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PRYM VARIETIES: THEORY AND APPLICATIONS
UDC 513.6

V. V. SHOKUROV

ABSTRACT. In this paper the author determines when the principally polarized Prymian
P(C, I) of a Beauville pair (C, /) satisfying a certain stability type condition is isomorphic
to the Jacobian of a nonsingular curve. As an application, he points out new components in
the Andreotti-Mayer variety Ng_4 of principally polarized abelian varieties of dimension g
whose theta-divisors have singular locus of dimension > g - 4; he also proves a rationality
criterion for conic bundles over a minimal rational surface in terms of the intermediate
Jacobian. The first part of the paper contains the necessary preliminary material introduc-
ing the reader to the modern theory of Prym varieties.

Figures: 10. Bibliography: 32 titles.

Statement of the main theorem. Let (C, /) be a pair consisting of a connected curve C
with only ordinary double points as singularities over an algebraically closed ground field
k of characteristic Φ 2 and an involution /: C —> C satisfying the following condition:

(B) The set of fixed points of the involution I coincides with the set of singular points of the

curve C, and the involution I preserves the branches at all the singular points.

Such pairs (C, /) will be called Beauville pairs. Generalizing a result from [17], in [3]

Beauville associated to such a pair a principally polarized abelian variety P(C, I), the

so-called Prymian of the pair (C, / ) . Details of this construction will be discussed in §3. In

addition, we assume that the curve C satisfies the following stability type condition:

(S) For each decomposition C = Cx U C2, #C1 Π C2 3* 4.

M A I N THEOREM. The variety P(C, I) is isomorphic, as principally polarized abelian

variety, to a sum of Jacobians of nonsingular curves if and only if the quotient curve C = C/I

is of one of the following types:

(a) C is a hyperelliptic curve;

(b) C is a trigonal curve;

(c) C is a quasi-trigonal curve;

(d) C is a plane quintic, and the pair (C, I) is odd.

A curve C is called hyperelliptic if there exists a finite morphism C -> P 1 of degree 2,

trigonal if there exists a finite morphism C -* P 1 of degree 3, and quasi-trigonal if it is

obtained from a hyperelliptic curve by gluing two nonsingular points. This last name is
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84 V. V. SHOKUROV

explained by the fact that the intersection of quadrics passing through the canonical image

of a quasi-trigonal curve in P * " 1 is the cone over a nonsingular normal rational curve of

degree g - 2 in P g 2 with vertex at the image of the glued points (here g = pa(C)). If

C c P 2 is a plane quintic, i.e. a curve of degree 5 in the projective plane P 2 , then we say

that the pair (C, /) is even (odd) if the number h°(C, π*Μ) is even (odd), where

Μ = 0 P 2(1) | C and w: C -* C = C/I is the natural projection. If C is a smooth plane

quintic, this means that the theta-characteristic Μ ® η is odd (even), where η is the point

of order two in the Jacobian/(C) corresponding to the unramified covering π: C -» C.

The problem of reducing the general case to the case when condition (S) required in the

proof of our main theorem is satisfied is considered in Corollary 3.16 and Remark 3.17(a).

The proof of sufficiency in the main theorem is obtained by passage to the limit from

the results of Dalalyan [9] and Mumford [17] in case (a), Recillas [30] in case (b) (a

geometric interpretation of this case can be found in [27]), Dalalyan [10] in case (c), and

Tyurin [23] and Masiewicki [19] in case (d). The necessity is proved in §§7-9. In §10 we

give some direct applications of the main theorem, and §§1-6 contain the necessary

preliminary material. The main theorem for pa(C) > 8 was announced in [26], and a

sketch of proof for that case was given in [27]. The problem of distinguishing Prymians

from Jacobians for smooth hyperelliptic curves of genus 6 was considered in Dalalyan's

thesis.

The ground field k is algebraically closed, and in Theorem 1.6 and §§3, 5 7-10 we

assume that char k Φ 2.

§1. Orthogonal sheaves

1.1. Let X = Ui Xj be the decomposition of a curve X into irreducible components. For

each locally free sheaf L on X we denote by degL the vector (d1,.. -,dc), where

dt = degL\x and deg denotes the ordinary degree. The vector degL is called the

multidegree of the sheaf L. It is clear that deg L = Σι dt.

1.2. Let X be a variety. We denote by Stx the sheaf of rings of rational functions on X,

i.e. the sheaf whose ring of sections 3ix(U) on a Zariski open set U is the ring of rational

functions on the variety U, i.e. a product of the fields of rational functions on the

components of this variety. It is clear that on 9$x there is a natural structure of (^algebra.

A sheaf L of Cy-modules is called torsion-free if the natural map

id e l
L - L ®Οχ<%χ

is an inclusion.

1.3. We recall that X is called a Gorenstein variety if its dualizing sheaf w^is invertible.

1.4. LEMMA. Let f: Ν —> X be the desingularization of a Gorenstein curve X, and let Lo and

Ly be invertible sheaves on X and Ν respectively such that 2 deg L o = deg ωχ and 2 deg L1

= deg ω^. Then there exist a nonsingular irreducible variety S and a coherent sheaf Si1 of

Θ XxS-modules which is flat over S and has the following properties:

(1.4.1) For each point s e S,££s= ^\x^s) is a sheaf without torsion having rank 1 at all

generic points.

(1.4.2) Lo = £PS for some point s0 e S.

/.! ~ ^Cs for some point sx e S.



PRYM VARIETIES: THEORY AND APPLICATIONS 85

1.5. A well-known construction. Let/: TV -> Xbe the desingularization of a curve X. The
exact sequence

0-» 0*-»/,<!>„-» δ - 0

defines a skyscraper sheaf 8 on X. Let L be an arbitrary locally free sheaf of rank r on X;
we assume that the curve X is connected. Fixing an isomorphism L\u = (C^li/)' on a
neighborhood U of the singular subset, we obtain the following exact sequence:

0 ^ L - > / * / * L - δ Γ ->0.

Thus each locally free sheaf L of rank r on X is the kernel of an epimorphism h:
f*L1 —* 8r, where Lx = f*L is a locally free sheaf on Ν (the descent data).

Consider a nonsingular irreducible variety Τ and a locally free sheaf J( of rank r on
Ν Χ Τ.

Let ρ and q be the natural projections in the following diagram:
NX Τ

Ι/τ
P 1

X^XX T-* Τ

Then the sheaf Η = q* Ηοτασχ^τ(/τ^, p*8r) on Τ is locally free. In fact, since 8 is zero
outside the singular points, over a neighborhood of a point / e Τ the sheaf J( may be
replaced by 0^x 7.. Hence //is locally isomorphic to q*p*G, where G = Home (/*##, δΓ)·
But the sheaf q* p*G « 0 Γ ® fc i/°(*, G) is locally free.

Consider the vector bundle Sx associated to H. We denote by κ the natural projection
X X Sl —> X X T. On X X S1 there is a canonical homomorphism of coherent sheaves

h: K*fTmJ(-> K*p*8r

such that the points 5 e Sx are in a one-to-one correspondence with the pairs consisting of
a point t = q° K{S) e Γ and a homomorphism A|^x { j}: /*(^Ux{,}) -• 8r. Now we can
take S to be the open subset in Sx consisting of those points s e S1 at which ΑΙ̂ -χ̂ } is
surjective and has a locally free kernel. It is clear that S is a nonsingular irreducible variety
and the sheaf JS?= ker/il^s is locally free (cf. [15], Chapter II, §5) and has the required
properties.

PROOF OF LEMMA 1.4. In the preceding construction, let Γ be the variety parametrizing
the invertible sheaves on TV of multidegree deg Lo (modulo isomorphism), and let J( be the
corresponding Poincare sheaf on TV X T, i.e. the sheaf Μ for which Λί\ΝχιΜ-) ~ Μ for
each Μ e T. This time we denote by S the open subset in S1 consisting of those points
J e Si for which η\χ><^} is surjective. Then S is a nonsingular irreducible variety and its
points parametrize the pairs (L, hs), where L is an invertible sheaf on TV of multidegree
deg Lo and hs: f+L ^> 8 is an epimorphism. We claim that the sheaf £P= ker(A|s) has the
required properties. In fact, a local verification shows that the sheaves κ*ρ*δ and K*fT^Ji
are flat over Sx and therefore also over S. Hence from the surjectivity of h\s it follows that
.SPis flat over 5 (cf. [7], §0.6). Condition (1.4.1) holds since &s is a subsheaf of the
torsion-free sheaf fmL. The argument presented in the beginning of §1.5 shows that there
exists a point s0 e 5 satisfying (1.4.2).

Thus it remains to verify (1.4.3). In analogy with the conductor of the integral closure of
a domain, by the desingularization conductor of a local ring Θx x we mean the largest ideal
cx in Θχ χ which is also an ideal in f*(ON)x. This ideal is given by an effective divisor
ΣΡηΡ XP on TV; namely, cx is identified with the set of functions g from the semilocal ring

Λ<ν.ρ for which g = 0πιοάΣηΡχΡ; herenPx > 0 only for P ^f~\x).
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In what follows we write nP instead of nP j(Py Since/*(ωΑ-) = u)N(LPeNnPP) (cf. [21],

Chapter 4), we have

d, = dcg(u,x\x) = deg(W;v.) + Σ "ρ,

where Xt denotes an irreducible component of the curve X and Nt denotes its normaliza-

tion. In view of the Gorenstein property,

28

Next we consider an invertible sheaf Μ on Ν and an effective divisor Y.P&NkPP with

Σ^ ( ^)_ χ kP = δχ for all points χ e X. Then, trivializing Μ on a sufficiently small neighbor-

hood over the singular points of the curve X, we obtain an exact sequence

0-f*(M(-ZkPP)) -/*(M) -» δ -» 0

on X. Hence there exists an epimorphism h: / * ( M ) -» δ with ker h ~ /*(Μ(-Σ&/>.Ρ)).

Thus to verify (1.4.3) it suffices to find in the family Τ a sheaf Μ of the form L t (E kPP),

i.e. to find a sheaf Μ of this form whose multidegree is equal to deg Lo. That means that

the following equalities hold:

! W ()+ £ kp = I deg(co )̂ + Σ */>·

Together with the preceding equalities, this yields the following system of equations with

respect to the nonnegative integers kP:

Σ * , = ( Σ »,)/2 (i = i,...,c),

Σ »/.)/2
f(P)-x '

We shall seek a solution of this system in the form kP = [nP/2] + εΡ (as usual, [ ] denotes

the integer part), where εΡ = 0 if nP is even and εΡ = 1 or 0 if η Ρ is odd. Thenit remains to

solve the following system:

Σ «,= ( Σ nP)/l- Σ [ηΡ/2],

Σ «Η/2" Σ Κ/2]·
P) = x I f(P)=x

rip = \ mod 2

For each singular point χ e X we partition the set of points Ρ e / ^ ( x ) c Ν for which n f

is odd into ordered pairs (P, P') such that εΡ = 0 and εΡ, = 1. It is clear that thus we

obtain all solutions of the second part of our system. Now we construct an oriented graph

Γ whose vertices correspond to the irreducible components Ν^.,.,Ν,. and whose edges

correspond to the pairs (P, P')\ more precisely, to a pair (Ρ, Ρ') we associate an edge

joining the component Λ*, of the point Ρ with the component Λ̂  of the point P' in the

direction from Ni to Nj. We observe that in our case the sum ΣΡ(=Ν ηΡ is even since each

component of the multidegree deg ωχ is even. Therefore the number of edges passing

through (coming in and going out) an arbitrary vertex of this graph is even. It is clear that

the equations in the second part of our system for the corresponding ε^ still hold if we
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change orientation of the edges of the graph Γ. On the other hand, by Euler's theorem

(see, for example, [20], Π.3) there exists an orientation on Γ for which the number of

incoming edges is equal to the number of outgoing ones. For such orientation the ε,, also

satisfy the first part of our system:

Σ ρ = — i * i / > e IVln = 1 m o H ? ) l

nP = lmoa2

= ( Σ ηλ/2- Σ [ηΡ/2]. •
* PeN, ' PeAf

1.6. THEOREM. Suppose that the following conditions hold:

(1.6.1) π: &-> S is a proper flat family of curves.

(1.6.2) JS? is a coherent sheaf of Θx-modules which is flat over S, and the sheaves

Ls =-S?L-i(j) on the curves Xs = IT~\S) are torsion-free sheaves whose rank at a generic

point of Xs is locally constant on 3C.

(1.6.3) Q: £?-> ω^ / 5 is a nonsingular quadratic form.

Then the function s >-» h°(Xs, L 5 )mod2 is constant on each connected component of the

base S.

1.7. REMARKS, (a) In the statement of the theorem we denote by ωχ/5 the relative

dualizing sheaf π\Θ5 [25], i.e. the sheaf whose restriction to each curve Xs of our family

coincides with the dualizing sheaf ωχ onXs.

(b) We say that the above quadratic form Q is nonsingular if the corresponding bilinear

form induces an isomorphism Ls -? Hom^ (Ls, ωχ) for each s e 5 .

In the proof of this theorem we follow Mumford [16]. His main idea is to interpret the

space H°(XS, Ls) for each point ί in some neighborhood of a point s0 from S as the

intersection of two maximal isotropic subspaces Wls and W2s in some larger even-dimen-

sional vector space Vs with a nonsingular quadratic form qs. The index J indicates that all

these objects Wls, W2s, Vs and qs vary along with s. Then from the known fact that

dinXW^ s Π W2s) mod 2 is invariant with respect to continuous deformations (cf. [5], IX.6,

Exercise 18.d) it follows that the function h°(Xs, Ls) mod2 is locally constant, hence

constant on each connected component of the base S.

1.8. We begin by interpreting the space H°(XS, Ls). So, let Xbe a curve, and let L be a

torsion-free sheaf on X. Consider the divisor D = Σ" Pt on X defined by distinct

nonsingular points Pt of X. We have the following commutative diagram with exact rows

and columns:

L(-D)

II
L(-D)

0
I
L

I
L(D)

I
L(D)/L

I
0

0
1

L/L(-D)

i
- L{D)/L{-D)

i
L(D)/L

I
0
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Suppose that η is so large that h°(X, L(-D)) = 0. Then the above diagram gives rise to a

commutative diagram

0 0

4 I

0 -» H°(X,L) -» H°(X,L/L(-D)) -» H\X,L{-D))

1 1/S II

0 -» H°(X,L(D)) A //°(X, £(£>)/£(-£>)) -» ^ ( Z , L(-£)))

H°(X,L(D)/L) = H°(X,L(D)/L)

with exact rows and columns. Identifying the space H°(X, L) with its image in

i/°(Ar, L{D)/L{-D)) we obtain a representation i/°(X, L) = H^ Π W2, where H^ =

im α and W2 = im β.

Suppose now that L ~ H o m ^ (L, ωχ). We remark that in view of 1.7(b) this holds for

each Ls. They by the Serre-Grothendieck duality

h\X, L) = hl(x,nomex{L, ωχ)) = dimExtV(.L, ωχ) = h°(X, L),

since Ext^iL, ωχ) = 0 in view of the local duality (cf. the isomorphism on p. 213 in [25]).

Hence x(L) = 0 and x(L{D)) = Σ"η, where η is the rank at the point />,·. But

h\X, L{D))-h\x,Homex(L{-D), ωχ)) = h°(X, L(-D)) = 0

in view of the choice of D. Hence

dimWl = h°(X,L(D))= Σ η.
i = l

Simple computations with the skyscraper sheaves L/L(-D) and L(D)/L(-D) show that

dimW2 = EJV,. and d i m F = 2 Σ?/·,., where V = H°(X, L(D)/L(-D)). Thus dimF =

Suppose in addition that Q: L -* ux is a nonsingular quadratic form on L. This form

induces a canonical isomorphism L ~ Hom^, (L, ωχ). Furthermore, it defines a nonsingu-

lar quadratic form QD: L(D) -* oix(2D). Let q: V -> k be the quadratic form on the

space V such that

n

q(v)= Σ ResP,QD{l),
/ = i

where / <= T(U, L(D)) is the representative of the element υ e V = H°(X, L(D)/L(-D))

on a neighborhood U of the set {/>,}". Easy local computations show that q is a

well-defined nonsingular quadratic form and the subspace W2 c V is isotropic, i.e.

q(W2) = 0. The subspace W1 is also isotropic with respect to q. In fact, for each element

w e W1 there exists a global representative / e Γ(Χ, L(D)), and so

by the sum of residues theorem [1].

Thus we have constructed a vector space V with nonsingular quadratic form q and two

maximal isotropic subspaces W1 and W2 with WXC\ W2 = H°(X, L). It is known that for
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each orthogonal (with respect to q) automorphism φ of the space V which transforms Wx

to W2 (it is easy to verify that such automorphisms always exist) we have the following

equality:

(cf. the exercise from [5] indicated above).

To prove Theorem 1.6 we globalize the above construction. For each point s0 e S there

exist a neighborhood U and a relative Cartier divisor D c X whose restriction to each

fiber over s e U satisfies the conditions indicated in 1.8. Over U one can globalize the

above construction; namely, there exist locally free sheaves Wx = π,.&(Ό), Ψ~2 =

•π *(£>/£? (-D)) and fr=irm(&(D)/&(-D)) (cf. [16], Corollary 2) and canonical inclu-

sions •Wl ^"-^and Ψ~2 -->V"such that for each point s e U c S the space H°(XS, Ls) is

identified with (Wx η Κ^2)ο ® ^(·0· Using residues, it is easy to construct a nonsingular

quadratic form q: Ψ~^> Θ5. It is easy to verify that for each point s e U the quadruple Ψ"λ,

#" 2 , -V, q restricts to the quadruple Wls, W2s, Vs, qs constructed in 1.8 for X = Xs,

L = Ls and D = 9>x.

We recall that the ground field has characteristic Φ 2. Globalization of standard

constructions from linear algebra allows to construct (possibly, after replacing U by a

smaller neighborhood of the point sQ) decompositions Y~~ Wx θ #7° and Ψ~= W2 Φ #"2*,

where ~№~* and if* are isotropic subsheaves and the pairing corresponding to ρ is induced

by the duality *. It is clear that locally there exists an automorphism Φ: y-> Ψ~ which is

orthogonal with respect to α and transforms Ψ~λ to W2. Replacing, if necessary, U by a

smaller neighborhood we see that det Φ e T(U, Θ*) and (det Φ ) 2 = 1. Hence either

det Φ = 1 or det Φ = - 1 . By 1.8,

where φ5 is the restriction of Φ to the fiber over s e U. Hence the map s >-> h°(Xs, Ls)

mod 2 is locally constant, which proves the theorem.

§2. Polarization

Let X be an arbitrary curve. We denote by J(X) its Jacobian. Recall that J(X) is a

smooth connected commutative algebraic group whose closed points are in a natural

one-to-one correspondence with the classes of isomorphic invertible sheaves on X of

multidegree (0,...,0); the group structure corresponds to tensor product of invertible

sheaves.

If k = C, then to J(X) there corresponds the analytical Jacobian Jaa{X) which is

isomorphic to the quotient variety H1(X, Θχ)/Ηι(Χ,Χ)\ this immediately follows from

the cohomology sequence corresponding to the exact triple

0 -» Ζ -> Θψ^Θχ·™ -> 0.

In the case when X is an irreducible nonsingular curve over C this yields the well-known

representation of Jm(X) in the form of complex torus Cg[lattice of periods) (see, for

example, [8]), where g is the genus of the curve X. Algebraic structure on Jin(X) can be

recovered if we use a remarkable additional structure which is called polarization.

If the ground field k is arbitrary, the introduction of polarization also has deep

geometric meaning. Usually polarization is given by the algebraic equivalence class of a
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divisor which is called the polarization divisor, if our variety is complete, this divisor is

assumed to be ample. For abelian varieties there also exist other equivalent approaches

(see, for example, [8] or [17]).

Let /: Ν -* X be the desingularization of the curve X. Then /*: J(X) -> J(N) is an

epimorphism onto an abelian variety of maximum dimension. Hence it is natural to define

polarization on J(X) as the lifting of polarization on J(N). For those curves X which have

the property

(RK) X is a Gorenstein curve (i.e. the dualizing sheaf ωx is invertible) and each component

of the multidegree deg uxof the sheaf ωχ is even

there exists a unique (modulo translation) natural polarization divisor on /(X) satisfying

the Riemann-Kempf theorem (the abbreviation RK refers to this theorem). It is clear that

this class of curves contains smooth curves and irreducible Gorenstein curves.

So, let A' be a curve with property (RK). Then the variety

whose closed points are in a natural one-to-one correspondence with the isomorphism

classes of invertible sheaves on X of multidegree (deg ωχ)/2, is nontrivial. Moreover, this

variety is a principal homogeneous space with respect to the action of the Jacobian /(X)

defined by the following formulas:

J(X)xJ\(X)-> Jv(X), [M], [L] -> [M® L]

(here [L] denotes the isomorphism class of a sheaf L). The variety Jv(X) will be called the

Jacobi variety of the curve X. Fixing a class [L] e Jv(X), we obtain a noncanonical

isomorphism

[M]~[MQL].

If D is a divisor in Jv(X), then we denote by D[L] the image of D on J(X) under the

isomorphism^ L].

2.1. PROPOSITION. Let X be a curve satisfying (RK). Then

(2.1.1) the subvariety

{[L] e MX)\h°(X, L) > 1} c Jv(X)

defines an effective reduced divisor Θ on Jv( X).

If X' is another curve satisfying (RK), Θ' is the divisor on Jv(A") defined by the preceding

formula, and g: X' -* X is a birational morphism, then, for arbitrary classes [Lo] e Jv(X)

and[L'0]<= Jv(A"),

(2.1.2) the divisor 0 [ L Q ] on J(X) is algebraically equivalent to the divisor (g*yl(&[Lo]),

where g*: J( X) -» /(X') is the morphism corresponding to g.

PROOF. First of all, we observe that the proposition easily reduces to the situation when

X is a connected curve and g = f: X' = Ν -» X is a desingularization of X. It is well

known that for a smooth curve X the divisor Θ corresponds to the standard polarization

and each effective divisor which is algebraically equivalent to © [ L o ] is obtained from this

divisor by a translation, so that set-theoretically it has the form

J(X)\h°(X, Μ ® L) > l}, (2.1.3)
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where L is an invertible sheaf of multidegree (deg ωχ)/2. The last assertion follows from

the fact that our polarization is principal (cf. (2.2)). For a singular curve this is not quite

so, and, although by the proposition the divisor {f*)~x{®{L'o}) is algebraically equivalent

to Q[L j , there need not exist representation (2.1.3) with an invertible sheaf L. Thus the

required algebraic equivalence is not simply a translation on /(X), but something like this.

Namely, (/*)'1(Θ{Ζ,^) is represented in the form (2.1.3) with L = f*L'o, and by Lemma

1.4 the last sheaf can be deformed to an invertible sheaf of a suitable multidegree.

More previsely, let-Sf, S, sx and s2 be as in Lemma 1.4, where L : is replaced by L'o. We

construct a divisor Ζ on J{ X) X S such that Ζ is flat over an open subset in 5 containing

i 0 and s1 and for each point s e 5

supp(Z| y ( ; n > < ( l ) ) = {[M] e J(X)\h°(X, Μ ® Ls) > l } .

Here we use the Kempf construction (cf. [29]). Let 0* be the Poincare sheaf o n i x J{X),

and let p, q, r and m be the projections of the product X X J(X) X 5 onto X X S,

J(X)X S, XX J(X) and X respectively. Consider the sheaf 3? = r*& ® p*y on X X

J(X) X S. For closed points s e S and [M] e /(X)

We fix g nonsingular points x l r . . , x g o n X in such a way that the divisor D = Zf JC,- has

multidegree deg £> ;> \ deg ω^ (> with respect to all components), where g is the genus of

the curve X. Since the sheaf JiC is invertible in a neighborhood of the subvariety

{x t} f X S, there is an exact sequence

0 -» J*"® m*Ox{-D) -> J ^ ^ Jf® w*^ D -^ 0.

Consider the corresponding sequence of direct images with respect to q. We claim that

m*GD) and i?V*(>^® m*®x(-D)) are locally free sheaves of rank g, and

*0D) = o.

