Theorem 7.4, this is more-or-less the extent of our knowledge of the
finite dimensional representations for Ht,c(G) when t = 1.

37



7.6. The t = 0 case. In order to motivate the geometric constructions we will use later in this
chapter we study the case t = 0. There is a precise sense in which the representation theory of
H0,c(G) is now well-understood, but for a reason we explain below, explicit questions are still
difficult to answer.

7.7.. There is a description of Yc = Spec Z(H0,c) for any c which generalises the two-dimensional
Theorem 3.7(2) to higher dimensions. Given a quiver Q associated to Γ, set QCM to be the quiver
obtained from Q by introducing one new vertex, ∞, and one new arrow which begins at ∞ and
ends at the extending vertex. Given c ∈ C[S]adG define λ′(t, c) ∈ CQ0

CM by

λ′(t, c)k =


1
δ2

k
λ(t, c)k if k ∈ Q0 is not extending

λ(t, c)k − ν if k is the extending vertex
−n
∑

k∈Q0
λ′(t, c)kδk if k =∞.

(25)

Set ε∞ ∈ CQ0
CM to be the unit vector concentrated at the ∞ vertex.

Theorem ([51, Theorem 1.13], [108, Theorem 6.4]). Set α = nδ + ε∞, a dimension vector for
QCM. There is an isomorphism

Yc
∼−→ Rep(Πλ′(0,c)(QCM), α))//GL(α).

Moreover, there is a natural Poisson structure on the representation variety and the isomorphism
identifies symplectic leaves.

To explain the proof, recall that Yc is equipped with a tautological G-equivariant coherent
sheaf H0,ce which, by Theorem 4.8, is a vector bundle over the smooth locus with fibres carrying
the regular representation of G. In essence the isomorphism is induced on the smooth locus by
sending the tautological sheaf to its Γn−1 o Sn−1-invariant sub-bundle, where Sn−1 < Sn is the
subgroup acting on indices {2, . . . , n}: G, x1 and y1 still act on this sub-bundle and produce the
tautological bundle on the smooth locus of Rep(Πλ′(0,c)(QCM), α)//GL(α).

In [108, Theorem 1.3] Martino goes on to describe the symplectic leaves of the representa-
tion variety as the (connected components of the) the semisimple representation type strata.
Since Crawley-Boevey, [38], and Le Bruyn, [103], have described the irreducible Πλ′(0,c)(QCM)-
representations, this then provides an effective combinatorial description of the symplectic leaves
of Yc, and in particular of the singular locus of Yc, which by Theorem 4.8 has ramifications for
the representation theory of H0,c.

7.8.. Taking c = 0 in the above theorem we see that

V/G
∼−→ Rep(Π0(QCM), α)//GL(α). (26)

Now Nakajima’s quiver varieties provide many resolutions of singularities of Rep(Π0(QCM), α)
and hence of V/G. We briefly recall their construction here: it is often referred to as hamiltonian
reduction.

Consider the moment map

µQCM
: Rep(QCM, α) −→ gl(α), {(Xa, Xa∗) : a ∈ Q1

CM} 7→
( ∑

a∈Q1
CM

h(a)=k

XaXa∗ −
∑

a∈Q1
CM

t(a)=k

Xa∗Xa

)
k
.
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Its zero fibre µ−1
QCM

(0) is reduced, by [63, Theorem 1.1.2], so there will be no geometric am-
biguity in the definition to follow.1 Given θ ∈ ZQ0

, set θCM = (θ∞, θ) ∈ ZQ0
CM with θ∞ =

−nδ · θ. There is a corresponding character, detθCM , of GL(α) defined by detθCM(g∞, (gk)k) =
det(g∞)θ∞

∏
k∈Q0 det(gk)θk . We set

Mθ(Γ, n) def= µ−1
QCM

(0)//θCM
GL(α) def= Proj

⊕
m≥0

C[µ−1
QCM

(0)]detmθ̂

.

Here C[µ−1
QCM

(0)]detmθCM def= {f ∈ C[µ−1
QCM

(0)] : (g∞, (gk)k) · f = detθCM(g∞, (gk)k)f}, the space of
mθCM-semi-invariants functions in µ−1

QCM
(0), and Proj stands for the projective variety associated

to an N-graded algebra. Projection onto to the degree zero component provides a canonical
projective morphism

πθ :Mθ(Γ, n) −→ Rep(Π0(QCM), α)//GL(α) ∼= V/G.

For generic choices of θ this is a symplectic resolution of V/G, [118, Theorem 2.8]. Nakajima
generally applies the condition θ ∈ NQ0

in his study of quiver varieties; other choices of θ produce
other interesting resolutions such as Hilbn(C̃2/Γ), [101, Theorem 4.9]; the variation of the stability
condition θ in the context of symplectic reflection algebras is studied in [73] in general.