By Corollary 2 from [15], Chapter II, §5, it suffices to verify that

h°(X, M® L,® 0O) = g,

^ ( X , M® L s ® Co) = 0,

A^X, Μ ® Ls ® ^

for all closed points s ̂  S,[M] <= J(X). The first two equalities are obvious, and the third

follows from the Riemann-Roch theorem and the construction of D. Thus we obtain an

exact sequence

EJ^E2^R1qm^^0, (2.1.4)

where Ex = qm(^® m*6D) and E2 = Λ 1 ? * ^ ® "ΐ*ΘΧ{-ϋ)) are locally free sheaves of
rank gonJ(X) X S.

Since the functors R'q* commute with base change, for each pair;? = (M, s) & J(X) X
S (2.1.4) induces an exact sequence
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By the Riemann-Roch theorem,

h\X, M® Ls) = h°(X, Μ ® Ls).

Therefore h°(X, Μ ® Ls) > 1 if and only if det(u)\P = 0. This proves (2.1.1), since from

Lemma 1.4 it easily follows that h°(X, L) = 0 for a generic [L] e Jv(X) (compare with

Lemma 2.1 in [3]).

Let Ζ be the divisor on J(X) X S locally defined by the equation det(w) = 0. Let

U c 5 be the open subset consisting of those points s ε S for which Zs = Z | y ( A - ) x { j ) Φ

J{X) and is reduced. To prove (2.1.2) it remains to verify that s1 e U, since then the set of

points s corresponding to invertible sheaves Ls is open and dense in U. To do this we

observe that

for each [M] e J(X). Hence set-theoretically ZSi = (f*)~\®[L>{). Since ®[L>o] is reduced,

our divisor is also reduced because for a sheaf f*M corresponding to a generic point of

Θ;,,, we have

h\ X, f,(L'o) ®M) = h°(X, f*(L'o) ® M) = h°(N, L'o β f*M] = 1. •

The above result justifies the following:

2.2. DEFINITION. Let/: Ν -> Xbe the desingularization of the curve X, and let Θ be the

polarization divisor of the Jacobian J(N). A divisor which is algebraically equivalent to

( / * ) - 1 ( 0 ) is called a polarization divisor of the Jacobian J(X) or, in more traditional

terminology, a theta-divisor. The complete algebraic equivalence class of such divisors is

called the polarization of the Jacobian J(X). In what follows all Jacobians will be provided

with this additional structure. From a category viewpoint we thus obtain a contravariant

Jacobi functor from the category of algebraic curves to the category of polarized commuta-

tive algebraic groups; under this correspondence birational morphisms of curves are

transformed to morphisms of polarized groups.

From a geometric point of view, effective polarization divisors present special interest.

To such divisors there correspond various tangent maps. If there exists a canonical choice

of effective polarization divisor, at least modulo translation, then these maps define

geometric invariants of the Jacobian, such as, for example, the ramification divisor of the

Gauss map. Such a choice automatically exists for a principal polarization of an abelian

variety A, i.e. when the algebraic group A is complete and its polarization has degree 1.

We recall that the degree of polarization of an abelian variety A is by definition the

quotient 0 d i m ' 4 /(dim^4)!, where Θ is a polarization divisor. For some special algebraic

groups, among the polarization divisors there are similar distinguished classes of effective

divisors modulo translation. By Proposition 2.1, examples are given by the theta-divisors

®L on J{X), where J(X) is a curve satisfying condition (RK). However it is possible that

these are not all polarization divisors. The divisor Θ on the Jacobian variety Jv(X)

introduced in Proposition 2.1 will be called the canonical polarization divisor or canonical

theta-divisor on Jv(X). The corresponding divisors 0 [ L ] c J(X) will also be called

canonical.

Let r and d be two nonnegative integers. We denote by Gr

d{ X) the subvariety

{[L] e Pic(X)\degL = d. h°{X, L) > r + 1}

in P i c ^ ) (if there is no danger of confusion, we write simply Gr

d). Similarly, for an

integral vector / with c components (where c is the number of components of the curve X)
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we obtain a subvariety G\ c Pic'(X). For example, for a curve X satisfying condition

(RK)wehaveG ( ° d e g ^ ) / 2 = 0.

Our next goal is to study infinitesimal properties of Gd. To do this, we first of all give a

local description of the subvariety Gd. Take an arbitrary point [Lo] e Gr

d η Pic'°(X),

where l0 = deg Lo. We fix nonsingular points xv...,xm on Xsuch that m = h°(X, L o ) >

r + 1 and h°(X, Lo(-D)) = 0 for D = Σ™*,. The vector /„ gives rise to a Poincare divisor

0> on X X Pic'°( A1). We denote by /? and 4 the projections X X Pic'"(A!") -» X and

A' X Pic/o( X) -> Pic'0 (A'). Now we apply the construction from the proof of Proposition

2.1 in the case when S = { L}. This construction yields an exact sequence of sheaves

Ex ^ E2 -+ lO-q + P^O

on Pic'0(A'), where in a neighborhood of the point [Lo] the sheaves E1 = q*{& ® p*0D)

and E2 = Rlq*{i? ® p*Ox{-D)) are locally free and have ranks m and η = m - d - χ(0χ)

respectively. For [L] e Picrf( A1) the Riemann-Roch theorem shows that

h°(X, L) > r + 1 » A 1 ^ , L ) > r + l - u ? - χ ί ^ ) .

Hence a point [L] in a neighborhood of [Lo] e Pic'°(Ar) lies in Gr

d if and only if

rk(« | [ L ] ) < m — r — 1. Defining the map Μ in a neighborhood of [Lo] by an m Χ η matrix

(«,-_,-) whose entries are functions on Pic'"(Λ") defined in a neighborhood of [Lo], we see

that Gd is locally defined by the vanishing of all (m — r) minors of this matrix. By our

construction, u\[Lo] = 0, i.e. the exact sequence

0 - H°(X, Lo) - E ^ [^E2\[Lo] - H\X, Lo) - 0

reduces to a pair of isomorphisms

Η (X, Lo) ~ £ i | [ L o ] , Η (X, Lo) ~ E2\[Lo].

The linear parts of the germs of sections of the sheaf OPici^X) at [Lo] can be identified with

the cotangent space

at the point [Lo]. Therefore the space of linear parts of the germs of sections of the sheaf

E2 can be identified with

H°(X, ωχ) ® E2\[Lo] * H°(X, ωχ) β Η\Χ, Lo).

After performing all these identifications we have the following:

2.3. LEMMA. The linear part of the map u at the point [Lo] coincides with the linear

homomorphism

H°(X, Lo) -» H°(X, ωχ) β Η\Χ, Lo),

corresponding to the U -product

H°(X, wx)* 0 H°(X, LQ) = H\X, Θχ) ® H°(X, Lo) ^ Hl{X, L o ) .

Before proving this lemma, we give several corollaries. We begin by restating the lemma

in terms of coordinates. To do this, we fix a basis (J ; )™ in H°(X, Lo) and a basis (r •)" in

H1(X, Lo). Then for El and E2 there exist local trivializations which under the restriction
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\iLo] induce the trivializations of the corresponding vector spaces given by the bases (s ;)

and {tj) respectively, i.e. the bases of these trivializations correspond to the fixed bases at

[Lo] modulo terms of higher order. Under these trivializations, the map u is given by an

m X « matrix (w,y) composed of functions on Pic'°(X) which are defined in a neighbor-

hood of [Lo]. Since («,7)| [ Z.o ] = 0, the linear part of the matrix (utj) at [Lo] does not

depend on the choice of such trivializations. As above, the linear parts of the functions utj

are identified with the elements of the cotangent space T^ci0(X) [ L o ] = H°(X, ux).

2.4. COROLLARY. The linear part of the matrix (u^) is equal to

where

( ) [ L o ] : H°(X, Lo) ® H\X, Lo)* = H°(X, Lo) β Η°(χ, ωχ ® L Q 1 ) -» //°(X, <ox)

is the natural pairing and (tf) is the basis in Hl(X, Lo)* dual to (tj).

This immediately follows from Lemma 2.3 and some standard facts from linear algebra.

•
One of the most important applications of the coordinate version of Lemma 2.3 is the

following:

2.5. COROLLARY (RIEMANN - KEMPF THEOREM). Let X be a curve satisfying condition

(RK), and let Θ be the canonical polarization divisor on the Jacobian variety Jv(X). Then for

each pont [L] e Jv( X) the following assertions hold:

(2.5.1) Ifd&dsj 0 t*)[L]) * 0, then

Multi[L]0 = h°(X,L)

(Multi x X denotes the multiplicity of the point χ on the divisor X c Y), and, moreover, the

form det((s, ® tf)[L]) gives the equation of the tangent cone to Θ at the point [L] in the

tangent space T]V(X)[L].

(2.5.2) If det((Si®t*)[L])=0, then

Multim0 > h°(X,L).

(2.5.3) In particular, for [L] e Jv(^) we always have

Multi [ L ] 0 >h°(X,L).

2.6. REMARKS, (a) The matrix ((.$, <8> t*)iL^) considered in the preceding corollary is

square, i.e. m = n, since χ(®χ) = (det ux)/2.

(b) It is easy to verify that det((\, ® i*) [ L ] ) Ξ 0 if and only if there exists a nonzero

section s e H°(X, L) such that (s <8> H°(X, ωχ ® L'1)) = 0. If in H°(X, L) or in

H°(X, ωx ® L'1) there is a section which does not identically vanish on each component

of the curve X, this is impossible. Hence for an irreducible curve X condition (2.5.1)

always holds, which yields the equality Multi [ L ]0 = h°(X, L) and a convenient descrip-

tion of the tangent cone to θ at each point [L] e Θ similar to the classical version of the

Riemann theorem on singularities (see, for example, [8]).

(c) Below we shall consider a similar theorem for the divisor Ξ on a Prym variety.

PROOF OF COROLLARY 2.5. By our main construction, in some neighborhood U of the

point [L] e Jv(X) there is an exact sequence

<"••;>
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such that Θ is locally defined by the equation det(w,y) = 0 (here m = h°(X, L)). As at the

end of the proof of 2.1, we observe that the equation det(« j y) = 0 is reduced at the generic

points of Θ. All other assertions follow immediately from Corollary 2.4 and the fact that

(«,•;)![/.] = 0. •

2.7. COROLLARY. Let Ζ c Gr

d be a subvariety, and let [L] e Ζ be a point such that

h°{X, L) = r + 1. Then the tangent subspace TZ[L] c TPic(X)[L] lies in the zero subset of the

forms from im( ) [ L ] c H°(X, ωχ) = Tp*ic(X)[L], where ( ) [ L ] denotes the natural pairing

H°(X,L) ® H°(X, ωχ® L"1) -> Η°{Χ,ωχ).

Hence, if Ζ is irreducible, then

dim Ζ < g — dimim( \L\-

PROOF. By the main construction of this section, in some neighborhood U of the point

[L] there exists an m Χ η matrix (uu) such that u:j e Θυ and Ζ η U c {[M] e

Pic(X)|M e C/and (w,7(Af)) = (0)}. By Corollary 2.4, the linear parts of the functions utj

at [L] generate the space im( ) [ L ] . •

PROOF OF LEMMA 2.3. We need to show that for each tangent vector t e H1(X, 0x) =

H°(X, cox)* at the point [Lo] the composition

hlHL0] ~* H (X'0}X> ® h2\[L0] ~* E2\[L0)

η « «

Π \ Λ , I^Q ) * Π {Λ,ϋ3χ}ν9 1ΐ \ Λ , -LQ ) —* 11 y Λ , L·^ J

ω ® s >-> / ( ω ) • s

is the U-multiplication by t. The tangent vector t defines a morphism Spec k[e]/(e2) —»

Pic(Z) which is equivalent to defining an invertible sheaf Le on jce = X X Spec £[ε]/(ε 2)

which restricts to L o . The sheaf L£ as sheaf of C^-modules is represented by the extension

0 - L o -* L£ -» L o -» 0,

corresponding to our tangent vector

( g τ = Ηι(Χ, Θ ) = Ext1 (L L ).

Consider the following commutative diagram of sheaves of Cx-modules:

0

0

0

0
4

- LQ{-D) -*

4
-» !.,(-/)) -»

4

- io(--D) "»

4
0

0
4

L o -»

4

^ ε - •

4

4
0

0
4

4
(9ο®/:[ε]/(ε2) -

4

4
0

•> 0

•* 0

-> 0
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The rows and columns in this diagram are exact. This diagram induces the commutative
diagram of vector spaces over k

El\[L0] °

II 1
H\D,GD) - H\X,L0{-D)) ^ Hl(X,L0)

i la

k[e]/(e2) β Η°(Ό,ΘΟ) ¥ Hl(X, Le(-D))

Ιβ I

H°(X,L0) - H°(D,6D) -> Hl(X,L0(-D))

I u / | ||

whose rows and columns are also exact. The map

a-1ot*uofi-1:H°(X,L0)'*E1\lLo]-*Hl(X,L0)'*E2\lLo]

is well defined and coincides with the composition considered in the beginning of the
proof. Using the definition of the boundary homomorphism and a diagram search, it is
easy to show that this map coincides with the lower left-hand vertical arrow in the second
diagram, i.e. with the U -multiplication by t. •

§3. Prymians and Prym varieties

We begin with some notation and conventions. In what follows C, Cx, C,... denote
curves whose only singularities are ordinary double points. We recall that a singular point
s e C i s called an ordinary double point if the computation 0c s of its local ring 0C s is
isomorphic to k[[u, v]]/(u · v).

A morphism /: C -* C with I2 = id is called an involution. In what follows we shall
assume that the involutions under consideration are not the identity on any irreducible
components of our curve. The symbol denoting involution will have the same indices as
the symbol denoting curve, e.g. Ιγ. Cx -* Cv I'^y. Q'j -» Q'j. Similarly, as a rule, each
object corresponding to a pair of the above type will have the same indices, e.g. the
canonical projection will be denoted by ir^S- ^2,3 ~* Q'3·

So, let (C, /) be a pair consisting of a curve C and an involution / on C. We denote by
C the quotient curve C/I and by w: C —> C the corresponding projection. This notation is
justified by the fact that, as is easy to see, the only singularities of C are ordinary double
points. We observe that the morphism w is finite, but is not necessarily flat.

Let AT (respectively K) denote the ring of rational functions F(C, 0t^ on C (on C), i.e.
the product of the fields of rational functions of the irreducible components of this curve.
As usual, Oiv(X) denotes the group of Cartier divisors of the curve X. Clearly / induces
an involution /*: Κ -* Κ. The norm homomorphism from Κ to Κ is by definition the
multiplicative homomorphism
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where KJ" is the subring of /*-invariant rational functions on C. The norm induces the
following commutative diagram with exact rows:

•* 0

-> 0 ,

where Nm = Nn)f/C: Pic(C) -» Pic(C) is the usual norm of invertible sheaves (cf. [7],
II.6.5).

The involution / gives rise to an involution /*: Pic(C) -» Pic(C). It is clear that

77*°Nm = id + /*, (3.1.1)

(3.1.2)

κ* ->

Κ* -»

Div(C)

Div(C)

- Pic(C)

- Pic(C)

where 2 denotes the isogeny corresponding to raising to the second tensor power and the
map π*: Pic(C) -> Pic(C) is induced by the lifting of sheaves.

3.1. LEMMA-DEFINITION. The connected commutative algebraic group

Pr(C, /) = ker(Nm)° = ker(id + 7*)° = (id - I*)J(C)
def

with polarization induced from the Jacobian J{C) under the natural inclusion Pr(C, /) c J(C)
is called the Prymian of the pair (C, I);

dimPr(C, 7) =

where g(C) = A1(C, Ος) and g(C) = hl(C, 0C) are the genera of the curves C and C.

PROOF. In view of (3.1.2), the kernel of the map π* is finite and Nm: J{C) -* J(C) is an
epimorphism. Hence by (3.1.1) ker(Nm)0 = ker(id + 7*)° and has the required dimension.
Moreover, we clearly have the inclusions (id - I*)J(C) a ker(id + 7*)° and ker(id - 7*)°
^ TT*J(C). Now we observe that the homomorphism w*°Nm on ker(id - 7*) coincides
with the isogeny defined by multiplication by 2. Therefore ker(id — 7*) = TT*/(C) and
dim(id - I*)J(C) = g(C) - g(C) = dimker(id + 7*)°. Hence

(id - I*)J(C) = ker(id + 7*)°. •

In this section we study the main properties of Prymians. Here we consider only curves
with ordinary double points. However it should be noted that in certain cases it is
necessary to consider curves with cuspidal double points; this problem will be dealt with
in one of the following parts. Nowe we are going to determine when Pr(C, 7) is a complete
algebraic group, i.e. an abelian variety. After that we shall study the question of when the
polarization on such an abelian variety corresponds to a principal polarization. We say that
two polarizations correspond to each other if they are proportional. It turns out that the
polarization of a Prymian Pr(C, 7) can never be principal. We shall see that the best thing
one may hope for is that our polarization is equal to a principal polarization multiplied by
two. The most important cases when this is so were first described by Mumford in the
nonsingular case and by Beauville in the singular case (cf. [17] and [3]).



98 V. V. SHOKUROV

3.2. DEFINITION. A birational morphism X' -* X will be called a partial desingulariza-
tion (or resolution of singularities) of the curve X. Similarly, a birational morphism /:
C" -> C fitting into a commutative diagram

C" -^ C

c -̂  c

will be called a partial desingularization (or resolution of singularities) of the pair (C, I)
and will be denoted by /: (C", /') -» (C, /). Occasionally we shall specify the set of
singular points resolved by a given morphism.

A partial desingularization of a pair gives rise to a commutative diagram:

J(C)

/•I

J(C)

-"·

/*

J(C')

J(C')

It is clear that/* Pr(C, /) = /* °(id - I*)J(C) = (id - 7'*)°/*/(C) c Pr(C", /')- There-
fore a partial desingularization/: (C", /') -» (C, 7) induces a moφhism of the correspond-
ing Prymians

/*: Pr(C, 7) -» Pr(C'( 7') [L] -» [/*L].

By definition of polarization of a Prymian, this is a morphism of polarized algebraic
groups, i.e. the polarization on Pr(C, 7) is the preimage of the polarization on Pr(C", 7')
with respect to/*.

We observe that a partial desingularization/: C" -* C gives rise to a partial desingulari-
zation of the pair if and only if the singular points Λ; and I(x) are resolved simultaneously
and the involution Γ is induced by the involution I. It is easy to verify that / defines a
partial desingularization of the quotient

/: C" = C/Γ -> C = C/I.

The following obvious result often helps to simplify situation.

3.3. LEMMA. Suppose that (C, 1) is a disjoint union of two pairs (C l 5 7X) and(C2, 72), i.e.

C = C1 U C2, ^^^2=0, 7(Q) = Q, 7(C2) = C2,

c2 = h-

Then the polarized Prymian splits into a direct sum:

) = Pr(C1,71)ePr(C2,72).

3.4. REMARKS, (a) Let Ax and A2 be two commutative polarized algebraic groups. By a

direct sum Ax θ Α2 we understand the commutative algebraic group ΑγΧ A2 with polari-

zation defined by polarization divisors of the form p*Dx + p*D2, where Dx and D2 are
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polarization divisors on Ax and A2. It is easy to verify that this is a direct sum in the

category of commutative algebraic groups.

(b) The above lemma reduces all questions involving Prymians to the case of a

connected curve C, with the exception of one trivial possibility when C consists of two

connected components C\ and C2 transposed by the involution /. It is easy to verify that

in the last case Pr(C, /) = J(CX) — J(C2) with polarization equal to the standard polariza-

tion on each of the Jacobians multiplied by two; hence in this case the Prymian is complete

if and only if the irreducible components of the curve Cx {and C2) are nonsingular and form a

tree. In view of this, in what follows we shall often assume that C is a connected curve;

this will allow us to simplify the exposition. However it should be noted that in general it

is not advisable to disregard the disconnected case, since it naturally arises in some

auxiliary constructions.

We introduce the following invariants:

2ne = #{x e SingC|/(x) Φ χ),

n'f= #{x <= SingC|/(x) = χ,π(χ) e RegC},

2ce = #{C c C\C is an irreducible component with I(C') Φ C'},

r = #{x e RegC|/(x) = x).

Here, as usual, Sing X denotes the subvariety of all singular points from X and Reg X

denotes the open subvariety of nonsingular points from X.

3.5. THEOREM. Let C be a connected curve. Then the Prymian Pr(C, /) is an abelian

variety only in the following cases:

(3.5.1) n'f = 1 , ne = ce — 2, the set [x\I(x) = x} consists of a single point, and the

resolution of C at this point consists of two connected components Cx and C2 transposed by the

involution; the irreducible components of each of the curves C\ and C2 are nonsingular and

form a tree {Figure 1). In this case Pr(C, /) = J(CY) = J{C2) and the polarization is equal

to two times the polarization on each of the Jacobians.

(3.5.2) n'f = 0 and n3 = ce. In this case the polarization on Pr(C, /) is divisible by two if

and only ifr^.2. More precisely, here there are two possibilities:

(3.5.3) n'f = 0 and 2ne — 2ce = c, where c is the number of irreducible components of the

curve C; the resolution of C at a pair of points x, I(x) e [x e Sing C\I{x) Φ χ] consists of

two connected components Cx and C2 transposed by the involution, and the irreducible

components of each of the curves C1 and C2 are nonsingular and form a tree (cf. Figure 2). In

this case Pr(C, /) = / ( C J = J(C2), and the polarization is equal to two times the polariza-

tion on each of the Jacobians.

(3.5.4) n'f = 0 and 2ne = 2ce < c; denote by Co a union of all irreducible components

C c C with I(C') = C"; Co is a connected curve; the resolution of C at the points of the set

[x e SingC|/(x) Φ χ, χ e Co} consists of the connected component Co and #{x e

Sing C\I(x) Φ χ, χ e Co} connected components Cv I{CX), C2,1(C2),..., where the curves

of each pair are transposed by the involution; and the irreducible components of each of the

curves C\, /(Cj), C2,1(C2),... are nonsingular and form a tree. In this case

Pr(C, /) = Pr(C0, Io) θ / ( C j θ J(C2) θ
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where Io = Ι\ζ , and the polarization is equal to the polarization on the Jacobians multiplied

by two (cf. Figure 3).

3.6. DEFINITION. Let (C, /) be a pair such that Pr(C, /) is an abelian variety whose

polarization is equal to a principal polarization multiplied by two. In this case we shall say

that (C, /) is a principal pair, and Pr(C, /) with the above principal polarization equal to

one-half of the standard polarization will be called a principal Prymian. This principal

Prymian will be denoted by P(C, I). Thus, as a group scheme P(C, I) coincides with

Pr(C, / ) ; the difference is only in the choice of polarization divisor.

3.7. REMARKS, (a) The case (3.5.3), like (3.5.1), is trivial. However, it plays an important

role in global questions, since such pairs naturally arise as degenerations of the principal

case, where C is a nonsingular curve and / is an involution without fixed points.

Moreover, such pairs and the pairs described in (3.5.4) allow us to make the Prym map

P( , ) proper (cf. [3]). The pairs described in (3.5.3) are sometimes called Wirtinger pairs.

Wirtinger [6] was the first to introduce them in the case when 2ne = 2ce = 2 and Cx ~, C2

is a nonsingular irreducible curve.

(b) The pairs (C, /) with r = 0 from (3.5.2) are usually called admissible. It is these

pairs that make the Prym map proper.

(c) As we can see from the theorem, the question of distinguishing principal Prymians

from the Jacobians of nonsingular curves naturally reduces to the case when C is a

connected curve and n'f=ne=ce = 0. Below we shall see that we may also assume that

r — 0. Thus it is natural to consider the pairs (C, /) satisfying the following condition:

(B) SingC = {x e C\I(x) = x) and w(SingC) = SingC, i.e. the fixed points of the

involution I are precisely the singular points of the curve C, and the involution I preserves the

branches at these points.

FIGURE 1 FIGURE 2

uc,)

FIGURE 3



PRYM VARIETIES: THEORY AND APPLICATIONS 101

We shall call such pairs (C, I) Beauville pairs, since Beauville was the first to study the

main properties of their Prymians in the singular case.

3.8. Below we shall need an explicit description of the Cartier divisors on C and C and

an explicit description of the action of the homomorphisms /* and π m on these divisors.

The group of Cartier divisors on C is as follows:

* χ6= Reg C ' > ι ε S i n g C

Let/: C' -* C be a partial desingularization at a point s e Sing C, and let sY and s2 be the

preimages of s under this desingularization. Then there is an exact sequence of groups

1 -» k* -> @*J0^s

 Vl-^2 Ζ Θ Ζ -> 0,

where vx and υ2 are the valuations at the points sv s2 e C" respectively; the map

h *~* f*{h\sl)/f*{h)(s2) identifies the kernel of the arrow (vv v2) with k*. A choice of

local parameters tx and t2 at the points sx and s2 splits this triple and defines an

isomorphism

( , , ) , : k* Χ Ζ Χ Ζ ̂  &£. ,/Θ£ s,

2 ) ( ^ ) , «ι = «ι(

υ2 = υ2(/*(Α))) <- the class of h.

The description of the above homomorphisms falls into three cases:

(3.8.1) I(s) Φ s. Then w(s) e Sing C and for a suitable choice of local parameters

I*(z, m, n)s = (z,m,n)I(s),

v*(z,m,n)s = (z, m, n) w ( J ) ,

7T*(z, w, « ) / ( s ) = (z, m, n)<s).

(3.8.2) I(s) = s and w(i) ε Reg C. In this case for a suitable choice of local parameters

7*(z, w, n), = (z~\/?, w ) i ;

TT+(Z, w, n ) i = (m + n)v(s).

(3.8.3) I(s) = s and ττ(ί) e Sing C. In this case for a suitable choice of local parameters

I*(z,m,n)s={(-ir + "z,m,n)s,

π*(ζ, m, n)s = ( ( - l ) m + " z 2 , m, n)n(s).

PROOF OF THEOREM 3.5. Suppose that Pr(C, /) is a complete variety. First we consider

the case when n'f Φ 0, i.e. there exists a point s e Sing C at which the branches are

permuted by the involution. We denote by/: C' -* C the desingularization at s. If C' is a

connected curve, then there is an exact sequence

1->(k*,0,0)S-+J(C)->J(C')->0 (3.8.4)

and 7r^.(k*,0,0)s = {0}. Hence in this case there exists an inclusion k* •-» Pr(C, /) and

the Prymian is not complete. Therefore the curve C" is not connected. But then it is easy

to see that C" is a disjoint union of two connected components Q and C2 transposed by

the involution /', and n'j = 1. Besides that, in this case we have an obvious isomorphism

/*: J(C) -» J(C') which is compatible with the action of the involutions. Therefore

Pr(C, /) = Pr(C', /') = J{C,) = J(C2)
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and the polarization is equal to the polarization on the Jacobians multiplied by two. In
order that these Jacobians be complete it is necessary and sufficient that the irreducible
components of each of the curves Cx, and C2 be nonsingular and form a tree.

Suppose now that n'f = 0. First we reduce everything to the case when η e = 0. If η e Φ 0,
then there exists a point 5 e SingC with I(s) Φ s. We denote by/: (C", /') -» (C, /) the
partial resolution of our pair at the points s and I(s). If the curve C" is connected, then
there is an exact sequence

1 -» (k*,Q,0), θ(Λ·,0,0) / ( Ο -» 7(C) C j(C') -» 0,

and ττ^ζ,Ο,Ο), + (z" l,0,0) / ( j )) = (l,0,0)w ( J ) in view of (3.8.1). Therefore in this case
there exists an inclusion k* •-» Pr(C, /), and the Prymian is not complete. Hence the curve
C" is not connected. If C" has two connected components C\ and C2 and the involution /'
preserves these components (cf. Figure 4), then there is an exact sequence

and

w,((z,0,0), +(z-\0,0)l[s)) = (l,0,0) w ( i )

(here we consider the isomorphism ( , , ) / ( s ) induced by ( , , ) s with respect to /). From
this it follows that there is an inclusion k*/± 1 °-> Pr(C, /), and so in this case Pr(C, /)
is also noncomplete. Hence, if C" has two connected components Cx and C2, then these
components are transposed by the involution /'. We shall show that in this case

which, combined with the argument given at the end of the preceding paragraph, leads us
to the case of Wirtinger pairs (3.5.3). First of all, we observe that there is an exact
sequence

1 - {(z.0,0), + ( z - \ 0 , 0 ) / ( j ) } z e , . - (fc*,0,0), e ( * * , 0 , 0 ) / ( i )

-*J(C) --J(C') ->0

and

ir,((z,0,0), +(z' ,0,0) / ( j ) ) = (z • z ' ,0,0). ( o ;

here we consider the isomoφhism ( , , ) / ( j ) induced by ( , , ) s with respect to /. Therefore
/*: Pr(C, /) -» Pr(C", /') is a monomorphism. However by 3.1

dimPr(C, /) = g(C) - g(C) = g(C') + 1 - g(C) - 1 = dimPr(C\ / ' ) ,

and therefore Pr(C, /) = Pr(C", /'). It remains to consider the case when the curve
consists of three connected components. One of these components, which will be denoted
by Co, is stable with respect to /', and the two other components C\ and C2 are transposed
by /'. Moreover, since/*: J(C) ^* J(C'), 3.3 shows that

Pr(C, /) = Pr(C', /') = Pr(C0, Jo) θ Pr(Q U C2, 7"),

where 70 = I'\c and /" = / ' | c u C z · We have already verified that the last summand is
complete if the irreducible components of each of the curves Cx and C2 are nonsingular
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and form a tree; the polarization of this summand is always divisible by two. From this it

follows that ne(C) - ne(C0) = ce(C) - ce(C0) > 0 and r(C0) = r{C). This lets us reduce

everything to the case ne = 0.

Thus we may assume that n'j = 0 and η e = 0. Then from the connectedness it follows

that ce = 0. In particular, in the above reduction we have ne = ce, which proves the

necessity. To prove the sufficiency, it remains to show that if n'f = ne = ce = 0, then

Pr(C, /) is an abelian variety whose polarization is divisible by two if and only if r =ς 2.

This forms an essential part of the following proposition. •

FIGURE 4

3.9. PROPOSITION. Let C be a connected curve, and suppose that the pair (C, I) satisfies

the following condition:

(F) Sing C c [x e C\I(x) = x} and 77(SingC) = SingC, i.e. each singular point of C

and the branches at these singular points are stable under the action of the involution I.

Then the following assertions are true:

(3.9.1) Ifr > 0, then Pr(C, /) ~ ker(Nm), i.e. ker(Nm) = ker(Nm)0.

(3.9.2) If r = 0, i.e. the pair (C, I) satisfies condition (B), then there is an exact sequence

of groups

0 -* Pr(C, /) -> ker(Nm) ->· Z/2Z -» 0.

In other words, ker(Nm) has two connected components.

(3.9.3) Pr(C, /) is an abelian variety of dimension g(C) — 1 + r/2 with polarization of

degree 2 d l m P r ( C ' 7 ) in the case when condition (B) holds and polarization of degree 2 g ( C )

otherwise.

(3.9.4) The polarization o/Pr(C, /) is divisibleby two if and only ifr < 2.

3.10. REMARK. It is easy to show that if a pair (C, I) satisfies condition (F), then the

number r is even. This follows from the fact that the number of fixed points of an

involution on a smooth curve is even.

3.11. LEMMA. In the conditions of Propositions 3.9, let L be an invertible sheaf on C with

Nm(L) = 6C. Then L ~ Μ ® I*(M~l) for some invertible sheaf Μ on C. Moreover, Μ can

be chosen so that its multidegree is equal to (0,0,..., 0) or (1,0,..., 0).

PROOF. We choose a Cartier divisor D" e Div(C) in such a way that L = Θέ(Ό").

Then 7Γ + D" = (h) is a principal divisor, where h e K* is a rational function. Since Κ is a

product of fields of type C 1 (cf. [14]), by Tsen's theorem there exists a function h e K*

with N m ^ ( A ) = h. Hence L = #<=•(£>'), where D' = D" - (h) and π + D' = 0. That

means that

D'= Σ nx(x~l(x))+ Σ A'
χe Reg C s e Sing C
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and 7τ*Ζ>; = 0 for all s e SingC. But then, in view of (3.8.3), D's = (±1,0,0),, where
(-1,0,0), = (1,0,1), - /*(l,0,l),. Hence D' = D - I*D for some divisor D e Div(C),
from which it follows that L = Μ ® Ι*(Μ~x) for Μ = 0<j(7J>). Now we observe that
(id - 7*)(1,1,-1), = 0. Therefore we may replace Μ by M(l,l,-1),. Twisting by
(1,1, -1),, we can transfer the number one in the multidegree from one component to an
arbitrary component intersecting the chosen one. Since the curve C is connected, after a
suitable number of such transformations the multidegree of Μ becomes equal to
(d, 0,... ,0). Multiplying Μ by ir*M', where M' is an invertible sheaf on C of multidegree
(-[d/2], 0,... ,0) (we remark that, since ce = 0, the irreducible components of the curves C
and C are in a one-to-one correspondence), we obtain the required sheaf. •

PROOF OF PROPOSITION 3.9. By the above lemma, ker(Nm) has at most two connected
components. First we consider the case r > 0. Then we may assume that on the curve
corresponding to the first component of the multidegree for a suitable ordering of the
irreducible components there exists a nonsingular point χ which is a fixed point of the
involution /, so that χ - I*(x) = 0. Hence in this case ker(Nm) = ker(Nm)0, which
proves (3.9.1).

Suppose now that r = 0, i.e. condition (B) holds. We set

Pr'(C, 7) = {[L] e Pic(C)|L = Μ ® 7*(M~1), and [M] e Pic ( 1 A 0 ) (C)} .

It is easy to verify that the variety Pr'(C, 7) c Pic(C) does not depend on the choice of
irreducible components of the curve C on which the sheaves have degree 1.

3.12. REMARKS, (a) Let (C, I) be a pair satisfying condition (B). Then C has the
following property:

(E) For each decomposition C = C\ U C2, dim(C1 Π C2) ^ 0, o/ the curve C the number

of intersection points of the components C\ and C2 is even, i.e.

# ( C 1 n C 2 ) s 0 mod2.

This follows from the fact that the number of fixed points of an involution on a
nonsingular curve is even. Since ce = 0 and in this case π defines an isomorphism between
Sing C and Sing C, condition (E) holds also for the curve C.

(b) Let /: C" -* C be the partial desingularization of a curve C with ordinary double
points at a subset S. Then from the description of the dualizing sheaves on curves (see, for
example, [21])

f ) (3-12.1)

In particular, if C = C1 U C2 is a decomposition of C, then we have the following
adjunction-type formula:

( 4 1,2- (3.12.2)

(c) From the above two remarks it follows that if (C, 7) is a Beauville pair, then C and
the quotient curve C satisfy condition (RK).

(d) We also indicate the following formula which holds for the Beauville pairs:

w*w c = ω^.

This formula can be easily derived from the description of dualizing sheaves (cf. Lemma
(3.2) in [3]).
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We go on with the proof of Proposition 3.9. We consider a Beauville pair. In this case in

view of 3.12(c) there exists an invertible sheaf Lo on C with L\ = coc. Consider the

function

ker(Nm) -» Ζ mod2, [L] -> h°(C, L <8> TT*L0) mod2.

We claim that this function is constant on each connected component of ker(Nm) and

assumes distinct values on Pr(C, /) and Pr'(C, /) , which proves (3.9.2). Since

h°(C, L ® IT*L0) = h°(C, 77*L ® L o ),

in view of Theorem 1.6, the first assertion follows from the existence of a nondegenerate

quadratic form Qo: π„L ® Lo -» wc or, which is equivalent, a form Q: -nnL -> Nm(L) =

&c varying with L. This form is induced by the norm map

Q = Nm: ir*@c\u ~* ^clt/> A-> Nm(A)

on sufficiently small open subsets t/ c C. The local verification of the fact that Q is

nondegenerate is rather simple and is left to the reader. To prove the second assertion we

need to find [LJ, [L2] e ker(Nm) such that

h°(C, L,. ® -rr*L0) = i mod2, / = 1,2.

By (E), the curve C does not have nonsingular irreducible rational components intersect-

ing the other components at a single point. From this it is easy to deduce that in the linear

system |wc | there exists a divisor D consisting of distinct nonsingular points (cf. 3.13). For

each point belonging to the divisor D we pick a point on C lying in the fiber over this

point; thus we obtain a divisor D e Div(C) with π*D = D. Let Μ = W^(D). Then

h°(C, M) > 0 and Nm Μ = 0C(D) ~ coc. Next we show that h°(C, M') = h°(C, M) - 1,

where M' = M(I(x) — x) and χ is a generic point of C. In what follows we shall need a

similar result in a more general situation than the one considered in the case (B).

Therefore we now prove this result in a more general setting.

3.13. The following concepts enable one to generalize some facts which are well known

in the smooth case to the case of a singular curve X. Let L be an invertible sheaf on X. The

linear system of the sheaf L is by definition the set \L\ of effective Cartier divisors D with

ΘX(D) =s L. For a connected curve X it is more convenient to consider the system \L\ as

an open sub variety in P(H°(X, L)) which does not necessarily coincide with P(H°(X, L))

(and may be even empty) if the curve X is reducible. We shall say that an effective divisor

is nonsingular if its support lies in the set of nonsingular points. A sheaf L, or its linear

system \L\, is called nonsingular if \L\ contains a nonsingular divisor. This is equivalent to

the existence for each singular point χ e X of a global section j e H°(X, L) with

s(x) Φ 0.

3.14. LEMMA. Let X be a Gorenstein curve with involution I which is nontrivial on all

irreducible components of the curve X, and let L be a nonsingular invertible sheaf for which

the sheaf ωx ® Ll <8> I*(L~l) is nonsingular. Then there exists a generic point x e X such

that

h°(X, L(l(x) - x)) = h°(X, L) - 1.

Furthermore, if dim\L\ > 0, then we may assume that the sheaf L(I(x) - x) is also

nonsingular, the sheaf

ωΧ ® L(l(x) - x~l) ® I*(L(I(X) - χ)'1) = ωχ ® L"1 ® I*{L'1)

is automatically nonsinguhr.
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PROOF. It is clear that all fixed points of the systems \L\ and \ωχ ® L - 1 | lie in Reg X.

Let χ e Reg A' be a sufficiently general point which, in particular, is distinct from these

fixed points; if dim|L| > 0, then we also assume that χ belongs to a sufficiently general

divisor from \L\. Then

h°[x,ux® L(l{x))~X) = h°(X,ux® L'1) - 1,

from which, by the Riemann-Roch theorem, it follows that

Hence h°(X, L(I(x) - x)) = h°(X, L) - 1 and the sheaf L(I{x) - x) is nonsingular

provided that dim|L| > 0. •

We return to the proof of the proposition. Since ω,~ = Μ ® Ι*(Μ) (cf. 3.12(d)), by the

preceding lemma for Μ there exists a point χ e C with the required properties. As a

result, we obtain two invertible sheaves Μ and M' on C such that Nm Μ ~ Nm Μ' ~ w c

and h°(C, AT) = h°(C, M) - 1. After a suitable change of notation, the sheaves Μ ®

IT*LQ1 and M' ® W*LQ1 yield the required sheaves Lx and L2. This completes the proof of

(3.9.2).

The following lemma shows that by performing a resolution of singularities we can

reduce (3.9.3) to the case of a nonsingular curve C.

3.15. LEMMA. In the conditions of Proposition 3.9, let f: C'

a singular point of C. Then the morphism of Prymians

C be the desingularization at

is an isogeny of degree 2 or I. More precisely, this isogeny has degree 1 if and only if (C, I)

satisfies condition (B) or C' is not connected.

3.16. COROLLARY. Let (C, I) be a Beauville pair. Suppose that there exists a decomposi-

tion C = Cj U C2 with Clf\C2={p,q}. Denote by C[ and C'2 the curves obtained by

identifying the points ρ and q by means of the involutions I[ and I'2 induced by I (cf. Figure

5). Then

p=q.

FIGURE 5

3.17. REMARKS, (a) The pairs (C{, /{) and (C2,12) are again Beauville pairs, and, as we

shall see below, the polarization of their Prymians is divisible by two. Hence we have the

following decomposition of principal Prymians:
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This reduces the problem of distinguishing Prymians from Jacobians to the case when the

curve C and therefore also the curve C in the case (B) satisfy the following condition:

(S) For each decomposition C = Q U C2

#(C1 η C2) > 4.

(b) If r = 2, then, gluing the two fixed points of the involution / on C, we obtain a

Beauville pair (C, /')• By Lemma 3.15, we have an isomorphism

Pr(C, I')^?T(C, I).

This sometimes allows us to consider only the Beauville case with r = 0 (cf. also 3.7(c)).

PROOF OF LEMMA 3.15. The case when the curve C" is not connected is obvious, since

then there exists an isomorphism /*: J{C) -* J(C') which is compatible with the involu-

tions. If C" is a connected curve, then by (3.8.4)

ker(Pr(C,/) -> Pr(C,/ ' ) ) £ kerNc* -> k* = {±1} .

By (3.9.1), if (C, /) is not a Beauville pair, then the above inclusion is an equality; in case

(B) the kernel is trivial. The dimension of the Prymians Pr(C, /) and Pr(C", /') coincide in

view of 3.1. •

Now we turn to the proof of (3.9.3). Using Lemmas 3.3 and 3.15 and examining the

variation of dimension and degree under the resolution of singularities of C, we reduce the

problem to the case of a smooth curve C; as above, we assume that this curve is

connected. In that case it is clear that Pr(C, /) is an abelian variety. From 3.1 and the

Hurwitz formula, it is easy to derive a formula for the dimension of Pr(C, /) . It is harder

to compute the degree of polarization. Now we turn to this problem. We use Mumford's

argument from [17].

So, let C be a smooth curve, and let Θ be an effective polarization divisor on the

Jacobian J(C). Since the polarization is principal, there is an isomorphism

where Tx: J(C) -» J(C) is the translation by χ (cf. 2.1). A similar isomorphism is defined

by Θ c J(C). We fix points Jc0 e C and xQ = ιτ(χ0) e C. Consider the Abel-Albanese

mappings

f.C^J(C), x^[0c(x-xo)\,

hc-*j{c), χ~[φέ(χ-χ0)]

and the commutative diagram:

C ^ J(C)

π I J,Nm

C Λ J(C)

Applying Pic°( ) to this diagram, we obtain the following commutative diagram:

J(C) '*- Pic°(y(C))

ir*t fNm*

C- Pic°(y(c))
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By the Riemann theorem (cf. [8], 2.7),

λθ, (f·) = -λδ

Hence the diagram

*)-1 = -λθ, (f·)"1 = -λδ.

J(C)

π* |

JiC)

λ θ

λ θ

Τ Nm*

is also commutative, i.e. m* = λ~§ °Nm* ° λ θ. Since π** ° λ 6 ° w* = (Nm» 77*)* ° λ θ = 2
• λ θ , the diagram

J(C) - Pi

is commutative. Moreover, in view of the duality and one of the preceding equalities,
IT** ° λ = λ θ °Nm. Therefore Pr(C, /) = \$(ker w**)°. The moφhism π* and the inclu-
sion Pr(C, /) c J(C) define an isogeny

σ: J(C) X Pr(C, /) -» J(C), (x, y) >-> π*χ + y.

Set Η = ker σ. It is clear that

(JC, j ) e ί ί => w*x + y = 0 => 7Γ**(λδ(τ7·*Λ:)) = 0 => 2x = 0 =» 2 j = 0.

Therefore Η <z J2(C) X Pr2(C, /) (the index 2 indices that we consider the subgroup of
points of order 2 on the corresponding abelian variety). Since Η η {0} X Pr2(C, /) =
{(0,0)}, there exist a subgroup Ηγ c J2(C) and a ΙιοπιοηιοΓρηίβιηψ: Hl -> Pr2(C, /) such
that

H= {(ο,ψα)ΐ«ε//ι}.

Let /i0 = kerw*. Then Ho c 7/j and ψ defines an inclusion Ηχ/Η0 -̂> Pr2(C, /). The
lifting σ*Θ of the polarization divisor defines a morphism λσ»§ which coincides with the
composition

J(C) X Pr(C, /) Λ /(C) ^ Pic°(/(C)) ^ Pico(7(C)) X Pic°(Pr(C, /)) .

This morphism can be represented by a matrix (" g), where

a: J(C) -» Pic°(/(C)), 0: Pr(C, /) -» Pi

γ: J(C) -» Pic°(Pr(C, /)) , δ: Pr(C, /) -» Pic°(Pr(C, /)) .

In view of the self-duality of λσ»6, we have the equality γ = β*. But by the definition of
Pr(C, 7) the morphism β is equal to 0, and δ = λΞ corresponds to the polarization divisor
Ξ on Pr(C, /) . Hence γ = 0 and the lifting σ*Θ of our polarization splits. From one of the
preceding diagrams it follows that α = 2λθ. Now we observe that since the morphism
(2λθ, δ) of the polarization on J(C) X Pr(C, /) corresponds to the lifting of the principal
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polarization with respect to a, ker σ is a maximal isotropic subgroup in ker(2Ae, δ) with

respect to the skew-symmetric form defined by the polarization (cf. [15], §23). Thus

Η c / 2 ( C ) XkerS

and

if (α, φ (α)), (β, φ (β)) e Η. Therefore ψ ί ^ / ί ^ ) C ker 5 and

for all α, β e Hx.\n view of the maximality of H,

{#H1f = ( # i / ) 2 = #(J2(C) X kerS),

from which it follows that

, ±^ #J2(C) #Ηγ #Η1

where Hf = {a e /2(C)|e2 iy ( C )(a, β) = 1 for all j3ei/,} . But 7/0 c i/^, since for all

α e Ho and β ^ Ηλ

e2,J(C)(a, β) = β8{ψ(α),ψ(β)) = I.

Hence Ho = H^ , im ψ = ker δ and //j = H£. Therefore the polarization degree of

Pr(C, /) is equal to

/#kerX7 = /#ke75 = ^#{Ηγ/Η0) = 2C,

where c is the integer defined by the equality #H0 = 2""c and a = dim ./(C). Now we

recall that Ho = ker π*. To complete the proof of (3.9.3) it remains to recall the following

result (cf. [17]).

3.18. LEMMA. Let C and C be two connected smooth curves, and let π: C -» C be a

morphism of degree 2. Then:

(3.18.1) ker IT* = {0} when π has branch points; and

(3.18.2) ker π* = {0, U) where it is the unramified covering defined according to the

Kummer theory by a point U e J2(C) of order two.

Now we turn to the proof of (3.9.4). By (3.9.3), the polarization of the Prymian Pr(C, /)

is divisible by two only for r = 0 and 2. In view of Remark 3.17(b), to prove the

sufficiency it suffices to consider only the case r = 0. So, let (C, I) be a Beauville pair.

Consider the subvariety

Pv(C,/) = {[L] e Pic(C)|NmL = ω ο h°(C, I) = 0mod2}

in Pic< d e 8 S 2 f ) / 2(C) (compare with 3.12(d)). From the preceding proof it follows that this

subvariety is nonempty. Moreover, this is a principal homogeneous space with respect to

Pr(C, / ) . The variety Pv(C, /) is called the Prym variety. We claim that the divisor

E = { [ L ] e P v ( C , / ) | A ° ( C , £ ) > 0 } ,

which from now on will be called canonical, corresponds to the polarization of Pr(C, /),

i.e. for each [Lo] e Pv(C, /), under the isomorphism

Pr(C, /) ^ Pv(C, /) c Jv(C), [L] -» [L ® Lo]
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the divisor Ξ is transformed to one-half of the polarization divisor on Pr(C, /) . In fact, let

Θ = {[Μ] e Jv(C)\h°(C, M) > 0} be the canonical polarization divisor on Jv(C). From

Lemma 3.14 it is easy to deduce that there exists an invertible sheaf L on C with

[L] e Pv(C, /) and h°(C,L)=0. Hence the divisor Θ intersects Pv(C, /) along an

effective divisor F=Y.aiFi, where the Ft are irreducible reduced components. Since

h°(C, M) > 0 and h°(C, M) = 0 mod2 for [AT] <= Θ η Pv(C, /), so that h°(C, M)>2

for such [M], the Riemann-Kempf theorem shows that the divisor Θ is singular along

Θ Γι Pv(C, /) . Therefore a, > 2 for all i. On the other hand, the degree of polarization of

the Prymian Pr(C, /) is equal to 2dim(Pr<e·'», and so

(FyJim(Pr(C,/)) = 2d im(Pr(c,/)) X ( ( d i m ( p r ( C , /)))»).