Recall thatMθ(Γ, n) also has a representation theoretic description as the algebro-geometric
quotient of the open subvariety of µ−1

QCM
(0) consisting of those representations which have no

proper subrepresentations W whose dimension vector satisfies the inequality dimW · θCM < 0,
[119, 3.ii] and [99].

7.9.. This description of resolutions of singularities of V/G, combined with Theorem 7.7, fleshes
out some of the philosophy behind Theorem 6.8 explained in 6.9: the resolutions have a hyper-
Kähler structure and rotating the given complex structure produces the (smooth) deformations.

7.10.. Now it is not hard to generalise the quiver variety picture above to show that Yc for any
c ∈ C[S]adG – which by Proposition 4.5 is a symplectic singularity – has a symplectic resolution.
We have seen in Theorem 4.11 that if Yc is smooth then there is a Morita equivalence between
H0,c-mod and Coh(Yc). In the general case we have the following theorem generalising Theorem
4.11.

Theorem ([77, Theorem 1.2]). Let G = Γn o Sn and c ∈ C[S]adG. There is a symplectic
resolution πc : Xc −→ Yc such that there is an equivalence of triangulated categories

Db(H0,c-mod) ∼−→ Db(Coh(Xc))

between the bounded derived category of finitely generated H0,c-modules and the bounded derived
category of coherent sheaves on Xc.

This theorem is quite straightforward modulo one difficult point: the case c = 0 which pro-
duces an equivalence between Db(C[V ]oG) and Db(Coh(X)) where X is a symplectic resolution

1Without the vertex at infinity, however, it is a famous open question whether µ−1
Q (0) is reduced, particularly

when Q is Ã1.
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of V/G. A theorem of Bezrukavnikov and Kaledin, [17, Theorem 1.1], produces such as equiv-
alence, but it is rather implicit and we require something more explicit: for Γ = {1} this is
essentially a combination of the celebrated n! theorem of Haiman, [89], and the celebrated de-
rived McKay correspondence of Bridgeland–King–Reid, [21]; the case of general Γ also follows
from these works, since the n! theorem is local and Hilbn(C̃2/Γ) is modelled locally on Hilbn(C2).
Given this, the proof proceeds by a deformation argument.

7.11.. The bad news is that this proof of theorem above does not produce an explicit symplec-
tic resolution Xc, and as we have already seen there may be several non-isomorphic ones. In
particular, it is not known at the moment whether Xc is a resolution arising from a quiver va-
riety. However, inspired by Bondal and Orlov, [93, Conjecture 7.1] conjectures that the derived
categories of coherent sheaves on different symplectic (more generally, crepant) resolutions of Yc

should all be equivalent.

7.12.. The theorem does have one consequence which is independent of the choice of symplectic
resolution. Since Xc is a symplectic resolution of the normal variety Yc we have O(Xc) ∼= O(Yc) =
Z(H0,c), and under this isomorphism complexes of modules whose cohomology are annihilated
by some power of a maximal ideal my ∈ Z(H0,c) are identified with complexes of sheaves whose
cohomology are annihilated by some power of my ∈ O(Xc). On passing to Grothendieck groups
this produces an isomorphism K(H0,c(y))⊗Z C ∼= K(π−1

c (y))⊗Z C. However the complexified K-
group of the fibre π−1

c (y) is independent of the choice of resolution thanks to [40, Proposition 6.3.2]
and [97, Theorem 2.12], and is isomorphic to H∗(π−1

c (y), C). Thus the number of simple H0,c(y)-
modules, which equals the rank of K(H0,c(y)), is the dimension of the cohomology H∗(π−1

c (y), C)
for any symplectic resolution πc : Xc −→ Yc. Now for a symplectic resolution of Yc by quiver
varieties, such cohomology spaces were studied by Nakajima in his geometric construction of
representations of quantum enveloping algebras, [119], and this relates the representation theory
of H0,c(y) to Lie theoretic combinatorics, cf. Theorem 3.7.

7.13. Back to t = 1: differential operators on representations of quivers. Theorems
4.3 and 7.7 show that U0,c can be described in terms of functions on a representation variety of
the double of the quiver QCM. To generalise this quiver-theoretic description to U1,c requires us to
pass from commutative algebra to noncommutative algebra. Now Rep(QCM, α) can be interpreted
as the cotangent bundle T ∗Rep(QCM, α), so this suggests that we should look at the canonical
noncommutative deformation of C[T ∗Rep(QCM, α)], namely the algebra of differential operators
on Rep(QCM, α), which we denote by DQCM

def= D(Rep(QCM, α)). This C-algebra has generators the
pairwise commuting matrix coefficients (Xa)ij and their pairwise commuting partial derivatives
(∂a)ij for each a ∈ Q1

CM and 1 ≤ i ≤ αh(a), 1 ≤ j ≤ αt(a), and they satisfy the relations
[(∂a)ij , (Xb)kl] = δabδikδjl for all a, b ∈ Q1

CM and appropriate i, j.