Now it is easy to show that all ai are equal to 2, our polarization divisor is divisible by

two, and the quotient Ξ = Σ Ft defines a principal polarization. This complete the proof of

Proposition 3.9. •

We emphasize that the canonical polarization divisor Ξ on a Prym variety Pv(C, /) is

defined only in the case of Beauville pairs.

3.19. Prym varieties and their canonical subvarieties. Let (C, /) be a pair with ce — 0

satisfying condition (F). If C is a connected curve and r = 0, then Pv(C, /) and

Ξ c Pv(C, /) are defined as above. If C is a connected curve and r > 0, then we set

Pv(C,/) = {[L] e Pic(C)|NmL = ωΓ}

and

Ξ(£, /) = {[Μ] e Pv(C, I)\h°(C, M)>0}.

It is clear that Pv(C, /) is a principal homogeneous space with respect to the natural

action of the group Pr(C, /) . Therefore in this case Pv(C, /) also is a complete connected

nonsingular variety. If C is not connected, then Pv(C, /) is defined to be a product of the

Pv corresponding to all connected components, and S(C, /) is defined as above. We

remark that if we are not in the Beauville case, then the subvariety E(C, /) is not

necessarily a divisor. This is clear from the following result.

3.20. LEMMA. Let C be a connected curve, and let (C, I) be a pair satisfying condition (F).

Let Ζ be an irreducible closed subvariety in Ξ whose generic point [L] corresponds to a

nonsingular sheaf L. Then

dim Ζ < g(C) - 1 = dimPv(C, /) - r/2.

PROOF. At a generic point of the variety £2 = U [ t ] e Z |L| there is a well-defined

quasifinite morphism

0-»|<oc |, D^TT + D.

Therefore it is clear that dim Ζ < dim 2 < dim|coc| = g(C) - 1. •

Varieties Pv(C, /) will be called Prym varieties, and their subvarieties E(C, /) will be

called canonical subvarieties. For the sake of brevity, we often write simply Pv, Ξ, Pr and

Ρ with the indices of the curve C. For example, Pvx = Pv(Q, Ιλ), Ξ' = S(C", /'),

Pr* = Pr(C*, /*), and P{ = P{C[, I[).

3.21. The isogeny f°. Let (C, /) be a pair with ce = 0 satisfying condition (F), and let/:

C" -» C be its partial desingularization at a subset S c Sing C. Then the map

Pic(C) - Pic(C'), [L] - Σ
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induces a mapping

/°: Pv(C, /) -» Pv(C", / ' ) ,

since

Nmofli- Σ x)=/*»Nm(L)(- Σ *)=/·"<:( Σ *) = «c<
^ /(x)eS I V /(jt)e!r(S) ' V(*)eT(S)

(cf. (3.12.1)).
(3.21.1) We observe that for the pair (C', /') we have ce = 0, and this pair again satisfies

condition (F). Let g: C" -» C" be its partial desingularization. Then

(/•l)° = l0·/0-
(3.21.2) f° is an equivariant morphism of homogeneous spaces, i.e. for each [L] e

Pv(C, /) and each [M] e Pr(C, /)

From these facts and Lemma 3.15 it is clear that/ 0 is a finite epimorphism which, like the
corresponding mapping of abelian varieties

/*: Pr(C, /) -> Pr(C", /')

will be called an isogeny. We observe that

deg/° = deg/*. (3.21.3)

§4. Special curves

In §2 we defined a subvariety Gr

d c Pic(JQ whose points correspond to classes of
isomorphic invertible sheaves L on A' with deg L = d and Λ "(A", L) 2t r + 1. The geomet-
ric properties of the variety Gr

d reflect essential information about the structure of the
curve X. For example, if X is a nonsingular irreducible curve of genus g and 0 < d < g - 1,
then by Martens' theorem [18] dim G^ < d — 2r and the equality is possible only if r = 0
or AT is a hyperelliptic curve. A further refinement of the estimate for the dimension of Gr

d

was suggested by Mumford in the Appendix to [17]. In this section, following Beauville
[3], we extend the theorems of Martens and Mumford to the case of curves with
singularities.

4.1. LEMMA. Let L and Μ be two nonsingular invertible sheaves on a curve X, and let

φ: H°(X, L) ® H°(X, M) -• H°(X, L ® M)

be the natural pairing. Then

dimimcp > h°(X, L) + h°(X, M) - h°(X, &x),

and therefore

h°(X, L® M)> h°(X, L) + h°(X, M) - h°(X, Θχ).

PROOF. By our assumption, generic divisors from the linear systems \L\, \M\ and
\L ® M\ are nonsingular, and the canonical morphism

\ψ\: \L\ X \M\ -» \L® M\, {Dx, D2) ^ Dr + D2

always has finite fiber over a nonsingular divisor. On the other hand, on im φ we have a
rational map
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( )0:Η°(Χ, L ® Μ) -> | L ® M\

which transforms a section s e H°(X, L ® M) to its divisor of zeros ( s ) 0 . The dimension

of the fibers of this map is equal to the number of components of the curve X, i.e. to

η°{Χ,Θχ). Therefore

dimirnqp = h°(X, Θχ) + dimim|cp |

>h°(X, L) + h°(X, M)~h°(X, 0x). •

4.2. LEMMA (CLIFFORD'S THEOREM). Let X be a Gorenstein curve, and let L be a

nonsingular invertible sheaf on X such that the sheaf ω χ <8> L~l is also nonsingular. Then

h°(X,L)^ {de%L)/2 + h°(X, Θχ).

Moreover, if ωχ ® L'1 * Θχ and the curve X is irreducible or the sheaf ωχ ® L~2 is

nonsingular, then the equality holds if and only if L is isomorphic to a tensor product <gi Mtof

free sheaves Mi e G\; in a natural sense, this decomposition is unique.

4.3. REMARKS, (a) Let L be an invertible sheaf. We recall that this sheaf is called free if

for each point χ e X there exists a section s e H°(X, L) with s(x) Φ 0. The linear system

\L\ is called free if L is free. That means that the linear system \L\ does not have fixed

points. A free invertible sheaf L on a connected curve A' defines a morphism

<pL: X -> P(H°(X, L)*) « p^l i- l .

(b) From the preceding lemma it is easy to deduce that if the dualizing sheaf is

nonsingular, thenit is free; hence for a connected curve X this sheaf defines a morphism

κ = Ψωχ:Χ-*Ρ{Η°(Χ,ο,χ)*) = Ρζ-\

which is called canonical (here g is the genus of the curve X). The image of this morphism

is called a canonical curve.

(c) In accordance with the classical terminology, we say that an invertible sheaf L on a

curve X is special if the sheaves L and ω^ ® L~l are nonsingular; in particular, hl(X, L)

> 0. The linear systems of such sheaves admit a good description on the canonical curve.

An invertible sheaf L with h°(X, L) = r + 1 and deg L — d is called a sheaf of type Gr

d

(compare with §2). It is possible that for fixed r and d a generic curve X does not have

invertible sheaves of type Gr

d although they exist on certain special curves. Such curves are

called special (in the sense of moduli). A typical example of such curves is given by the

curves from 4.2 with Mi e G\. These sheaves are special and free, and h°(X, A/,) = 2. To

these sheaves there corresponds a morphism

yi = <pMi:X-+P\

which has degree 2 over the generic point of P 1 . Such a morphism will be called a

hyperelliptic structure on X. If γ, is a finite morphism, then the curve X is called

hyperelliptic. Equivalently, a curve X is hyperelliptic if it is connected and Gorenstein, its

dualizing sheaf ux is free, and the corresponding canonical curve κ(Χ) c p«~x coincides

with the normally embedded rational curve of degree g - 1 in P g ~ x . From this it follows

that γ(. = κ and the hyperelliptic structure γ, on such X is unique.

In what follows we shall encounter some other types of special structures and the

corresponding special curves.

PROOF OF LEMMA 4.2. By the Riemann-Roch theorem,

h°(X, L)-h°(X, ϋ ^ Γ 1 ) = degL + h°(X, Θχ) -h°(X,u,x).
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But by Lemma 4.1,

h°(X, L) + h°(x, ωχ <8> L~l) < h°(X, Θχ) + h°(X, ωχ).

Summing up, we obtain

2h°(X, L) < degL + 2h°(X, Θχ).

This yields the required inequality.

Suppose now that we have equality, i.e. dim|L| = (degL)/2. It clearly suffices to
consider the case when the curve X is connected. Then we have a canonical morphism

κ = φω : * - > Ρ*" 1 .

Τ ίύ χ

The above relations yield the equality

dim \L\ + dim \ux ® L'l\ = dim \ωχ\.

Therefore a generic hyperplane section Η intersects κ(Χ) along two nonintersecting
divisors Dx and D2 such that κ'ι(Ολ)

 e \L\ and K'\D2) e \ωχ ® L~l\. In view of the
geometric interpretation of the Riemann-Roch theorem, dim(D1) = (deg L)/2 - l( x)
and dim(D2) = deg(wA- ® L~l)/2 - 1. For a generic hyperplane section, {Dx + D2) =
H. Hence (Dx) Π (D2) Φ 0. We also assume that the divisor D1 = Σ,χ, is nonsingular
and consists of distinct points. It is clear that deg DY > dim(Z)1) + 1 = (deg L)/2. Using
the above inequality, it is easy to verify that the degree of the mapping κ over an arbitrary
generic point χ e X does not exceed 2, and if this degree is equal to 2, then Θχ(κ~ι(χ)) is
a free sheaf of type G\. In view of this, the last assertion of the lemma holds for X
provided that deg Dx = (deg L)/2, and in that case A/,. = 'Χ(κ~\χ:)).

It remains to show that under our assumptions deg Dx < (deg L)/2. In fact, suppose
that deg Dx > (degL)/2, and let D be a nonsingular divisor on κ(Χ) consisting of
(deg L)/2 - 1 points xt e Supp/Jj in general position among which there are all those
points xt of the divisor DY for which #(K' 1 (JC I ) ) = 2. Set D' = Dx — D; this is also a
nonsingular divisor. Since
dim(D) + dim(Z>2) = (degL)/2 - 2 + deg(ux® L'l)/2 - 1 = (degW ; f)/2 - 3,

the linear system \K~1(D')\ has dimension 1. It is easy to see that this linear system has at
least three nonfixed points. Therefore a generic divisor K~1(D") e \K~1(D')\ consists of
degD' distinct points, and #(SuppD" - Suppi^) ^ 3. By construction, the divisors
K~1(D + D') and K~1(D + D") are linearly equivalent. Hence

dim(Z) + D") = (deg£)/2 - 1.

But dim(£> + D') η (D + D") = dim(Z?) = (deg L)/2 - 2. Hence

dim(D3) = (degL)/2,

where D3 is the divisor on κ(Χ) formed by the distinct points of the set Supp(Z>j + D").
By the above,

" 1 ^ ) > degL + 3.

The sheaf &X(K~1(DJ)) is nonsingular. On the other hand, if the sheaf u>x <S> L~2 is
nonsingular, so is the sheaf U^-K'^DJ)). SO in this case we obtain a contradiction with

( l ) ( ) denotes the linear span (author's remark).
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the above inequality. If the curve X is irreducible, then so is κ(Χ), and in this case it can

be shown that the sheaf WX(-K'1(D3)) is nonsingular, which again leads to a contradic-

tion. •

The following lemma extends the main result from [18] to the case of curves with

singularities.

4.4. LEMMA (MARTENS' THEOREM). Let X be a connected Gorenstein curve, and let Ζ be

an irreducible subvariety in Gr

d such that for a generic point [L] e Ζ the sheaves L and

ωχ ® L"1 are nonsingular. Then dim Ζ < d — 2r. Moreover, if dim Ζ = d — 2r and for a

generic point [L] e Ζ the sheaf ωχ ® L~2 is nonsingular, then on X there are r free sheaves

Mt of type G\ such that for a generic point [L] e Ζ

L*( ΧΑί,Ιβφ),
\ i = l /

where the fundamental subset D of the linear system \L\ is a nonsingular divisor of degree

d-2ron X.

PROOF. By Corollary 2.7 and Lemma 4.1, for a generic point [L] of the component of

Gr

d containing Ζ we have

d i m Z < g - dimim( ) [ L ] < g + 1 - h°(X, L) - h°(X, ux ® ΖΓ1).

From the Riemann-Roch theorem it follows that

d i m Z < d e g L - 2h°(X, L) + 2^d-2r.

Suppose now that dim Ζ = d — 2r and that for a generic point [L] e Ζ the sheaves L,

ωχ ® L~l and ωχ ® L~2 are nonsingular. By the above, h°(X, L) = r + 1. Subtracting the

fixed divisors of general linear systems \L\ for [L] e Z, we reduce the problem to the case

when the system \L\ for [L] e Z, we reduce the problem to the case when the system \L\ is

free. We fix two general divisors Dx, D2 e \L\ such that Supply Π SuppD2

 = ® · From

the exact sequence

0 -» Wv(-Z), - D-,) -* Wy-O, θ ( ο κ - f t -» UY^O

we infer that

dimim( )lL] > 2h°(Χ, ωχ ® L"1) - A°( Jf, ω^ ® L'2).

Applying again Corollary 2.7, we see that

d- 2r < g - 2(g+ r- d) + η°(Χ,ωχ<2> L'2),

from which it follows that

h°(X,o>x® L'2) > g- d= (degw x® L" 2 )/2 + 1.

We have already proved that the variety { [ % ® L " 2 ] | [ L ] e Z } has dimension < 0.

Therefore dim Ζ < 0 and d = 2r. The last assertion of Martens' theorem now follows

from Clifford's theorem. •

4.5. THEOREM. Let X be a connected Gorenstein curve, and let Ζ be an irreducible

subvariety in Gd such that for a generic point [L] e Ζ the sheaves L, ωχ ® L'1 and

ωχ ® L~2 are nonsingular and the sheaf L is free. Suppose also that (Xx, X2) > 2 for each

decomposition ΧΎ U X2 = X. Then

dim Ζ < d - 4,



PRYM VARIETIES: THEORY AND APPLICATIONS 115

with the exception of the following cases:

(4.5.1) d = 2, dim Ζ = 0; Ζ = {[L]}, where L is a free sheaf of type G\;

(4.5.2) d = 3, dim Ζ = 0; Ζ = {[L]}, where L is a free sheaf of type G\;

(4.5.3) d = 4; dim Ζ = 1; a generic point [L]from Ζ has the form [L] = ε*([Μ\), where

ε: X -* Ε is a morphism onto a connected curve Ε consisting of at most two irreducible

components; the (arithmetic) genus of Ε is equal to 1; the morphism ε has degree 2 over the

generic points of E, and Μ is a nonsingular ample sheaf of degree 2 on E; the morphism ε is

determined uniquely by Z;

(4.5.4) d = 4, dim Ζ = 1; a general point from Ζ has the form [L] = q*([M(x-x)]),

where

q: X)»-> Q c P 2

is a morphism onto a plane curve of degree 5 (a quintic), Μ is the sheaf on Q induced by a

hyperplane section, and χ is a nonsingular point of an irreducible component Qx c Q; for

g(X)> l,Qxis aline.

4.6. REMARKS, (a) In accordance with the definitions given above, we shall call a

morphism τ: Χ -» Ρ 1 which has degree 3 over the generic point a trigonal structure on X.

The sheaf L from (4.5.2) defines such a structure on X. If the above morphism is finite,

then we say that the curve X is trigonal.

(b) A morphism e: X -> Ε satisfying (4.5.3) will be called a superelliptic structure. A

curve X will be called superelliptic if ε is finite. The ampleness of Μ means that all

components of its multidegree are positive; from this it follows that we may assume that Ε

is a plane curve of degree 3.

(c) In order to get a better understanding of the case (4.5.4), we consider the case when

the curve X is stable in the sense of Mumford and Deligne, i.e. X is a connected curve

whose only singularities are ordinary double points and there are no nonsingular rational

components Xt ~ P 1 intersecting the other components of X along a set consisting of at

most two points. In this case the canonical morphism κ = εωχ: Χ -» P g - 1 , where g is the

genus of X, is well defined and finite. We observe that in view of the one-dimensionality

of Ζ, ά&$(ωχ ® L~2) > 0. Therefore g > 6, and for g = 6 q is an isomorphic embedding,

i.e. X is a plane quintic. It is easy to verify that in a natural sense the structure of plane

quintic is unique. If g > 7, then the morphism

is not birational, i.e. there exists a component Q' c Q over which the degree of q is greater

than 1. But deg q*(M(-x)) = 4. Hence q is not birational only over the line Q' = Q1

formed by the points x. We denote by Q2 the complement of Q1 in Q. The curve Q2 has

degree 4 and genus 3. If in addition the curve satisfies condition (S), i.e. (X1 Γ\ X2) > 4

for each decomposition Xx U X2 of X, then the fibers of q over the points from Q2 - Qx

are finite, since a plane curve of degree 4 may have a singular poinit of degree 4 only if

this curve is a union of four lines passing through this point. This is also impossible under

our assumptions. Hence the proper preimage Υ of the curve Q2 with respect to q is a

connected curve of genus < 3 having at most four intersection points with the other

components of X. From the nonsingularity of ωχ ® L'2it follows that
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Therefore, in view of (3.12.2), Υ ~ q Q2 has genus 3 and intersects the other components at

4 points; moreover, L\Y « ωγ » 0Y(Y, X'), where X' is the complement of Υ in X which

is clearly equal to q'\Qi) (compare with [3], 4.9).

(d) In particular, if X is an irreducible curve, then in Theorem 4.5 dim Ζ < d - 4 with

the exception of the cases when X is a hyperelliptic, trigonal or superelliptic curve or a

plane quintic (for g = 6) (compare with the Appendix in [17]).

(e) If the curve X is nonsingular and irreducible, then from the condition d < g — 2 it

follows that the sheaf ωχ ® L"1 is nonsingular, and from the condition dim Ζ > d - 3 it

follows that the sheaf ωχ ® L~2 is nonsingular (compare with the inequality hl{ X, L®2) >

g — d - 1 in the subsequent proof). Therefore in the case of a nonsingular irreducible

curve X, replacing the condition of nonsingularity of the sheaves ωχ ® L'1 and ωχ ® L" 2

by the conditions 0 < deg L < g — 1 and dim Ζ > d — 3, we obtain the same exceptions

as in Mumford's theorem on special divisors in the Appendix to [17].

PROOF OF THEOREM 4.5. By 4.4, dim Ζ < g - 3 with the exception of the case (4.5.1).

Therefore in what follows we assume that dim Ζ = d - 3 and find out when this is

possible. Let [L] be a general point from Z. As in the proof of Lemma 4.4, we prove the

inequality

dimim( ) l L ] > 2h°(X, ωχ ® L~l) - h°(X, ωχ <8> L~2).

On the other hand, by Corollary 2.7

dimim( ) [ L ] < g - d + 3,

where g is the genus of X. By duality,

2h\X, L) - hl{X, L®2) < g - d + 1.

We observe that, by Lemma 4.4, h°(X, L) = 2. Therefore h\X, L) = g - d + 1 and

h\X,L*2)>g-d-\,

which by the Riemann-Roch theorem yields

h°(X,L*2)>d.

Thus a general point [L] e Ζ is transformed to [L®2] e G ^ 1 ; we denote by Z® 2 the

corresponding image {[L®2] e Pic(*)![ ! ,] e Z} . It is clear that d imZ® 2 = dimZ.

Applying this time Lemma 4.4 to Ζ®2, we come to the inequality

d - 3 = dim Z® 2 < 2d - 2(d - 1) = 2.

Hence 3 < d < 5. If d = 3, we obtain (4.5.2).

Next we show that the case d = 5, dim Ζ = 2 is impossible. In fact, otherwise

h°{X, L) = 2, h°(X, L®2) = 5 and we have equality in the above inequalities. In particu-

lar, dimim( ) [ L ] = g - 2 and, at a general point [L] e Z, im( ) [ L ] defines a complete

system of linear equations for the tangent subspace Tz [ £ i c rp i c ( A.) [ L ] to Ζ at [L], It is

clear that the map [L] >-* [L®2] preserves the tangent spaces. Therefore im( )lL»2] c

im( ) [ L ] . We fix two general divisors D1 e \L\ and D2 e | ω χ ® L" 2 | with Suppi?! Π

Supp D2 = 0 . Then we obtain the following exact sequence:

.(•5,--*) . . . . ( * + ' )

0 -» Wj-t-Dj - D2) -* u^-D^) θ ωχ(-Ό2) -» ω^ -> 0.

Now we observe that

im(i + t) c im( ) [ L ] + im( )[L»2] = im( ) [ L ] .
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Hence

g- 2 = dimim( ) [ L ] > h°(X, ωχ ® L~l) + h°(X, L®2) - h°(X, L),

and the Riemann-Roch theorem yields a contradiction, namely

2 = h°(X, L) > 3.

Thus it remains to consider the case when d = 4 and dim Ζ = 1. Let L' be another
general sheaf from [L1] e Z. Since \L\ and \L'\ are one-dimensional free linear systems and
dim Ζ > 1, |L ® L'| is a free system of dimension > 2, from which it follows that
h°(X, L® L')> 4. Applying 4.4, we see that h°(X, L®2) < 4. In view of the semi-
continuity of h°, h°(X, L ® L') = 4 (for general [L], [Z/] e Z). From this it follows that
for such L and L' the sheaf ωχ ® L"1 ® L'' 1 is nonsingular. By the Riemann-Roch
theorem,

and

h°(X, ux ® L"1 ® L'"1) = g - 5.

We fix a set of g - 6 general pointsPx,.. -,Pg-6 on Xsuch that for general [L], [L'\ e Ζ

ηχ,»> -Σ ρ, L-1 Θ L'-1 # { 0 }

and the sheaf

• ι - Ι

is nonsingular. Then each global section s[z/] of this sheaf defines an inclusion

H°(X,L')c: ->' H°(X, Μ),

def
where Μ = ux(-T.f=f Ρέ) ® L l. The free part of the linear system \M\ defines a mor-

phism

and the morphism <pL,: X -* P 1 is a composition of <pM and the projection from a point in
P 2 . In view of the irreducibility of Ζ and the fact that \L'\ is free, there exists a unique
irreducible component Qx of the image Q = qv(X) c P 2 containing the centers of these
projections. We denote by Qt the other irreducible components of Q. Let

5.If deg Q = 5, we obtain (4.5.4) (compare with (4.6c)). Moreover, it is clear that deg Q
Therefore in what follows it suffices to consider the case

deg Q = Σ d, < 4.

An easy computation of degrees yields the following equality:

' i K " 1) + Σ ridi = 4.
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Next we show that ridi > 2 for i > 2. Otherwise X would have an irreducible compo-
nent Xt ~ P 1 which is isomoφhically mapped onto a line Qt c P 2 and for which
deg(L\x) = 1. Since the sheaf ωχ ® L'2 is nonsingular, άε%(ωχ\χ) > 2. Therefore the
other components of X intersect Xt along a divisor of degree > 4 (compare with (3.12.2)),
which contradicts the assumption that deg Q < 4. Here we also use the condition on the
decompositions of the curve X.

On the other hand, deg β > 3 since dim Ζ = 1. If deg Q = 3, then we obtain (4.5.3)
with ε = q and Ε = Q, possibly after blowing down the component Ql when d1 = 1.
Using the above inequalities, it is easy to verify that q has degree Φ 2 over one of the
components of Ε only in the case when dx = 2, rx = 1, d2 = 1 and r2 = 3 (cf. Figure 6).
Proceeding as in the above proof of the inequality ridi > 2, one can show that this
contradicts the nonsingularity of ωχ ® L~2.

center of
projection

- i:=f

FIGURE 6

Thus it remains to show that the case deg Q = E f > 1 d,• = 4 is impossible. In view of the
above relations, there exists an irreducible component Ql c Q with ri = 1 and if, > 2 if
ι = 1. Since r,ii( > 2 for / > 2, we conclude that J, > 2. If J, = 2, then (?, = P 1 is a plane
conic. Reasoning as above for r, = i/, = 1 and i > 2, we see that i = 1. Hence

I d, = 2, r.-d,. > 2, £ Γ,-ί/,- = 3.

This system of relations does not have solutions. Therefore J, > 3. But it is clear that
di < 3. Hence dt = 3. From the relations for the general case it follows that / = 1. Let Χλ

be the proper preimage of the curve Qv By the condition on the decompositions of the
curve X the other components of X intersect Χγ along a divisor of degree < 3 if Xx » Qx

and of degree < 5 if Xx = P1. This contradicts the nonsingularity of the divisor

The uniqueness in (4.5.3) immediately follows from the ampleness of M, since then
Μ e 2 is very ample. •

4.7. REMARK. From the proof it is easy to see that if we discard the condition
(Xlt X2) > 2 for the decompositions Xx U X2 = X, then we obtain a few new possibilities
in the case when d = 4, dim Ζ = 1 which can easily be described quite explicitly. This
condition on the decompositions holds for each connected curve satisfying (RK).

§5. Sing Ξ

Before formulating an analogue of the Riemann-Kempf theorem on singularities in the
case of Prymians, we give a definition of the skew-symmetric pairing [],,,.
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Let (C, 7) be a pair consisting of a curve C with ordinary double points and an

involution / on this curve. As in 3.19, we assume that ce = 0 and that condition (F) is

satisfied. Consider a point [L] e Pv(C, / ) . By definition Nm L = coc, from which by

(3.1.1) it follows that

L ® 7*L = 77*Nm L ~ 77*coc

We fix such an isomorphism φ: L ® /*L -> w*coc. Then we obtain a pairing

( ) φ : 77°(C, / ) ® 77°(C, / ) -» 77°(C, 77*wc),

j ® / -» (s ® ί ) φ = «p(j ® /*/) ·

The involution /* acts on the space H°(C, π*ωε). With respect to this involution,

H°(C, ιτ*ω(:) splits into a direct sum

77°(C,77*COC) + ® 7 7 ° ( C , 77*<OC)~,

where H°(C, 7r*wc)
 + = 7r*(//°(C, COC)) is the space of invariant differentials and

H°(C, TT*WC)~ is a subspace in the space H°(C, ω<=·)~ of anti-invariant differentials which

are also called Prym differentials. It is easy to verify that

I*(s ® ί ) φ = ( ' ® ·ϊ)φ·

Therefore the above pairing gives rise to the following two pairings:

Symm2 H°(C, I) ^ H°{C,TT*UC)
 + = H°{C,wc)

and

[},:^H\C,l)^H\C,^cy,

s A t >-» [s Α ί]ψ = (p(s ® /*i - t ® 7*i).

In what follows we shall often write simply [s A t], assuming that φ is fixed.

Unless otherwise explicitly specified, in this section we shall asssume that (C, I) is a

Beauville pair. Then by the analogue of the Hurwitz formula (cf. (3.12d)) T*U>C = ω^.

Since the Prymian is given by the anti-invariant part of the corresponding Jacobian, for

each point [ I ] e P v = Pv(C, 7) there are canonical identifications

7 ? ^ , = H°(C, o>cT= H°(C, π*ω€Υ,

where T^ [L] is the tangent space to the Prym variety Pv at the point [/_]. The above

skew-symmetric pairing can be written in the form

[ ]„ : A2H°(C, I) - T^AL], s A t -• φ ( ί ® /*/ - t ® 7 * J ) .

Let su...,sm be a basis of the space 77°(C, L), and let m = h°(C, L). Set ω,~ = [si A Sj]

e T*. Then we obtain a skew-symmetric matrix ω~= (ω,^·)^,- -< m . We denote by Pf(w~)

the Pfaffian of this matrix; modulo sign, this is equivalent to the equality Pf(oT)2 = det(oT).

The Pfaffian Pf(<o~) is a polynomial homogeneous form of degree m/2 on the tangent

space T; for m = Owe assume that this form is identically equal to 1.

5.1. THEOREM. Let (C, I) be a Beauville pair, and let Ξ be the canonical polarization

divisor on the Prym variety Pv(C, 7). Then for each point [L] e Pv(C, 7) the following

assertions hold:
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(5.1.1) 7/Pf(w")* 0, then

Mult [ Z.,a = *°(C, L)/2

and the form Pf(co") gives an equation of the tangent cone to Ξ at the point [L] in the tangent

space Τ^^.

(5.1.2) 7/Pf(aT) = 0, then

Mult[L]E > h°(C,L)/2.

(5.1.3) In particular, for each point [L] e Pv(C, /)

Mult [ L ,E > h°(C,-L)/2.

We remark that although Pf(co~) * 0 on a generic Pv(C, /) for all [L], even for some

nonsingular irreducible curves C there may exist points [L] e Pv(C, 7) with Pf(w") = 0.

They define singular points [ L ] e H which are often called Mumford singular points.

Below we shall describe the most typical of these points.

PROOF OF THEOREM 5.1. The divisor 2Ξ is defined by the intersection Θ · Pv(C, 7) on

Jv(C). By the Riemann-Kempf theorem, the first term of the formal expansion of the

function defining Θ at the point [L] is equal to det(i, ® tj). Therefore the first term in the

expansion of 2Ξ at [L] is defined by the restriction of det(s, ® t*) to the tangent space

Tpv, [L]· I f w e consider the basis {?*}? of the space 77°(C, ωέ ® 7Γ1) = 77°(C, I*L)

formed by the sections {/*·?,}™, then

(s^ I*sXn\T = ωΓ/2.

Therefore the first term of the expansion is equal to

All assertions of the theorem easily follow from this fact. •

The second useful tool in the study of Sing Ξ is the following:

5.2. LEMMA. Let Pv r be the subvariety of those points [L] e Pv(C, 7) for which h°(C, L)

> r + 1, let Ζ c Pv r be a subvariety, and let [L] e Ζ be a point for which h°(C, L) = r + 1.

Then the tangent subspace Tz [L] c T^ [L] lies in the set of zeros of the forms from

i m [ ]φ

 c Tpv,L> where [ ]ψ denotes the skew-symmetric pairing [ ] φ : A2H°(C, L) -> T^ [L]

introduced above. Hence if Ζ is irreducible, then

d i m Ζ «ξ ρ — 1 — d i m i m [ ] φ ,

where ρ = g(C) is the genus of the curve C = C/I.

PROOF. In view of Corollary 2.7, the subspace TZ[L] c r P i c ( c),m u e s m t n e s e t °f zeros

of the forms from im( ) [ L ] c 7"^,^ [L]. It is easy to verify that the restrictions of these

forms to the tangent space 7^, [ L ] sweep out im[ ]φ, which yields the required result; we

would also like to point out the equality dim T^ [ L ] = dim Pv = ρ — 1. •

5.3. DEFINITION. A curve C whose partial desingularization at an ordinary double point

c e C is a hyperelliptic curve will be called quasitrigonal. As in the trigonal case, the

canonical morphism is birational, and its image is not defined by an intersection of

quadrics if the curve is quasitrigonal but not hyperelliptic.

The proof of the following assertion will serve a model for the proof of Theorem 5.12,

which is the main result of this section.
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5.4. PROPOSITION. Let (C, I) be a Beauville pair satisfying condition (S). Then

dim Sing Ξ < ρ - 5,

with the exception of the following cases:

(5.4.1) C is a hyperelliptic curve;

(5.4.2) C is a quasitrigonal curve;

(5.4.3)/> < 3, where ρ denotes the genus of the curve C = C/I.

In the last three cases the principal Prymian P(C, I) is isomorphic to a direct sum of

Jacobians of hyperelliptic curves.

Here dim Sing Ξ denotes the maximal dimension of irreducible components of the

subvariety of singular points Sing Ξ of the canonical polarization divisor.

The proof is based on the following assertion.

5.5. LEMMA. Let Ζ c Sing Ξ be an irreducible component of dimension > ρ — 5. Then for

a generic point [L] e Ζ

(Ρ) there exist two linearly independent sections J 1 ; s2 e H°(C, L) such that s1 <8> I*s2 =

s2 ® 7*ij or equivalently [s1 Λ Ϊ 2 ] = 0,

Conversely, if[L] e Pv(C, /) satisfies condition (P), then [L] e Sing Ξ.

5.6. REMARK. It will be clear from the proof that we may assume that s1 and s2 depend

"continuously" on [L], i.e. there exist a set U c Ζ which is open in the etale topology and

two sections ξν ξ2 of the sheaf p*.Sf over U whose restrictions on [L] e U coincide with

sections s1 and s2 satisfying (P); here ρ denotes the projection C Χ Ζ —> Ζ and =S? is the

universal Poincare sheaf on C X Z.

PROOF. Let [L] be a general point from Z. If h°(C, L) = 2, then, in view of 5.1, from

the fact that [L] is a singular point of Ξ it follows that Ρί(ω~) = 0. In this case the matrix

u>~ has the form

0 [$! Λ

Λ j j 0

where sv s2 is an arbitrary basis in H°(C, L). Therefore [s1 A s2] = 0.

Since h°(C, L) is even, it remains to consider the case when h°(C, L) > 4. But in view

of Lemma 5.2 dimim[ ] φ < 4 and the affine subvariety of decomposable forms sx A s2 in

A2H°(C, L) has dimension > 5 since h°(C, L) > 4. Therefore ker[ ] φ contains a decom-

posable form sx A s2 for which [sl A s2] = 0, from which it follows that s1 ® I*s2 = s2 ®

The converse immediately follows from 5.1 (compare with the proof of Lemma 5.7). •

5.7. LEMMA. Let [L] be a point o/Pv(C, I) for which there exist three linearly independent

sections su s2, s3 <E H°(C, L) such that s, ® I*Sj = Sj ® I*sjor all 1 < i,j < 3. Then

Mult [ L ] E > 3.

PROOF. In view of 5.1 it suffices to consider the case when h°(C, L) = 4. Considering
the basis formed by the family {s,.}̂  and a section J 4 e //°(C, L) we see that the 4 X 4
matrix w~ has the form

/0 0 0 *

0 0 0 *

0 0 0 *

* * * *



122 V. V. SHOKUROV

Therefore Ρί(ω") Ξ 0, and applying 5.1 once more we conclude that Mult [ L ] Ξ > 2. •

Property (P) has a convenient geometric interpretation.

5.8. LEMMA. Let C be an arbitrary connected curve with an involution I, and let L be an

invertible sheaf on C satisfying condition (P) with sections sx and s2 which do not simulta-

neously vanish at each singular point of the curve C. Then L = v*M(D), where

(5.8.1) Μ is a free invertible sheaf on C = C/I and h°(C, M) > 2; and

(5.8.2) D is a nonsingular divisor on C for which π *D e |Nm L ® M~2\; in particular, the

sheaves Nm L <2> M'1 and Nm L ® M~2 are nonsingular.

Conversely, if Μ is a free invertible sheaf on C with h°(C, M) — m and D is a nonsingular

sheaf on C, then the sheaf L = IT*M(D) has m sections sl,...,sm which pairwise satisfy

condition (P).

PROOF. Replacing s^ and s2 by their linear combinations, we may assume that they do

not simultaneously vanish at each singular point of C. Consider the rational function

φ = sx/s2 on C. Since 7*φ = φ by (Ρ), we have φ = π*ψ for some rational function ψ on

C. Let D be the divisor of common zeros of the sections sx and s2, and let (S^Q, (<p)0 and

( ψ ) 0 be the divisors of zeros of the section sx, the function φ and the function ψ. All these

divisors are nonsingular, and

Therefore L ~ m*M(D), where Μ = 0 Γ ((ψ) ο ) · By our assumption, there are not compo-

nents on which the involution acts identically. Hence ^ ( s ^ o = π*(φ 0 ) + w*D = 2(ψ) 0

+ π*Ό, from which it follows that m*D e |Nm L ® M'2\.

Conversely, let s[,... ,s'm e H°(C, <n*M) be the lifting of a basis of the space H°(C, M),

Performing the natural identification ·π*Μ = Ι*π*Μ, we obtain the equalities I*s- = s't,

1 < ζ < m. From this it follows that condition (P) holds for the pairs of sections

si = si ® s, where s is a section from H°(C, Θζ-(Ό)). •

5.9. REMARK. Thus the triple (L, slt s2) defines Μ and D uniquely. Furthermore, for

such a "continuously varying" triple at a generic point there exists a morphism to the

pairs (M, D).
The condition that the sections j j and s2 in (P) do not simultaneously vanish at all

singular points of C is not always satisfied. To work also in these cases, we shall need

partial desingularizations. So, we return to the beginning of this section and suppose that

the pair (C, /) satisfies condition (F) and ce = 0.

Let / : C" -> C be a partial desingularization of the curve C or, which is equivalent, of

the pair (C, / ) . Let [L] e Pv(C, I). The isomorphism φ: L ® I*L -* w*wc induces an

isomorphism/*!- ® I'*f*L = 7r'*/*<oc and hence, in view of (3.12.1), an isomorphism

The last isomorphism induces a pairing

[ ]φ.: Α2Η°{&, f°L) - H°(C', *'·«<,.).
We denote by S the set of those points s e C which are resolved by the desingularization/

and by H°(C, L)s the subspace of sections from H°(C, L) vanishing at all points of S.

5.10. LEMMA. There is an isomorphism

H°(C',f°L) - H°(C,L)S,
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compatible with the skew-symmetric pairings; in particular, for all sx, s2 e 77°(C, L)s

[s1,s2]v = 0 » [s{,s2]v, = 0.

PROOF. Let Js be the sheaf of ideals of the desingularized singularities. In our case

Λ = f*e>ci- Σ Λ

and, using the local construction from 1.5, it is easy to construct an isomorphism L

TJO//^ τ \ rrO/s^ τ /ο. (f \ . t/0//^ / /Of ^ U®( Γ*' /Or \

ri yL· , L·) § — rt ^ C , -L Qs> J ^ ) —* JJ ^ l_., / $ / -L J — tl y\^ , J I-, j .

The compatibility is obvious. •

PROOF OF PROPOSITION 5.4. Let Ζ be an irreducible component of Sing Ξ of dimension

3s ρ — 4. For ρ < 3 everything is obvious. So we assume that ρ ^ 4. Then Ζ Φ 0 and

condition (P) holds for a generic point [L] e Ζ and i 1 ; s2 e H°(C, L). Let Co be the

maximal component of the curve C on which the sections s1 and s2 simultaneously vanish,

and let {zt}" be the set of all singular points of C at which both s1 and s2 vanish. In view

of Remark 5.6, we may assume that Co and {z,}" do not depend on the choice of generic

point [L] e Ζ for suitable sx and s2. Consider the partial singularization/: C" —> C of C

at the points of the set {z ;}". The isogeny /°: Pv(C, 7) -> Pv(C", 7') maps Ζ onto an

irreducible variety Z' c Pv(C', 7') of the same dimension. By the preceding remark and

Lemma 5.10, condition (P) holds for a generic point [7/] e Z' and sections sx and s2

which do not simultaneously vanish at each singular point of C'. Moreover, we may

assume that sx and s2 do not simultaneously vanish at each generic point of C[, where C{

is the preimage of the complementary curve C\ to Co in C. Set CQ = / ' 1 ( C O ) . For the

Beauville curves, the preimage of a singular point under the desingularization consists of

two nonsingular points which are stable with respect to the involution. Hence the curve C[

is connected, since otherwise

dim Ζ = dim Z' < dimPv(Q, 7^) + £ dim Z(Ci, , I[,,),

where C'Xi are the connected components of C[, and by Lemma 3.20 and assumption (S)

this expression is

< dimPv(q;, 7^) + dimPv(Ci, 1[) - 4 = dimPv(C', 7') - 4

and also

= dimPv(C, 7) - 4 = ρ - 5

by Lemma 3.15 and Proposition 3.9, which contradicts the hypothesis on the dimension of

Z. Thus C[ is a connected curve. By Lemma 5.8, L'\^. is representable in the form

TT[*M(D), where Μ is a free invertible sheaf on C[ = C[/I[ for which h°(C, M) > 2 and

D is a nonsingular divisor on Q . We denote by Z[ c Pic(Ci) t n e irreducible variety of

such sheaves [M] (cf. 5.9). For a generic point [M] e ZJ, the sheaves M, u>c. <8> Μ~ι and

wc, ® M~2 are nonsingular and the divisor D is finitely mapped onto TT[ + D e |ωΓ, ® M'2\.

Therefore

dim Pv(C, 7) - 3 < dim Ζ = dim Z'

< dimPv(CO, IQ) + dim ZJ + dim \\ωσ ® Λ/~2||,
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from which it follows that

dimPv(Ci, /{) - 3 < dim Z[ + dim \ω€. ® M~2 .

By Lemmas 4.4 and 4.2,

dim Z[^d-2, dim |<oc; ® M"2 | < g{C[) - 1 - d,

where d = deg M. Hence dimPv(C{, I[) < g{C[) and the equality is possible only if Μ is

a nonsingular sheaf of type G\. Furthermore, by (3.9.3) -1 + r/2 < 0, where r = r(C[, /(),

from which it follows that r < 2. Applying (S) once again, we see that Co = 0 and

#{z l .}" = η = r/2 < 1 and C[ is a hyperelliptic curve.

The last assertion for a nonsingular hyperelliptic curve and a quasitrigonal curve with a

unique singular point was proved by Dalalyan [9], [10]; in the quasitrigonal case one

should take into consideration Remark 3.17(b). The singular case is obtained from the

nonsingular one by passing to the limit. •

The main result of this section is the description of Prym varieties with dim Sing Ξ > ρ

- 5. In view of a well-known property of the singularities of the polarization divisor of

the Jacobian of a nonsingular curve, all Prymians which are isomorphic to Jacobians

satisfy the above condition. In the following sections we shall find out which of them are

really isomorphic to Jacobians. Before formulating Theorem 5.12, we describe the types of

singularities that we shall need.

5.11. Varieties of special singularities. Each of the varieties Z( · · · ) described below is

contained in Sing Ξ, and the varieties Z'( · · • ) are contained in Mult3 Ξ, the subvariety of

points of the divisor Ξ of multiplicity > 3. The proof of this fact is based on Lemmas 5.5,

5.7, 5.8, 5.10 and the obvious fact that if C = Q U C2 is a disjoint union, /(C,·) = C,, L is

an invertible sheaf on C and slt s2 e H°(C, L) are sections with s\^ = 0, i = 1,2, then

s1 ® I*s2 = 0 = s2 ® /*·$! and therefore [L] satisfies condition (P) for ij and s2 provided

that both these sections * 0. In what follows we assume that (C, I) is a Beauville pair

satisfying condition (S) for which the quotient curve C is neither hyperelliptic nor

quasitrigonal. Under these conditions, all subvarieties Z( · · • ) constructed below have

dimension < ρ — 5, and dim Z'( • • · ) < ρ — 7. As a matter of fact, it will be clear that

some of these subvarieties satisfy the equality dim Z( · · · ) = ρ — 5; and if this is so, we

shall point out this fact. Describing the subvarieties Z( · · · ) and Z'( · · • ) in Pv(C, / ) , we

determine the structure of the sheaf L or its lifting to some partial desingularization, where

[L] e Z( · • · ), Z'( • · • ) are generic points. For this construction we need some special

structures on C which exist on only a few of the curves C corresponding to the pair (C, / ) .

The introduction of these structures allows to select the Prymians whose polarization

divisor has a large singular subset (dim Sing Ξ ^ ρ — 5) and the more refined analysis

carried out in the following sections enables one to pick those Prymians that are

isomorphic to Jacobians.

Type I (trigonal). Let τ: C -> P 1 be a trigonal structure on C. The subvariety Ζ(τ) c Pv

has generic points [L] for which L ~ ( τ ° π)*Μ(Ό), where Μ = CPi(l) and D is a

nonsingular divisor on C. We observe that by (S) the curve C in this case is trigonal.

Type II (superelliptic). Let ε: C -> Ε be a superelliptic structure, where £ is a plane

( c P 2 ) curve of arithmetic genus 1 which has at most two irreducible components. The

subvariety Z(e) c Pv has generic points [L] for which L ~ (e° TT)*M(D), where Μ is a

free invertible ample (i.e. such that all components of its multidegree are positive) sheaf of
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degree 2 on Ε and D is a nonsingular divisor on C. Taking a sheaf Μ of degree 3 and
proceeding in a similar way, we define the subvariety Ζ'(ε) c Pv.

Type III. Consider the diagram

yl

P1

where γ is a hyperelliptic structure on C1 and / is the partial desingularization at two
singular points cx and c2. We denote by/: C1 -* C the corresponding partial desingulari-
zation of the curve C at the points cx = TT'^CJ) and c2 = v~l(c2). The subvariety
Ζ(γ; c l5 c2) c Pv has generic points [L] for which f°L ~ (γ ° 771)*M(D), where Μ =
Cpi(l) and Z> is a nonsingular divisor on Cx. Taking Af = 0Pi(2) and proceeding in a
similar manner, we define the subvariety Ζ'(γ; c1; c2) c Pv. For the above types we have
not verified the inclusions Z( · - • ) c Sing Ξ and Z'( - · · ) c Mult3 Ξ, and we will not
always do this in what follows, but the present case Ζ'(γ; cx, c2) c Mult3 Ξ is typical and
we consider it in more detail. In view of the converse statement in 5.8, the sheaf
(γ ° πχ)*Μ(Ό) has three sections which pairwise satisfy condition (P). In view of 5.10,
each sheaf L with/°L = (γ ° •nl)*M{D) has the same property. By 5.7, from this it follows
that Mult^j Ξ > 3. In the case of Ζ(γ; cx, c2) one should use the converse statement in
5.5.

Type IV. Let Co be a connected component of the curve C whose complementary
component Cx is connected and admits a hyperelliptic structure γ: Cx -> P1, and suppose
that Co Π Cx = (c,}i is a set consisting of four points. Let/: Co LJ Q -> C be the partial
desingularization at the set {c,}^ = {W1(c,-)}i. The subvariety Ζ(γ; cY) c Pv has generic
points [L] for which

f°[L) = ([L0],[(yoWl)*M(D)]),

where [Lo] e Pv0 = Pv(C0, 70), Μ = β'ρΐ(Ι) and D is a nonsingular divisor on Cv Taking
Μ = 0pi(2), in a similar manner we define the subvariety Ζ'(γ; Cx) c Pv.

Type V. Suppose that the curve C has a component C\ which is a plane curve of genus 3
whose complementary component C2 intersects C\ along a set consisting of four points
(c,}i and uCi = ^(Zfc,). In view of (S), the curves C\ and C2 are connected. The
subvariety Z(Q) c Pv has generic points [L] for which L ~ π*Μ(Ό), where D is a
nonsingular divisor on C and Μ is a nonsingular sheaf of degree 4 on C with A°(C, M) > 2
such that M | c » <oCi (compare with (4.5.4) + (4.6(c))).

Type VI. Suppose that the curve C admits a decomposition C = C, U C2 with Q Π C2

= {c,·}?. Let/: Q U C2 -* C be the partial desingularization at the set {c,}^ = {π"1^,-)}*.
Set

where Ξ, = E(C,, /,.) (cf. 3.19). We verify the inclusion Z(CX, C2) c Sing Ξ. If [U] e E ^
Ξ2, then there exist two sections jj, 52 e H°(C1 LJ C2, L') with j , . ^ = 0, /" = 1,2. Hence
L' satisfies condition (P). By 5.10, (P) holds for L with/°L <= L', and therefore Mult[L] Ξ
> 2. Using Lemma 3.14, it is easy to verify that dim Z(CX, C2) = ρ - 5 if neither of the
curves Q and C2 is isomorphic to P1.
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Type VII. Suppose that the curve C has a decomposition C = Co U C1 U C2 with
C, η C, = {c,7}, 0 < / <y < 2. Let/: Co U C\ U C2 -> C be the partial desingularization
at the set {£,-,} = {77"He,,)}. Set

Z(C0, Q, C2) = {/οΥ\Ρνο Χ Ξ ι Χ Ξ2).

7>/7e VIII. Let Co be a component of C whose complement consists of two connected
components Cx and C2 such that #C 0 η Q = #C 0 Π C2 = 4. We denote by /: Co U Cj
υ ζ - » έ the corresponding partial desingularization at 8 points. We set

ZiQ.Ci.Cj) = (f°Y\Vv0 X ^ X Ξ2).