7.14.. The moment map µQCM
: Rep(Q,α) −→ gl(α) corresponds to an algebra mapping µ∗QCM

:
Sym(gl(α)) −→ C[T ∗Rep(QCM, α)] which has a natural noncommutative analogue which we now
describe. The group GL(α) acts algebraically on Rep(QCM, α); differentiating this gives an action
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of gl(α) on Rep(QCM, α) by vector fields which can be calculated to be

(Est)i ∈ gl(α) 7→
∑

a,t(a)=i

1≤u≤αh(a)

(Xa)ut(∂a)us −
∑

a,h(a)=i

1≤v≤αt(a)

(Xa)sv(∂a)tv ∈ Vect(Rep(QCM, α)).

This extends to an algebra homomorphism

τQCM
: U(gl(α)) −→ DQCM

, (27)

which is a noncommutative deformation of µ∗QCM
in the sense that gr τQCM

= µ∗QCM
if we equip left

hand side of (27) with the usual filtration induced from deg(gl(α)) = 1 and the right hand side
with the differential operator filtration.

7.15.. Since GL(α) acts on Rep(QCM, α), it also acts on DQCM
and the action is locally finite.

We now have all but one of the ingredients required to define an analogue of the isomorphism of
Theorem 7.7. The last is the construction of a character χc of gl(α) which will twist differential
operators in order to produce the deformations we seek. For (Xk)k ∈ gl(α) set

χc(Xk) =


(
λ(|Γ|−1, c)k + n(δi −

∑
δt(a)=iδh(a))

)
Tr(Xk) if k ∈ Q0 is not extending(

λ(|Γ|−1, c)k − ν − n
)
Tr(Xk) if k is the extending vertex

n (ν − 1)Tr(Xk) if k =∞.

The following theorem has several authors: [51, Theorem 1.17], [122, Theorem 2.5], [72, Theorem
1.4], [50, Theorem 1.4.4]

Theorem. Continue with the notation from above and let DQCM
(τQCM

− χc) denote the left ideal
of DQCM

generated by the elements τQCM
(X) − χc(X) for X ∈ gl(α). There is a filtered algebra

isomorphism

Φc :
(

DQCM

DQCM
(τQCM

− χc)

)GL(α)
∼−→ U1,c

whose associated graded mapping is the isomorphism

grΦc :
(

C[T ∗Rep(QCM, α))]
C[T ∗Rep(QCM, α))]µQ∗

CM
(gl(α))

)GL(α)

∼= gr
(

DQCM

DQCM
(τQCM

− χc)

)GL(α)

∼−→ grU1,c
∼= C[V ]G

of (26).

It may seems surprising at first sight that
(
DQCM

/DQCM
(τQCM

− χc)
)GL(α) is even an algebra:

after all, we have factored out a left ideal from the simple ring DQCM
and then taken GL(α)-

invariants. However, if we let gl(α) act on DQCM
via adx : u 7→ [u, (τQCM

−χc)(X)] for X ∈ gl(α),
then we can identify(

DQCM

DQCM
(τQCM

− χc)

)GL(α)
∼−→
(

DQCM

DQCM
(τQCM

− χc)

)adgl(α)

∼−→ EndDQCM

(
DQCM

DQCM
(τQCM

− χc)

)op

, (28)
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where the first isomorphism holds by definition and the second is given by right multiplica-
tion. The algebra structure is now evident. We call

(
DQCM

/DQCM
(τQCM

− χc)
)GL(α) the quantum

hamiltonian reduction of QCM with respect to GL(α).

7.16.. The proof of Theorem 7.15 for Γ = {1} was given in [63], following a twist on the classical
route of radial parts in [51]. Here the quiver QCM is simply

◦:: ◦oo (29)

The scalars (λ Idn, λ) in the base change group GL(α) = GL(n, C)×C∗ act trivially on Rep(QCM, α) =
Matn(C)× Cn and so, without loss of generality, we reduce the base change group to GL(n, C).
Now consider the open set UCM of Rep(QCM, α) consisting of pairs (X, v) of a regular semisimple
matrix X and a vector v such that C[X]v = Cn. Mapping the matrix X to its characteristic
polynomial produces a GL(α)-equivariant morphism

ρ : UCM −→ hreg/Sn

which is a principal GL(n, C)-bundle. Thus any Sn-invariant function f on hreg can be lifted
uniquely to a function f̂χ on UCM which is GL(n, C)-semi-invariant for some character χ of
GL(n, C). (And in fact, on a small enough neighbourhood of the slice hreg×1 def= {(X, (1, . . . , 1)) ∈
hreg × Cn} ⊂ UCM, we can lift the function to one which is semi-invariant for any character of
gl(n).) This allows us to construct a homomorphism

Φχ : D(Rep(QCM, α))GL(α) −→ D(hreg)Sn

by defining Φχ(D)(f) = D(f̂χ)|hreg×1. Now recall that U1,c ⊂ D(hreg)Sn thanks to Remark 5.12.
Taking χ = χc, one shows that the image of Φχc (after conjugating by an appropriate element in

C[hreg]) is U1,c and that the kernel of Φχc
contains

(
DQCM

(τQCM
− χc)

)GL(α). To check that this
is actually all of the kernel one passes to grΦχc

and uses the isomorphism (26).
For Γ of type A the theorem is proved by a generalisation of the argument above. However,

the case of Γ of type D and E is more complicated since there is no Dunkl embedding. It involves
a careful study of several different mappings and differential operators on products of P1’s. The
details are in [50].

7.17. The functor of hamiltonian reduction. Let (DQCM
, gl(α)c)-mod denote the category

of finitely generated DQCM
-modules which are locally finite as (τQCM

−χc)(gl(α))-modules. Given
a module M in this category, we can consider the set of fixed points Mgl(α)c

def= {m ∈ M :
τQCM

(X)m = χc(X)m for all X ∈ gl(α)}. Clearly, this a (DQCM
/DQCM

(τQCM
− χc))GL(α)-module

and so by Theorem 7.15 we have constructed the functor of hamiltonian reduction

Hc : (DQCM
, gl(α)c)-mod −→ U1,c-mod, M 7→Mgl(α)c .

Since gl(α) is reductive and the objects of (DQCM
, gl(α)c)-mod are locally finite, the functor Hc is

exact. Tensoring over U1,c by the (DQCM
, (DQCM

/DQCM
(τQCM

−χc))GL(α))-bimodule DQCM
/DQCM

(τQCM
−

χc) is a left adjoint to Hc. The full subcategory ker Hc = {M ∈ (D(Rep(QCM, α), gl(α)c)-mod :
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Hc(M) = 0} is a Serre subcategory of (DQCM
, gl(α)c)-mod and so we can form a quotient category.

We have an equivalence

Hc :
(DQCM

, gl(α)c)-mod

ker H
∼−→ U1,c-mod.

Thus, the representations of U1,c can be studied in terms of a certain categories of D-modules
on Rep(QCM, α). This has been studied for Γ = {1} first by Gan and Ginzburg, [63], and then
by Finkelberg and Ginzburg, [57], leading to a relationship with (a generalisation of) Lusztig’s
character sheaves.

8. Very specific case: the symmetric group and Hilbert
schemes

The symplectic reflection groups G = µn
` o Sn = G(`, 1, n) acting on (Cn)2 = (C2)n live in both

families of 2.18: they are complex reflection groups in their action on h = Cn; they are wreath
products of kleinian subgroups of type A. Therefore we can apply the theory from Sections 5
and 6, and from Section 7.

For t = 0 much of their representation theory is understood thanks to Theorem 7.10, and
indeed in this case Conjecture 6.12(1) is confirmed.

We will therefore concentrate on the case t = 1 for the rest of this section, and even specialise
to the case ` = 1. Thus G = Sn and V = C2n.2 We will see the connection between finitely
generated representations of H1,c(Sn) and coherent sheaves on the Hilbert scheme Hilbn(C2).
Many interesting and new phenomena arise for ` > 1, but the picture is not well understood at
the moment, either algebraically or geometrically – see [91, Chapter 8], [73] and [100].

8.1. Hilbert schemes. We begin by motivating the appearance of Hilbert schemes. The cel-
ebrated theorem of Beilinson–Bernstein, [6], shows that for a simple complex Lie algebra g
and a regular integral dominant weight λ + ρ there exists an equivalence of categories between
U(g)λ-mod and Dλ

B-mod, where U(g)λ denotes the quotient of the enveloping algebra U(g) by
the maximal ideal of its centre corresponding to λ, and Dλ

B denotes the sheaf λ-twisted differ-
ential operators on the flag variety B. There are filtrations on both U(g)λ and Dλ

B such that
grU(g)λ

∼= C[N ] where N is the set of nilpotent elements of g and grDλ
B
∼= p∗OT∗B where

p : T ∗B −→ B is projection onto the base. Thus the Beilinson–Bernstein theorem can be con-
sidered as a quantisation of the Springer resolution π : T ∗B −→ N , a symplectic resolution of
singularities. Moreover the Beilinson–Bernstein theorem states that in the noncommutative set-
ting the resolution π has become an equivalence: this is not outrageous since the algebra U(g)λ

already has many very good homological properties, including finite global dimension, and so
can already be considered to be a “smooth” noncommutative algebra.