7>/>e IX. Suppose that C has decomposition C = Co U Q U C2 such that Q η C2 =
{c0} and # C 0 n Q = #C 0 Π C2 = 3. We denote by /: Co U Ĉ  U C2 -> C the corre-
sponding partial desingularization at 7 points. We set

Z{C0,Cx,C2) = (f°y\-Pv0 Χ Ξχ Χ Ξ2),

For types VII, VIII and IX, dim Z(C0, Q, C2) = /> - 5 if C1; C2 * P1. This is proved in
the same way as in VI, with the help of 3.14. More precisely, using this lemma we establish
the upper bound in 3.20, i.e. we show that

dim Ξ, = giq) - 1 = dimPv(C., /,) - r(C,, /,)/2,

if C, is a connected curve with involution /, satisfying (F) and r(C,, /,) > 0. Using this, it
is easy to determine the dimension of Pv0 Χ Ξ, Χ Ξ2 and hence to compute the dimension
of Z(C0, Clt C2).

Type X. Let C be a plane quintic, so that there exists a very ample invertible sheaf Μ of
degree 5 on C such that h°(C, M) = 3. In particular,/? = g(C) = 6. The subvariety Z(C)
has generic points [L] for which L ~ ir*M(x — I(x)), where Λ: is a nonsingular point on
C. In this case dim Z(C) = 0 or 1 depending on the evenness or oddness of the type of the
pair (C, /) (compare with [17], p. 347).

The varieties Z( · · · ) and Z'( · · · ) described above will be called varieties of special
singularities, and their points (as a rule, generic points) will be called special singularities.

5.12. THEOREM (compare with Theorem 4.10 from [3]). Let (C, /) be a Beauville pair
satisfying condition (S) such that the quotient curve C = C/I has genus ρ = g(C) > 6, and
let Ξ = E(C, /) be the canonical polarization divisor on Pv(C, /). Suppose that the curve C
is neither hyperelliptic nor quasitrigonal. Then

dim Sing Ξ < ρ - 5,

i.e. the dimension of each irreducible component Ζ of the variety Sing Ξ is «S ρ — 5.

Moreover, if Ζ a Sing Ξ is an irreducible component of dimension ρ — 5, then Ζ lies in one

of the varieties of special singularities Z( · · · ) described in 5.11, i.e. each point from Ζ is a

special singularity.

PROOF. The inequality immediately follows from Proposition 5.4. Suppose now that Ζ is
an irreducible component of Sing Ξ of dimension ρ — 5. In view of Lemma 5.5, we may
follow the proof of Proposition 5.4. The difference is that the curve C[ has at most two
connected components. First we consider the case when C[ is not connected; we denote by
C\ and C2 the corresponding components of C. If Co Φ 0, then there is a decomposition
C = Co U Cx U C2. In view of (S) and the inequalities from the proof of Proposition 5.4,

#c, n(c0 υ c2) = #c2 n(c0 υ Q ) = 4.
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It is easy to verify that in this case Z c ZICQ^^CJ) and is of type VIII if C\ η C2 = 0 ,

type IX if #C1 Π C2 = 1, and type VII if #CX Π C2 = 2. If Co = 0 , then we obtain an

inclusion Ζ c Z(CY, C2) in a special variety of type VI. In what follows we assume that C[

is a connected curve. As in the proof of Proposition 5.4, we come to the inequality

dimPv(Ci, I[) - 4 < dim Z[ + dim

and for a generic point [L] e Ζ

where [Lo] e Pv0 = Pv(C0, / 0 ) , Μ is a free invertible sheaf on C[ = Q'/Zi, A°(Ci, M) > 2,

[L] e ZJ, and D is a nonsingular divisor on C[. By Lemmas 4.4 and 4.2,

dim Ζ[*ζά-2, dim |wc; ® AT 2 | < g(C() - 1 - J ,

where d = deg M. Hence dimPv(Ci, /{) < g{C[) + 1, and equality holds only if Μ is a

nonsingular sheaf of type G\. By (3.9.3), -1 + r/2 < 1, where r = r(C[, I[), from which it

follows that r < 4. Thus if Co Φ 0 , then r = 4 and Μ is a nonsingular sheaf of type G2.

In this case Ζ Q Z(y; C\), where γ is the hyperelliptic structure for Μ and Cx is the

component of C corresponding to C[. These singularities are of type IV.

Thus it remains to consider the case when Co = 0 and C[ is a connected curve. It is

clear that In = r(C[, I[). If r = 4, then we obtain an inclusion Ζ c Ζ(γ; c 1 ; c 2) m a

special variety of type III. Since r is even and r < 4, we may assume that « ^ 1. By the

condition of the theorem, Μ is not a sheaf of type G\. Then by 4.4 dim Z[ < d — 3 and by

4.2 dim|Μ| < J/2 . If r = 2, then

dimPv(Ci, A') = g(C().

from which it follows that dim ZJ = d - 3 and

dim |coc; ® M " 2 | = g{C[) -\ - d.

In view of 4.4 and the Riemann-Roch theorem, this is possible if and only if d = 3,

d i m | M e 2 | = 3, and by the above dim|M| = 1. By (S), the curve C[ is stable and does not

have nonsingular sheaves of type G\. Therefore the canonical mapping κ: C[ -* Ρ ' is

birational. By the geometric interpretation of the Riemann-Roch theorem, the linear spans

(D) of the divisors from \M\ define trisecants of the image K(C[), and besides that, any

two generic trisecants of such type intersect with each other. All these lines must have a

common point Ο e Ρ , since otherwise the points of the divisors D e \M\ sweep out a

plane curve of degree 3 and | M e 2 | is cut out by conies, which is impossible in view of the

nonsingularity of |coc. ® M~2\. Thus the trisecants (D) intersect at a point Ο £ K(C[).

Applying Clifford's theorem, we can show that these trisecants sweep out a quadratic

cone. We denote by C[d the component of the curve C[ for which K(C[Y) lies on this cone.

By our construction, K{C[ λ) is a curve of degree 6 and the preimages of its hyperplane

sections of with respect to κ make up the system \Me2| at a generic point. Let C[; be a

connected component of the complementary curve C[ — C[ x. By (S), #C[ x π C[, > 3,

and, arguing as in the beginning of our treatment of the case of equality, from the proof of

Lemma 4.2 we infer that

since {D[x) η (#{,•) = 0 for a generic hyperplane section D'11 + D{, of the curve

K{C[ ! U C[ j). But since the curve K ( C ( J ) has degree 6, it cannot have more than one



128 V. V. SHOKUROV

point of multiplicity > 3. Hence C{2 = C[ - C[ x is a connected curve. The morphism ψΜ

corresponding to the linear system \M\ maps the curve C{2 to a point. Therefore

#C[Λ Π C[ 2 = 3. Now we observe that deg(wc.) ® M~2\c, = 0, from which it follows

that deg coc; ι = 3, which contradicts the fact that deg coc; is even. Here we left out the

case when C{2 = 0, which is impossible if ρ > 6.

So it remains to consider the case when Co = {z,}"_x = 0 , i.e. C[ = C. As above,

dim Z[ < d - 3. If dim Z x = d - 3, then in view of Theorem 4.5 and Remarks 4.6 we

have inclusions Ζ c Z( • · · ) of type I, II, V or X. To complete the proof it suffices to

show that the case dim Z[ < d - 4 is impossible. Using the inequality

dimPv - 4 < dim Z[ + dim |wc <8> M " 2 |

it is easy to verify that this is possible only if d = 4, dim|M® 2 | = 4 and dim|M| = 1. Now

we can argue as in the preceding paragraph. The vertex Ο is replaced by a line which does

not intersect K ( C ) , and the planes intersecting K ( C ) along four points corresponding to

divisors from \M\ serve as generatrices. The component of C whose canonical image lies

on the quadratic cone will again be denoted by C[x. Then C[ 2 = C — C[ x is a connected

curve, and #C[ 4 η C[ 2 = 4. Since ρ > 6, C[2 Φ 0 . To get a contradiction, we shall use

an argument which differs from the argument at that end of the preceding paragraph; we

remark that this argument can also be used in the above situation. The divisor

on C[ 2 belongs to the linear system \M\C, \. Since the hyperplane sections of the curve

K ( C U ) correspond to the elements of the linear system |M® 2 | on C'xl and K(D) is a point

becausedim(/c(Ciα)) η ( K ( C ( 2 ) ) = 0,

dim|M|cJ>3.
In view of 3.12.2 and the nonsingularity of the systems | M | and \uc ® M~2\, the systems

\M\C, | and |coc. ® (M\c, )~1\ are nonsingular. This, as expected, yields a contradiction

with Clifford's theorem. •

CONCLUDING REMARK. It turns out that the difficulties encountered in the end of the

proof of Theorem 5.12 are related to the problem of finding out when there is an equality

in Clifford's theorem. Everything would be greatly simplified if we could prove the

following result, which is certainly true. Let C be a connected curve with ordinary

quadratic singularities which satisfies condition (S) and on which there do not exist free

sheaves of type G\. If L and u>c ® L"1 are nonsingular invertible sheaves, then dim|L| <

(deg L)/2, and equality holds only if L ~ 0c or L ~ coc, as in the classical version of

Clifford's theorem (compare with 4.2).

§6. Superelliptic curves and certain curves of small genera

In this section S denotes a connected smooth curve of genus g = g(S). First we recall a

general fact clarifying the role of the Mumford-Beauville Theorem 5.12 (details can be

found e.g. in [2] and [8]).

6.1. PROPOSITION. Let Θ c Jv(5) be the canonical polarization divisor (cf. §2). Then

(6.1.1) g - 4 < dim Sing Θ < g - 3;

(6.1.2) dim Sing Θ = g — 3 if and only if S is a hyperelliptic curve.

6.2. REMARK. Assertion (6.1.2) is an immediate consequence of the classical Martens

theorem (cf. [18]).
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The main part of this section is devoted to the study of those curves whose theta-divisor

Θ has "many" singularities of multiplicity ^ 3. After making more precise what we mean

by " many", we show that the only such curves are hyperelliptic curves, superelliptic curves

with g > 7 (cf. Proposition 6.4) and plane quintics with g = 6 (cf. Proposition 6.8). In

view of Proposition 5.4, hyperelliptic curves do not present much interest for our

purposes. Therefore in what follows we assume that the curve S is not hyperelliptic.

In accordance with Remark 4.6(b), a curve S will be called superelliptic if there exists a

morphism e: 5" -» Ε of degree 2 onto a smooth elliptic curve Ε (in this case Ε is always

smooth because S is connected, smooth and not hyperelliptic).

It is easy to verify that for g > 6 such structure e is unique. In fact, consider a general

divisor of the form ex + e2 on E, where ev e2 ε Ε. Then the linear system \e*(el + e2)\

has degree 4 and dimension 1 (the last assertion holds by Clifford's theorem). In what

follows we identify the curve 5 with its canonical model S c P g ~ \ i.e. with the image of

the morphism κ = φω corresponding to the canonical system on S. By the geometric

interpretation of the Riemann-Roch theorem, the points of the divisor ε*{εΎ + e2) span a

plane (e*(e1 + e2)). From this it follows that any two lines of the form ( ε * ^ ) , (e*e2)

intersect at some point. Since all these lines cannot lie in one plane, all of them pass

through a common point Ο φ. S. This point Ο will be called the center of the superelliptic

projection. Clearly, the morphism ε is identified with the projection of the curve S from the

point O, and the curve Ε is identified with the image of this projection in Pg~2. We

observe that under this identification £ is a projectively normal curve of degree g — 1 in

pg~2 ,-p̂ g following result is well known.

6.3. LEMMA-EXERCISE. Each effective divisor D of degree ( g — 1) on Ε spans a projective

subspace (Z)) of dimension degi) — 1, i.e. the "points" of each such divisor D are in

general position. •

Let ε': S -» E' be another superelliptic structure on the curve S. Then we obtain

another center of projection Ο' Φ Ο. But in this situation, for generic points ex, e2 e E'

the divisor e+e'*(e1 + e2) has degree 4 and lies in a plane, i.e. dim(ei):e'*(e1 + e2)) < 2.

But by 6.3 this is impossible for g ^ 6 since then dege3lte'*(e1 + e2) = 4 < g — 1.

Therefore for g > 6 on the curve S there exists at most one superelliptic structure, which

means that if such a structure does exist, then it reflects some intrinsic properties of the

curve and its Jacobian. In particular, this structure allows us to point out the following

very important component in the variety Sing θ of singular points of the theta-divisor:

Λ = {[e*M(D)]\[M] e P i c 2 ( £ ' ) a n d i ) e S I < ^ 5 ) } ;

here we implicitly use the Torelli theorem for curves and, as usual, Sik) denotes the &th

symmetric power of the curve S or, in other words, the variety of effective divisors of

degree k on S. Moreover, by 2.5, for g > 7, Mult3 Θ contains the subvariety

Λ' = {[e*M(D)] | [M] e P i c 3 ( £ ) and D <= S(g-7)}

of dimension g — 6.

6.4. P R O P O S I T I O N . Let S be a nonhyperelliptic curve of genus g>l such that d i m M u l t 3 Θ

> g — 6. Then S is a superelliptic curve and M u l t 3 Θ = Λ ' .

PROOF. Let Μ be a general sheaf corresponding to a component Jt a Multi3© of

dimension > g — 6. Subtracting the fixed components of such sheaves we obtain an
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irreducible subvariety Λ" c G} = {[L] e Picd(S)\h°(S, L) > 3}, where d < g - 1 and

dim Λ" > d — 5. But now for a generic point [L] e Λ" the sheaf L is free. By Martens'

theorem (cf. Lemma 4.4), dim|L| = 2. Therefore the variety U [ t ] e A»|-L| c S(d) has dimen-

sion > d - 3. Furthermore, a general divisor I) from this subvariety spans a space (Z>) of

dimension d — 3, and any d - 1 points of this divisor also span (D) because \D\ is a

linear system without basepoints. Hence, choosing d — 1 points in each general divisor D

of this type and passing to the isomorphism classes of the corresponding sheaves, we

obtain a subvariety Ζ c G^_: of dimension > J - 4 because for a generic point [L] e Ζ

the sheaf L is of type G^_x. Subtracting the fixed components of these sheaves and taking

into consideration 4.5 and Remark 4.6(e), we obtain the following possibilities:

(6.4.1) S is a trigonal curve, and for a generic point χ e S and a generic point [M] e ^

each divisor from |M(-x)| has the form g\ + F, where g\ is a divisor from the unique

trigonal linear series \g\\ on S, and F is an effective divisor.

(6.4.2) S is a superelliptic curve, and for a generic point χ e 5 and a generic point

[M] e ^ e a c h divisor from \M(-x)\ has the form e*(el + e2) + F, where Fis an effective

divisor and ex and e2 are two points on E.

We claim that the case (6.4.1) is impossible. In fact, in this case each divisor from \M\

has the form g\ + F. It is clear that for a suitable divisor from \M\ the divisors g\ and F

do not have common points. Suppose now that χ is a point of the divisor g\. By the above,

the divisor g\ + F - χ again has the form (g\)' + F', where (g\)' is an element of the

trigonal series and F' is an effective divisor. It is clear that Suppg^ η Supp(gj)' = 0 .

Therefore Μ ~ 6s{2g\ + F"), where F" is an effective divisor of degree g - 7. So

dim J( < g - 7, which yields a contradiction.

Arguing similarly in the case (6.4.2), we obtain an isomorphism

for a generic point [M] e Ji', so thatJ? = Λ'. Thus S is a superelliptic curve and Λ' is the

only component of dimension g — 6 in Mult 3 0. The other assertions of the proposition

follow from the following lemma whose statement was suggested by Arnaud Beauville. •

6.5. LEMMA. Let e: S -* Ε be a superelliptic structure, let D e S's"1 ' be an effective

divisor on S of degree g — 1, and let A be the maximal effective divisor on Ε for which

ε*A < D. Then either

(6.5.1) A =0and h°(S, 0s(D)) < 2

or

(6.5.2) h°(S, 0s(D)) = degA and\D\ = ε*\Α\ + the fixed part.

PROOF. It A = 0 , then it is clear that h°(S, 0s{D)) < 2. Therefore, subtracting the part

ε*A, it suffices to show that an effective divisor D on S of degree < g — 1 whose

complete linear system \D\ does not contain elements of the form e*e + D', where

D' e 5«iego-2) a n d e e E i s necessarily linearly fixed, i.e. h°(S, 0s(D)) = 1. Moreover,

it suffices to verify that in this case the space (Z)) does not contain the center 0 of the

superelliptic projection. Then our assertion follows from the geometric interpretation of

the Riemann-Roch theorem. So, let D be such a divisor. By assumption, each hyperplane

Η <zPgl containing the divisor D (i.e. such that (H • S) > D) and passing through the

point Ο is projected onto a hyperplane e ( i / ) c P « ~ 2 containing the divisor ε*Ζ) on E.

Hence dim(Z>) > dim(£+I>), and equality is possible only when (D) ^ 0 . But by 6.3
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dim(E*D) = deg D - 1. Hence dim(D) > degZ) - 1, and in view of the geometric

interpretation of the Riemann-Roch theorem the divisor D is linearly fixed and we have

equality, from which it follows that (D) ^ O. •

6.6. PROPOSITION. Let S be a superelliptic curve of genus g > 7. Then the following

assertions are true:

(6.6.1) Λ and A' are irreducible subvarieties in Jv(S) of dimensions g — 4 and g — 6

respectively.

(6.6.2) The variety of singularities Sing Θ has besides A at least one other component of

dimension g — 4.

(6.6.3) // / e J(S) is a point such that t • A' c Sing Θ (· denotes the natural action of the

Jacobian J{S) on the variety Jv(S) = P i c * " 1 ^ ) ) , then t • A' c Λ.

6.7. REMARK. From the following proof it will be clear that the assertion (6.6.2)

concerning the existence of another component holds also for g = 6 and 5.

PROOF OF PROPOSITION 6.6. Assertion (6.6.1) is obvious.

To prove (6.6.2), we consider the projection π: S —> P 2 from g — 3 generic points

* ! , . . . ,xg-3 ^ S. Then the image ir(S) c P 2 is a curve of degree 2g — 2 - (g - 3) = g

+ 1 with an ordinary singular point w(O) of multiplicity g - 3, and

( (r\\ ( g ~ 3 ) ( g - 4 ) g ( g - l ) ( g - 3 ) ( g - 4 )

Hence π(Ξ) has at least one other singular point y Φ π(Ο). Therefore on S there exist

irregular special divisors of the form xx 4- • • · + xg_3 + xg^2 + JC^_1. It is clear that the

dimension of the variety of such divisors is equal to g — 3, and they define a component

of dimension g — 4 in Sing Θ which is distinct from Λ. This proves (6.6.2).

As for (6.6.3), we first observe that if [L] e t • A' c Sing Θ, then for each pair of points

ev e2 e Ε there is an inclusion [L(e*(e1 - e2))] e Sing©, since Α'ε*(ελ - e2) = Λ'. If

d im|L | > 2, then, by 6.4, [L] e Mult3 Θ = Λ' c Λ. Now we consider the case when

dim|L| = 1. If the linear system \L\ is free, then a general divisor D e |L | consists of g — 1

distinct points, and dim(ZfJ1

1 *,) = g - 3. Moreover, dim(E,C1

2x,) = g - 3 and, by 6.3,

Ο € ( D ) or D = e*e + an effective divisor. In the last case, by Lemma 6.5, [L] e Λ. If

Ο £ (Z>), then e((D)) is a hyperplane in P « 2 and a generic point ^ e Ε satisfies the

equality dim(Z) + e*e1) = g - 1. From this it follows that A°(S, cos ® Lie*^!)" 1) = 0,

and by the Riemann-Roch theorem

Λ°(5, L(e*ex)) = g+l-g+l = 2 = h°(S, L).

Therefore \L(e*el)\ = \L\ + e*e1, but \L(e*e1 - e*e2)\ Φ 0 for a generic point e2 e £.

Hence for such points e2 we have |L(-e*e 2 ) | Φ 0. Therefore e*e2 + an effective divisor

e \L\ and, again by Lemma 6.5, [L] e Λ. If the system |L| has basepoints, then it

contains a divisor of the form ε*α + an effective divisor. Therefore, again by Lemma 6.5,

[L] e Λ. •

6.8. PROPOSITION. Let S be a nonhyperelliptic curve of genus 6. Then the theta-divisor Θ

has at most one singular point of multiplicity > 3, and if such a point [M] does exist, then S

is a plane quintic embedded in P 2 via the morphism φΜ.

PROOF. Let [M] e Θ be a singular point of multiplicity > 3. Then, in view of 2.5 and

Remark 2.6(b), h°(S, M) > 3. But deg Μ = g(S) - 1 = 5. In this case by Clifford's
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theorem the sheaf Μ is free and h°(S, M) = 3. Thus we obtain a morphism <pM: S -» P 2

of degree 1 onto a curve <JPW(S) of degree 5. Applying the Plucker formula for the genus of

a plane curve and using the fact that S is the normalization of the curve φΜ(Ξ), we see

that <pM is an embedding and S is a plane quintic. By the Noether-Enriques theorem [28],

the structure of plane quintic is defined intrinsically, namely by the intersection of

quadrics in the canonical embedding of a given curve, which implies the uniqueness of the

point [M]. •

6.9. PROPOSITION. Let S be a nonhyperelliptic curve of genus 6. Then for a generic point

[M] of one of the two-dimensional components of the variety Sing Θ there exists only one

nonsingular point on Sing Θ the tangent plane at which to Sing Θ is "parallel" to the tangent

plane at [M], namely the point [oss ® M" 1 ] .

6.10. REMARK. It is easy to generalize the last result to the case of an even g > 8, but the

assertion fails for g = 5. When we speak about "parallel" planes, we have in mind the

natural connection on an abelian variety.

PROOF OF PROPOSITION 6.9. First we consider the case when S is a plane quintic. By the

Noether-Enriques theorem, in this case the intersection of quadrics through the curve

S c P 5 defines the image of the plane P 2 under the Veronese map defined by the linear

series of conies. We shall show that on S there are no complete free linear systems \D\ of

degree 5 and dimension 1. In view of Theorem 4.5 and Remark 4.6(e), from this it is easy

to conclude that

S i n g © = {[M(s1-s2)]\s1,s2eS)

(at least modulo components of dimension < 1), where Μ is the sheaf of type G\ defining

the structure of plane quintic on S. But the tangent plane to Sing© at the point

[M(s2 - sx)] is "parallel" only to the tangent plane at the point [ws ® (M(s1 - i 2 ) ) 1 ]

since it is easy to verify that, in a natural sense, the projectivization of this plane coincides

with the line in P 5 passing through the points s1, s2 e S c P 5 . So, let D = Σί*,· be a

divisor consisting of 5 distinct points on S and varying in the linear system \D\ of type G\.

By the Riemann-Roch theorem, the linear span (Z>) c P 5 has dimension 3. It intersects

the Veronese image of the plane P 2 at at least 5 points. This is possible only if the

intersection is not proper and contains a conic in P 5 corresponding to a line in P 2 . Since

\D\ Φ \Μ\, this line does not contain all five points of the divisor D. If this line contains

four points from Supp D, then [@S(D)] belongs to the variety Sing Θ described above, i.e.

| Μ | has a fixed point. Finally, if this line contains no more than three points of the divisor

D, then the intersection ( D ) Π S contains at least 7 points, from which it follows that the

curve 5 is trigonal, which is impossible by the Noether-Enriques theorem [28]. Thus our

proposition is true in the case of a plane quintic, and so in what follows we may assume

that S is not a quintic.