2In fact we shall be slightly cavalier here: Cn is not the reflection representation of Sn but rather h⊕ triv. The
extra copy of triv results in a copy of D(C) generated by x1 + · · · + xn and y1 + · · · + yn, and an isomorphism
H1,c(Sn, C2n) ∼= D(C) ⊗ H1,c(Sn, h ⊕ h∗). Since D(C) is a particular simple algebra, we will elide the difference
between Cn and h in what follows.
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8.2.. In our setting the spherical sublagebras U1,c are analogues of the quotients U(g)λ, cf. 2.16.
Thanks to Proposition 4.1 and 5.14 the algebra U1,c has finite global dimension for most values
of c. On the other hand gr U1,c = C[V ]Sn . By definition, the right hand side is the coordinate
ring of the nth symmetric product of the place SnC2 consisting of n-unordered points on the
plane. This is a symplectic singularity, but it has a resolution by the Hilbert scheme of n points
of the plane, Hilbn C2, which can be described as a quiver variety associated to the quiver QCM

of (29), see for example [120]. Setting

µ−1
QCM

(0)ss = {(X, Y, i, j) ∈ Matn(C)×2 × Cn × (Cn)∗ : [X, Y ] + ij = 0, C〈X, Y 〉i(1) = Cn}

and letting GL(n, C) act by g · (X, Y, i, j) = (gXg−1, gY g−1, gi, jg−1), the orbit mapping is a
GL(n, C)-principal bundle with image Hilbn C2

p : µ−1
QCM

(0)ss 7→ µ−1
QCM

(0)ss/GL(n, C) def= Hilbn C2. (30)

It is not hard to see that j = 0 in µ−1
QCM

(0)ss and so X and Y commute; thus the quiver data
above encodes how Cn becomes a cyclic C[X, Y ]-module. Taking the annihilator in C[X, Y ] of
this representation produces the more familiar decsription of the Hilbert scheme Hilbn C2 = {I /
C[X, Y ] : dim(C[X, Y ]/I) = n}. In this description the symplectic resolution is easily described

π : Hilbn C2 −→ SnC2, I 7→ Supp(I),

where Supp indicates support counted with multiplicity.

8.3.. By analogy with [6] it would make good sense to ask

Is there a noncommutative deformation, W , of Hilbn C2

such that U1,c-mod and W -mod are Morita equivalent?

A positive answer to this would allow us to relate the representation theory of the symplectic
reflection algebra and the algebraic geometry of the Hilbert scheme. So we would like to interpret
eLc(λ) and e∆c(λ) geometrically, as well as other obvious U1,c-modules such as U1,c and eH1,c

as well as eH1,c−1δe, the bimodule which induces the shift functor Sc−1. On the other hand
there is a rich seam of geometric combinatorics around the Hilbert scheme which we would
like to understand representation theoretically. In particular there is the Procesi bundle P,
an Sn-equivariant vector bundle of rank n! on Hilbn C2 whose fibres each carry the regular
representation of Sn, [89] (the existence of this bundle is equivalent to the n! theorem describing
(q, t)-Macdonald–Kostka polynomials), the tautological bundle T whose fibre above an ideal
I ∈ Hilbn C2 is the n-dimensional space C[X, Y ]/I, as well as the distinguished ample line
bundle L = ∧topT .

However, we would really also like that W -mod, if it exists, is a category that can be attacked
with new tools. For instance, the Beilinson–Bernstein theorem allows us to translate problems
about representations of g to problems on D-modules on B. But there are many tools to study
D-modules, particularly the Riemann–Hilbert correspondence. This transfers questions to the
topology of sheaves on B, and in particular leads to a description of the decomposition matrix
for category O of g, proving of the Kazhdan–Lusztig conjecture.
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8.4. Noncommutative algebraic geometry. The first answer to Question 8.3 involves non-
commutative algebraic geometry. One point of view on noncommutative algebraic geometry
begins with the equation

X = Coh(X).

On the left hand side we have an algebraic variety X, on the right hand side its category of
coherent sheaves. The equality means that either side always determines the other: in particular
X can be recovered from Coh(X). Thus the study of X can be just as well thought of as the study
of the category Coh(X). This point of view is very useful: we can say a noncommutative variety
is simply a category X which has the same signal properties as Coh(X). Now such categories
occur as various types of categories of modules for algebras and each such category can be studied
with some geometric intuition. This philosophy has been pioneered very successfully; a recent
survey is [131].

8.5.. Following this we seek a category Xc which is Morita equivalent to U1,c-mod and which is
also a “deformation” of Coh(Hilbn C2). Here the deformation means that object M of Xc can
be given filtrations such that the associated graded object grM is a coherent sheaf on Hilbn C2.
Moreover, these filtrations should be compatible with filtrations on objects of U1,c-mod and the
square

Xc
gr−−−−→ Coh(Hilbn C2)

o
y yπ∗

U1,c-mod
gr−−−−→ Coh(SnC2)

should commute in the appropriate sense.

Theorem ([78, Theorem 6.4]). Suppose that c ≮ 0. Then there exists a category Xc of coherent
sheaves on a noncommutative variety that completes the above diagram.

The proof of this theorem is rather technical, but easy to understand in spirit. To de-
form Coh(Hilbn C2) we are going to deform a homogeneous coordinate ring of Hilbn C2. So
take the ample line bundle L described in 8.3 and the corresponding N-graded algebra R =
⊕i≥0H

0(Hilbn C2,L⊗i). This algebra gives us yet another description of Hilbn C2, this time as
ProjR. There are two explicit descriptions of the global sections of the tensor powers of L:

H0(Hilbn C2,L⊗i) ∼= C[µ−1(0]deti ∼= Si (31)

where S = C[V ]sign and Si is the product of i copies of S taken inside the polynomial algebra
C[V ].

Following 7.15 it is clear how to deform R: replace C[µ−1(0)]deti

by (DQCM
/(DQCM

(τQCM
− χc))

deti

.
However, if we take the direct sum of all of these to produce an analogue of R we run into a techni-
cal problem – the sum does not have a well-defined multiplication since (DQCM

/(DQCM
(τQCM

− χc))
deti

is a (U1,c+i, U1,c)-bimodule. This is solved by the formalism of Z-algebras which replaces R by
the deformation

R̂c =
⊕

i≥j≥0

(
DQCM

(DQCM
(τQCM

− χc+j)

)deti−j

.
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With this in hand, we recall a fundamental theorem of Serre which states that the coherent
sheaves on ProjR can be described algebraically as the category of finitely generated graded
R-modules, R-grmod, factored by the full subcategory of all torsion graded R-modules, R-tors.
Mimicking this, we take Xc to be R̂c-grmod/R̂c-tors.

To see why Xc is equivalent to U1,c-mod we need a noncommutative version of the second
isomorphism of (31). Since δ ∈ C[h] is a sign semi-invariant element, an obvious noncommuta-
tive analogue of S is the (U1,c+1, U1,c)-bimodule eH1,c+1δe from (19); it follows that the product
(eH1,c+iδe) · · · (eH1,c+2δe)(eH1,c+1δe) should play the role of Si. It is shown in [67, Main Theo-

rem] by a variation on Theorem 7.15 that this product is isomorphic to (DQCM
/(DQCM

(τQCM
− χc))

deti

.
Thus Xc can be built out of the bimodules that induce the composition of shift functors Sc+i

c+j
def=

Sc+i−1 ◦ · · · ◦ Sc+j : U1,c+j-mod −→ U1,c+i-mod. By 5.23 each Sc+i
c+j is a Morita equivalence if

c ≮ 0; it then follows that the functor

Φc : U1,c-mod −→ Xc, M 7→
⊕
i≥0

Sc+i
c (M)

induces the required equivalence.

8.6.. The explicit construction of Φc in 8.5 shows that a filtered module in U1,c-mod produces a
filtered object of Xc; taking the associated graded object of this then produces a coherent sheaf
on Hilbn C2. Not every finitely generated U1,c-module has a natural filtration on it, but for some
that do the corresponding coherent sheaf on Hilbn C2 can be calculated, [79]:

• If M = U1,c with its differential operators filtration then the corresponding sheaf isOHilbn C2 .

• If M = eLm+1/h(triv) with the filtration of 5.30 then the corresponding sheaf is the restric-
tion L⊗m|Z , the restriction of L⊗m to the punctual Hilbert scheme Z = π−1(0) ⊂ Hilbn C2.

• If M = e∆c(λ) for λ ∈ Irrep(Sn) with the filtration induced from the filtration by h-degree,
then the corresponding coherent sheaf is (P/hP)λ, the λ isotypic component of the quotient
of P by C[h∗]+P.

• If M = eH1,c with its filtration inherited from the differential operators filtration on H1,c,
then the corresponding coherent sheaf is P, the Procesi bundle on Hilbn C2.

• if M = eH1,c+1δe with the filtration induced from the differential operator filtration on
D(hreg) o G, then the corresponding sheaf is L.