Next we observe that Sing Θ has a two-dimensional component Jt with generic point

[M], where Μ is a free invertible sheaf. In fact, by Theorem 4.5 and Remark 4.6(e) this

holds for arbitrary two-dimensional components provided that the curve S is not trigonal

or superelliptic (and is not a plane quintic). If 5 is a trigonal curve, then it is easy to verify

that the component which is symmetric to the component {[M(D)]\D e S(2>} with

respect to the point [<os] e Pic S, where Μ is the invertible sheaf of type G\ defining the

trigonal structure on S, satisfies our condition. In the superelliptic case it suffices to take a

component which is complementary to Λ; such a component exists in view of Remark 6.7.
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So, let d( be a two-dimensional component in Sing θ for whose generic point [M] the

sheaf Μ is free. Clearly we may assume that the point [M] is not equal to one-half of the

canonical class [cos] and is nonsingular on Sing©. Then by [2] to the sheaf Μ there

corresponds a quadric Q c P 5 of rank 4 containing S, and in a natural sense the vertex of

this quadric (which is a line) is the projectivization of the tangent plane to Sing Θ at the

point [M] (cf. 2.7). Hence it suffices to verify that S is contained in a unique quadric of

rank 4 with this vertex. This can be easily shown using the birationality of the projection

of the curve S with center at this vertex and the fact that the degree of the image of S is

not less than 8 (the degree can be equal to 8 only in the trigonal case when the vertex

contains two points of S; in the remaining cases the degree is equal to 10). •

Suppose now that S is a nonhyperelliptic and nontrigonal curve of genus g = 5. By

Masiewicki's thesis [19], the pair Sing© and the natural involution -1 induced by the

symmetry with respect to the class [tos] is a Beauville pair for which the quotient curve

Sing ©/ + 1 is a plane quintic and the Prymian is the Jacobian of S.

6.11. PROPOSITION. Let S be a canonical curve of genus 5 which is a complete intersection

of three quadrics. Then for a generic point [M] of an arbitrary irreducible component of the

variety Sing Θ which is not an elliptic curve there exists only one other nonsingular point of

Sing Θ the tangent space at which to Sing© is "parallel" to the tangent space at [M],

namely the point [us ® M'1]. The elliptic components in Sing Θ correspond to lines in P 2

under the mapping of the quotient curve Sing ©/ + 1 onto a plane quintic. In particular, in

view o/(B), two such components intersect at exactly one point.

PROOF. Since the curve S is neither hyperelliptic nor trigonal, for a generic point [M] of

each of the components of Sing© the sheaves [M] and [us ® M~l] are free and the

projectivization of the tangent line to Sing© at [M] is the vertex of the corresponding

quadric of rank 4. Therefore it suffices to verify that the curve S is contained in a unique

quadric with this vertex, with the exception of the case when [M] lies on a component

which is an elliptic curve. This easily follows from the fact that the projection of S from

this vertex has degree 2 or 1. In the first case the image of our projection is an elliptic

curve.

The remaining assertions are obvious consequences of the Beauville condition and the

fact that each component of a plane quintic which is not a line either intersects the other

components at at least 6 points or coincides with the quintic. •

We conclude this section by proving several simple results about curves of genus 4.

6.12. PROPOSITION. Let S be a nonhyperelliptic curve of genus 4.

(6.12.1) #Sing© < 2.

(6.12.2) A point χ e Sing Θ is a symmetry point for the divisor Θ if and only if

# Sing Θ = 1.

(6.12.3) If Χγ and x2 are two distinct points from Sing©, then (xx - x2) £ J2(S), where

J2(S) is the set of points of order 2 on the Jacobian J(S).

PROOF. By the Noether-Enriques theorem [28], the curve 5 is the intersection of a

quadric and a cubic in P 3 . Therefore by the Riemann-Kempf theorem and the geometric

interpretation of the Riemann-Roch theorem the points from Sing Θ correspond to the

sheaves of type G\ cut by the lines on the quadric Q ^> S. Since there are at most two such

lines modulo rational equivalence, # Sing Θ ^ 2.
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By the above, if # Sing Θ = 1, then the quadric g c P 3 has rank 3, i.e. is a quadratic

cone. Hence two lines on this cone are cut out by a hyperplane section, so that 2 Μ ~ ω5,

where [M] is the sole point of Sing©. Conversely, since Θ is a principal polarization

divisor, all its symmetry points belong to one-half of the canonical class or, in other

words, are theta-characteristics. The necessity assertion in (6.12.2) easily follows from this

fact.

The last assertion follows from the fact that if S lies on a quadric Q of rank 4, then the

linear systems |2/x|, |2/2|, where /x and l2 are the line generatrices of the quadric Q, cut

nonequivalent complete linear series on S. •

§7. Proof of the main theorem: case/? > 8

In this section we turn to the proof of our main theorem on distinguishing Prymians

from Jacobians. More precisely, as we have already remarked in the Introduction, we

point out some properties of Beauville pairs which are necessary in order that their

Prymians be Jacobians. The sufficiency is clear in view of the results mentioned in the

Introduction, and we shall discuss it in more detail in one of the following parts.

7.1. So, let (C, /) be a Beauville pair such that P(C, I) = J(S), where S is a

nonsingular curve of genus g. As above, as we assume that the corresponding quotient curve

C is neither hyperelliptic nor quasitrigonal (compare with §5). Besides that, in this section,

unless specified otherwise, we assume that ρ = p(C) > 8 (compare with [26] and [27]).

Then, by Propositiions 5.4 and 6.1, S is a nonsingular connected nonhyperelliptic curve of

genus g = ρ — 1 > 7. The goal of the present section is to show that C is a trigonal curve

(7.12).

The above isomorphism between the Prymian and the Jacobian can be rewritten in the

form of a canonical isomorphism Pv(C, /) = Jv(S) under which the canonical polariza-

tions are identified.

We begin by proving the following assertion, which greatly simplifies our situation.

7.2. LEMMA. Suppose that the curve C has two connected components Cl and C2 such that

(7.2.1) Q U C 2 = C
and

(7.2.2) #C X η C2 = 4.
Then one of these components Cj or C2 is a nonsingular rational curve.

PROOF. Suppose the converse. Then, by (S), p(Cx), p(C2) > 1. Let / : C , U C 2 - » C be

the partial desingularization at the points of the set CXC\ C2. To this desingularization

there corresponds a partial desingularization of the pair (C, / ) , namely/: Cy U C2 —> C,

where C\ and C2 are the proper preimages of the curves Cx and C2 with respect to the

projection m: C —> C. In view of (3.18), this last desingularization induces an isogeny

/°: Pv(C, / ) - P v ( Q , / t ) X Pv(C 2 ,1 2 ) .

We denote by Z c P v the preimage of the subvariety Pvx Χ Ξ2 c T>v1 X Pv2. By Lemma

5.10, h°(C, L) > 0 for all points [L] e Z. Therefore Ζ c Ξ. Now we observe that

dim Ζ = ρ — 3, since from 3.14 it easily follows that the codimension of Ξ2 in Pv2 is equal

to two and Ξ2 Φ 0 if p(C2) > 1. Thus the Gauss map Γ: Ζ — + ( p s 1 ) * associating to a

point ζ e Ζ the projectivization of the tangent space to Ξ at ζ is well-defined at generic

points of Ζ (here the projectivizations of all tangent spaces to Pv are naturally identified

with one fixed P g ~ \ namely the space of the canonical embedding of the curve S). By

construction, all hyperplanes from P ? 1 belonging to the image of the Gauss map pass
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through a subspace Ρ c p s " 1 coinciding with the projectivization of the tangent space to
the abelian variety (/°)~1Pv1 X {x} (more precisely, to a principal homogeneous space
with respect to the action of P{CX, Ix)). The dimension of the subspace Ρ is equal to
dimPvj - 1 = p(Ci) + f — 1 — 1 = p{Cx). Hence the image of Γ has dimension g — 1
— p(Cx) — I = ρ — 3 - p{Cx) < ρ - 3, since by our assumption p{Cx) > 1. Hence there
exists a one-dimensional family of smooth points on Ξ = Θ which is mapped to a single
point by the Gauss map Γ. But this is impossible for the Jacobians. In fact, for each
smooth point [L] e Θ c Jv(5*) = Pv we have dim|L| = 0, deg L = g — 1 and the unique
divisor D e \L\ spans the hyperplane (D) C P*" 1 . Using 2.7, it is easy to verify that
F([L]) = (D). But the hyperplane (D) intersects the curve S c p?" 1 along finitely many
points and so defines the point [L] modulo a finite number of possibilities (under the
assumption that [L] is a smooth point of Θ). This contradiction completes the proof. •

7.3. REMARK. From the proof it is easy to see that Lemma 7.2 holds for all p.
7.4. By Proposition 6.1, the variety Sing Ξ = Sing Θ has an irreducible component Ζ of

dimension > g — A = ρ — 5. Moreover, in view of our assumptions dim Ζ = ρ — 5. We
fix such an irreducible component Z. By Theorem 5.12, Ζ is a subvariety of one of the
varieties of special singularities Z( · · · ) described in 5.11. We say that Ζ has type
corresponding to the type of a special variety Z( • · · ) if Ζ c Z( • · • ), and does not have it
otherwise. Here and in what follows in the study of special singularities we use the
notation from 5.11.

7.5. First we verify that the component Ζ does not have type V, VI, VII, VIII, IX or X.
In fact, case X does not occur already for ρ > 7. For the types VI, VII, VIII and IX we
have p{Cx), p(C2) > 1, since otherwise Z( · • · ) = 0. After a suitable modification of the
components Cx and C2 this leads to a contradiction with Lemma 7.2. For example, in the
case of type IX it suffices to replace Cx by the curve C, U Co and to leave C2 intact. The
same argument shows that Ζ cannot have type V, because in this case p{CY) = 3 and in
view of (S) the complementary curve C2 in C is connected and has genus > 1 for
P(C)>7.

7.6. REMARK. AS a matter of fact, we have proved a somewhat stronger assertion:
(7.6.1) For ρ > 7 the component Ζ does not have any of the types V — X.
(7.6.2) For ρ ^ 6 the component Ζ does not have any of the types VI — IX.
7.7. Suppose now that Ζ has type IV, i.e. Ζ CL Ζ(γ, C\). We claim that then S is a

superelliptic curve and Ζ = Λ. We note that by 7.2 the curve Co is a nonsingular rational
curve. On the other hand, applying (S) and 7.2 again, we see that the structure γ is finite,
i.e. Q is a hyperelliptic curve of genus /?(C\) = Ρ ~ 3 > 5.

7.8. The following assertions are immediate consequences of the fact that the canonical
image of the curve Cx is a projectively normal rational curve of degree />(C\) — 1 in

(7.8.1) The linear system \uc ® γ*(Μ 1)" 2 | is nonsingular and has dimension g(Q) — 3,
where [M^ e Pic^F1)·

(7.8.2) The linear system |coc S> γ*(Μ 2)" 2 | is nonsingular and has dimension g(Cx) — 5 ^
0, where[M2]<E Pic^P1).

But by 3.14 a general nonsingular divisor D on Cx such that vlifD e jwc ® y*(Ml)~2\
is linearly fixed. Hence

dim Ζ(γ; C\) = dim P(C0, Io) + dim u>c ® y*(M1)~2 = ρ - 5,
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and dim Ζ'(γ; Cj) = ρ — 7. From this it follows that S is a superelliptic curve (cf.
Proposition 6.4) and Ζ'(γ; Q ) = Λ'.

Now we construct a surface Τ c /*(C, /) for which

Since the isogeny f°: Pv -> Pv0 X Pvx is compatible with the actions of the corresponding
Prymians (cf. 3.21.2), it suffices to construct a surface 7\ c i^ = i ^ Q , 7X) for which the
following condition holds:

Ά · {[(yv1)*(M2)(D)] e P v j M j e Pic2 (P1) and D is a nonsingular divisor on Cx)

= { [ (Ύ^Ι)*(Λ/ 1 ) (Ζ))] e PVJIIMJ e Pic^P1) and D is a nonsingular divisor on Cx).

Here we understand equality in the sense of coincidence of generic points. In fact, by
(5.8.2) for a generic point [(γ ° π^Μ^Ό)] <= /°Ζ(γ; Q) we have

Now we observe that, modulo a nonsingular fixed divisor, the linear system j V7-L̂  i>| can be
viewed as a subsystem of the complete hyperelliptic system | coc | and

C i ® y*(Miy
2/2 = p(Cx) - 3.

On the other hand,

dim

Using the fact that Cx is a hyperelliptic curve, it is easy to show that mx* D = y*(x + y) + a
nonsingular divisor on Cv where χ and y are generic points on P1. Let Όλ and D2 be the
components of the divisor D on C1 lying over y*(x) and y*(y), so that m-i^.Dl = y*(x)
and itXifD2 = y*(y). Then D = Dx + D2 + a nonsingular divisor on Cv Therefore

(Y ° '1Ti)*(Mi)(D — Dx + I*D2) — (y ° πι)*(Μ2)(α nonsingular divisor on Cx).

Now we define a surface 7\ to be the closure of the following subset of classes of
invertible sheaves:

{f Θ(- (Όλ — D2)\ e f j f l , and D2 are nonsingular divisors of degree 2 on C1

such thatv^D^ irlJfD2 ε | γ * Μ 1 | | .

By the above,

7\{(γ ο ir1)*{M2)(D)} 3 {(γ » ̂ (M^D)} .

The opposite inclusion is obvious.
Thus we have constructed a surface Τ c P(C, I) = J(S) such that

Τ • 7'ίν· C \ — 7(-v- C \
ι z, yy, Cjj — ζ,^γ, Cjj.

Hence by (6.6.3) there is an inclusion Ζ(γ; Cx) c Λ, and in view of the irreducibility of Ζ
and Λ we have Ζ = Λ, as required.

7.9. Suppose now that Ζ has type III, i.e. Ζ c Ζ(γ; c1; c2). We shall show that in this
case 5 is also a superelliptic curve and Ζ = A. In this situation the hyperelliptic structure γ:
C\ -> P 1 is not necessarily finite, i.e. there may exist curves Co c C\ whose image with
respect to γ is a point. But by 7.2 and (S), if such a curve does exist, thenit is unique and is
a nonsingular rational curve intersecting the residual component C[ at two distinct points.



PRYM VARIETIES: THEORY AND APPLICATIONS 137

This component C[ is a hyperelliptic curve of genus p(C{) > 5. We observe that in the

case under consideration u>c \c = 0 . Now a word-for-word repetition of the argument

from 7.8 for the curve Cx yields the desired result.

7.10. REMARK. Using the construction of the preceding paragraph, we can show that for

ρ = 7 the variety Ζ'(γ; clt c2) consists of two distinct points, since the degree of the

corresponding isogeny/0 is equal to two (one should twice apply 3.15).

7.11. Suppose now that Ζ has type II, i.e. Ζ c Ζ(ε). We shall verify that in this case S is

also a superelliptic curve and Ζ = A. So, let ε: C —» Ε be a superelliptic structure. If the

morphism ε is not finite, then the finiteness may fail only over the ordinary double points

e e E. Moreover, by (S) and 7.2 this is possible only if over the point e there lies a

nonsingular rational curve Co. Hence in this situation the morphism extends to a finite

superelliptic structure. Since the curve C has only ordinary double singularities, Ε has the

same property. Thus the elliptic curve Ε is a "wheel" consisting of η rational curves £,.,

i = 1,...,«. By Lemma 7.2, η < 3. Moreover, for Μ = 3 all the curves ε~ι(Εχ), ε~1(Ε2) and

ε~ι(Ε3) are nonsingular rational curves. In this case it is easy to verify that p(C) = 4.

Therefore this is impossible for ρ ^ 5. Thus η = 1 or 2.

Now we show that the case η = 2 is also impossible. By 7.2, one of the components

e~\Ex) or ε~1(Ε2) of C is a nonsingular rational curve. We denote this curve (say, ε~ι(Ε2))

by Co and the residual component by C\. On Ε there are exactly two singular points, ex

and e2. Let c1 and c2 be the points of C over eu and let c3 and c4 be the points of C over

e2. By 7.7 and 7.9, S is a superelliptic curve and Λ = Ζ(γ; c l 5 c2) = Ζ(γ ' ; C\), where γ is

the hyperelliptic structure on the desingularization C2 of C at the points c1 and c2 and γ ' is

the hyperelliptic structure on Q which, as well as γ, is induced by the morphism ε.

Consider the partial desingularization /: Co U C1 -» C at the four points cx = 77"1(c1),

c 2 = w'^Cj), c3 = 77"1(c3), c 4 = ir~x(cA) as a composition of the desingularization fx:

C2 -* C at the points c t and c2 and a subsequent desingularization at the points c3 and c4.

Then for a generic point [L] e Ζ

/ ° ( [ L ] ) | i o = (Λ°([Ι . ]) | ί ο )(-θ3 - c 4 ) = [ 0 i o ( - c 3 - c 4)] = const e Pv(C0, / 0 ) .

To prove this, we use the fact that uc \c = 0 (compare with 7.9). But this contradicts the

equality Ζ = Ζ(γ ' ; C\). Hence the case η = 2 is actually impossible.

Therefore « = 1, so that if Ζ has type II, then Ζ c Ζ(ε), where ε: C -» is is a finite

morphism of degree 2 onto an irreducible elliptic curve Ε having at most one ordinary

double point. Consider a generic point [L] e Ζ(ε). Then L ~ (ε° π)*(&Ε(ε + e'))(D),

where e, e' is a pair of generic points on Ε and π*Ώ e |wc8*(e + e ' ) " 2 | is a nonsingular

divisor on C. Using the canonical model of the curve, it is easy to verify that, as in the

nonsingular case, there is a representation π*D = 8*(Ef 5e,) = ε*(εγ + e2 + e3) + a

nonsingular divisor on the superelliptic curve C, where ex, e2 and el are generic nonsingular

points on the elliptic curve E. We recall that by our assumption ρ > 8. We denote by htj a

nonsingular point on Ε such that 2htj~ e,-Y ey, 1 < /, y < 3 (here - denotes the linear

equivalence). By the above, there is a representation D = Dx + D2 + D3 + a nonsingular

divisor on C, where τ , D , = e*(e,), 1 < / < 3. On the curve C we consider the divisor

Then
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Hence [0c('/,·)] e k e r 7 r * = P(C> Ό ® Z / 2 Z ·
On the other hand, the points htj can be chosen in such a way that Σ 1 < / < _,· < 3 h,j ~ Σ\et.

For such a choice

Σ (eoir ) ·*, ,-- Σ (*° *)**/.
l«/</<3 / = 1

from which it follows that

Σ t,j = (eo^)*(h12 + A13 + A23) - 2D1 - 2D2 - ID,
l«/<7<3

3

- (e°w)*(e 1 + e2 + e3) - 2Όγ - 2D 2 - 2D3 = £ / * £ > , - £>,

and by definition the class of the sheaf corresponding to this divisor lies in P(C, I).

Therefore one of the sheaves &c({ij) or> more precisely, its isomorphism class lies in

P(C, I). Moreover,

(e°v)*(0E(e + e')){D + f,,) = (e°v)*GE(e + e' + htJ)

(a nonsingular divisor on C), i.e. [L(i/y·)] = [L1] e Ζ'(ε). Now we consider the variety

Τ c Ρ = P(C, I) whose generic points have the form

where Dx and D2 are nonsingular divisors of degree 2 on C such that ττ*Όι = e*ex and

ir*D2 = e*e2, and A12 is one-half of the divisor ex + e2. We have already verified that

Τ • Ζ'(ε) > Ζ(ε). The reverse inclusion is obvious. Therefore Τ • Ζ'(ε) = Ζ(ε). By our

assumption dim Ζ(ε) > ρ - 5 since Ζ(ε) 3 Ζ, and an easy dimension count shows that

dim Τ < 2. Hence dim Ζ'(ε) > /? - 7. As above, applying Propositions 6.4 and 6.6 we see

that S is a superelliptic curve and Ζ = Λ.

7.12. In view of 7.5, 7.7, 7.9 and 7.11, Ζ does no? Aaue type V, VI, VII, VIII, IX or X, W

i/ Ζ Ααί /y/>e II, III or IV, i/ie« 5 « a superelliptic curve and Ζ = A. By the Torelli theorem,

this is an intrinsic result. On the other hand, by (6.6.2) Sing Θ = Sing Ξ has at least one

other irreducible component Ζ of dimension ρ - 5. Therefore by Theorem 5.12 the curve

C admits a trigonal structure τ: C -» P 1 , and then by (S) the curve C is trigonal, which

completes the proof of necessity in the case ρ > 8.

7.13. REMARK. Type IV can occur when the Prymian is a Jacobian, namely when the

glued points clt c2, c3 and c4 of the nonsingular rational curve Co = P 1 are compatible

with the hyperelliptic structure γ: C, -* P \ which defines a trigonal structure on C (cf.

Figure 7). Type II and the corresponding quasitrigonal structure can also occur (cf. Figure

8).

FIGURE 7
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FIGURE 8

§8. Proof of the main theorem: cases ρ = 7,6

8.1. As in the preceding section, we assume that P(C, I) ~ J(S) or equivalently

Pv(C, /) = Jv(S'), where S is a connected nonsingular nonhyperelliptic curve whose genus

(this time) is equal top - 1 = 6. The case;? - 1 = 5 will be briefly discussed in the end of

this section (cf. 8.6-8.10). As above, we assume that C is neither hyperelliptic nor

quasitrigonal. Our goal is to show that this curve C is trigonal (cf. 8.5).

8.2. By Proposition 6.9, the variety Sing Θ = Sing Ξ has a two-dimensional component

(a surface) Ζ such that for a generic smooth point [M] e Ζ there exists exactly one other

nonsingular point in Sing© = Sing Ξ with a "parallel" tangent plane, namely the point

[ω5 <8> M" 1 ] . We fix such an irreducible component Z. In view of Remark (7.6.1), Ζ does

not have type V-X.

8.3. Now we verify that Ζ does not have type III or IV. In fact, suppose that

Ζ c. Z{- · • ), where Z( • · · ) is a variety of special singularities of one of these types. By

definition, in these cases

Z ( · · - ) = ( 7 0 ) " 1 (asurface (zVV),

where f°: Pv —» Pv' is the isogeny corresponding to a partial desingularization at two or

four points. A repeated application of Lemma 3.15 shows that the degree of this isogeny is

equal to two or four. Since at a generic point from Ζ the transformation [M] -> [ω5 ® M~l]

does not correspond to a translation, we arrive at a contradiction.

8.4. To complete the proof in the case ρ = 7, it remains to consider the situation when Ζ

has type II. So, let ε: C -* Ε be a superelliptic structure and let Ζ c Ζ(ε). As in 7.11, we

can extend this structure to a finite one. Moreover, we may assume that Ε is a " wheel"

consisting of « = 1 or 2 rational curves. Since C is not quasitrigonal, for η = 2 over each

of the two singular points ex, e2 e Ε there are two ordinary double points cx, c2 and c3, c4

respectively (compare with 7.13). But then by Lemma 7.2 one of the components

C, = e~1(Ej), i = 1,2, of C is a nonsingular rational curve. Furthermore, by Remark 7.10

on the variety Sing Ξ there are two points of multiplicity > 3 with respect to Ξ which lie

in Ζ'(γ; Clt C2), where γ is the hyperelliptic structure on the resolution of C at two points

Cj and c2 induced by ε and the "contraction" of a nonsingular rational component to a

point. This contradicts Proposition 6.8.

Thus η = 1; that is, Ε is an irreducible elliptic curve, possibly with one ordinary double

point. Since the curve C is not quasitrigonal, over such a singular point of Ε there are two
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singular points c1 ( c2 of C. Hence if Ε is singular, then, arguing as in the end of the

preceding paragraph and applying Remark 7.10 and Proposition 6.8, we arrive at a

contradiction. Therefore £ is a nonsingular elliptic curve.

We denote by J2(E) the subgroup of points of order 2 in the Jacobian J(E) of E.

Consider the homomorphism:

(ε ο 77·)* :J2(E) -> ker(Nm) = P(C, Ι) θ Z/2Z
»

Ζ/2ΖΘΖ/2Ζ

If it is injective, then there exists an element [a] e J2(E) such that (e ° π)*α u O e

P(C, I). If Μ is a general invertible sheaf of degree 2 on E, then

( ε ° π ) * ( α ) ® ( ε ο τ τ ) * ( Μ ) = ( ε ° 7 τ ) * ( α ® Μ),

where α ® Μ is again a general invertible sheaf of degree 2 on E. Furthermore,

( α ® Μ ) ® 2 = Μ ® 2 . Using this, it is easy to show that [(ε° π)*α] + Ζ(ε) = Ζ(ε) . But this

contradicts the choice of Ζ c Ζ(ε) c Sing©. Hence the morphism ( ε ° π)* has kernel on

J2(E).