The first and last items are tautologies. The second is related to Haiman’s work on C[h⊕h∗]coSn

and higher Catalan numbers and provides the correct context for 5.30. The third item follows
from the fourth, and it is the fourth that is the most “expensive” since it uses some key ingredients
in the proof of the n! theorem, [89]. Informally, it is very satisfying since by 5.14 the U1,c-module
eH1,c is projective of rank n! for almost all values of c; the identification of the associated graded
of Φc(eH1,c) with P is, however, quite challenging and using eH1,c to give a new proof of the n!
theorem would seem to need more understanding than we have at the moment.
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8.7.. Choosing different filtrations on the same object M ∈ U1,c-mod can produce different
coherent sheaves on Hilbn C2. However, taking the support counted with multiplicity of these
sheaves is independent of the choice of filtration and so to each M ∈ U1,c-mod we can associate
Ch(M), a cycle in Hilbn C2. This is particularly interesting for objects M = eM̂ where M̂ ∈ Oc

since it induces an isomorphism between K(Oc)⊗Z C and HBM
top (π−1(Cn ×{0}), C) where HBM

top

is the top Borel–Moore homology group, [79, Corollary 6.10]. Nakajima, [120, Chapter 9], and
Grojnowski, [82], identified the direct sum over n ≥ 0 of these Borel–Moore spaces with the
ring of symmetric functions. Under these identifications the [Lc(λ)]’s are identified with the
specialisation at v = 1 of the Uv(ŝld) lower canonical basis on symmetric functions introduced by
Leclerc and Thibon, [104], where d is the order of c in the abelian group C/Z, [79, Proposition
6.11].

8.8. Microlocalisation. In recent work Kashiwara and Rouquier have given another answer to
Question 8.3 by combining the radial parts approach of Gan and Ginzburg and the Morita equiv-
alences of (5.23) with the theory of microlocalisation to quantise the sheaf of regular functions
on Hilbn C2 and find an analogue of the Beilinson–Bernstein theorem for symplectic reflection
algebras associated to Sn.

8.9.. It is rather easy to explain the technical difficulty faced in quantising Hilbn C2 and how
it is overcome in [98]. The sheaf of functions on the cotangent bundle T ∗Cn has a deformation
WT∗Cn over the ring of formal Laurent series C[~−1, ~]] provided by the Moyal product. For
u, v ∈ OT∗Cn this means that we have a deformed multiplication given by

u ? v =
∑

α∈Zn
≥0

~|α|
1
α!

∂α1
y1
· · · ∂αn

yn
(u)∂α1

x1
· · · ∂αn

xn
(v).

It is easy to check that the subalgebra generated by the xi and ~−1yi for 1 ≤ i ≤ n is isomorphic
to the ring of differential operators D(Cn). A crucial difference, however, between WT∗Cn and
D(Cn) is that the former is a sheaf on (i.e. localises over) T ∗Cn since the terms defining each
degree in the Moyal product are bidifferential operators in u and v and hence localisable, whilst
the latter is a sheaf only on the base Cn.

Now if Z is a smooth variety, then the cotangent bundle T ∗Z has a deformation DZ , and this
can be thought of as glueing together the D(Cn)’s for different patches of Z. If Z = B, the flag
manifold of a simple complex Lie group, this deformation is the sheaf of algebras which appears
in the Beilinson-Bernstein theorem. Note that it does not depend on the formal parameter ~.

If we want to deal with a general complex algebraic symplectic variety X then Darboux’s
Theorem tells us that X is (holomorphically) locally of the form T ∗Cn, but not necessarily
globally. Thus to deform we must glue on X and hence we must use WT∗Cn as our local model.
In this way we will form the W -algebra WX . This, however, introduces two problems: the
various WT∗Cn do not necessarily glue together to form a sheaf of algebras, but rather a sheaf
of “algebroid stacks” due to the data of automorphisms, see [127]; a formal Laurent parameter
~ has appeared which will have no analogue in the world of U1,c, and hence threaten our goal
of a Beilinson–Bernstein type theorem. The first problem is not too bad since there is still a
respectable category of modules for algebroid stacks; and, in any case, for varieties with enough
cohomology vanishing one might even expect the stackiness to disappear. The second problem is
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serious and we have to make a restriction on the the types of symplectic varieties we consider in
order to overcome it: we insist that X has a contracting C∗-action. This means that C∗ acts on
X such that the induced action on forms we have λ · ωX = λmωX for some m ∈ Z>0 and for all
λ ∈ C∗. If we declare ~ to be a C∗-eigenvector with weight m, then WX inherits a C∗-action and
in a procedure analagous to 2.5 we can remove the formal parameter ~ by studying appropriate
categories of C∗-equivariant WX -modules. In the case X = T ∗Z this category will be equivalent
to DZ ; it will, however, exist for algebraic symplectic varieties of more general type.

8.10.. The discussion above is relevant to the study of symplectic reflection algebras because
Hilbn C2 is not the cotangent bundle of any variety (for n > 2; for n = 2 it is T ∗(P1 ×C)) – if it
were it would basically be the cotangent bundle of the punctual Hilbert scheme π−1(0), but this
is singular for n > 2 – and so to quantise we would like to useWHilbn C2 . The scalar C∗-action on
C2 induces a C∗-action on Hilbn C2 such that λ · ωHilbn C2 = λ2ωHilbn C2 (in the quiver-theoretic
description this action is λ · (X, Y, i, j) = (λX, λY, λi, λj)).

Theorem ([98, Theorem 4.9]). There is a W-algebra Wc on Hilbn C2 with contracting C∗-
action such that the following functors define quasi-inverse equivalences between Cohgd

C∗(Wc) and
U1,c(Sn)-mod:

global sections :M 7→ HomCohgd
C∗ (Wc)

(Wc,M)

localisation : Wc ⊗U1,c
M ←[ M.

Here Cohgd
C∗(Wc) denotes a category of C∗-equivariant Wc-modules with a standard good

generation property, explained in [98, Section 2.3]. (There is a restriction on c: see [98, Theorem
4.9] for details.)

The algebra Wc appearing in the theorem is a sheaf of algebras on Hilbn C2, described as
follows. Recall that DQCM

is the ring of differential operators on Rep(QCM, α). Let WQCM
denote

theW-algebra on T ∗Rep(QCM, α), as defined above. Now, following the Gan and Ginzburg recipe
of (28), we set :

Wc
def= C[~1/2]⊗C[~] p∗

(
EndWQCM

(
WQCM

WQCM
(τQCM

− χc)

))GL(α),op

where p is the mapping (30) which sends elements of µ−1
QCM

(0) to their GL(n, C) orbits in
µ−1

QCM
(0)/GL(n, C) = Hilbn C2. (The change of base ring from C[~] to C[~1/2] is a technical-

ity to allow the C∗-action on ωHilbn C2 have weight 1.) The essential points of the proof of the
theorem then consist in identifying the noncommutative analogue of ample bundle L in terms
of the W-algebra, relating it to the Heckman-Opdam shift functors Sc, and using 5.23 to prove
that Hilbn C2 is W-affine, which means that the global sections and localisation functors are
quasi-inverse to one another.

8.11.. What is required now is a good set of tools to probe Wc-mod and with it a geometric or
topological description of important objects in U1,c-mod. In particular it would be very interesting
to understand the sheaf that corresponds to eH1,c: it should be a quantisation of the Procesi
bundle P.
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9. Problems

Here are problems for next year. (They overlap with the problems in [125], [52] and a few of the
original set of problems in [51, Section 17] – the other questions in [51] have been solved.)
1. (Chapter 2) Study symplectic reflection algebras Ht,c(G) when G does not belong to Family
(1) or (2) of 2.18.
2. (Chapters 4 and 5) Determine when U1,c and H1,c are Morita equivalent; determine general
conditions which ensure that Sc : H1,c-mod −→ H1,c+1-mod (or its generalisations of 5.24) is an
equivalence.
3. (Chapter 4) Show that for any nonzero finitely generated H1,c-module M the generalised
Bernstein inequality holds, GKdim(M) ≥ 1

2GKdim(H1,c/Ann(M)).
4. (Chapter 4) Study the function d : C[S]adG −→ N defined by d(c) = min{GKdim(I) :
I irreducible H1,c-representation}.
5. (Chapter 5) Determine [∆c(λ) : Lc(µ)] for λ, µ ∈ Irrep(G). (This has been carried out for
G = Sn by [126] and [135]; see [144, Section 2] for a conjecture in the case G = G(`, 1, n).)
6. (Chapter 5) Suppose that c ∈ C[S]adG and let d ∈ Z[S]adG. Is there an equivalence between
Db(Oc) and Db(Oc+d)?
7. (Chapter 5) Give an explicit algebraic construction of PKZc for any c ∈ C[S]adG.
8. (Chapter 5) Is Oc Koszul? If so, what is its Koszul dual?
9. (Chapter 6) Determine [∆c(λ) : Lc(µ)] for λ, µ ∈ Irrep(G).
10. (Chapter 6) Give a representation theoretic construction of a symplectic resolution to h ×
h∗/G4. Does it have a hyper-Kähler structure?
11. (Chapter 8) Find natural filtrations on objects in U1,c-mod or H1,c-mod.
12. (Chapter 7 and 8) Use eH1,c(Γ oSn) to confirm the generalised n! conjecture [91, Conjecture
7.2.19] or give a new proof of the n! theorem.
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[49] P. Etingof, W.L. Gan, V. Ginzburg, Continuous Hecke algebras, Transform. Groups 10 (2005),
423–447.

[50] P. Etingof, W.L. Gan, V. Ginzburg and A. Oblomkov, Harish-Chandra homomorphisms and
symplectic reflection algebras for wreath products, math.RT/0511489, to appear in Publications
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