We remark that, applying the argument from the beginning of §6 to the singular curve

C instead of S, we see that uc = ε*Μ for some invertible sheaf Μ of degree 6 on E. Let

[MJ, [M2], [M3], [M4] <= Pic3 £ be four half-divisors for [M] <E P ic 6 £. The group J2(E)

acts transitively on the set of these points. If [α] Φ 0 e J2(E) and (ε° π)*[α] = 0 e

P(C, I), then the sheaves (ε°·π)*Μ1 and (ε° π)*(α ® Mx) on C are isomorphic to each

other. From this it clearly follows that h°(C, (ε ° <π)*Μλ) > 6. But by the Clifford theorem

(4.2)

Ηο(€,(ε°ιτ)*Μλ) < ( d e g ( e o v r ) * M 1 ) / 2 + 1 = 7.

The case h°(C,(s° π)*ΜΎ) = 7 is impossible, since then by 3.14 and (5.1.3) there exists a

one-dimensional family of singular points [(ε° π^Μ^ο — / (c))] t e ( j of multiplicity > 3

on Ξ. But this is impossible by Proposition 6.8. Hence

Α°(ί,(ε°77)*Μ 1) = 6.

But Nm(6 ο ir)*M1 « 2ε*(Μι) » e*(2Mj) « ε*(Μ) = wc. Using this and Theorem 5.1, we

obtain an inclusion [(ε° 7r)*MJ e Pv, and so Mult [ ( e <,w )»M ]Ξ > 3. On the other hand, by

Proposition 6.8, Ξ = θ has at most one such point. Now we observe that the above

argument can be applied to each of the four sheaves Mt, i = 1,2,3,4. Therefore all

elements of the group J2(E) lie in the kernel of the homomorphism (ε° IT)*. But since the

group J2(E) has rank 2 over Z/2Z, Lemma 3.18 (applied to the normalizations of the

curves of the "tower" C —> C —> E) shows that this is impossible. Thus the surface Ζ does

not have type II.

8.5. In view of 8.2-8.4, we see that our surface Ζ c Sing Ξ has type I, from which, as in

the preceding section, it follows that the curve C is trigonal. This completes the proof of

necessity for ρ = 1.

8.6. Now we consider the case ρ = 6, g(S) = ρ — 1 = 5. We do not go into details, but

give a sketch of the proof of necessity. This time, in addition to the trigonal case one must

consider the case of a plane quintic C with an odd pair (C, I) a special case of which is type

V. Therefore we assume that among the singu'ar curves making up Sing Ξ there are no

curves of types I, V and X and show that this yields a contradiction. By Remark (7.6.2),

types VI-IX also do not occur.
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8.7. First we verify that S is not a trigonal curve. In fact, otherwise Sing Ξ = Sing Θ has

exactly two (nonsingular) components with distinct tangents (in the sense of the Gauss

map) which are isomorphic to the curve S. One of these components coincides with the

curve g\ + S c Jv(5), where g\ is the class of the sheaf of type G\ corresponding to the

trigonal structure on S, and the other component is symmetric to the first one with respect

to [cos]. Arguing as in the case/? = 7, we obtain a finite superelliptic structure ε: C -> E,

where Ε is a nonsingular curve. Since for type II the divisor D can be chosen in at most

two ways and Sing Ξ = Sing Θ has two components, each of these components is

birationally isomorphic to the curve J( Ε), which yields a contradiction.

8.8. The variety Sing Ξ does not have components of type IV. Suppose to the contrary that

on C there is a structure of type IV. Then, by (S) and 7.2, Co is a nonsingular rational

curve and the hyperelliptic structure γ is finite (compare with 7.7). By 8.7 and the

Noether-Enriques theorem [28], the canonical embedding of S is an intersection of three

quadrics, and therefore we can apply Proposition 6.11. It follows that the variety Ζ(γ; C\)

is a nonsingular elliptic curve. Hence, again by this proposition, in Sing Ξ there exists at

least one other irreducible component Ζ' Φ Ζ. If this component again has type IV, then

Cl = CQ U C[, where Q and C[ are nonsingular rational curves such that Co Π C(, = 0

and #C[ Π CQ = #C[ (Ί Co = 4. More precisely, the other structure of type IV is the pair

γ', C[ U Co, and the structures γ and γ ' yield a single trigonal structure (cf. Figure 9),

which is impossible by our assumption. If Z' has type III, then by (S) and 7.2 the

corresponding structures are compatible with type IV. By what we mean that the points cx

and c2 of the structure of type III lie in the set Co η C, of intersection points for type IV

and the structure γ for type IV is induced by the structure γ for type III. Applying

Proposition 6.11 once more, we see that Ζ' = Ζ(γ; c^ c2) is a nonsingular elliptic curve

and the intersection of the components Ζ and Z' consists of exactly one point, which

contradicts the definition of the curves Ζ and Z' as the preimages of isogenies for some

partial desingularizations. In fact, since the degree of the isogeny/0 for type II is equal to

two, these curves intersect along an even number of points. Hence the component Z ' must

have type II, which, in its turn, again leads to type III and yields a contradiction.

FIGURE 9

8.9. Next we show that the curve C is irreducible. By Theorem 5.12, C has a structure of

type III or II. First we consider the case of type III. Then the hyperelliptic structure γ is

finite. If the curve CY is reducible, thenit consists of two nonsingular rational components

intersecting along five points. In view of condition (E), C has the form sketched in Figure

10 (after a suitable ordering of the points c1 and c2).



142 V. V. SHOK.UROV

On the other hand, using Proposition 6.11 instead of Proposition 6.9 in the argument
from 8.3, we see that the curve Ζ(γ; cx, c2) c Sing Ξ is an irreducible nonsingular elliptic
curve. Hence Sing Ξ contains other irreducible curves and has other structures of type II
or III. But in each of these cases C must have a quasitrigonal structure since after
resolving the point c1 we obtain a hyperelliptic structure on the resolution. Since by our
assumption C does not admit quasitrigonal structures, the curve C in this case is
irreducible.

The case of a structure of type II is dealt with in a similar way unless the superelliptic
structure ε: C -» Ε is a finite morphism onto a smooth elliptic curve E. But then C is
irreducible in view of condition (E).

8.10. Since C is irreducible, so is C. Moreover, all curves C for nearby admissible pairs
(in the sense of the Zariski topology) are irreducible. But for general pairs (C, I) over
Jacobians this is possible only if C is a trigonal (nonsingular) curve or a (nonsingular)
plane quintic [12]. But in that case the intersection of quadrics through the canonical
model of C is a surface. Hence the same holds for the specialization to our curve C. But
this is impossible since if the irreducible curve C is not hyperelliptic, trigonal or
quasitrigonal, then the intersection of quadrics through C coincides with itself. This is
proved in practically the same way as the Noether-Enriques theorem for g = 6. This
completes the proof of the necessity for ρ = 6. It remains only to add that the fact that the
pair (C, /) is odd when C is a plane quintic follows from Theorem 5.12 (cf. the argument
on p. 347 of [17]).

§9. Proof of the main theorem: case ρ = 5

9.1. So, let Pv(C, /) = Jv(5), where S is a nonsingular connected nonhyperelliptic curve
of genus 4. We need to show that C is a trigonal curve. As above, we assume that the curve
C is neither hyperelliptic nor quasitrigonal.

9.2. First we consider the case when S is a general curve, i.e. its theta-divisor Θ has two
distinct singular points. By assumption, Sing θ = Sing Ξ. Therefore the set Sing Ξ = {[£χ],
[L2]} consists of two distinct points [Lx], [L2]. By 5.5, there exist two linearly indepen-
dent sections sx, s2 e H°(C, Lx) such that s1 ® I*s2 = s2<8> I*sl. In ivew of 3.15, (S) and
5.10, the sections sx and s2 do not simultaneously vanish on any of the components of the
curve C, since otherwise we would have #Sing Ξ > 4. Similarly, the sections s1 and s2 do
not simultaneously vanish at every point of any set consisting of at least three points. If
the sections s1 and s2 simultaneously vanish at two singular points c, c2 e C, then the
same argument shows that/ 0/^ = f°L2, where/: C" -> C is the partial desingularization
at cx and c2. Hence in this case [Lx ® L2

l] is a point of order two on P(C, I) = J(S),
which is impossible by (6.12.3). If the sections sx and s2 simultaneously vanish only at one
singular point c e C, then by Lemma 5.8 and the fact that C is not quasitrigonal there is a
representation f°L1 = it'*M, where/: C" -» C is the partial desingularization at the point

•c
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c and Μ is a free invertible sheaf of type G\ on C". Hence I'*f°L0 ~ f°Ll and therefore

l*Ly ~ Lx, since in this case the isogeny/0 is an isomorphism. From this it is clear that

[ L J is a symmetry point of the divisor Ξ. In fact, in this case a point [L'\ e Ξ is

symmetric to the point corresponding to the sheaf L" = Lf2 <8> L'f1 ^ Ll® I*L1 ® L'~l

~ ut ® Z/"1 and A°(C, L") = h°(C, L') (the Serre duality + the Riemann-Roch formula).

But in view of (6.12.2) and our assumption this is impossible. Hence the sections s1 and s2

do not simultaneously vanish at any of the singular points of C. Then, by 5.8, L, =

7T*(M)(D), where Μ is a free invertible sheaf on C such that h°(C. M) > 2 and D is a

nonsingular divisor on C. It is clear that deg Μ < 4. Moreover, if deg Μ = 4, then

Ll = 77*(M) and I*Ll ~ L1, which again yields a contradiction with (6.12.2). Hence

deg Μ = 3 and C is a trigonal curve.

9.3. Using the result of the preceding paragraph for a general Jacobian and the fact that

the Prym map Ρ is an epimorphism for ρ = 5, we see that C is a degeneration of an

irreducible trigonal curve. In particular, the intersection of quadrics through the canonical

model of our curve C c P 4 contains an irreducible surface F. If F linearly spans the space

P 4 , then, as in the case of a nonsingular curve C, it is easy to verify that the curve is

trigonal. So we consider the case when F spans a subspace P 3 c P 4 . Since the curve C is

contained in a three-dimensional family of quadrics and condition (S) holds, this is

possible only if F is a quadric and the intersection of quadrics through C also contains a

plane P 2 c P 4 . But this is impossible by (S). Hence F is a plane in P 4 . In particular, the

curve C is reducible. Then by 7.2 one of its components Co is a nonsingular rational curve.

If Co intersects the remaining component Cl in 6 points, then Co c C c P 4 is a rational

normal curve of degree 4. But this easily yields a contradiction since the curve C is

contained in three linearly independent quadrics and the curve Q does not lie on F.

Hence # C 0 n C , = 4 and Co c C c P 4 is a plane conic. Using this, (S), and Lemma 7.2,

one can show that Cl is irreducible. Then by (S) the curve Cx linearly spans the space of

the canonical embedding P 4 . From this it follows that F = ( C o ) , which yields a contradic-

tions since the curve CY c C c P 4 has degree 6. This completes the proof of necessity for

ρ = 6, and by the above, also for all values of p. •

9.4. To obtain specializations of P(C, I) by general Jacobians in 8.10 and 9.3, one

needs to use the results of §7 of [3] for ρ = 5 and an easy count of parameters ίοτ ρ = 6.

§10. Some applications

10.1. RATIONALITY CRITERION FOR CONIC BUNDLES OVER A MINIMAL RATIONAL

SURFACE. Let V be a nonsingular threefold over the field C of complex numbers for which

there exists a flat map IT: V —> S onto a nonsingular minimal rational surface S whose

general fiber is a nonsingular rational curve 1 defining an extremal ray [I] e N(V)(cf. [31]).

The variety V is rational if and only if its intermediate Jacobian J(V) is isomorphic as

principally polarized abelian variety to a sum of Jacobians of nonsingular curves, i.e. its

Griffiths component JG(V) is trivial.

The necessity is well known (cf. [22]). Hence we only prove the sufficiency. So, suppose

that JC(V) is trivial. We shall consider the case when 5 = Fn is a rational ruled surface.

The case when S ~ P 2 easily follows from [4] and [32]. We denote by bn the unique
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irreducible curve on FB such that bl = -n, and by sn a fiber of the ruled structure. Let
C c Fn = S be the degeneration curve of our conic bundle. We shall show that

or

(C-fc o )<3 forn = 0

or

(C • bi) = 0 for η = 1 and bx <t C

or

(C-fo1) = l for η = 1 and bx c C.

But in these cases the rationality of F is known (cf. [13] and [32]); moreover, the last two
cases are reduced to the case when S ~ P 2 .

We denote by C the base of the family of "lines" over the degeneration curve C of our
conic bundle. Then the pair (C, /) consisting of C and the natural involution / permuting
the two lines in a degenerate fiber is a Beauville pair with C/I = C. In view of the
computations performed in [4] and [22],

J(V)P(C,I).

Hence the Prymian P(C, I) is isomorphic to a sum of Jacobians of nonsingular curves.
Consider the linear system |cos(C)| on the surface S. From the exact sequence

0 -> ω3 -> w s(C) -» wc -» 0

and the vanishingof h°(S, us) = Λ1(5, ω5) it follows that the linear system |cos(C)| on S
restricts isomorphically to the canonical linear system |<oc| on C. In view of (Ε), (Β), and
the nonexistence of double coverings of P 1 with fewer than two branch points, the linear
system |« c | is free and defines the canonical morphism κ: C -» PN. We remark that the
curve C is connected. By the above, the morphism κ is induced by the map φ: S -» PN

defined by the linear system |ws(C)|, possibly after subtracting the fixed component. In
what follows we use the following properties of linear systems on Fn: they define a map to
a point, or a map onto a rational normal curve of degree Ν in PN, or a birational map
which possibly blows down the curve bn for η > 1 and is an isomorphism off bn. In all
these cases the image <p(S) coincides with the intersection of quadrics passing through it.

Case Ν = 0. In this case C is an elliptic curve and |w s(C)| = |j3frj, where β is a
nonnegative and η ̂  1 for β > 0. Therefore C ~ (β + 2)bn + (n + 2)sn. We need to
show that β < 1. In fact, if bn <£ C, then

=> (n + 2) -(j8 + 2)Μ > 0

=> 2 > (β + 1)« =» 1 > β.

If bn c C, then

=> (« + 2) -(β + l ) n : s 2 = > O > / ? - « = » l > 0 .

Next we consider the case when Ν > 1 and the image <p(S) is a rational normal curve of
degree Ν inPN. Then the map κ: C -> K(C) has degree 2 at a generic point and defines a
hyperelliptic structure on C. Hence in this case (C · sn) = 2.
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Suppose now that Ν ^ 2 and the map φ is birational. Then κ either is an embedding or

blows down to a point the curve bn c C for η > 1 and is an isomorphism outside this

curve. In the last case the curve bn c C intersects the other components of C at exactly

two points. If the curve K(C) satisfies condition (S), then by the main theorem the curve C

either is trigonal or quasitrigonal or is a plane quintic. In all these cases the quadrics

passing through K ( C ) intersect along an irreducible surface of degree Ν - 1 in P^. By the

above, this surface coincides with <p(5). Using the classification of such surfaces, it is easy

to show that C satisfies one of the conditions formulated in the first paragraph of our

proof.

So it remains to show that there does not exist a decomposition C = Q U C2, where C1

and C2 are connected curves, Q , C2 Φ bn and Cx Π C2 = 2. More precisely, we shall show

that in this case we again come to the alternative described in the first paragraph of our

proof. If Cx or C2 (say Cx is linearly equivalent to sn, then (C · sH) = (C2 · sn) = 2. In

what follows we shall assume that bn <t Cx and Cx •*• sn. Then Cx ~ /?&„ + £«•„, where

β > 1 and ξ > ηβ. If C2 contains a curve X which is distinct from sn and bn, then

C2' = C2 \ bn ~ β \ + ?sn, where β' > 1 and ζ' > ηβ'. But then

β • β' • η < ( C x • C2') < ( Q C 2 ) = 2,

from which it easily follows that (C · sn) < 3 for η > 2. If « = 1 and β · β' = 2, then

C\ ~ jS(Z»! + j j) and C2 « β'^χ + ij), which contradicts the connectedness of C2 when

Z>! c C2. Hence C2 = C{. Therefore (C · sn) = β + β' = 3. The case « = 0 can be easily

treated directly. So, the only unclear case is the case when C2 ~ bn + f'in, where ζ' > \.

But then it is clear that β < 2, from which it again follows that (C • i n ) < 3. •

Essentially, we have proved the following result.

10.2. THEOREM. In the conditions of Criterion 10.1, ;/ the variety V is rational, then

|2AT5 + C\ = 0, where Κs is the canonical divisor. •

The following conjecture generalizes this result.

10.3. CONJECTURE. Let V be a nonsingular algebraic threefold over an algebraically closed

field k of characteristic Φ 2 for which there exists a flat map IT: V —> S onto a nonsingular

surface S whose general fiber is a nonsingular rational curve 1 defining an extremal ray

[1] e N(V). If V is a rational variety, then \2KS + C\ = 0, where C is the degeneration

curve of our conic bundle.

10.4. REMARK. The necessity rationality condition \2KS + C\ = 0 formulated in 10.2 is

also sufficient, except in the case when the degeneration curve C is a plane quintic. In the

last case we must require that the " theta-characteristic" be even. Using this, it is easy to

verify that in the class of conic bundles over a minimal rational surface there does not exist a

smooth family Vb, b e B, such that Vh is a rational variety and Vh is irrational for

b e Β — b0 (compare with Problem 1 from [24]).

We denote by <3)p the variety of Beauville pairs (C, I) such that C = C/I is a connected

curve and pa(C) = p. Let Λ^_4 be the variety of principally polarized abelian varieties of

dimension g such that dim Sing Θ ^ g — 4, where Θ is the effective divisor of principal

polarization. This is the so-called Andreotti-Mayer variety [2], and according to [2] the

variety Jg = J(J(g) (the closure of the image of the Jacobians of nonsingular curves in the

space of principally polarized abelian varieties) is a component of Ng_4.
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The following theorem describes the intersection oi Ng_4 with the closure P(i8g+1) of

the image of the set of Beauville pairs under the Prym map (compare with Theorem 5.1 in

[11])·

10.5. THEOREM. For g > 6 the variety Ng_4 (Ί P(38g+l) has the following components:

(a) Jg, the variety of dimension 3g — 3 whose generic points correspond to Jacobians of

nonsingular curves of genus g;

( b ) ^ ( ^ \ , the variety of dimension 2g + 1 whose generic points correspond to the Prymians

P(C, I) of Beauville pairs (C, /) such that C = C/I is the curve obtained by identifying two

general pairs of points of a nonsingular irreducible hyperelliptic curve of genus g — 1;

(c) Jfg^\, the variety of dimension 2g whose generic points correspond to the Prymians

P(C, I) of Beauville pairs (C, I) such that C = C/I is obtained by gluing a nonsingular

irreducible hyperelliptic curve of genus g — 2 and a nonsingular rational curve along four

points in general position;

(d) &g+i, the variety of dimension 2g - 1 whose generic points correspond to the Prymians

P(C, I) of Beauville pairs (C, /) such that C = C/I is a nonsingular irreducible superelliptic

curve of genus g + 1 (this variety consists of two irreducible components); and

(e) iPd, 1 < d < [(g — 2)/2], the variety of dimension 3g — 4 whose generic points

correspond to the Prymians P(C, I) of Beauville pairs (C, /) such that C = C/I is a union

of two nonsingular irreducible curves of genus d and g - d - 2 respectively intersecting along

four points in general position.

The proof is an immediate consequence of Theorem 5.12, the description of P(&g+l)

and the main theorem. To compute the dimensions, one needs the local Torelli theorems

except in case (d) when the fibers of the Prym map are one-dimensional in view of the

tetragonal construction [11]. •

These components will be discussed in more detail in one of the subsequent parts.

Received 4/MAY/82

BIBLIOGRAPHY

1. Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory. Lecture Notes in Math., vol.
146, Springer-Verlag, 1970.

2. A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola
Norm. Sup. Pisa (3) 21 (1967), 189-238.

3. Arnaud Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149-196.
4. , Varietes de Prym et jacobiennes intermediates, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), 309-391.
5. N. Bourbaki, Algebre, Chaps. 7-9, Actualites Sci. Indust., nos. 1197, 1261-1272, Hermann, Paris, 1952,

1958,1959.
6. Wilhelm Wirtinger, Untersuchungen uber Thetafunctionen, Teubner, Leipzig, 1895.
7. A. Grothendieck, Elements de geometrie algebrique. II, Inst. Hautes Etudes Sci. Publ. Math. No. 8 (1961).
8. Phillips Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley, 1978.
9. S. G. Dalalyan, The Prym variety of an unramified double covering of a hyperelliptic curve, Uspekhi Mat.

Nauk 29 (1974), no. 6 (180), 165-166. (Russian)
10. , The Prym variety of a double covering of a hyperelliptic curve with two branch points. Mat. Sb.

98(140) (1975), 255-268; English transl. in Math. USSR Sb. 27 (1975).
11. Ron Donagi, The tetragonal construction, Bull. (N.S.) Amer. Math. Soc. 4 (1981), 181-185.
12. Ron Donagi and Roy Campbell Smith, The structure of the Prym map, Acta Math. 146 (1981), 25-102.
13. V. A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat.

43 (1979), 19-43; English transl. in Math. USSR Izv. 14 (1980).

14. Serge Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373-390.
15. David Mumford, Abelian varieties, Tata Inst. Fund. Res., Bombay, and Oxford Univ. Press, Oxford, 1970.



PRYM VARIETIES: THEORY AND APPLICATIONS 147

16. , Theta characteristics of an algebraic curve, Ann. Sci. Ecole Norm. Sup. (4) 4 (1971), 181-192.

17. , Prym varieties. I, Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers),

Academic Press, 1974, pp. 325-350.
18. Henrik H. Martens, On the varieties of special divisors on a curve, J. Reine Angew. Math. 227 (1967),

111-120.
19. Leon Masiewicki, Prym varieties and moduli spaces of curves of genus five, Ph.D. Thesis, Columbia

University, New York, 1974.

20. Oystein Ore, The theory of graphs, Amer. Math. Soc, Providence, R. I., 1962.
21. Jean-Pierre Serre, Croupes algebriques et corps de classes, Actualites Sci. Indust., no. 1264, Hermann, Paris,

1959.
22. A. N. Tyurin, Five lectures on three-dimensional varieties, Uspekhi Mat. Nauk 27 (1972), no. 5 (167), 350:

English transl. in Russian Math. Surveys 27 (1972).
23. , On the intersection of quadrics, Uspekhi Mat. Nauk 30 (1975), no. 6 (186), 51-99; English transl.

in Russian Math. Surveys 30 (1975).

24. , The intermediate Jacobian of three-dimensional varieties, Itogi Nauki: Sovremennye Problemy
Mat., vol. 12, VINITI, Moscow, 1979, pp. 5-57; English transl. in J. Soviet Math. 13 (1980), no. 6.

25. Robin Hartshorne, Residues and duality. Lecture Notes in Math., vol. 20, Springer-Verlag, 1966.
26. V. V. Shokurov, Distinguishing Prymians from Jacobians, Sixteenth All-Union Algebra Conf. (Leningrad,

1981), Abstracts of Reports, Leningrad. Otdel. Inst. Mat. Akad. Nauk SSSR, Leningrad, 1981, pp. 180-181.
(Russian)

27. , Distinguishing Prymians from Jacobians, Invent. Math. 65 (1981/82), 209-219.
28. , The Noether-Enriques theorem on canonical curves. Mat. Sb. 86 (128) (1971), 367-408; English

transl. in Math. USSR Sb. 15 (1971).
29. Lucien Szpiro, Travaux de Kempf, Kleiman, Laksov sur les diviseurs exceptionnels, Sem. Bourbaki 1971/72,

Expose 417, Lecture Notes in Math., vol. 317, Springer-Verlag, 1973, pp. 339-353.
30. Sevin Recillas [Sevin Recillas Pishmish], Jacobians of curves with g\'s are the Prym's of trigonal curves, Bol.

Soc. Mat. Mexicana(2) 19(1974), 9-13.
31. Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Proc. Nat. Acad. Sci.

U.S.A. 77 (1980), 3125-3126.
32. V. A. Iskovskikh, Algebraic threefolds. Algebra: A Collection of Papers in Memory of Academician O. Yu.

Schmidt (A. I. Kostrikin, editor), Izdat. Moskov. Gos. Univ., Moscow, 1982, pp. 46-78. (Russian)

Translated by F. L. ΖΑΚ


